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Abstract

Lottery and raffle mechanisms have a long history as economic institutions for

raising funds. In a series of laboratory experiments we find that total spending in

raffles is much higher than Nash equilibrium predicts. Moreover, this overspending

is persistent as the number of participants in the raffle increases. Subjects as a

group do not strategically reduce spending as group sizes increase, in contrast to

the comparative statics theory provides. The lack of strategic response cannot

be explained by learning direction theory or level-k reasoning models, although

quantal response equilibrium can fit the observed distribution of choices. Much of

the observed spending levels in the larger groups cannot be explained by financial

incentives.

Keywords: Lottery, raffle, contest, laboratory experiments.

JEL classification: C72, C92, D72.

1 Introduction

Lotteries are one of the oldest economic institutions. Chance drawings are reputed

to have been used to help finance the construction of the Great Wall of China. The
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longevity of lotteries can be attributed directly to their effectiveness at raising money.

Proponents of games of chance as a mechanism for raising funds have framed them as

a sort of “voluntary tax.” U.S. Founding Father Thomas Jefferson wrote in support of

lotteries,

A lottery is a salutary instrument and a tax...laid on the willing only, that

is to say, on those who can risk the price of a ticket without sensible injury,

for the possibility of a higher prize.

The “voluntary tax” argument (see for example Clotfelter and Cook, 1987) has appeared

many times throughout history. For example, in 1967-68, the city of Montreal sought

to defray some of the expenses from the Expo ’67 World’s Fair by running a raffle with

a prize of up to $100,000 in silver bars.

If lotteries are profitable, then it follows that at least some, and probably many, par-

ticipants in the lottery are making choices that result in negative expected returns, in the

sense that they would be better off in expected monetary terms if they sat out the lot-

tery. In the most prominent national lotteries worldwide, and state lotteries in the U.S.,

lotteries are structured such that a participant has a very small chance of winning a very

large prize. One behavioral explanation for the massive participation in these lotteries is

that they offer participants a “chance to buy hope” (see Clotfelter and Cook, 1989, 1990;

Cook and Clotfelter, 1993). Another line of argument asserts that people tend to be

poor at assessing and processing very small probabilities, so the minuscule probabilities

of hitting it big in these lotteries are incorporated in decision-making only after some

transformations. The idea of probability weighting has a component of prospect theory

(Kahneman and Tversky, 1979). The experimental evidence for probability weighting

is mixed; for example, Harbaugh et al. (2002) find that elicited probability weighting

functions depend on the frame of the experimental task. This result indicates that,

even if a probability weighting function is not per se a well-defined construct in the

psychology of an agent’s decision-making, framing remains an important component of

the decision process.

Lottery mechanisms are frequently used to generate revenue on a much smaller scale.

Particularly in the United States, charities, school groups, churches, and the like often

hold lotteries, more commonly referred to as “raffles,” for fund-raising purposes. In
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these cases, grand prizes typically range in value from a few hundred dollars to prizes

on the order of a new vehicle. Prizes of this level, while still attractive, do not evoke

fantasies of massive riches. The target audience for these raffles is small, with most

tickets being purchased by members of a local community. Therefore, the probability of

winning the grand prize is orders of magnitude larger than in a state-run lottery. This

minimizes the scope at which the explanations cited above are likely to be operable in

raffles of this scale. A confounding factor in understanding behavior in these raffles is

that, since these are used as fund-raisers for worthy causes, participants may purchase

tickets in part or in whole out of charitable motives (see Morgan, 2000). Nonetheless,

since raffles are common even when direct appeals for contributions are possible, raffles

must offer some additional fund-raising benefits over direct appeals.

We directly investigate the profitability of raffles using a controlled laboratory ex-

periment in which small probabilities, large prizes, and charitable motives are all absent.

We systematically vary the number of participants in the raffle across sessions to find

the minimum group size needed for a raffle to become profitable. In doing so, we can

directly observe the strategic response of agents to the change in group size. Our main

result is that a raffle shows a profit when the number of participants is at least four,

which is very small compared to most raffles in the field. The behavioral underpinning of

this result is that participants do not react strategically to the change in the number of

other participants in the raffle. Individual participants spend about the same amount on

raffle tickets irrespective of the size of the group. Additionally, as the size of the group

increases, participants less frequently adjust their spending based on the previous out-

comes. Therefore, our results propose a new explanation for raffle profitability: as the

population of participants grows, individuals do not react in a strategically sophisticated

way, and as a result, a raffle generates profit.

Our raffle design offers several properties which are favorable for laboratory study.

There is a commonly-known number N of participants who have the opportunity to pur-

chase raffle tickets for a fixed prize of $10. Each participant i simultaneously purchases

an amount xi of tickets; each ticket costs one cent. One ticket is drawn from among

those purchased; the purchaser of that ticket wins the prize. Therefore, the chance of

participant i winning the prize is xi∑
j xj

. Mathematically, this formulation is isomorphic

with Tullock’s (1980) basic model of contest theory, with the exponent r in his model
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set to 1. A main theoretical result in that literature is that when agents are risk-neutral

there exists a unique Nash equilibrium where the total amount spent by all players is

less than the value of the prize. This result is at odds with the experimental results we

report here.

We therefore turn to alternative models of motivation or bounded rationality for

further insights into our data. The lottery contest has a clear competitive component,

in that at the end of the game there is one and only one winner. Therefore, it is plausible

that subjects might care not just about earnings but also about relative performance.

In that case, subject behavior would conform to an evolutionarily stable strategy (ESS).

In a finite population, Hehenkamp et al. (2004) show that the ESS is greater than

the risk-neutral Nash equilibrium, but ESS spending levels decrease as the number of

participants increases, which does not match our findings.

Neither Nash equilibrium nor ESS offer predictions to organize the heterogeneity we

observe in spending levels. We therefore investigate the predictions of Quantal Response

Equilbrium (QRE, McKelvey and Palfrey, 1995), which maintains a mutual best-reply

assumption while allowing for noisy observation of expected payoffs. QRE fits the

qualitative and quantitative features of our data. Our estimates are consistent with the

hypothesis that the financial consequences of actions are less important in determining

individual behavior as the group size increases.

We then analyze other behavioral models in order to get some clues as to why in-

dividual behavior becomes less financially driven as group sizes increase. Removing

the equilibrium assumption, we consider models of level-k reasoning (see, e.g., Stahl

and Wilson, 1994, 1995; Nagel, 1995; Ho, Camerer and Weigelt, 1998; Costa-Gomes,

Crawford and Broseta, 2001; Costa-Gomes and Crawford, 2006; Crawford and Iriberri,

2007) where players exhibiting higher levels of strategic sophistication choose best re-

sponses to the play of players with lower levels of sophistication. Finally, we look at

period-by-period adjustment behavior using myopic heuristics and compare them to

the predictions of learning direction theory (Selten and Buchta, 1994; and Selten and

Chmura, 2008). Although level-k reasoning and learning direction theory result in poor

predictions in terms of the observed distribution of choices, they provide a common and

consistent message: individuals do not react in a strategically sophisticated way as the

population of participants grows.
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Our design and our analysis of the data fill in some gaps in the literature on contests

in the laboratory. The results of Millner and Pratt (1989); Potters, de Vries and van

Wind (1998); Davis and Reilly (1998); Fonseca (2009) indicate that subjects exceeded

the risk-neutral equilibrium predictions for spending.1 In all these studies, a significant

fraction of subjects chooses spending levels which are not rationalizable for risk-neutral

participants. The literature has not given much attention to the formal study of the

structure of the individual-level spending decisions, although Potters, de Vries and van

Wind (1998), in their concluding remarks, hypothesize about the possibility that some

players might make their choices in response to previous outcomes. We show that the

Quantal Response Equilibrium organizes the distribution of individual spending, and we

confirm the conjecture of Potters, de Vries and van Wind (1998) that there are adaptive

players in the population, at least when the number of participants is small.

Anderson and Stafford (2003) is the first study to focus specifically on the effects

of group size. They employ a one-shot design, so subjects do not have an opportunity

to learn or adapt. They find individual spending exceeds the risk-neutral Nash equilib-

rium prediction, and that individual spending decreases as the number of participants

increases. We were not able to replicate their second result in a setting where our par-

ticipants took part in a series of games. In our case, as the size of the group increases,

participants respond less frequently to the outcomes of previous games. In addition,

while QRE continues to organize the individual spending levels well, the amount of

noise in choices increases. Taken together, these results indicate that the profitability

of raffle games even in rather small populations – in the case of our results, with four or

more participants – can be explained by a lack of strategic response to changes in the

number of other participants.

The paper is organized as follows. We describe the formal model of the game,

theoretical predictions, and laboratory procedures in Section 2. Section 3 describes the

experimental results. Section 4 considers behavioral theories and provides the main

results. Section 5 concludes with a discussion.

1The exception to this pattern is the study of Shogren and Baik (1991), who find that individ-

ual spending levels match the theoretical prediction; however, they used a design in which subjects

interacted in fixed pairs, so their results may be attributable to repeated game effects.
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2 Theory and Experimental Design

2.1 Raffle Game

We study a single-prize raffle. There is a commonly-known number of players N , each of

whom has an endowment ω. The value of the prize to be raffled is V . This value is the

same to all participants, and this fact is commonly known. Participants simultaneously

choose how many tickets to buy, with xi being the choice of participant i = 1, . . . , N .

The price of a ticket is normalized to one. Each ticket is equally likely to be chosen;

therefore, the chance of participant i winning the prize given a vector of choices {xj}N
j=1

is xi∑N
j=1 xj

.2 Consider player i and, for notational convenience, define the sum of other

players’ choices as Yi =
∑

j 6=i xj. Assuming risk-neutrality, the expected payoff to

participant i is

ui(x1, . . . , xN) = ω − xi + V · xi

xi + Yi

. (1)

2.2 Rationalizable choices and Nash equilibrium

Given (1) and that other players buy at least one ticket, Yi > 0, player i’s best response

is

x∗i (Yi) = max{
√

V Yi − Yi, 0}. (2)

The best-response function is single-peaked and maximized at Yi = V
4
, at which

point x∗i
(

V
4

)
= V

4
. Therefore, individual choices greater than V

4
are never best replies.

Tullock (1980) showed that the game has a unique symmetric Nash equilibrium in which

x?
1 = ... = x?

N = x?(N) = V · N − 1

N2
. (3)

Note that when N = 2, then Yi = xj, where i 6= j and in the Nash equilibrium

x1 = x2 = V
4
, so the Nash equilibrium is equal to the maximum rationalizable spending

level.

2.3 Relative performance

Because of the competitive nature of the environment, it is plausible that subjects may

care about relative performance in addition to their own earnings level. Under this

2We assume that nobody gets the prize if x1 = ... = xN = 0.
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assumption, subjects behavior would be explained by evolutionarily stable strategies

(ESS). Hehenkamp, Leininger, and Possajennikov (2004), based on the work of Schaffer

(1988, 1989), showed that, in a finite population, the unique ESS for the game we study

is

xESS = V/N. (4)

This is greater than the Nash equilibrium for all values of N . The intution for this result

is that at the Nash equilibrium, an increase in spending decreases expected earnings, by

definition; however, the increase in spending decreases other’s earnings more than one’s

own. Therefore, earnings of the agent who spends slightly more than the Nash level,

while others spend at the Nash level, are higher.

The Nash and ESS predictions differ most greatly when N = 2, and the difference

decreases monotonically in N . Also, ESS predicts the raffle will exactly break even for

all values of N .

2.4 Protocol

A total of 15 experimental sessions were conducted at PEEL (Pittsburgh Experimental

Economics Laboratory) using subjects recruited from the participant pool. There were

three sessions with each of the group sizes N = 2, 3, 4, 5, 9. Cohort sizes ranged from 12

to 22 subjects. Table 1 summarizes the sessions.

At the beginning of each session, the instructions (see Appendix B) were read aloud.

After the instructions were read and clarifying questions answered, subjects completed

a questionnaire to check their understanding. Keeping in mind Shogren and Baik’s

(1991) use of expected-payoff tables, the instructions and questionnaire tested subjects’

understanding of the expected payoff consequences of choices. Therefore, maximization

of expected payoffs was implicitly suggested to subjects in a light-handed way.

Sessions consisted of 10 periods. Participants were randomly and anonymously as-

signed into groups of size N each period. In each period, each participant was given an

endowment ω = 1, 200 tokens. Participants simultaneously selected an integer number

of tokens between 0 and 1,200 to spend on a prize worth V = 1, 000 tokens. Conditional

on the amounts contributed, the prize was randomly allocated to one of the participants

in the group, with participant i winning the prize with probability xi∑N
j=1 xj

, if xi > 0.
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N session subjects Nash ESS mean median > 250

2 2.1 18 250 500 350.89 300 94 (52%)

2 2.2 20 250 500 338.77 300 105 (53%)

2 2.3 12 250 500 286.68 200 52 (43%)

2 all 50 250 500 330.63 263 251 (50%)

3 3.1 12 222 333.4 240.80 200 48 (40%)

3 3.2 15 222 333.4 246.67 200 49 (33%)

3 3.3 12 222 333.4 361.27 200 54 (45%)

3 all 39 222 333.4 280.12 200 151 (39%)

4 4.1 20 188 250 276.78 200 75 (38%)

4 4.2 16 188 250 377.06 300 86 (54%)

4 4.3 16 188 250 253.51 200 66 (41%)

4 all 52 188 250 300.47 200 227 (44%)

5 5.1 20 160 200 311.81 200 77 (39%)

5 5.2 15 160 200 237.53 100 55 (37%)

5 5.3 15 160 200 417.27 329 83 (55%)

5 all 50 160 200 321.16 200 215 (43%)

9 9.1 18 99 111.11 379.56 200 75 (42%)

9 9.2 18 99 111.11 251.29 100 60 (33%)

9 9.3 18 99 111.11 347.78 200 85 (47%)

9 all 54 99 111.11 326.21 200 220 (41%)

Table 1: Summary of experimental sessions and results
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At the end of the 10 periods, one of the 10 periods was selected at random, and

subjects’ earnings for this portion of the experimental session were determined by the

selected period with the exchange rate 100 tokens = $1. The experimental session then

continued with 40 rounds of unrelated games. The overall length of each session was

about two hours, with this portion comprising under an hour on average. In addition

to their earnings from the rounds, subjects received a $5 show-up fee.

3 Results

3.1 Data

Our experimental results are summarized in Table 1. Subjects chose spending levels

which were integer multiples of 100 in 1913 of the 2450 bids (78.1%), and multiples of

50 a further 236 times (9.6%); overall, 87.7% of choices were multiples of 50. We will

proceed with the data analysis using the frame in which subjects appear to process the

game. All choices are binned into bins k = 0, 1, 2, . . . , 12, where bin k consists of the

choices [k − 50, k + 50). Figure 1 plots the empirical distributions of choices for each of

the group sizes. Choice patterns across all group sizes are qualitatively similar and there

is no clear ranking of the distributions in terms of first-order stochastic dominance.

Since the distribution of individual spending does not depend in a significant way on

the group size, it follows that total spending increases as the group size increases. For

group sizes N = 4, 5, and 9, we find that total spending exceeds the value of the prize.

For example, the average spending for a randomly-constituted nine-person group in the

N = 9 treatment is 2935.89 tokens, for a prize worth only 1000 tokens. Our data and

available data from previous studies are summarized in Table 2 and Figure 2.3

3.2 Comparison to theoretical predictions

Figure 3 presents period-by-period average spending levels plotted relative to the Nash

equilibrium and ESS predictions. We observe that the average individual spending is

above the Nash equilibrium prediction in all periods in all treatments. Mean and median

levels of spending in the N = 2 and N = 3 treatments are roughly comparable to the

3In Table 2 and Figure 2 we normalize the prize values to V = 1, 000 for other experiments.
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Figure 1: Empirical distribution of choices for N = 2, 3, 4, 5, 9, binned in intervals

centered around multiples of 100.

Figure 2: Summary of Lottery Experiments
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Authors (Year) N Nash (A) ESS (B) Experiment (C) 100 · (C)−(A)
(A) 100 · (C)−(B)

(B)

Millner and Pratt (1989) 2 250 500 280 12.0 -44

Shogren and Baik (1991) 2 250 500 253.4 1.4 -49.3

Potters et al. (1998) 2 250 500 388.5 55.4 -22.3

Davis and Reilly (1998) 4 187.5 250 242.1 29.1 -3.2

2 250 500 448 79.2 -10.4

3 222 333.4 441.7 99 32.5

Anderson and Stafford (2003) 4 187.5 250 351.5 87.5 40.6

5 160 200 483.4 202.1 141.7

10 90 100 212.7 136.3 112.7

Fonseca 2 250 500 500.4 100.2 0.1

2 250 500 330.6 32.2 -33.9

3 222 333.4 280.1 26.2 -16

Our result 4 187.5 250 286.6 52.9 14.6

5 160 200 321.2 100.8 60.6

9 98.8 111.11 326.2 230.2 193.6

Table 2: Summary of Lottery Experiments

Nash prediction, but fail to track the Nash prediction for the larger group sizes. ESS is

a better predictor than the Nash equilibrium for N = 3 and N = 4, but it also makes

a poor prediction for N = 5 and N = 9. Note that as N increases, the difference

between these two predictions shrinks. Figure 3 indicates that subjects’ behaviour in

small groups, N = 2 and N = 3, might be predicted by some weighted average of the

Nash equilibrium and ESS. However, it is no longer true for bigger groups, N = 4,

N = 5, and N = 9. Table 1 explains why it is the case: for all group sizes, 39% to 50%

of individual choices exceed the maximum rationalizable choice of 250. This proportion

does not vary systematically with group size.

4 Behavioral Predictions

Nash equilibrium and ESS do not do a satisfactory job of capturing the comparative

statistics in behavior with respect to the number of participants. Further, they are

completely silent in organizing the heterogeneity in choices present in all treatments.
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Figure 3: Period-by-period average spending levels.
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We therefore turn to behavioral concepts to get a better handle on the data.

We proceed by progressively relaxing assumptions. We start with quantal response

equilbrium, which maintains a mutual best-reply assumption while allowing for noisy

observation of expected payoffs. Removing the equilibrium assumption, we consider

models of level-k reasoning, where players exhibiting higher levels of strategic sophisti-

cation choose best responses to the play of players with lower levels of sophistication.

Finally, we look at period-by-period adjustment behavior using myopic heuristics, and

compare to the predictions of learning direction theory.

4.1 Quantal Response Equilibrium

The Quantal Response Equilibrium (QRE) concept of McKelvey and Palfrey (1995) is

a widely-used model of noisy decision-making in games. In a QRE, each player observes

the expected payoff to each of his strategy choices with an idiosyncratic shock that is

not known to other players or the outside observer. In the most commonly-used version,

this noise term is assumed to be i.i.d. across players and strategies, and is drawn from

the extreme value distribution with precision parameter λ. This results in the familiar

logit specification for choice probabilities (see, for example, Anderson, Goeree and Holt,

2002). To be more precise, if ui(x; π) is the expected utility of player i to playing

choice x when all other players choose according to the mixed strategy profile π, then

the probability player i will choose x is proportional to exp(λui(x; π)). For λ = 0,

this reduces to uniform randomization over all strategies; as λ → ∞, the set of QRE

converges to a subset of the set of Nash equilibria.

The QRE concept has been successful in organizing data in laboratory games. An

implication of the QRE is that less costly “mistakes” are made with higher probability.

Therefore, in contrast with a pure-strategy Nash equilibrium, a QRE predicts a prob-

ability distribution over strategies, with positive probability assigned to each strategy

in each player’s strategy set. The model does this at the cost of the free parameter

λ. Following McKelvey and Palfrey (1995), it is customary to estimate the value of λ

against experimental data by likelihood maximization.

Formally, a strategy profile π is a QRE with precision parameter λ if, for every
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strategy x, the probability πx that x is chosen is

πx =
exp(λui(x; π))∑
y exp(λui(y; π))

.

In the raffle game, the expected payoff to spending x is

ui(x; π) = ω − x + EY
x

x + Y
,

for x > 0, and ui(0; π) = ω, where the expectation is taken with respect to the mixed

strategy profile π. In a QRE,

πx

π0

=
exp(λui(x; π))

exp(λui(0; π))
= exp(λ(ui(x; π)− ui(0; π))).

Therefore,

log πx − log π0 = λ(ui(x; π)− ui(0; π)) = λ

(
EY

x

x + Y
− x

)
.

In operationalizing the QRE model, recall that spending levels which are multiples

of 100 predominate in the data. Therefore, we compute QRE on the discretized game

with spending levels {0, 100, . . . , 1100, 1200} to match the frame subjects appear to

use in approaching the game.4 The precision parameter λ is estimated via maximum

likelhiood for each group size N , with all choices in [k − 50, k + 50) binned together as

choice k for each discretized spending level.

Table 3 presents, for each group size N , the count of the number of choices in each

bin, and the corresponding empirical frequency. Following these is the QRE fit by

maximum likelihood estimation, performed using the Gambit software (McKelvey et al.

2008), with the corresponding log-likelihood. Figure 4 illustrates the close relationship

between the distribution of spending levels in the data and the best-fit QRE.

4This is similar to the approach taken by Battaglini and Palfrey (2007).
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Figure 4: Cumulative Distribution Functions.

The estimated QREs match the qualitative structure of the observed pattern of

individual spending levels. Both feature peaks in the distribution around x = 200, with

long, exponentially-decaying tails for high spending levels. In other words, the presence

of the non-rationalizable choices above 250 is well-organized by a logit model of choice.

The maximum likelihood estimates of λ decrease slowly as the group size increases.

Intuitively, the λ parameter in QRE controls the relative influence that expected pay-

offs have on choices, as opposed to the effects of other, unobserved random influences.

Lower values of λ correspond to QREs where the unobserved payoff shocks have greater

variance, and therefore greater influence on observed choices. Our estimates are consis-

tent with the hypothesis that the financial consequences of actions are less important in
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determining behavior as group size increases.

This interpretation of the QRE does not shed light specifically on why financial

consequences are less important. It is possible that the larger number of other players in

the group increases strategic uncertainty, or makes the strategic problem of formulating

a spending choice more difficult.5 We now turn to other behavioral approaches for clues

as to why behavior becomes noisier, and moves further from Nash, as seen by QRE.

4.2 Level-k Reasoning

We now relax the equilibrium assumption which is embedded in QRE and consider the

data in light of level-k reasoning (see, e.g., Stahl and Wilson, 1994, 1995; Nagel, 1995;

Ho, Camerer and Weigelt, 1998; Costa-Gomes, Crawford and Broseta, 2001; Costa-

Gomes and Crawford, 2006; Crawford and Iriberri, 2007). Following the custom in

the literature, we suppose that there are three player types. Specifically, we follow the

method used by Ho, Camerer and Weigelt (1998) for games with a large strategy space.

Start with the assumption that the lowest, Level 0 (L0) players choose their spending

uniformly over [0, V ]. Level k > 0 (Lk) players are assumed to believe that all other

players are level Lk−1 players who make their choices according to the density function

BLk−1
(x). Believing this, they mentally simulate N − 1 draws from the density function

BLk−1
(x) and compute their best response. Such a best response density satisfies

BLk
=

√√√√V ·
N∑

i=2

Bi
Lk−1

−
N∑

i=2

Bi
Lk−1

, (5)

where Bi
Lk−1

is the i-th draw of a random variable BLk−1
.

The assumptions above allow us to calculate the density of each level type. Note

that since any choice greater than 250 is never a best reply to any choice in [0, 1000],

the level-k density for any k > 0 is truncated at 250 (see Figure 6). Thus, level 0 should

be assigned to players who choose any number greater than 250. The crucial problem

is how to assign a level type to a player who chooses a number that different types

might choose. Take the N = 2 case as a clarifying example. Suppose a player chooses

5We are not aware of any other studies which specifically address how QRE estimates perform as

group sizes are systematically varied.
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N L0 L1 L2

2 36.00 60.00 4.00

3 26.32 65.79 7.89

4 51.92 40.38 7.69

5 64.00 20.00 16.00

9 96.30 1.85 1.85

Table 4: Proportions (1st-Round Data)

N L0 L1 L2

2 48.00 52.00 0.00

3 36.84 60.53 2.63

4 75.00 17.31 7.69

5 76.00 6.00 18.00

9 90.74 0 9.26

Table 5: Proportions (All-Rounds Data)

200. This choice could come from a L0 player, from a L1 player or from a L2 player.

Following Ho, Camerer and Weigelt (1998), we assign this choice to a level-k if and only

if this level-k type is more likely to have made that choice than any other level types.

Since BL1(200) > BL2(200) > BL0(200), we assign choice 200 to level-1.

Table 4 reports the proportions for each level, using first-round data. The proportion

of L2 type players is small for any N = 2, 3, 4, 5, 9. Furthermore, as N increases, the

proportion of L0 type increases and the proportion of L1 type decreases. When N = 9,

more than 90% of the subjects are the L0 type. This observation is very surprising, as we

are not aware of any paper in the level-k reasoning literature with similar results. These

features are observed not only in the first round, but also when considering spending

levels from all rounds.

We follow the methodology of Costa-Gomes and Crawford (2001) to classify subjects

whose choices can be consistently identified as fitting into one of the behavior types. We

count how many times subject’s spending levels are consistent with one of the types.

Subjects are classified into a particular type if their behavior is consistent with that

type in at least 6 out of the 10 rounds. If there is a tie between two or more types, we

classify that subject to the highest type. This classification method is biased in favor of

higher-level types. Using this classification method, we find that more than 90% of the

subjects are L0 type when N = 9 (see Table 5).

Do subjects iteratively eliminate dominated strategies over time in our experiments,

as has been shown, for example, in beauty contest games (Nagel, 1995)? To answer

this question, we assume that L0 learners simply choose the best-response against a

weighted average of choices in previous rounds. L1 learners assume all others are L0

learners and best respond to anticipated choices by L0 learners. L2 learners best respond
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to L1 learners. This approach predicts that no level types choose numbers greater than

250 after the first round. However, choices greater than 250 are observed over all rounds

for all N = 2, 3, 4, 5, 9 (see Table 6). Subjects do not learn to eliminate dominated

strategies in the raffle game. The distributions of spending levels plotted in Figure 5

show that there is no convergence to any one spending level over time.

N Round 1 2 3 4 5 6 7 8 9 10 Total

# > 250 18 25 30 29 26 22 24 28 24 25 251

2 Total Subjects 50 50 50 50 50 50 50 50 50 50 500

% > 250 36 50 60 58 52 44 48 56 48 50 50

# > 250 10 10 18 20 16 14 12 16 15 17 151

3 Total Subjects 38 38 38 38 38 38 38 38 38 38 380

% > 250 26 26 47 53 42 37 32 42 39 45 39

# > 250 14 20 25 24 26 25 28 21 22 22 227

4 Total Subjects 52 52 52 52 52 52 52 52 52 52 520

% > 250 27 38 48 46 50 48 54 40 42 42 44

# > 250 15 23 23 24 21 23 23 20 25 18 251

5 Total Subjects 50 50 50 50 50 50 50 50 50 50 500

% > 250 30 46 46 48 42 46 46 40 50 36 43

# > 250 19 26 25 24 27 23 18 21 16 21 220

9 Total Subjects 54 54 54 54 54 54 54 54 54 54 540

% > 250 35 48 46 44 50 43 33 39 30 39 41

Table 6: Choices > 250 over Rounds

4.3 Adaptation and Learning Direction Theory

Selten and Buchta (1994) proposed a simple heuristic model in which agents adjust

their choices in response to recent experience. Learning direction theory applies to

games where strategy spaces have a clear ordering, such as when strategies are indexed

by numbers. The theory asserts that, given an action profile {at} played in period t,

a subject will choose an action at+1
i in the subsequent period which is closer in the

strategy space to the best response against the previous-period choices of others, {at
−i}.

We apply two formulations of learning direction theory to organize adaptive behavior

for subjects over the course of a session.
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Figure 5: Subjects’ Choices over Rounds.

20



We divide all choices after the first period based on whether the subject making

the choice won the prize in the previous period. In each category, we further segregate

choices based on whether the subject chose a different spending level than in the previous

period. Among those periods where spending levels changed, we tabulate two measures.

To get a general sense of whether adaptation over time tends to increase or decrease

spending levels, we count the number of times the spending levels increased or decreased

relative to the previous period. To specifically test learning direction theory, we tabulate

whether subjects’ choices moved in the direction predicted by learning direction theory,

i.e., in the direction of better responses. Table 7 summarizes these measures.

We observe that adaptation in small lotteries differs from their larger counterparts

in two ways. When the number of players is small, players who lost the previous lottery

are much more likely to change their choice in the following period compared to players

who won the previous lottery. Losing the lottery when the group is small is a stronger

stimulus than winning. With larger groups, the asymmetry in response to the lottery

disappears, with changes in spending levels occurring equally often after wins and losses.

The relative frequency of increases and decreases in spending levels after wins and losses

is consistent with a regret explanation. A win is evidence that one has “overpaid,” and

therefore reduction in the spending level is in order; a loss is evidence that one has not

been aggressive enough, and therefore an increase in spending is indicated.

Table 7 illustrates that when the number of players is small, adjustments tend to

be in the direction of the best response. As the size of the group increases, the trend

is towards random adjustments, with adjustments in the direction of the best response

being no more likely than adjustments away from the best response.

Both these trends point to the same conclusion. In small lotteries, the event of

losing the lottery is salient, because one expects to win roughly 1
N

of the lotteries one

enters. Losing a lottery in a larger group is less surprising, and so is less of a stimulus.

Adaptation in larger group sizes is therefore correspondingly weaker, and changes, both

in raw spending levels and in the reliability of moving in the direction of expected-

payoff-increasing choices, are more random.
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Outcome Direction N = 2 N = 3 N = 4 N = 5 N = 9

Won Total 75 103 118 95 26

No change 43 (57%) 53 (52%) 56 (48%) 46 (48%) 10 (39%)

Higher 9 16 22 21 8

Lower 23 34 40 28 8

Better reply 21
32 (66%) 31

50 (62%) 41
62 (66%) 29

49 (59%) 8
16 (50%)

Lost Total 87 248 350 355 298

No change 28 (32%) 102 (41%) 121 (35%) 173 (49%) 131 (44%)

Higher 37 82 124 102 85

Lower 22 64 105 80 82

Better reply 36
59 (61%) 93

145 (64%) 128
227 (56%) 72

157 (45%) 84
163 (51%)

Table 7: Summary of data for testing learning direction theory.

5 Discussion

We show that in a laboratory setting, individual spending in raffles does not decrease as

the number of participants increases. Therefore, the prediction that total expenditure

will not exceed the prize fails to hold. We show that this can occur at a surprisingly

small group size, with only four participants. The observation in the field that big-money

lotteries and smaller raffles can be profitable can be replicated in the laboratory without

resorting to very large groups, or to life-changing prize amounts offering a “chance to

buy hope.”

We organize the data using several behavioral models to investigate the micro-level

structure of spending choices underlying the result. These models all point to a simi-

lar conclusion: as the number of participants in a raffle increases, choices become less

correlated with the underlying financial incentives in the experiment. This is consis-

tent both with increased strategic uncertainty regarding the play of a larger number of

coplayers, as well as the weaker ex-post incentive signals received from winning or losing

the raffle. This disconnect from earnings results in less adaptation of choices and in-

creased apparent randomness in play, which taken together underlie the observed levels

of spending.
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A Calculations for Level-k Distributions (N=2)

In this section, we show how to get Level-k distributions. We only provide the detailed

calculations for N = 2.6 We suppose that the L0 type is uniformly distributed on the

interval [0, 1000]. To get the distribution for L1 type, let x be a random variable that

follows the uniform distribution on the interval [0, 1000]. From the best-reply property

(5), a random variable of L1 type, denoted by y, satisfies the following:

h(x) = y =
√

1000x− x.

Then the distribution function of the random variable y is

Fy(y) = Pr(h(x) ≤ y)

= Pr(x + y ≥
√

1000x)

= Pr(x2 − 2(500− y)x + y2 ≥ 0)

= 1− Fx((500− y) +
√

500(500− 2y)) + Fx((500− y)−
√

500(500− 2y)).

The density function of y is

fy(y) = fx((500− y)−
√

500(500− 2y))(−1 +

√
500

500− 2y
)

+fx((500− y) +
√

500(500− 2y))(1 +

√
500

500− 2y
)

only if y ∈ [0, 250). After some rearrangement, we get

fy(y) =





√
1

500(500−2y)
, y ∈ [0, 250)

0, otherwise.
(6)

Given the density function (6) and the best-reply property (5), a random variable of L2

type, denoted by z, satisfies the following:

g(y) = z =
√

1000y − y.

Then, the distribution function of the random variable z is

Fz(z) = Pr(g(y) ≤ z)

= 1− Fy((500− z) +
√

500(500− 2z)) + Fy((500− z)−
√

500(500− 2z)).

6The calculations for N = 3, 4, 5, 9 are available upon request.
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It is straightforward to calculate the density function of z:

fz(z) =





√
1

500(500−2(500−z)+2
√

500(500−2z))
(−1 +

√
500

500−2z
), y ∈ [0, 250)

0, otherwise.
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Figure 6: Densities

Figure 6 illustrates all densities.
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B Appendix: Instruction (N=3)

This is an experiment related to economic decision making. Over approximately the

next hour and a half, you will be asked to participate in several lottery games. For

simply showing up to this experiment you have already received a flat sum of $5. In

addition, the decisions you make and your luck in the lottery will determine your final

monetary payoff for this experiment session, which in fact, may total as much as $27 (in-

cluding the show up fee). You will be paid in private once the session has been completed.

There are several people participating in this session. However, during any particular

round, you will be competing against only two other people, identified by participant

numbers. It is extremely important that you do not communicate with any of the other

subjects. If at any time you have a question, please raise your hand and if need be, I will

come over to where you are sitting in order to answer your question privately. There

will be a lottery game and it will be played for 10 rounds.

Lottery Prize

In every game in which you will participate, the lottery prize is equal to 1,000 tokens.

At the beginning of each round, you will have 1,200 tokens and the opportunity to choose

the number of tokens you would like to contribute to the lottery game. Keep in mind that

one token corresponds to one lottery game ball and another chance to win the lottery

prize. After all contributions are noted on the contribution slip and on your computer

screen, a winner will be selected at random. After all 10 rounds have been completed,

one lottery round from among those played will be chosen at random and you will be

compensated in dollars according to your token earnings during the selected round (plus

the $5 for participating, which you have already received). To be more specific, you will

earn $1 for every 100 token remaining in your private fund (calculated as simply your

initial wealth of 1,200 tokens minus the number of tokens you chose to contribute to the

lottery game). Additionally, you will earn $10 more if you win during that round. For

example, if you chose to contribute 100 tokens during the selected round, your private

wealth will be 1,100 tokens (1,200 - 100), plus your lottery winnings, if applicable. If

you won the lottery, your total token wealth at the end of the round would be equal
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to 2,100 (1,100 + 1,000). Your total dollar payoff would be equal to your tokens times

the exchange rate plus the additional $5 simply for participating in the experiment. If

the describe outcome happens in the selected round your total dollar payoff would be

equal to your token times the exchange rate, namely $21, plus the additional $5 for

participating in the experiment. If these instructions are unclear, please raise your hand

now. If not, we will begin the first lottery.

1-10 rounds: Lottery Game

The lottery prize is equal to 1,000 tokens. You have 1,200 tokens, 2 opponents, and

the opportunity to choose the number of tokens you would like to contribute to the

lottery game. Keep in mind that one token corresponds to one lottery game ball and

another chance to win the lottery prize. If you contribute X tokens and your opponents

TOGETHER contribute Y tokens, your chance to win the lottery is X
X+Y

.

QUIZ 1

1. Assume that your contribution is 100 tokens and your opponents’ total contribution

is 900 tokens. What is your chance to win the lottery?

(a) 100 / 900

(b) 100 / 1,000

(c) 100 / 800

(d) 800 / 900

(e) 900 / 1,000

2. Assume that your contribution is 900 tokens and your opponents’ total contribu-

tion is 100 tokens. What is your chance to win the lottery?

(a) 100 / 900

(b) 100 / 1,000

(c) 800 / 900

(d) 900 / 1,000

(e) 900 / 900
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Your expected payoff in each round is (Your probability to win the prize) times (The

prize value) minus (Your contribution): 1,000·X
X+Y

−X.

QUIZ 2

3. Assume that your contribution is 100 tokens and your opponents’ total contribution

is 900 tokens. What is your expected payoff?

(a) -100

(b) 0

(c) 100

(d) 900

(e) 1,000

4. Assume that your contribution is 900 tokens and your opponents’ total contribu-

tion is 100 tokens. What is your expected payoff?

(a) - 900

(b) - 100

(c) 0

(d) 100

(e) 900
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