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Abstract

Starting from her home, a service provider visits several customers, following a prede-
termined route, and returns home after all customers are visited. The problem is to �nd
a fair allocation of the total cost of this tour among the customers served. A transferable-
utility cooperative game can be associated with this cost allocation problem. We introduce
a new class of games, which we refer as the �xed-route traveling salesman games with ap-
pointments. We study the Shapley Value in this class and show that it is in the core. Our
�rst characterization of the Shapley value involves a property which requires that spon-
sors do not bene�t from mergers, or splitting into a set of sponsors. Our second theorem
involves a property which requires that the cost shares of two sponsors who get connected
are equally e�ected. We also show that except for our second theorem, none of our results
for appointment games extend to the class of routing games (Potters et al, 1992).
Keywords : �xed-route traveling salesman games, routing games, appointment games,

the Shapley value, the core, transferable-utility games, merging and splitting proofness,
equal impact, networks, cost allocation.

1 Introduction

Finding the least-costly route that visits a given set of locations and returns to the starting
location, the so called \traveling salesman problem (TSP)" is one of the most well-known
combinatorial optimization problems in operations research. A vide variety of problems can
be modelled as a TSP or one of its extensions.1 In several of these problems, the cost of
the tour has to be allocated among the customers visited (sponsors). This kind of a cost
allocation problem in a TSP was �rst investigated by Fishburn and Pollack (1983). Some
examples where a cost allocation problem arises include a salesman (repairman, cable guy,
parcel delivery guy etc.) visiting his customers, a professor invited by several universities for

�The �rst draft of this paper was written when I was a Ph.D student in the University of Rochester. I am
grateful to William Thomson for his guidance and advice.

ySchool of Economics, the University of Adelaide, Adelaide, SA 5005, Australia; e-mail:
duygu.yengin@adelaide.edu.au.

1For instance, location routing, closed-loop material ow system design in production settings, sequencing
jobs in a exible manufacturing environmet, post box collection, stochastic vehicle routing, grocery shopping,
scheduling of home deliveries of online shopping, robotic travel problems like soldering or drilling operations
on printed circuit boards, sequencing local genome maps to produce a global map, planning the order in which
a satellite interferometer studies a sequence of stars, seriation problems in archeology, etc.
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seminars, passengers using shuttle buses or car-pooling, and distribution planning situations
such as delivery of supplies to grocery stores by a manufacturer.2

In some of the above examples, the traveler may need to follow a route that is not neces-
sarily the least costly one. We study the so called \�xed-route traveling salesman problems"
where the route is �xed according to the restrictions in the agenda of the traveler. Here,
starting from her home (main o�ce, factory, or depot), a service provider visits several cus-
tomers, following a predetermined route, and returns home after all customers are visited.
Each customer is to be visited exactly once but home can be visited more than once, which
may be necessary, for instance, when the service provider needs to replenish her supplies after
visiting a group of customers and before visiting the rest. Another reason may be that the
traveler has appointments to meet with the customers and there is a considerable waiting time
between two consecutive appointments. Then, in between those appointments, she would go
home and wait there.

Various factors other than the cost may a�ect the route. Some of the sponsors may need
to be visited before the others due to the urgency of their needs, their higher priority status,
or the availability of their free times for a visit. For example, a professor may have to visit
several universities in the order speci�ed by their available seminar dates or a service provider
has to visit her customers according to their appointments. In some cases, it is not possible
to visit a location before visiting certain others. For instance, an employer may need to pick
up some �les from some o�ces and submit them to other o�ces to get them signed and there
is an authority structure according to which signatures must be collected. Other examples
include a communication network where the ow of information has to follow the speci�ed
network structure3 or a product which has to be processed in several departments in a �rm
according to the stage of its development (e.g. it can not be sent to the marketing department
before quality control).

Our goal is to �nd a fair distribution of the total cost generated in a �xed-route TSP
among the sponsors. One way to solve this distribution problem is to associate a cooperative
game with transferable utilities (TU-game) with the cost allocation problem.4 A TU-game is
a pair (N; v) where N is a �nite set of agents and v : 2N ! R is a characteristic function
which assigns to each coalition S � N; a value v(S) such that v(;) = 0: In the current context,
v(S) represents the cost of the tour in which only the members of S are served by the service
provider. Potters et al (1992) formulate a TU-game associated with a �xed-route TSP as
follows: for each coalition S � N; v(S) is de�ned as the cost of the original route restricted
to S; where the salesman visits the members of S in the same order as they were visited in
the original route over N , skipping all agents in NnS:5 They refer to these games as routing
games. Note that if the salesman and all sponsors live along the coast of an island and the

2For a case study of the cost allocation problem concerning the transportation of gas and gas oil to the
customers of Norsk Hydro, see Engevall et al (1998).

3For example, consider a network in which a central o�ce sends information (or papers/products to be
processed) to several satellite o�ces which need to send back the processed information. There is a �xed order
of satellite o�ces that must be respected: o�ce i's information has to be obtained by the central o�ce before
o�ce i+1: Each satellite o�ce i can only communicate with the central o�ce and o�ce i+1. Hence, she can
send the information to the central o�ce via the o�ce next to her.

4Examples of other cost allocation problems where cooperative game theory is used include airplane landing
fees [9], water resource planning [11], telephone billing rates [1], and investment in electric power [5].

5Potters et al (1992) also studied TSPs where the route is not �xed. They introduced the traveling salesman
games, where the value of a coalition is the cost of a least costly tour over the members of that coalition. The
salesman is allowed to visit any agent more than once and he is free to visit the agents in a coalition in any
order he wishes as long as the cost of the trip is minimized. See [3], [8], [12], [14].
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travel costs are proportional to the Euclidean distances, then the least costly tour for a subset
of sponsors is the one speci�ed in a routing game [2].

We introduce a new class of games which we refer as the class of �xed-route traveling
salesman games with appointments (here after, appointment games). Consider the case in
which each sponsor in N makes an appointment to meet the traveler at a speci�ed time.
After all the appointments are made, suppose the members of S � N decide to hire the
traveler without cooperating with the sponsors in NnS: That is, the members of S together
will pay v(S) to the traveler. This can be thought as if all the sponsors in NnS cancel their
appointments. The permissible route over S is the one where the traveler still visits the
sponsors in S according to their original appointments. So, the traveler follows the original
route, skipping the sponsors who are not in S; and when she skips a sponsor, she goes home
from where she goes to the next unvisited sponsor in S:6 The value of a coalition S; is the cost
of this permissible route over S:

Our formulation of permissible routes over coalitions makes sense in several TSPs where
the service provider makes appointments with the customers which can not be changed in
a short notice of time. Hence, if some appointments are cancelled, the remaining ones can
not be rescheduled. Also, suppose that when a traveler visits a sponsor, she has to spend
a considerable period of time to complete her service for that sponsor. In that case, if an
appointment is cancelled, then the traveler has to wait a lengthy period of time till the next
appointment. Hence, it is not feasible for the traveler to go to the next sponsor immediately.
Hence, when the traveler skips a sponsor, she goes home where she waits till it is time for
the next appointment. For instance, consider a professor who wants to visit universities in
di�erent cities at speci�c dates as a visiting professor. When she visits a university, suppose
she has to stay there for a few weeks. If a university cancels its appointment, instead of
visiting the next university in the route right away, the professor goes back to her home and
waits there until the appointed date for the next university arrives.

Several papers discuss the \core" in traveling salesman games and routing games (see [2],
[3], [8], [12], [14]). Here, we study another well-known solution, the \Shapley value" (Shapley,
1971). In general, the Shapley value is computationally complex. However, in appointment
games, we show that this is not the case. We also show that under a mild condition on the
costs, the class of appointment games is convex, hence, in this class, the Shapley value is in the
core. Moreover, the Shapley value may be an appealing alternative to core since it is always
non-empty, single-valued, and is the unique solution satisfying certain desirable properties.
Characterizations of the Shapley value in general networks are provided by Myerson (1997) and
Jackson and Wolinsky (1996). Kar (2002) characterizes the Shapley value in minimum cost
spanning tree games. For the TSP games with appointments, we present two characterizations
of the Shapley value. The �rst one involves a strategic property called merging and splitting
proofness which requires that sponsors who follow each other on a route should not gain by
merging or a sponsor should not gain by splitting into several sponsors located next to each
other. Our second characterization involves a property which requires that when two sponsors
get connected, they are e�ected equally. This characterization is in the same spirit of Kar's
characterization of the Shapley value in minimum cost spanning tree games.

We also analyze the Shapley value in the class of routing games. In this class, the Shapley
value does not have a simple form as it does in the appointment games. In general, the class
of routing games is not convex, hence, it is not certain whether the Shapley value is in the

6Note that an appointment game would coincide with a routing game if for each pair of sponsors fi; jg; the
cost of traveling between i and j is equal to cost of traveling from i to home and from home to j:
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core or not. We show that it is not. We also show that our �rst theorem doesn't extend to
this class. However, we extend our second theorem to the class of routing games.

In Section 2, the model is described. The results for the appointment games are presented
in Section 3. Section 5 involves the results for the routing games. All proofs are in the
Appendix.

2 The Model

2.1 The Economy

Let N = f1; 2; :::; ng with jN j = n be an ordered list of sponsors and 0 be home. Without loss
of generality, we assume that the sponsors are visited in the same order as they appear in N:
Let N0 � N [ f0g and for each S � N; let S0 � S [ f0g: A route r = (i1; i2; :::; iM ) is an
ordered list of the agents (sponsors and home) to be visited by a \traveler" such that

(i) the route starts from home and ends at home (i.e. i1 = iM = 0);
(ii) each sponsor is visited exactly once,
(iii) home can be visited more than once,
(iv) after sponsor i 2 N is visited, either home or sponsor i + 1 is to be visited (i.e. the

relative order of sponsors in r respect their order in N):

For each pair fi; jg � N0; i is connected to j on a route r (denoted as i �r j), if after i;
the next agent visited is j : r = (0; :::; i; j; :::; 0).

For each fi; jg � N0; let ci;j � 0 be the cost of traveling between agents i and j: Let
ci � c0;i be the cost of traveling between home and sponsor i: The cost of a route r is
c(r) =

P
fi;jg�N0: i�rj

ci;j :

Let c = fci;j : fi; jg � N0g. An economy is given by e = hN; c;ri : Let the domain of all
economies be E :

A sponsor set S = fl; l + 1; :::;m � 1;mg � N is a connected set on r if and only if
0 �r l �r l+ 1 �r ::: �r m� 1 �r m �r 0: Let Se be the set of all connected sets in economy
e:

In order to visualize the problem, we can associate a graph with each e = hN; c;ri 2 E :
The elements of N0 are called nodes, 0 being the source. A link between nodes i and j
(denoted as lij) is a direct path between them: Let li � l0i be the link between home and i:
Let L = flij : fi; jg � N0g be the set of all links between all agents. A graph g over N0 is
a subset of L: The graph associated with e = hN; c;ri 2 E is g(e) = flij : fi; jg � N0 and
i �r jg where each link lij in g(e) is associated with weight ci;j :
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Figure 1

Example 1. Let e = hN; c;ri with r = (i1; i2; i3; :::; i7) = (0; 1; 0; 2; 3; 4; 0): The route r de-
scribes a trip where starting from 0 (home); the traveler visits sponsor 1, then goes back
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home: From home; she visits sponsors 2, 3; and 4, in that order, and returns home and
completes the tour.
Here, the connected sets are S = f1g and S0 = f2; 3; 4g: Hence, Se = fS; S0g: Sponsor 1 is
an end-point sponsor in S; sponsors 2 and 4 are end-point sponsors in S0, and 3 is an interior
sponsor in S0: The cost of the route is c(r) = 2c1 + c2 + c2;3 + c3;4 + c4: The associated graph
g(e) is as in Figure 1.

2.2 Appointment Games

Let e = hN; c;ri 2 E and S � N: Let the permissible route over S (denoted as rS) be as
follows:

Starting from home, the traveler �rst visits the smallest numbered sponsor in S; let us call
this sponsor j1: Suppose, in the original route r; after visiting sponsor j1; the traveler visits
agent (home or a sponsor) i 2 N0 (i.e. j1 �r i). If i 2 S0; then in route rs; the traveler goes
to i right after visiting j1 (i.e. j1 �rS j2 � i): If i =2 S; then it is as if i has cancelled her
appointment. In this case, in rS ; after visiting j1, the traveler goes home and she waits there
till it is time to attend the next outstanding appointment with the agents in Snfj1g: That is,
if j1 �r i and i =2 S; then j1 �rS 0 �rS l where l = minfk : k 2 S and k > j1g). A similar
procedure is followed until all the sponsors in S are visited, then the traveler returns home.
Note that each time after the traveler visits home, the next agent she visits is the smallest
numbered agent in S that has not been visited so far.

Formally, for some T � jSj; let rS = (0; j1; j2; :::; jT ; 0) be such that:

(i) for each t 2 f1; ::; Tg; jt 2 S0; and for each i 2 S; there is a unique t 2 f1; ::; Tg such that
i � jt on rS ;
(ii) j1 = min

i2S
i and jT = max

i2S
i;

(iii) for each jt 2 S with t 2 f1; 2; ::; Tg and each i 2 N such that jt �r i; if i 2 S0; then
jt �rS jt+1 � i; otherwise jt �rS jt+1 � 0; and
(iv) for each jt � 0 with t 2 f2; ::; T � 1g; we have jt �rS minfk : k 2 and k > jt�1g:

Let e = hN; c;ri 2 E : For each S � N; let cS= fci;j � 0 : fi; jg � S0g: The economy
restricted to S with respect to rS is eS = hS; cS ;rSi 2 E :

For each e = hN; c;ri 2 E , the �xed-route traveling salesman game with appointments (in
short, appointment game) associated with e is Ve = (N; ve) where ve : 2

N ! R+ is such that
for each S � N; ve(S) = c(rS): Let fVe : e 2Eg be the class of appointment games:

Example 2. Let e = hN; c;ri where r = (0; 1; 0; 2; 3; 4; 5; 0; 6; 0; 7; 8; 9; 0): Let S =
f1; 4; 5; 6; 7; 9g: Then, rS = (0; 1; 0; 4; 5; 0; 6; 0; 7; 0; 9; 0): Here, 7 �r 8 but 8 =2 S (i.e. 8
cancelled her appointment). Thus, after visiting 7, the traveler goes home from where she
goes to sponsor 9:
The graphs g(e) and g(eS) = flij : fi; jg � S0 and i �rS jg are as in Figures 2a and 2b.
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Figure 2a : g(e)
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2.3 The Shapley Value

For each e = hN; c;ri 2 E ; to determine a cost allocation vector x =(x1; x2; :::; xn) 2 Rn+, we
have two options. First option is to de�ne a rule that selects an allocation for each economy
directly. Second one is to associate a TU-game with each economy, and de�ne a rule that
selects an allocation for the TU-game associated with the economy. In this paper, we follow
the later approach.

Let V = (N; v) be a TU-game where v : 2N ! R is a characteristic function such that
v(;) = 0: A solution F is a mapping that associates with each V = (N; v); an allocation vector
x =(x1; x2; :::; xn) 2 Rn+ where

P
xi = v(N): An example of a solution is the Shapley value,

SV: V = (N; v) and each i 2 N;

SVi(V ) =
X

S�Nnfig

jSj!(n� jSj � 1)!
n!

[v(S [ fig)� v(S)]:

In general, the Shapley value is computationally complex since we need to calculate the
marginal contribution of each agent to each possible coalition. But, on the class of appoint-
ment games, it turns out that the Shapley value has a simple form (see the Appendix for the
derivation of the Shapley Value). Let e = hN; c;ri 2 E , i 2 N; and Si � N be the connected
set such that i 2 Si:
� If Si = fig; then

SVi(Ve) = 2ci:

� If Si \ fi� 1; i+ 1g = j; then

SVi(Ve) =
3ci + ci;j � cj

2
:

� If fi� 1; i+ 1g � Si; then

SVi(Ve) =
1

2
(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1):

Note that in the appointment games, the Shapley value of a sponsor is independent of the
costs of the links between those agents who are not connected to her. Also, a change in the
cost of a sponsor to connect home a�ects only herself and the sponsors who are connected to
her.
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3 Characterizations of the Shapley Value in Appointment

Games

In a cost allocation problem, the core of a TU-game V = (N; v) is the set of vectors x 2 Rn+
such that for each S � N;

P
i2S
xi � v(S) and

P
i2N
xi = v(N): If an allocation x 2 Rn+ is in the

core of a game V; then no coalition of sponsors has an incentive to leave the grand coalition N:
In general, the core can be empty. Potters et al (1992) state that in the class of routing games,
if the route r chosen for the grand coalition is a least-costly tour and triangle inequalities hold
for the agents (i.e. for each pair fi; jg � N0; ci + cj � ci;j), then the core is non-empty.

In appointment games, a weaker condition is su�cient for the core to be non-empty: the
triangle inequalities hold for those sponsors who follow each other on route r: Formally, for
each r and each pair fi; jg � N such that i �r j; ci+ cj � ci;j . Let ET be the set of economies
in which this condition holds. Actually, on ET ; we achieve more than the non-emptiness of
the core. Here, we also have the convexity of the appointment games7 and hence, by Theorem
7 of Shapley (1971), the Shapley value is an element of the core.

Proposition 1. On the domain ET ; appointment games are convex and the Shapley value is
in the core.

In the rest of the paper, unless stated otherwise, the results hold on both of the domains
E and ET :

Although, the core compares the sum of cost shares in each coalition with the value of
that coalition, the following two axioms are concerned with only the grand coalition N and
singleton coalitions, respectively.

E�ciency: For each V=(N; v);
P
i2N
Fi(V ) = v(N):

Individual Rationality: For each V=(N; v); Fi(V ) � v(fig):

The following axiom states that connected sets should not cross-subsidize each other.

Respect of Connected Sets: For each e = hN; c;ri 2 E and each connected set S 2 Se;X
i2S
Fi(Ve) = ve(S):

Note that since the cost of a route is the sum of the permissible routes over the connected
sets (i.e. c(r) =

P
S2Se

c(rS)), we have for each e 2 E ; ve(N) =
P
S2Se

ve(S): Hence, Core implies

Respect of Connected Sets which in turn implies E�ciency.

Suppose a group of consecutive sponsors K form a coalition and act as a single sponsor
k 2 K (i.e. K merge into k). One may require that the cost allocation should be immune
to such strategic activity. Requiring immunity of the cost allocation to a merger by a group
of sponsors that follow each other on a route, rather than any group of sponsors, is more
intuitive especially if non-consecutive sponsors can not e�ectively cooperate and merge due
to the geographical distance between them.

7Note that in a cost allocation problem, a TU-game V = (N; v) is convex if for each i 2 N and S � T �
Nnfig; v(S [ fig)� v(S) � v(T [ fig)� v(T ).
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If K merges and acts like a single sponsor k 2 K; then we assume that as a group, K is
willing to pay the service provider up to v(K): Also, after the merger, no element of K can
behave on their own and form coalitions with sponsors outside K; however all the sponsors in
K; as a group, can join with other sponsors: Hence, in e�ect, by requiring K to act as a single
entity, we are imposing restrictions on which coalitions can form. The resulting restricted
TU-game can be de�ned as follows.

Let e = hN; c;ri 2 E and K � N be such that K = fk; k + 1; k + 2; :::; lg for some
1 � k < l � n. Let bv : 2(NnK)[fkg ! Rn�jKj+1+ be such that
� bv(fkg) = ve(K);
� for each S � NnK; bv(S) = ve(S); and
� for each S � NnK; bv(S [ fkg) = ve(S [K):

We refer bV = ((NnK) [ fkg; bv) as the TU-game obtained from Ve when K merges into a
single sponsor k:8

The following axiom states that whether we work with
Merging and Splitting Proofness: For each e = hN; c;ri 2 E , each K � S for some
S 2 Se; and each bV as described above,

Fk(bV ) =X
i2K
Fi(Ve):

Consider the di�erence between the value of the coalition consisting of only one sponsor
and her cost share in the grand coalition. This di�erence measures how much a sponsor
bene�ts from cooperating with the other sponsors rather than being alone. The following
fairness axiom requires that in a two-sponsor TU-game, the sponsors should equally bene�t
from cooperation. In a sense, in two-sponsor games, we require the sponsors to have equal
bargaining powers when it comes to sharing the bene�ts from cooperation.

Equal Bene�t: For each V=(N; v) with N = fi; jg;

v(fig)� Fi(V )=v(fjg)� Fj(V ):
It is easy to see that if a solution satis�es E�ciency and Equal Bene�t, then in 2-sponsor

economies, it coincides with the Shapley value.

Lemma 1. A solution F satis�es E�ciency and Equal Bene�t if and only if for each V =
(N; v) with n = 2; F (V )�SV (V ):

Let S be a connected set in e = hN; c;ri. Now, suppose all the sponsors which do not
belong to S leave after paying their cost shares. The rest of the sponsors have to cover the
remaining part of the total cost. The reduced economy which only includes the sponsors in S
is equivalent to eS = hS; cS ;rSi 2 E : Note that since S is a connected set, the cost of serving
the sponsors in S is same both in the original and the reduced economies. Hence, whether the
sponsors in S cooperate with the grand coalition or not should not e�ect their cost shares.
In other words, the sponsors in S should not be a�ected when the other sponsors leave the
economy.

Consistency over Connected Sets: For each e = hN; c;ri 2 E , each S 2 Se, and each
i 2 S;

Fi(Ve) = Fi(VeS ):

8Note that the choice of k as the representative of K is arbitrary.
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The following Lemma states some logical relations between the axioms introduced so far.

Lemma 2. a) E�ciency, Merging and Splitting Proofness, and Equal Bene�t together imply
Respect of Connected Sets.
b) E�ciency, Individual Rationality, and Merging and Splitting Proofness together imply Re-
spect of Connected Sets.
c) E�ciency and Consistency over Connected Sets together imply Respect of Connected Sets.

Our main characterization states that there is only one solution if one requires no cross-
subsidization among connected sets, immunity to manipulability by mergers, and equal bar-
gaining power in two-person games: the Shapley value.

Theorem 1. The Shapley value is the only solution which satis�es Respect of Connected
Sets, Merging and Splitting Proofness, and Equal Bene�t.

By Lemma 2 and Theorem 1, the Shapley value can also be characterized as follows:

Corollary 1. The Shapley value is the only solution which satis�es E�ciency, Merging and
Splitting Proofness, and Equal Bene�t.

Consider the following two economies where the only di�erence between them is that
there are two sponsors i and i + 1 such that the service provider visits them consecutively
in one economy, and via home in the other. In such a situation, one may require that other
things being equal, when two sponsors become connected, their cost shares should be a�ected
equally. This requirement is similar to the \equal-gains principle" of Myerson (1977) and
\equal bargaining power" of Jackson and Wolinsky (1996).

We weaken this condition further by allowing the possibility that there may be other
changes in the respective routes in these two economies. However, we do not allow any
changes on the links between i� 1 and i; and i+ 1 and i+ 2: Formally, let fe; e0g � E where
e = hN; c;ri and e0= hN; c;r0i be such that there exists i 2 Nnfng where
(i) i �r i+ 1 and i �r0 0 �r0 i+ 1;
(ii) i� 1 �r0 i if and only if i� 1 �r i; and
(ii) i+ 1 �r0 i+ 2 if and only if i+ 1 �r i+ 2;

Weak Equal Impact : For each pair fe; e0g � E as described above,

Fi(Ve)�Fi(Ve0)=Fi+1(Ve)�Fi+1(Ve0):
The next result states that requiring no-cross subsidization between connected sets and

equal treatment of sponsors when they get connected is also enough to characterize the Shapley
value.

Theorem 2. The Shapley value is the only solution which satis�es Respect of Connected Sets
and Weak Equal Impact.

Theorem 2 is in similar spirit to Myerson's characterization of the Shapley value in general
networks. However, our framework and the domain of allocations are di�erent that of Myerson
(1977).

Comparison of Theorems 1 and 2 is interesting: keeping Respect of Connected Sets, we
can replace Merging and Splitting Proofness, and Equal Bene�t with Weak Equal Impact,
and we still obtain the Shapley value, even thoughMerging and Splitting Proofness and Equal
Bene�t do not together imply Weak Equal Impact. The following corollary to Theorem 2 is
obtained by using the logical relations between several axioms laid out in Lemma 2:
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Corollary 2. a) The Shapley value is the only solution which satis�es E�ciency, Merging
and Splitting Proofness, Equal Bene�t, and Weak Equal Impact
b) On ET ; the Shapley value is the only solution which satis�es E�ciency, Individual Ratio-
nality, Merging and Splitting Proofness, and Weak Equal Impact.9

c) The Shapley value is the only solution which satis�es E�ciency, Consistency over Connected
Sets, and Weak Equal Impact.

The results in this Section shows that several di�erent combinations of axioms characterize
the Shapley value. Hence, Shapley value generally seems to be the answer regardless of what
di�erent requirements one expects from a solution. The fact that the Shapley value is also in
the core of appointment games adds to its desirability. The following Table summarizes the
results of this Section.

E� IR RCS Cons MSP WEI EB

Thm1 � � �
Cor1 � � �
Thm2 � �
Cor2 a � � � �
Cor2 b (on ET ) � � � �
Cor2 c � � �

E�: E�ciency, IR: Individual Rationality, RCS: Respect of Connected Sets, Cons: Consistency over Connected Sets,

MSP: Merging and Splitting Proofness, WEI: Weak Equal Impact, EB: Equal Bene�t.

4 Characterization of the Shapley Value in Routing Games

In this section, we analyze the Shapley value in the class of routing games (TU-games proposed
by Potters et al (1992) to study the �xed-route TSP, see the Introduction).

Let e = hN; c;ri 2 E and S � N: The permissible route over S in a routing game is the one
where the traveler follows the order in which agents are listed on r; skipping all the sponsors
who are absent in S: Let r�S be the resulting route over S: The routing game associated with
e is V �e = (N; v

�
e) where v

�
e : 2

N ! R+ is such that for each S � N; v�e(S) = c(r�S):

Example 3. Let e = hN; c;ri where r = (0; 1; 0; 2; 3; 4; 5; 0; 6; 0; 7; 8; 9; 0): Let S =
f1; 4; 5; 6; 7; 9g: Then, r�S = (0; 1; 0; 4; 5; 0; 6; 0; 7; 9; 0) and v�e(S) = 2c1 + c4 + c4;5 + c5 +
2c6 + c7 + c7;9 + c9:

The axioms in Section 3 can be stated for routing games just by replacing all Ve with V
�
e ;

ve(:) with v
�
e(:); and rS with r

�
S .

The di�erence in the calculation of the value of a coalition between an appointment game
and a routing game changes some of the results we derived in Section 3. First of all, in the
class of routing games, the Shapley value doesn't reduce into a simple formula as it does in
the class of appointment games. Also, in this class, the Shapley value is not in the core even
on the domain ET : Moreover, Theorem 1 no longer holds in the class of routing games since
the Shapley value violates Merging and Splitting Proofness.

9It is easy to see that on EnET ; the Shapley value violates Individual Rationality. Hence, this result holds
only on ET :
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Proposition 2. i) In the class of routing games, the Shapley value is not in the core.
ii) In the class of routing games, the Shapley value violates Merging and Splitting Proofness.

The good news is that Theorem 2 extends to the class of routing games. However, we need
to strengthen the Weak Equal Impact axiom as follows: let fe; e0g � E where e = hN; c;ri
and e0= hN; c;r0i be such that there exists i 2 Nnfng where

(i) i �r i+ 1 and i �r0 0 �r0 i+ 1; and

(ii) for Si 2 Se with i 2 Si; for each k 2 Sinfig and l 2 Sinfi+1g; k �r l if and only if k �r0 l.

Hence, on the route r; the traveler goes from i to i+1 directly; but on r0 she travels from
i to i+1 via home. That is, on the graph g(e); i and i+1 has a direct link between them but
not on the graph g(e0): There may be other changes between the routes r and r0; as long as
those changes only concern the sponsors that do not belong to Si where Si is the connected
set that includes i and i + 1 in economy e: That is, the links between the sponsors in other
connected sets are allowed to change.

Strong Equal Impact : For each pair fe; e0g � E as described above,

Fi(V
�
e )�Fi(V �e0)=Fi+1(V �e )�Fi+1(V �e0):

Theorem 3. In the class of routing games, the Shapley value is the only solution which
satis�es Respect of Connected Sets and Strong Equal Impact.

Note that in the class of routing games, the Shapley value still satis�es E�ciency and
Consistency over Connected Sets. Hence, Corollary 2c extends to the routing games:

Corollary 3. The Shapley value is the only solution which satis�es E�ciency, Consistency
over Connected Sets, and Strong Equal Impact.

5 Appendix

5.1 Derivation of the Shapley Value in Appointment Games

Let e = hN; c;ri 2 E , i 2 N; and Si � N be the connected set such that i 2 Si: For each
S � N; let jSj = s and f(s) = s!(n�s�1)!

n! :

� If Si = fig; then since for each S � Nnfig; ve(S [ fig)� ve(S) = ve(fig) = 2ci; we have

SVi(Ve) = 2ci:

� If Si \ fi� 1; i+ 1g = j; then since
for each S � Nnfig such that j 2 S; ve(S [ fig)� ve(S) = ci + ci;j � cj ; and
for each S � Nnfig such that j =2 S; ve(S [ fig)� ve(S) = 2ci; we have
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SVi(Ve) =
X

S�Nnfig
f(s) (ve(S [ fig)� ve(S))

=
X

S�Nnfig:j2S
f(s) (ci + ci;j � cj) +

X
S�Nnfi;jg

f(s) (2ci)

= (ci + ci;j � cj)
n�1X
s=1

�
n� 2
s� 1

�
f(s) + 2ci

n�2X
s=0

�
n� 2
s

�
f(s)

= (ci + ci;j � cj)
1

2
+ (2c)i

1

2

=
3ci + ci;j � cj

2
:

Here,
�
n�2
s�1
�
is the number of (s � 1)-combinations from the set Nnfi; jg: It gives us the

number of subsets of Nnfig that contains j and has s number of sponsors: to �nd such subsets,
we need to pick s� 1 sponsors from the set Nnfi; jg: Similar interpretation applies to

�
n�2
s

�
and all other binomial coe�cients from now on.

� If fi� 1; i+ 1g � Si; then since
for each S � Nnfig such that fi�1; i+1g � S; ve(S[fig)�ve(S) = ci�1;i+ci;i+1�ci�1�ci+1;
for each S � Nnfig such that S \ fi� 1; i+ 1g = j; ve(S [ fig)� ve(S) = ci + ci;j � cj ; and
for each S � Nnfig such that S \ fi� 1; i+ 1g = ;; ve(S [ fig)� ve(S) = 2ci; we have

SVi(Ve) =
X

S�Nnfig:fi�1;i+1g�S
f(s) (ci�1;i + ci;i+1 � ci�1 � ci+1)

+
X

S�Nnfig:fi�1;i+1g\S=i�1
f(s) (ci + ci�1;i � ci�1)

+
X

S�Nnfig:fi�1;i+1g\S=i+1
f(s) (ci + ci;i+1 � ci+1) +

X
S�Nnfig:fi�1;i+1g\S=;

f(s) (2ci)

= (ci�1;i + ci;i+1 � ci�1 � ci+1)
n�1X
s=2

�
n� 3
s� 2

�
f(s) + (ci + ci�1;i � ci�1)

n�2X
s=1

�
n� 3
s� 1

�
f(s)

+ (ci + ci;i+1 � ci+1)
n�2X
s=1

�
n� 3
s� 1

�
f(s) + 2ci

n�3X
s=0

�
n� 3
s

�
f(s)

= (ci�1;i + ci;i+1 � ci�1 � ci+1)
1

3
+ (ci + ci�1;i � ci�1)

1

6
+ (ci + ci;i+1 � ci+1)

1

6
+ (2ci)

1

3

=
1

2
(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1):

5.2 Proofs of the Results in Section 3

Proof of Proposition 1: Let e = hN; c;ri 2 ET , i 2 N; and S � T � Nnfig: Let K = fj 2
Nnfig : either i �r j or j �r ig:10 Note that on ET ; for each j 2 K;

ci + cj � ci;j : (1)

10If 0 �r i �r 0; then K = ;: If i� 1 �r i �r 0; then K = fi� 1g: If 0 �r i �r i+ 1; then K = fi+ 1g: If
i� 1 �r i �r i+ 1; then K = fi� 1; i+ 1g:

12



We need to show that

ve(S [ fig)� ve(S) � ve(T [ fig)� ve(T ):11 (2)

There are 6 possible cases. We will show that in each case, (2) holds.

1. K \ S = ;. Then, ve(S [ fig)� ve(S) = 2ci:
a) K \ T = ;: Then, ve(T [ fig)� ve(T ) = 2ci: Hence, (2) holds.
b) K \ T = fjg: Then, ve(T [ fig)� ve(T ) = cj;i + ci � cj : Hence, by (1), (2) holds.
c) K \ T = fi� 1; i+ 1g: Then, ve(T [ fig)� ve(T ) = ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, by
(1), (2) holds.

2. K \ S = fjg. Then, ve(S [ fig)� ve(S) = cj;i + ci � cj :
a) K \ T = fjg. Then, ve(T [ fig)� ve(T ) = cj;i + ci � cj : Hence, (2) holds.
b) K \ T = fi� 1; i+ 1g: Then, ve(T [ fig)� ve(T ) = ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, by
(1), (2) holds.

3. K \ S = K \ T = fi � 1; i + 1g: Then, ve(S [ fig) � ve(S) = ve(T [ fig) � ve(T ) =
ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, (2) holds.

2

Proof of Lemma 1: Let F satisfy E�ciency and Equal Bene�t. Let V = (N; v) be such
that N = fi; jg: By Equal Bene�t, (i) Fi(V ) � Fj(V )=v(fig) � v(fjg): By E�ciency, (ii)
v(N) = Fi(V ) + Fj(V ): By (i) and (ii),

Fi(V )=
1

2
[v(N)+v(fig)�v(fjg)] = SVi(V ): (3)

2

Proof of Lemma 2:

a) Let F satisfy the �rst 3 axioms listed in Lemma 2a. Let e = hN; c;ri 2E and Se =
fS1; S2; :::; ST g for some T � n: The proof is by induction.

�Base Step: Let S1 merge into a single sponsor denoted by 1 and NnS1 merge into a single
sponsor denoted by n: Let V 1 = (f1; ng; v1) be the TU-game obtained from Ve by this merger.
Thus, v1(f1g) = ve(S1); v1(fng) = ve(NnS1); and v1(f1; ng) = ve(N): Note that since S1 is
a connected set, ve(N) = ve(S1) + ve(NnS1): These equalities and Lemma 1 together imply

F1(V
1) = 1

2

�
v1(f1; ng) + v1(f1g)�v1(fng)

�
;

= ve(S1):
(4)

By Merging and Splitting Proofness, F1(V
1) =

P
i2S1

Fi(Ve): This equality and (4) together

imply
P
i2S1

Fi(Ve) = ve(S1):

�Induction Step: Let k � T: Assume that for each t 2 f1; :::; k � 1g;
P
i2St

Fi(Ve) = ve(St):We

will prove that
P
i2Sk

Fi(Ve) = ve(Sk):

Let fS1; S2; :::; Skg merge into a single sponsor denoted by k; and fSk+1; ::; ST g merge into a
single sponsor denoted by n: Let V k = (fk; ng; vk) be the TU-game obtained from Ve by this
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merger. Thus, vk(fkg) = ve(
k
[
t=1
St) =

kP
t=1
ve(St); v

k(fng) = ve(
T
[

t=k+1
St) =

TP
t=k+1

ve(St); and

vk(f1; ng) = ve(N) =
kP
t=1
ve(St) +

TP
t=k+1

ve(St):

These equalities and Lemma 1 together imply

Fk(V
k) = ve(Sk) +

k�1P
t=1
ve(St): (5)

By Merging and Splitting Proofness, Fk(V
k) =

P
i2Sk

Fi(Ve)+
k�1P
t=1

P
i2St

Fi(Ve): This equality, (5),

and the induction hypothesis together imply
P
i2Sk

Fi(Ve) = ve(Sk):

�Conclusion Step: By the Base and Induction steps, for each t � T ,
P
i2St

Fi(Ve) = ve(St): This

completes the proof.

b) Let F satisfy the �rst 3 axioms listed in Lemma 2b. Suppose, by contradiction, that F does
not satisfy Respect of Connected Sets. Then, there are e = hN; c;ri 2E and fS0; S00g � Se such
that

P
i2S00

Fi(Ve) < ve(S
00) and (i)

P
i2S0

Fi(Ve) > ve(S
0): Such S0 and S00 exist since by E�ciency,

P
S2Se

�P
i2S
Fi(Ve)

�
= ve(N) =

P
S2Se

ve(S):

Now, let S0 merge into a single sponsor denoted by s0 2 S0: Let bV = ((NnS0) [ fs0g; bv) be
the TU-game obtained from Ve by this merger. Thus, (ii) bv(fs0g) = ve(S0): By Merging and
Splitting Proofness, (iii) Fs0(bV ) = P

i2S0
Fi(Ve): By Individual Rationality, (iv) Fs0(bV ) � bv(fs0g):

By (ii), (iii), and (iv),
P
i2S0

Fi(Ve) � ve(S0) which contradicts (i).

c) Let e = hN; c;ri 2 E and S 2 Se: Consider eS= hS; cS ;rSi 2 E : By E�ciency,
(i)

P
i2S
Fi(VeS ) = veS (S): By Consistency over Connected Sets, for each i 2 S; (ii)

Fi(Ve) = Fi(VeS ): Since S is a connected set, veS (S) = ve(S): Hence, by (i) and (ii),P
i2S
Fi(Ve) = ve(S): That is, F satis�es Respect of Connected Sets. �

Proof of Theorem 1:

� First, we prove that the Shapley value is the only solution that satis�es the axioms listed
in Theorem 1.

Let F satisfy those axioms and e = hN; c;ri 2 E : We will show that for each S 2 Se and each
i 2 S; Fi(Ve) = SVi(Ve):
If n = 2; by Lemma 1, F = SV: Let n > 2: By Respect of Connected Sets, for each S 2 Se
with jSj = 1 and each i 2 S; we have Fi(Ve) = ve(f1g) = SVi(Ve):
Now, let S 2 Se be such that jSj � 2 and S = fl; l + 1; :::;mg for some fl;mg � N: Let
K1 = fi 2 N : i < lg and K2 = fi 2 N : i > mg:12 The proof is in three parts.
12If l = 1; then K1 = ; and if m = n; then K2 = ;:
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Part 1: This part of the proof is by induction.

�Base Step: Let K1 and flg merge into a single sponsor denoted by l. Let K2 and fl +
1; l+ 2; :::mg merge into a single sponsor denoted by n: Let V l = (fl; ng; vl) be the TU-game
obtained from Ve by this merger: Thus,
vl(flg) = ve(f1; :::; lg) = c(rK1) + 2cl;

vl(fng) = ve(fl+1; :::; ng) = cl+1+
m�1P
t=l+1

ct;t+1+cm+c(rK2) = (c(rS)�cl�cl;l+1+cl+1)+c(rK2);

and
vl(fl; ng) = ve(N) = c(rK1) + c(rS) + c(rK2):

13

These equalities and Lemma 1 together imply

Fl(V
l) = 1

2

�
vl(fl; ng) + vl(flg)�vl(fng)

�
;

= c(rK1) +
1
2(3cl + cl;l+1 � cl+1):

(6)

By Respect of Connected Sets,X
i2K1

Fi(Ve) = c(rK1) and
X
i2K2

Fi(Ve) = c(rK2): (7)

By Merging and Splitting Proofness;

Fl(V
l) =

X
i2K1

Fi(Ve) + Fl(Ve): (8)

By equalities (6), (7), and (8),

Fl(Ve) =
1

2
(3cl + cl;l+1 � cl+1) = SVl(Ve): (9)

�Induction Step: Let l < l + k < m: Assume that, for each i � l + k � 1; Fi(Ve) = SVi(Ve):
We will prove that Fl+k(Ve) = SVl+k(Ve):

Let K1 and S1 = fl; ::; l + kg merge into a single sponsor denoted by l + k: Let K2 and
SnS1 merge into a single sponsor denoted by n: Let V l+k = (fl+k; ng; vl+k) be the TU-game
obtained from Ve by this merger. Thus,

vl+k(fl + kg) = ve(f1; :::; l + kg) = c(rK1) + cl +
l+k�1P
t=l

ct;t+1 + cl+k;

vl+k(fng) = ve(fl + k + 1; :::; ng) = (c(rS)� cl �
l+kP
t=l

ct;t+1 + cl+k+1) + c(rK2); and

vl+k(fl + k; ng) = ve(N):

These equalities and Lemma 1 together imply

Fl+k(V
l+k) = 1

2

�
vl+k(fl + k; ng) + vl+k(fl + kg)�vl+k(fng)

�
;

= c(rK1) +
1
2(2cl + 2

l+k�1P
t=l

ct;t+1 + cl+k + cl+k;l+k+1 � cl+k+1):
(10)

By Merging and Splitting Proofness;

13Note that K1 is a union of connected sets and so is K2: That is, K1 = [fS0 : S0 2 Sen(S [ K2)g and
similarly for K2: Hence, ve(N) = ve(K1) + ve(S) + ve(K2):
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Fl+k(V
l+k) =

X
i2K1

Fi(Ve) +
l+k�1X
i=l

Fi(Ve) + Fl+k(Ve): (11)

By the induction hypothesis and equalities (10) and (11),

F
l+k
(Ve) = (2cl+k + cl+k�1;l+k + cl+k;l+k+1 � cl+k�1 � cl+k+1) =2 = SVl+k(Ve):

This concludes the induction step.
�Conclusion Step: By the Base and Induction steps, for each l � l+k < m; we have Fl+k(Ve) =
SVl+k(Ve):

Part 2: Let K1 and fl; ::;mg merge into a single sponsor denoted by m: Let K2 merge into
a single sponsor denoted by n: Let V m = (fm;ng; vm) be the TU-game obtained from Ve by
this merger. Thus,
vm(fmg) = ve(f1; :::;mg) = c(rK1) + c(rS);
vm(fng) = ve(fm+ 1; :::; ng) = c(rK2); and
vm(fm;ng) = ve(N):
These equalities and Lemma 1 together imply

Fm(V
m) = 1

2 [v
m(fm;ng) + vm(fmg)�vm(fng)] ;

= c(rK1) + c(rS):
(12)

By Merging and Splitting Proofness;

Fm(V
m) =

X
i2K1

Fi(Ve) +
m�1X
i=l

Fi(Ve) + Fm(Ve): (13)

By Part 2 and equalities (12) and (13),

Fm(Ve) = (3cm + cm�1;m � cm�1) =2 = SVm(Ve):

Part 3: By repeating the proofs in Part 1 and 2 for each S 2 Se we obtain that for each
i 2 S; Fi(Ve) = SVi(Ve): This completes the proof.

� Now, we show that the Shapley value satis�es the axioms listed in Theorem 1.

Respect of Connected Sets:
Let e = hN; c;ri 2 E and S 2 Se be such that S = fl; l + 1; l + 2; :::;mg for some fl;mg � N:
Then, SVl(Ve) =

3cl+cl;l+1�cl+1
2 ; SVm(Ve) =

3cm+cm;m�1�cm�1
2 ; and for each i 2 Snfl;mg;

SVi(Ve) =
1
2(2ci+ci�1;i+ci;i+1�ci�1�ci+1): Then,

P
i2S
SVi(Ve) = cl+

m�1P
i=l

ci;i+1+cm = ve(S):

Hence, the Shapley value satis�es Respect of Connected Sets. 2

Merging and Splitting Proofness:
Let e = hN; c;ri 2 E andK � N be such thatK = fk; k+1; k+2; :::; lg for some 1 � k < l � n.
Let bV = ((NnK) [ fkg; bv) be the TU-game obtained from Ve when K merges into k: Hence,bv(fkg) = ve(K); and for each S � NnK; bv(S) = ve(S) and bv(S [ fkg) = ve(S [K):
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Note that K may contain some connected sets. We partition K as follows. For some 1 �
M � jKj; let PK = fK1;K2; :::;KMg be the partitioning of K such that

� for each m 2 f1;M � 1g; each i 2 Km; and each j 2 Km+1; we have i < j;
� for each m 2 f1;Mg; Km � S for some S 2 Se; and
� for each m =2 f1;Mg; Km 2 Se:
For example, if r = (0; 1; 2; 3; 4; 0; 5; 6; 0; 7; 0; 8; 9; 0) and K = f3; 4; ::; 8g, then PK =
ff3; 4g; f5; 6g; f7g; f8gg:
Note that there are n � jKj + 1 agents in the game bV : For each S � N; let jSj = s and

g(s) = s!(n�jKj�s)!
(n�jKj+1)! : The following four cases are possible.

a) PK � Se : That is, for each 1 � m �M; Km 2 Se. Then, for each S � NnK;

bv(S [ fkg)� bv(S) = bv(fkg) = ve(K) = MX
m=1

ve(Km): (14)

Hence, SVk(bV ) = bv(fkg). By Respect of Connected Sets, for each Km 2 PK ; P
i2Km

SVi(Ve) =

ve(Km): These equalities and (14) together imply that SVk(bV ) = P
i2K
SVi(Ve):

b) PKnSe = fK1g: That is, except for K1; each Km 2 PK is a connected set. Note that this
case covers the possibility that PK = fKg = fK1g: Let K1 = fk1; k1 + 1; :::; l1g: Then, for
each S � NnK such that k1 � 1 =2 S; (14) holds. For each S � NnK such that k1 � 1 2 S;

bv(S [ fkg)� bv(S) = (ck1�1;k1 + l1�1X
t=k1

ct;t+1 + cl1 � ck1�1) +
MX
m=2

ve(Km): (15)

Then,

SVk(bV ) = n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s)[ck1�1;k1 +

l1�1P
t=k1

ct;t+1 + cl1 � ck1�1 +
MP
m=2

ve(Km)]+

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s)[ck1 +

l1�1P
t=k1

ct;t+1 + cl1 +
MP
m=2

ve(Km)]

Note that
n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s) =

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s) = 1

2 : Hence,

SVk(bV ) = 1
2(2cl1 + 2

l1�1P
t=k1

ct;t+1 + ck1�1;k1 + ck1 � ck1�1) +
MP
m=2

ve(Km)

=
P
i2K1

SVi(Ve) +
MP
m=2

P
i2Km

SVi(Ve)

=
P
i2K
SVi(Ve):

c) PKnSe = fKMg: That is, except for KM ; each Km 2 PK is a connected set. Let KM =
fkM ; kM + 1; :::; lMg: Then, for each S � NnK such that lM + 1 =2 S; (14) holds. For each
S � NnK such that lM + 1 2 S;

bv(S [ fkg)� bv(S) = (ckM + lM�1X
t=kM

ct;t+1 + clM ;lM+1 � clM+1) +
M�1X
m=1

ve(Km) (16)
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Then,

SVk(bV ) = n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s)[ckM +

lM�1P
t=kM

ct;t+1 + clM ;lM+1 � clM+1 +
M�1P
m=1

ve(Km)]+

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s)[ckM +

lM�1P
t=kM

ct;t+1 + clM +
M�1P
m=1

ve(Km)]

= 1
2(2ckM + 2

lM�1P
t=kM

ct;t+1 + clM ;lM+1 + clM � clM+1) +
M�1P
m=1

ve(Km)

=
P

i2KM

SVi(Ve) +
M�1P
m=1

P
i2Km

SVi(Ve)

=
P
i2K
SVi(Ve):

d) PKnSe = fK1;KMg: That is, except for K1 and KM ; each Km 2 PK is a connected set.
Then, for each S � NnK such that fk1 � 1, lM + 1g \ S = ;; (14) holds. For each S � NnK
such that k1 � 1 2 S and lM + 1 =2 S; (15) holds. For each S � NnK such that lM + 1 2 S
and k1 � 1 =2 S; (16) holds. For each S � NnK such that fk1 � 1, lM + 1g � S;

bv(S[fkg)�bv(S) = (ck1�1;k1+l1�1X
t=k1

ct;t+1+cl1�ck1�1)+(ckM+
lM�1X
t=kM

ct;t+1+clM ;lM+1�clM+1)+
M�1X
m=2

ve(Km):

Then,

SVk(bV ) = n�jKj�2P
s=0

�
n�jKj�2

s

�
g(s)

MP
m=1

ve(Km)+
n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s)[ck1�1;k1 +

l1�1P
t=k1

ct;t+1+ cl1 �

ck1�1 +
MP
m=2

ve(Km)]+

n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s)[ckM +

lM�1P
t=kM

ct;t+1 + clM ;lM+1 � clM+1 +
M�1P
m=1

ve(Km)] +

n�jKjP
s=2

�
n�jKj�2
s�2

�
g(s)[ck1�1;k1 +

l1�1P
t=k1

ct;t+1 + cl1 � ck1�1

+ckM +
lM�1P
t=kM

ct;t+1 + clM ;lM+1 � clM+1 +
M�1P
m=2

ve(Km)]

Note that
n�jKj�2P
s=0

�
n�jKj�2

s

�
g(s) =

n�jKjP
s=2

�
n�jKj�2
s�2

�
g(s) = 1

3 and
n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s) = 1

6 :

Hence,

= 1
2(2cl1 + 2

k1�1P
t=l1

ct;t+1 + ck1�1;k1 + ck1 � ck1�1) +
M�1P
m=2

ve(Km)+

1
2(2ckM + 2

lM�1P
t=kM

ct;t+1 + clM ;lM+1 + clM � clM+1)

=
P
i2K1

SVi(Ve) +
M�1P
m=2

P
i2Km

SVi(Ve) +
P

i2KM

SVi(Ve)
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=
P
i2K
SVi(Ve):

In all the possible cases, we showed that SVk(bV ) = P
i2K
SVi(Ve). Therefore, the Shapley value

satis�es Merging and Splitting Proofness. 2

Equal Bene�t:
Let V=(N; v) with N = f1; 2g: For each i 2 N; SVi(Ve) = 1

2 [v(N)+v(fig)�v(fjg)] where
j = Nnfig: Hence, SV1(Ve) � v(f1g) = 1

2 [v(N)�v(f1g)�v(f2g)] = SV2(Ve) � v(f2g):
Therefore, the Shapley value satis�es Equal Bene�t. 2

�

Proof of Theorem 2:

� First, we show that the Shapley value is the only solution which satis�es the axioms in
Theorem 2.

Let F satisfy those axioms. Let e = hN; c;ri 2 E :We will show that for each S 2 Se and each
i 2 S; Fi(Ve) = SVi(Ve):

Step 1: Let e1 =


N; c;r1

�
where for each S 2 Se1 , jSj = 1: By Respect of Connected Sets,

for each i 2 N; Fi(Ve1) = SVi(Ve1) = 2ci.
Step 2: Let

E2 = fe22E : e2 =


N; c;r2

�
is such that for each S 2 Se2 , jSj � 2g

We will show that for each e22E2 and each i 2 N; Fi(Ve2) = SVi(Ve2):

Let i 2 N: First, suppose that fig 2 Se2 : Then, by Respect of Connected Sets, Fi(Ve2) =
SVi(Ve2) = 2ci. Next, suppose that fi; jg 2 Se2 where j 2 fi � 1; i + 1g: Without loss of
generality, let j = i+ 1:

Now, consider the economy e1 =


N; c;r1

�
where for each S 2 Se1 , jSj = 1: Hence, each

sponsor in e1 constitutes a singleton connected set.

Note that 0 �r1 i �r1 0 �r1 i + 1 �r1 0 and 0 �r2 i �r2 i + 1 �r2 0: Since F satis�es Weak
Equal Impact,

Fi(Ve2)� Fi(Ve1) = Fi+1(Ve2)� Fi+1(Ve1): (17)

By Respect of Connected Sets, for each i 2 N; Fi(Ve1) = 2ci = SVi(Ve1): This equality and
(17) together imply

Fi(Ve2)� Fi+1(Ve2) = SVi(Ve1)� SVi+1(Ve1): (18)

Since SV satis�es Weak Equal Impact,

SVi(Ve2)� SVi(Ve1) = SVi+1(Ve2)� SVi+1(Ve1): (19)

Equalities (18) and (19) together imply

Fi(Ve2)� SVi(Ve2) = Fi+1(Ve2)� SVi+1(Ve2) = (e2): (20)
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By Respect of Connected Sets, Fi(Ve2) + Fi+1(Ve2) = SVi(Ve2) + SVi+1(Ve2) = ve(f1; 2g):
Hence, [Fi(Ve2) � SVi(Ve2)] + [Fi+1(Ve2) � SVi+1(Ve2)] = 2(e2) = 0: Therefore, Fi(Ve2) =
SVi(Ve2):

Step 3: Let bS 2 Se. Without loss of generality, suppose bS = f1; 2; :::; bsg: We will show that
for each i � bs� 1;

Fi(Ve2)� SVi(Ve2) = Fi+1(Ve2)� SVi+1(Ve2):

For each i � bs� 1; let ei = hN; c;rii be such that
a) if i = 1; then 1 �r1 0 �r1 2 �r1 3 �r1 0;
b) if i > 1; then 0 �ri i� 1 �ri i �ri 0 �ri i+ 1 �ri i+ 2 �ri 0,
c) for each j 2 Nnfi� 1; i; i+ 1; i+ 2g; we have fjg 2 Se:

By Weak Equal Impact, for each i � bs� 1;
Fi(Ve)� Fi(Vei) = Fi+1(Ve)� Fi+1(Vei): (21)

Note that for each i � bs � 1; we have ei 2 E2: Hence, by Step 2, for each i 2 N; Fi(Vei) =
SVi(Vei): This equality and (21) together imply

Fi(Ve)� Fi+1(Ve) = SVi(Vei)� SVi+1(Vei): (22)

Since SV satis�es Weak Equal Impact,

SVi(Ve)� SVi(Vei) = SVi+1(Ve)� SVi+1(Vei): (23)

Equalities (22) and (23) together imply

Fi(Ve)� SVi(Ve) = Fi+1(Ve)� SVi+1(Vei) = (e): (24)

By Respect of Connected Sets,
P
i2bSFi(Ve) =

P
i2bSSVi(Ve) = ve(bS): This equality and (24)

together imply X
i2bS
[Fi(Ve)� SVi(Ve)] = bs (e) = 0:

Thus, (e) = 0 and for each i 2 bS; Fi(Ve) = SVi(Ve): By repeating Step 3, for each S 2 Se;
we prove that for each S 2 Se and each i 2 S; Fi(Ve) = SVi(Ve):This completes the proof.

� Now, we show that the Shapley value satis�es the axioms listed in Theorem 2.

By Theorem 1, the Shapley value satis�es Respect of Connected Sets. Let us show that it
satis�es Weak Equal Impact. Let fe; e0g � E where e = hN; c;ri and e0= hN; c;r0i be such
that there exists i 2 Nnfng where
(i) i �r 0 �r i+ 1 and i �r0 i+ 1; and
(ii) i� 1 �r0 i if and only if i� 1 �r i; and
(ii) i+ 1 �r0 i+ 2 if and only if i+ 1 �r i+ 2:

There are four cases to consider:

20



Case 1: i� 1 �r i �r 0 �r i+ 1 �r i+ 2: Then, SVi(Ve) = 1
2(3ci + ci�1;i � ci�1); SVi(Ve0) =

1
2(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1); SVi+1(Ve) =

1
2(3ci+1 + ci+1;i+2 � ci+2); and SVi+1(Ve0) =

1
2(2ci+1 + ci;i+1 + ci+1;i+2 � ci � ci+2): Hence,

SVi(Ve)�SVi(Ve0)=
1

2
(ci + ci+1 � ci;i+1) = SVi+1(Ve)�SVi+1(Ve0): (25)

Case 2: 0 �r i �r 0 �r i+ 1 �r i+ 2: Then, SVi(Ve) = 2ci; SVi(Ve0) = 1
2(3ci + ci;i+1 � ci+1);

and SVi+1(Ve) and SVi+1(Ve0) are as in Case 1. It is easy to check that equality 25 still holds
in Case 2.

Case 3: 0 �r i �r 0 �r i + 1 �r 0: Then, SVi(Ve) and SVi(Ve0) are as in Case 2; and
SVi+1(Ve) = 2ci+1; SVi+1(Ve0) =

1
2(3ci+1 + ci;i+1 � ci): Then, again equality 25 holds.

Case 4: i � 1 �r i �r 0 �r i + 1 �r 0: Then, SVi(Ve) and SVi(Ve0) are as in Case 1; and
SVi+1(Ve) and SVi+1(Ve0) are as in Case 3. Then, equality 25 still holds. �

5.3 Independence of Axioms

Independence of the axioms in Theorem 1
� The following Dictatorial solution satis�es Respect of Connected Sets and Merging and

Splitting Proofness, but not Equal Bene�t.
For each e = hN; c;ri 2 E and each i 2 N;
if Se = fNg; then

Di(Ve) =

�
ve(N) if i = argminfj 2 Ng;

0 otherwise.

if jSej > 1; then Fi(Ve) = SVi(Ve):

� The following solution satis�es Merging and Splitting Proofness and Equal Bene�t, but
not Respect of Connected Sets.

For each e = hN; c;ri 2 E and each i 2 N; Fi(Ve) = 1
ve(N)

SVi(Ve):

� The following solution satis�es Respect of Connected Sets and Equal Bene�t, but not
Merging and Splitting Proofness.

For each e = hN; c;ri 2 E ; each i 2 N; and each Si 2 Se with i 2 Si;

Fi(Ve) =

8<: SVi(Ve) if n � 2;
ciP

j2Si
cj
ve(S) n > 2.

Independence of the axioms in Theorem 2
� The following solution satis�es Respect of Connected Sets but not Weak Equal Impact.
For each e = hN; c;ri 2 E ; each i 2 N; and each Si 2 Se with i 2 Si;

Pi(Ve) =
ciP

j2Si
cj
ve(S):

� The following solution satis�es Weak Equal Impact but not Respect of Connected Sets.
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Let � � 0: For each e = hN; c;ri 2 E and each i 2 N;

F �i (Ve) = SVi(Ve)� �:

5.4 Proof of the Result in Section 4

Proof of Proposition 2: First, we demonstrate the calculation of the Shapley value for a
3-sponsor economy. Suppose N = f1; 2; 3g and r = (0; 1; 2; 3; 0): For each S � N , let jSj = s
and f(s) = s!(n�s�1)!

n! : Then,

f(s) S : 1 =2 S v�e(S [ f1g)� v�e(S) S : 2 =2 S v�e(S [ f2g)� v�e(S) S : 3 =2 S v�e(S [ f3g)� v�e(S)
2=6 ; 2c1 ; 2c2 ; 2c3
1=6 f2g c1 + c1;2 � c2 f1g c2 + c1;2 � c1 f1g c3 + c1;3 � c1
1=6 f3g c1 + c1;3 � c3 f3g c2 + c2;3 � c3 f2g c3 + c2;3 � c2
2=6 f2; 3g c1 + c1;2 � c2 f1; 3g c1;2 + c2;3 � c1;3 f1; 2g c3 + c2;3 � c2
Since SVi(V

�
e ) =

P
S�Nnfig

f(s)[v�e(S [ fig)� v�e(S)]; we have

SV1(V
�
e ) =

4

3
c1 �

1

2
c2 �

1

6
c3 +

1

2
c1;2 +

1

6
c1;3

SV2(V
�
e ) = c2 �

1

6
c1 �

1

6
c3 +

1

2
c1;2 �

1

3
c1;3 +

1

2
c2;3

SV3(V
�
e ) =

4

3
c3 �

1

2
c2 �

1

6
c1 +

1

6
c1;3 +

1

2
c2;3:

Let e = hN; c;ri 2 E where c1 = 30; c2 = 6; c3 = 15; c1;2 = 25; c1;3 = 16; c2;3 = 20;
and r = (0; 1; 2; 3; 0): Note that e 2 ET : We have SV1(V �e ) = 149

3 ; SV2(V
�
e ) =

47
3 ; and

SV3(V
�
e ) =

74
3 :

(i) Now, SV1(V
�
e ) + SV2(V

�
e ) =

196
3 and v�e(f1; 2g) = c1 + c1;2 + c2 = 61: Since SV1(V

�
e ) +

SV2(V
�
e ) > v

�
e(f1; 2g); SV (V �e ) is not in the core of e.

(ii) Let sponsors 1 and 2 merge into a single sponsor denoted by k: Let bV = ((Nnf1; 2g) [
fkg; bv) be the TU-game obtained from V �e by this merger: Thus, bv(fkg) = c1 + c1;2 + c2;bv(fk; 3g)� bv(f3g) = c1+ c1;2+ c2;3� c3: Then, SVk(bV ) = 1

2(2c1+ c2� c3+2c1;2+ c2;3) =
121
2 :

Since, SVk(bV ) 6= SV1(V �e ) + SV2(V �e ); SV is not Merging and Splitting Proof.
Note that to show that SV is not Merging and Splitting Proof, similar examples can be
constructed for any number of sponsors more than 3, any structure of connected sets, or any
sets of sponsors who merge. �

Proof of Theorem 3:

� First, we show that the Shapley value is the only solution which satis�es the axioms in
Theorem 2.

Let F satisfy those axioms. Let e = hN; c;ri 2 E : For each 1 � t � n; let

Et = fet2E : et =


N; c;rt

�
is such that for each S 2 Set , jSj � tg:
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Suppose that e 2ET for some 1 � T � n: For each i 2 N; let Si(et) be the connected set that
i belongs to in economy et:

For each i < n; let

Eti = feti2E : eti =


N; c;rti

�
is such that for each j =2 Si(et), fjg 2 Seti ;

i �rti 0 �rti i+ 1; and for each k 2 Si(e
t)nfig and l 2 Si(et)nfi+ 1g; k �rti l if and only if k �rt l:

That is, on route rti ; each sponsor that do not belong to Si(e
t) is a singleton connected

set, the traveler goes from i to i+1 via home, and the other sponsors in Si(e
t) are visited on

route rti exactly the same way they were visited on route r
t: In other words, to obtain g(eti);

we modify g(et) by removing the link between i and i+1 and making each sponsor j =2 Si(et)
a singleton connected set.

By induction on t; we will show for each t � T; each et2Et; and each i 2 N; Fi(V �et) = SVi(V �et):

Step 1 and 2: These steps are same as Steps 1 and 2 in the proof of Theorem 2 (just replace
Weak Equal Impact with Strong Equal Impact).
Step 3: Consider e32E3:

For each i 2 N with fig 2 Se3 ; by Respect of Connected Sets,.Fi(V �e3) = SVi(V
�
e3) = 2ci: Now,

we will show that for each bS 2 Se3 with jbSj > 1 and each fi; i+ 1g � bS;
Fi(V

�
e3)� SVi(V

�
e3) = Fi+1(V

�
e3)� SVi+1(V

�
e3):

Note that i �r3 i+1 and i �r3i 0 �r3i i+1; and for each k 2 Si(e
3)nfig and l 2 Si(e3)nfi+1g;

k �
r3
i

l if and only if k �
r3
l. Hence, by Strong Equal Impact,

Fi(V
�
e3)� Fi(V

�
e3i
) = Fi+1(V

�
e3)� Fi+1(V

�
e3i
): (26)

Note that e3i 2 E1 [ E2: Hence, by Steps 1 and 2, for each i 2 N; Fi(V �e3i ) = SVi(V
�
e3i
): This

equality and (26) together imply

Fi(V
�
e3)� Fi+1(V

�
e3) = SVi(V

�
e3i
)� SVi+1(V �e3i ): (27)

Since SV satis�es Strong Equal Impact,

SVi(V
�
e3)� SVi(V

�
e3i
) = SVi+1(V

�
e3)� SVi+1(V

�
e3i
): (28)

Equalities (27) and (28) together imply

Fi(V
�
e3)� SVi(V

�
e3) = Fi+1(V

�
e3)� SVi+1(V

�
e3i
) = (e3i ): (29)

By Respect of Connected Sets,
P
i2bSFi(V

�
e3) =

P
i2bSSVi(V

�
e3) = v

�
e(bS): That is,

X
i2bS
[Fi(V

�
e3)� SVi(V

�
e3)] = jbSj (e) = 0:

Thus, for each bS 2 Se3 with jbSj > 1 and i 2 bS; Fi(V �e3) = SVi(V �e3):
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Step T: Assume that for each t < T and each i 2 N; Fi(V �et) = SVi(V �et): We will show that
for each i 2 N; Fi(V �eT ) = SVi(V

�
eT
):

For each i 2 N with fig 2 SeT ; by Respect of Connected Sets,.Fi(V �eT ) = SVi(V
�
eT
) = 2ci:

Now, we will show that for each bS 2 SeT with jbSj > 1 and each fi; i+ 1g � bS;
Fi(V

�
eT )� SVi(V

�
eT ) = Fi+1(V

�
eT )� SVi+1(V

�
eT ):

Note that i �rT i+1 and i �rTi 0 �rTi i+1; and for each k 2 Si(e
T )nfig and l 2 Si(eT )nfi+1g;

k �
rT
i

l if and only if k �
rT
l. Hence, by Strong Equal Impact,

Fi(V
�
eT )� Fi(V

�
eTi
) = Fi+1(V

�
eT )� Fi+1(V

�
eTi
): (30)

Note that eTi 2
S

t�T�1
Et: Hence, by the induction hypothesis, for each i 2 N; Fi(V

�
eTi
) =

SVi(V
�
eTi
): This equality and (30) together imply

Fi(V
�
eT )� Fi+1(V

�
eT ) = SVi(V

�
eTi
)� SVi+1(V �eTi ): (31)

Since SV satis�es Strong Equal Impact,

SVi(V
�
eT )� SVi(V

�
eTi
) = SVi+1(V

�
eT )� SVi+1(V

�
eTi
): (32)

Equalities (31) and (32) together imply

Fi(V
�
eT )� SVi(V

�
eT ) = Fi+1(V

�
eT )� SVi+1(V

�
eTi
) = (eT ): (33)

By Respect of Connected Sets,
P
i2bSFi(V

�
eT
) =

P
i2bSSVi(V

�
eT
) = v�e(bS): This equality and (33)

together imply X
i2bS
[Fi(V

�
eT )� SVi(V

�
eT )] = jbSj (eT ) = 0:

Thus, (eT ) = 0 and for each bS 2 SeT with jbSj > 1 and i 2 bS; Fi(V �eT ) = SVi(V
�
eT
): This

concludes the proof.

� Now, we show that the Shapley value satis�es the axioms listed in Theorem 3.

Respect of Connected Sets:

Let e = hN; c;ri 2 E and bS 2 Se: Let be= hN;bc;ri be such that for each j 2 NnbS; j is a null
sponsor in the sense that bcj = 0 and bcj;l = 0 for each l 2 N: For each null sponsor j 2 NnbS;
since her marginal contribution to any coalition is zero, SVj(V

�be ) = 0: Note that due to the
de�nition of the permissible routes in a routing game, for each i 2 bS and each S � Nnfig;
v�e(S [ fig)� v�e(S) = v�e((S \ bSnfig) [ fig)� v�e((S \ bSnfig)) =
v�be((S \ bSnfig) [ fig)� v�be((S \ bSnfig)) = v�be(S [ fig)� v�be(S):
Hence, for each i 2 bS; SVi(V �e ) = SVi(V

�be ): By E�ciency the Shapley value, P
i2bSSVi(V

�be ) =
bc(r) = v�be(bS): All together, P

i2bSSVi(V
�
e ) = v

�be(bS): Hence, the Shapley value satis�es Respect of
Connected Sets.
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Strong Equal Impact:

Let fe; e0g � E where e = hN; c;ri and e0= hN; c;r0i be such that there exists i 2 Nnfng where

(i) i �r i+ 1 and i �r0 0 �r0 i+ 1; and

(ii) for Si 2 Se with i 2 Si; for each k 2 Sinfig and l 2 Sinfi+1g; k �r l if and only if k �r0 l.

Let bS = Sinfi; i+ 1g: Note the following: for each S � Nnfi; i+ 1g;
(a) v�e(S [ fig)� v�e(S) = v�e0(S [ fig)� v�e0(S);

(b) v�e(S [ fi+ 1g [ fig)� v�e(S [ fi+ 1g) = v�e(bS [ fi+ 1g [ fig)� v�e(bS [ fi+ 1g);
(c) v�e0(S [ fi+ 1g [ fig)� v�e0(S [ fi+ 1g) = v�e0(bS [ fi+ 1g [ fig)� v�e0(bS [ fi+ 1g);
(d) v�e(bS [ fi+ 1g) = v�e0(bS [ fi+ 1g); and
(e) v�e(S [ fi+ 1g)� v�e(S) = v�e0(S [ fi+ 1g)� v�e0(S);

(f) v�e(S [ fi+ 1g [ fig)� v�e(S [ fig) = v�e(bS [ fi+ 1g [ fig)� v�e(bS [ fig);
(g) v�e0(S [ fi+ 1g [ fig)� v�e0(S [ fig) = v�e0(bS [ fi+ 1g [ fig)� v�e0(bS [ fig);
(h) v�e(bS [ fig) = v�e0(bS [ fig):
By (a), (b), (c), and (d)

SVi(V
�
e )�SVi(V �e0)=P

S�Nnfi;i+1g
f(s)[(v�e(S[fi+1g[fig)�v�e(S[fi+1g))�(v�e0(S[fi+1g[fig)�v�e0(S[fi+1g))]

=
P

S�Nnfi;i+1g
f(s)[(v�e(bS[fi+1g[fig)�v�e(bS[fi+1g))�(v�e0(bS[fi+1g[fig)�v�e0(bS[fi+1g))]

=
P

S�Nnfi;i+1g
f(s)[(v�e(bS [ fi+ 1g [ fig)� (v�e0(bS [ fi+ 1g [ fig)]:

Similarly, by (e), (f), (g), and (h),

SVi+1(V
�
e )�SVi+1(V �e0) =

P
S�Nnfi;i+1g

f(s)[(v�e(bS [ fi+ 1g [ fig)� (v�e0(bS [ fi+ 1g [ fig)]:
Therefore, SVi(V

�
e )�SVi(V �e0)=SVi+1(V �e )�SVi+1(V �e0) and the Shapley value satis�es Strong

Equal Impact.
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7 Appendix for referees

Here, we depict the calculation of Shapley values we used in the proof of Theorem 1 where
we showed the Shapley value is merging and splitting proof.

In part (b) and (c), we used the following expressions whose simpli�cations are as follows:

�
n�jKjP
s=1

�
n�jKj�1
s�1

�
f(s) =

n�jKjP
s=1

(n�jKj�1)!
(s�1)!(n�jKj�s)!

s!(n�jKj+1�s�1)!
(n�jKj+1)! =

n�jKjP
s=1

s
(n�jKj+1)(n�jKj)

= 1
(n�jKj+1)(n�jKj)

(n�jKj)(n�jKj+1)
2 = 1=2

�
n�jKj�1P
s=0

�
n�jKj�1

s

�
f(s) =

n�jKj�1P
s=0

(n�jKj�1)!
(s)!(n�jKj�s�1)!

s!(n�jKj�s)!
(n�jKj+1)!
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=
n�jKj�1P
s=0

(n�jKj�s)
(n�jKj+1)(n�jKj) =

n�jKj�1P
s=0

1
(n�jKj+1) �

1
(n�jKj+1)(n�jKj)

n�jKj�1P
s=0

s

= (n�jKj)
(n�jKj+1) �

1
(n�jKj+1)(n�jKj)

(n�jKj�1)(n�jKj)
2 = 2(n�jKj)�(n�jKj�1)

2(n�jKj+1) = 1=2

In part (d), we used the following expressions:

�
n�jKj�2P
s=0

�
n�jKj�2

s

�
f(s) =

n�jKj�2P
s=0

(n�jKj�2)!
(s)!(n�jKj�s�2)!

s!(n�jKj�s)!
(n�jKj+1)!

= (n�jKj�2)!
(n�jKj+1)!

n�jKj�2P
s=0

(n� jKj � s)(n� jKj � s� 1)

Let x = n� jKj+ 1
Then,

(n�jKj�2)!
(n�jKj+1)!

n�jKj�2P
s=0

(n�jKj�s)(n�jKj�s�1) = (x�3)!
x!

x�3P
s=0

�
(x2 � 3x+ 2) + s(3� 2x) + s2

�

= (x�3)!
x!

�
x�3P
s=0
(x2 � 3x+ 2) + (3� 2x)

x�3P
s=0
s(3� 2x) + (3� 2x)s2

�

= (x�3)!
x!

h
(x2 � 3x+ 2)(x� 2) + (x�3)(x�2)

2 (3� 2x) + (x�3)(x�2)(2x�5)
6

i
= (x�3)!

x!
(x�2)(x�1)(3x�6�2x+6)

3 = 1
3

�
n�jKj�1P
s=1

�
n�jKj�2
s�1

�
f(s) =

n�jKj�1P
s=1

(n�jKj�2)!
(s�1)!(n�jKj�s�1)!

s!(n�jKj�s)!
(n�jKj+1)!

=
n�jKj�1P
s=1

s(n�jKj�s)
(n�jKj+1)(n�jKj)(n�jKj�1)

=
n�jKj�1P
s=1

s
(n�jKj+1)(n�jKj�1) �

1
(n�jKj+1)(n�jKj)(n�jKj�1)

n�jKj�1P
s=1

s2

= (n�jKj�1)(n�jKj)
2(n�jKj+1)(n�jKj�1) �

1
(n�jKj+1)(n�jKj)(n�jKj�1)

(n�jKj�1)(n�jKj)(2n�2jKj�1)
6

= (n�jKj)
2(n�jKj+1) �

1
(n�jKj+1)

(2n�2jKj�1)
6 = 3(n�jKj)

6(n�jKj+1) �
1

(n�jKj+1)
(2n�2jKj�1)

6

= 3n�3jKj�2n+2jKj+1
6(n�jKj+1) = n�jKjj+1

6(n�jKj+1) = 1=6
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�
n�jKjP
s=2

�
n�jKj�2
s�2

�
f(s) =

n�jKj�2P
s=2

(n�jKj�2)!
(s�2)!(n�jKj�s)!

s!(n�jKj+1�s�1)!
(n�jKj+1)!

=
n�jKjP
s=2

s(s�1)
(n�jKj+1)(n�jKj)(n�jKj�1) =

1
(n�jKj+1)(n�jKj)(n�jKj�1)(

n�jKjP
s=2

s2 �
n�jKjP
s=2

s)

= 1
(n�jKj+1)(n�jKj)(n�jKj�1)f[

(n�jKj)(n�jKj+1)(2n�2jKj+1)
6 � 1]� [ (n�jKj)(n�jKj+1)2 � 1]g

= 1
(n�jKj+1)(n�jKj)(n�jKj�1)f

(n�jKj)(n�jKj+1)(2n�2jKj+1)
6 � 3(n�jKj)(n�jKj+1)

6 g

= 1
(n�jKj+1)(n�jKj)(n�jKj�1)

(n�jKj)(n�jKj+1)(2n�2jKj+1�3)
6

= 1
(n�jKj+1)(n�jKj)(n�jKj�1)

(n�jKj)(n�jKj+1)2(n�jKj�1)
6 = 1=3
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