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Abstract

This paper analyzes incentives for truthful revelation of preferences for the prob-
lem of fairly allocating a set of objects when monetary compensations are possible.
An example is the allocation of the rooms and the rent among housemates. We in-
vestigate the manipulability of a family of solutions which are efficient, attain some
intuitive form of distributive justice [Rawls J., 1972, A Theory of Justice, Harvard U.
Press], and satisfy a strong form of solidarity under budget changes: the Generalized
Money Rawlsian Fair (GMRF) correspondences [Alkan A., Demange G., Gale D., Fair
allocation of indivisible goods and criteria of justice. Econometrica 59, 1023-1039]. A
solution is strategy-proof if no agent can benefit by misrepresenting her preferences. (i)
We show that even though no selection from these correspondences is strategy-proof,
the Nash and strong Nash equilibrium outcomes of the “preference revelation game
form” associated to each correspondence, retain the basic objectives of fairness and
efficiency. Thus, even though each agent has an incentive to lie if the others truthfully
report their preferences, in equilibrium, no agent prefers another agent’s allotment to
hers according to her true preferences; moreover, in equilibrium, efficiency is preserved
according to agents’ true preferences. (ii) As a corollary, we show that GMRF corre-
spondences “naturally implement” the fair and efficient correspondence, in both Nash
and strong Nash equilibria.

JEL classification: D63, C72.
Keywords : fairness; efficiency; Generalized Money Rawlsian Fair correspondences;

manipulation; implementation; mechanism design.

1 Introduction

This paper analyzes incentives for truthful revelation of preferences for the problem of fairly

allocating a set of objects when monetary compensations are possible. We investigate the

manipulability of a family of correspondences which are efficient, attain some intuitive form

of distributive justice (Rawls, 1972), and satisfy a strong form of solidarity when budget

∗Thanks to Paulo Barelli, William Thomson, Gabor Virag, and participants in the game theory seminar
at the University of Rochester for useful comments. All errors are my own. Fax: (585) 2562309; Email:
vlez@troi.cc.rochester.edu
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changes: the Generalized Money Rawlsian Fair correspondences (Alkan et al., 1991; Alkan,

1994). The following example motivates our study.

A group of housemates have to allocate the rooms in the house they share and divide

the rent among them. An arbitrator is asked to propose an allocation protocol to guarantee

the fair and efficient division of the house and the rent. The arbitrator knows that for each

housemate money is desirable and no room is infinitely better than any other, but does not

know the actual housemates’ preferences. He makes the following proposal:

1. Ask each housemate to report her preferences. These preferences should satisfy the

aforementioned properties.

2. Consider the allocations in which no one housemate would prefer to exchange her

allotment with any other. Among these allocations, choose one that minimizes the maximal

individual contribution to rent.

The arbitrator bases her proposal on the following considerations.

First, for each possible report, there is at least one allocation satisfying the desired

properties (Alkan et al., 1991; Velez, 2008). Moreover, should multiple such allocations

exist, then all the agents are indifferent among them (Alkan et al., 1991; Velez, 2007).

Thus, there should be no controversy in making a selection from these allocations.

Second are fairness considerations. The proposed allocations are fair in the sense of

Foley (1967), i.e., no one housemate prefers to exchange her allotment with any other.

Thus, each housemate, according to her own preferences, gets the best deal.

Besides being fair, the selected allocations achieve some form of “Democratic Equality.”

In Rawls’s Theory of Justice, this principle of distributive justice calls for the minimal

welfare among the agents, measured by means of some index, to be maximized (Rawls,

1972). Here instead, the maximal contribution to rent is minimized among all the fair

allocations. A formal connection exists between these seemingly independent objectives:

There is a representation of preferences such that the allocations selected by the arbitrator

for different rents, are the ones that maximize the utility of the agent whose utility is the

smallest.

Third are efficiency considerations. Since the proposed allocations are fair and there are

as many housemates as rooms, then these allocations are also efficient (Svensson, 1983).

The proposed protocol seemingly achieves the housemates’ objective: A fair and efficient

distribution. But, the housemates know each other well enough, and soon each realizes that

she may gain by lying about her preferences if the others tell the truth (Tadenuma and

Thomson, 1995). They accept the arbitrator’s proposal. However, they prepare their best

poker faces.

What outcomes would one expect when the housemates behave strategically? Previous

literature shows how mechanisms, including the market mechanism, may lose efficiency

when agents manipulate. Here, fairness is at stake too. The purpose of this paper is to

determine to what extent incentives are against fairness and efficiency for a general family

of allocation protocols of which the example above is a particular case.
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1.1 The formal answer

We model the situation described above as the problem of allocating a social endowment

of objects and an amount (possibly negative) of a perfectly divisible good, which we refer

to as “money.” There are as many agents as objects and each agent must receive an object.

Agents consume bundles consisting of an object and an amount of money. Their preferences

satisfy two properties: (i) no object is infinitely better than another, and (ii) money is

desirable, i.e., for any two consumption bundles containing the same object, each agent

prefers the one with the greater money component. Finally, agents’ individual consumptions

of money should add up to a given amount, which we refer to as the “budget.”

A social choice correspondence (SCC) is a function that recommends a nonempty subset

of allocations for each possible preference profile. We think of an SCC as representing an

arbitrator’s judgement of what the most desirable outcomes are. However, we assume

that the arbitrator does not have information about preferences besides their satisfying the

aforementioned properties. Hence, we are led to study whether agents have the incentive

to truthfully reveal their preferences.

An allocation is fair if no agent prefers the allotment of any other agent to hers (Foley,

1967). We focus on a particular family of SCCs that select fair allocations: the Generalized

Money-Rawlsian Fair (GMRF) correspondences (Alkan et al., 1991; Alkan, 1994). Consider

a family of continuous and monotonically increasing real-valued functions defined on the

real numbers and indexed by the set of objects A. The GMRF correspondence associ-

ated to such a family selects the allocations that maximize, among the fair allocations, the

minimal consumption of money transformed by means of these functions (each function

transforms the money component in the bundle containing the object that labels it). A

prominent member of this family is the Money-Rawlsian Fair (MRF) correspondence. This

is the GMRF correspondence associated to the family of identity functions, i.e., the cor-

respondence that selects, among the fair allocations, the ones that maximize the minimal

consumption of money.

GMRF correspondences share several desirable properties. For each problem, they

select a non-empty set of allocations and they are essentially single-valued, i.e., for each

problem, each agent is indifferent among all the recommended allocations. They satisfy a

strong form of solidarity when budget changes: Consider a GMRF correspondence, S, and

a given preference profile; the welfare of each agent attained in the S-optimal allocations

for different budgets is an increasing function of the budget (Alkan et al., 1991). In our

interpretation of the model as the allocation of rooms and rent among housemates, this

means that each agent benefits if the rent decreases; analogously, each agent contributes in

welfare terms if the rent increases.

Besides being fair, GMRF allocations capture some form of the aforementioned Demo-

cratic Equality: For each GMRF correspondence, there is a representation of preferences

for which the recommended allocations for all possible budgets are the fair allocations that
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maximize the minimal utility across agents with respect to it (Velez, 2007).

We investigate how manipulable the GMRF correspondences are. A single-valued corre-

spondence is strategy-proof if no agent can benefit by misreporting her preferences. A first

question is whether there is a strategy-proof selection from each GMRF correspondence.

Unfortunately there are no such selections. In fact, there is no strategy-proof selection from

the fair correspondence, i.e., the correspondence that recommends, for each problem, its

set of fair allocations (Tadenuma and Thomson, 1995).

The non-existence of a strategy-proof selection from some SCC of interest is not the

end of the road, however. It only means that an agent may have the incentive to lie if

all the other agents report their true preferences. The next step is to determine which

outcomes result from the manipulations of the allocation protocol induced by S. Formally,

this allocation protocol is seen as a game form in which each agent’s strategy space is the

domain of admissible preferences and the outcome function is S (an adjustment is necessary

here, for GMRF correspondences are not single-valued; see Subsection 2.2 for details). Our

prediction for the allocation process is the set of Nash-equilibrium outcomes of the game

obtained by augmenting this game form with the agents’ true preferences.

Our main result is the characterization of the Nash-equilibrium and strong Nash-

equilibrium outcome correspondences of the game form induced by the GMRF correspon-

dences. We show that for each GMRF correspondence, S, these outcome correspondences

coincide with the fair correspondence: For each preference profile, each outcome of the al-

location process induced by S is fair, and thus, efficient for the true preferences. Moreover,

each fair allocation for a given preference profile is an outcome of the game form induced by

S played at these preferences. Even though the allocations selected by S are not necessarily

attained, the basic objectives of fairness and efficiency survive. Thus, incentives go against

truthful revelation of preferences, but not against fairness and efficiency.

Our results have consequences for the implementation of the fair correspondence (see

Jackson, 2001, for a survey on the implementation literature). Our main theorem implies

that the game form induced by each GMRF correspondence implements the fair correspon-

dence both in Nash and strong Nash equilibria.

If agents’ reports are further restricted to be quasi-linear preferences, our implementa-

tion results still hold. Consider the game form in which each agent’s strategy space is the

domain of quasi-linear preferences and the outcome function is given by a GMRF corre-

spondence. We show that the Nash-equilibrium outcome correspondence of such a game

form coincides with the fair correspondence. We also provide abstract sufficient conditions

under which this strategy space reduction is possible.

The analysis of game forms in which preference reports are restricted has two purposes.

First, one may think that a game form with simple strategy spaces is more practical. For

instance, it is more realistic to imagine agents reporting preferences in a finite dimensional

space (e.g. the quasi-linear domain). Second, the simplification of the agents’ strategy

spaces may reduce the “complexity” of the game form associated to an SCC. For instance,
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there is a polynomial algorithm to calculate MRF allocations on the quasi-linear domain

(Aragones, 1995). Nevertheless, we do not emphasize these results, because the restriction

of strategy spaces precludes the possibility that agents report their true preferences. Since

agents do not have the opportunity to report their true preferences, the outcomes of these

game forms can not be interpreted as the outcomes resulting from agents’ manipulation.

1.2 Related literature

The study of the manipulation of SCCs was initiated by Hurwicz (1972). Hurwicz intro-

duces the property of strategy-proofness in the context of classical exchange economies and

shows that the Walrasian correspondence is not strategy-proof.1 Moreover, he shows, in

the two-agent-two-good case, that no strategy-proof single-valued correspondence is effi-

cient and individually rational, i.e., each agent finds her allotment at least as desirable as

her endowment. Further research extended this impossibility to the n-agent and l-good

case (Serizawa, 2002).

The aforementioned impossibility raised a natural question: How manipulable are

SCCs? In order to asses the manipulability of an SCC, one has to determine what al-

locations ensue from its manipulation. Only then can one compare how different the real

outcomes and the allocations selected by the SCC are.

This type of question was first asked in the context of classical economies. This lit-

erature concluded that the Nash-equilibrium outcome correspondence of the game form

associated to each selection from the individually rational and efficient correspondence

contains the Walrasian correspondence (Lindahl correspondence in the public good case),

but is not efficient (Hurwicz, 1972; Thomson, 1979; Otani and Sicilian, 1982; Thomson,

1984). Similar results hold for the manipulation of the Shapley value (Thomson, 1988) and

the manipulation of cooperative bargaining solutions in private and public good economies

(Sobel, 1981, 2001; Kıbrıs, 2002).

For the distribution of a collectively owned bundle of infinitely divisible commodities

among a group of agents, the conclusions parallel the ones for exchange economies. Here a

notion of fairness plays the role of individual rationality and the Walrasian correspondence

operated from equal endowments plays the role of the Walrasian correspondence (Thomson,

1987). Our results relate to these in that in our model the Fair correspondence coincides

with the Walrasian correspondence operated from equal endowments (Svensson, 1983).

Nevertheless, our results differ in that in the games we analyze, equilibrium outcomes are

always Fair and thus, efficient.

However, efficiency is not always compromised by misrepresentation of preferences.

Velez and Thomson (2008) propose to measure an agent’s sacrifice at an allocation by the

size of the set of feasible bundles that the agent prefers to her consumption. They define the

Equal Sacrifice correspondence as the SCC that selects the allocations at which sacrifices

1Hurwicz (1972) introduces strategy-proofness under the name of incentive compatibility.

5



are equal across agents and this common sacrifice is minimal. Their main result is that, if

all goods are normal, the outcomes from the manipulation of these correspondence coincide

with the ones selected by the constrained Walrasian correspondence operated from equal

division.

Our work is related to previous literature on the manipulation of selections from the

fair correspondence in the allocation of objects when monetary compensations are possible.

Tadenuma and Thomson (1995) study the allocation of one object and an amount of money

among n agents (n−1 agents receive a null object). They conclude that the outcomes from

the manipulation of each selection from the fair correspondence satisfying a mild condition

coincide with the ones selected by the fair correspondence. Our main theorem restricted

to the two-agent case is a consequence of this result.

Beviá (2001) studies the allocation of n objects among n agents when monetary com-

pensations are possible and preferences are quasi-linear. Her main conclusion is that the

outcomes from the manipulation of each selection from the fair correspondence satisfy-

ing a mild condition coincides with the ones selected by the fair correspondence. More

recently, and again under the restriction of quasi-linearity of preferences, Āzacis (2008)

analyzes the game form associated to a particular selection from the fair correspondence.

This correspondence is defined as the solution to a certain linear program introduced by

Abdulkadiroğlu et al. (2004). His main result is that this game form implements the fair

correspondence in Nash and strong Nash equilibria.2

The aforementioned results hinge on one of two assumptions: (i) there is only one

object, or (ii) preferences are quasi-linear. Our results show that the game form associated

to a GMRF correspondence can be analyzed without any of these assumptions (see Section

4 for details).

The remainder of this paper is organized as follows. Section 2 presents the model

and some preliminary results. Section 3 introduces and studies the GMRF correspon-

dences. Section 4 analyzes the manipulability of the GMRF correspondences. Section 5

presents our results concerning implementation of the fair correspondence. Section 6 dis-

cusses the extension of our results to situations in which individual consumptions of money

are bounded.

2 The Model

2.1 Environment and axioms

Let N be a finite set of agents and A be a finite set of objects such that |A| = |N |. Generic

objects are α and β. Agents consume bundles in R×A.3 The generic consumption bundle is

2See Thomson (2005) for the implementation of the fair correspondence in the context of the allocation
of a bundle of infinitely divisible commodities.

3See Section 6 for an extension of our results when consumption bundles are limited to R− × A, i.e.,
individual consumptions of money are non-positive.
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(xα, α) ∈ R×A. We consider the problem of allocating the set of objects A and an amount

M ∈ R of an infinitely divisible good to which we refer as money, among the members of N .

Even though resources and population are fixed in the problems we study, we embed these

problems in a variable population and variable resource environment in order to facilitate

the presentation of our results.

2.1.1 Variable population and variable resource environment

For each B ⊆ A the domain of preferences on R × B is R(B). The generic preference is

R0 ∈ R(B). As usual, I0 and P0 are the symmetric and asymmetric parts of R0. We make

two standard assumptions on preferences in R(B).

• Money-monotonicity, i.e., for each R0 ∈ R(B), each β ∈ B, and each {xβ, x′
β} ⊂ R

such that x′
β > xβ, (x′

β, β)P0 (xβ , β).4

• No object is infinitely better than any other, i.e., for each R0, each {β, δ} ⊂ B,

and each xδ ∈ R, there exists xβ ∈ R such that (xδ, δ) I0 (xβ , β).

Let R ≡ R(A). We consider a special subdomain of R, the subdomain of quasi-linear

preferences. A preference R0 ∈ R is quasi-linear if for each {α, β} ⊆ A, each {xα, xβ} ⊂ R

such that (xα, α)R0 (xβ , β), and each ∆ ∈ R, (xα + ∆, α)R0 (xβ + ∆, β). We denote this

subdomain, Q.

Let K ⊆ N . An economy with agent set K is a triple e ≡ (B,R,m), where B ⊆ A is

such that |B| = |K|, R ≡ (Ri)i∈K ∈ R(B)K , and m ∈ R is an amount of money (possibly

negative) to distribute among the members of K. The set of economies with agent set K

is EK . Let E ≡
⋃

K⊆N EK be the set of all economies.

Let e ≡ (B,R,m) ∈ EK . An allocation for e is a pair z ≡ (x, µ) ∈ R
B × AK such

that
∑

β∈B xβ = m and µ : K → B is a bijection. The consumption of money associated

with object α at z is xα. Agent i’s allotment at z is zi ≡ (xµ(i), µ(i)). Let Z(e) be

the set of allocations for e. Agent i’s preferences Ri induce preferences on Z(e), which

for convenience we also denote Ri, as follows: for each {z, z′} ⊆ Z(e), z′ Ri z if and only if

z′i Ri zi.

Let K ⊆ N , B ⊆ A such that |B| = |K|, and R ∈ R(B)K . For each i ∈ K and each

Ri ∈ R(B), the profile (R−i, R
′
i) ∈ R(B)K is obtained from R by replacing Ri by R′

i. For

each e ≡ (B,R,m) ∈ EK , the profile R induces an incomplete ordering on Z(e), which for

convenience we also denote R, as follows: for each {z, z′} ⊂ Z(e), z′ R z if and only if for

each i ∈ K, z′ Ri z.

4Money-monotonicity implies continuity, i.e., weak upper and lower contour sets are closed in the product
topology on R × B induced by the Euclidean and discrete topologies.
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2.1.2 Social choice correspondences

A social choice correspondence associates to each R ∈ RN a non-empty subset, S(R),

of Z(A,R,M). The generic social choice correspondence is S. A selection, s, from a

correspondence S is a function that associates to each R ∈ RN an element of S(R). We

write s ∈ S.

2.1.3 Fairness and efficiency

Let K ⊆ N and e ∈ EK . We consider two properties of allocations in Z(e). First is fairness.

An allocation z ∈ Z(e) is fair for e if for each {i, j} ⊆ K, zi Ri zj . This formulation, which

goes back to Foley (1967), provides an ordinal and operational notion of fairness. Second

is efficiency. As usual, an allocation z ∈ Z(e) is efficient if there is no z′ ∈ Z(e) such that

z′ R z and for at least one j ∈ K, z′ Pj z.

For each e ∈ E , let F (e) and P (e) be the sets of fair and efficient allocations for e,

respectively. It is well known that for each e ∈ E , the set F (e) is non-empty (Alkan et al.,

1991; Velez, 2008); moreover, since there are as many agents as objects, then F (e) ⊆ P (e)

(Svensson, 1983).

The social choice correspondence that associates to each R ∈ RN the set of fair alloca-

tions for (A,R,M), is F .

2.2 Manipulation of a social choice correspondence

Let S be an SCC. Suppose that agents are asked to report preferences with the proviso that

one of the S-optimal allocations for the reported preferences will be chosen. What are the

outcomes that ensue if agents engage in the manipulation of S? If S is single-valued, it is

straightforward to answer this question: it induces a game form, whose Nash-equilibrium

outcome correspondence constitutes the outcome correspondence of the allocation protocol.

However, if S is not single-valued, no such prediction is directly available.

The main issue here is that if a correspondence is not single-valued, it is not clear when

an agent will want to change her report given the other agents’ reports. This is so even

if the correspondence is essentially single-valued (Thomson, 1979, 1984). When an agent

envisions the outcomes attainable by a change in her report, these outcomes are welfare-

equivalent according to her reported preferences. However, these outcomes may not be

welfare-equivalent according to her true preferences.

Two approaches to this problem have been studied in the literature. A first approach

develops a solution concept that parallels Nash equilibrium and which applies to “games”

with multiple outcomes (Thomson, 1979, 1984, 1987, 1988, Tadenuma and Thomson, 1995,

and Beviá, 2001). A second approach completes the description of the allocation protocol

by assuming that if S is not single-valued, then a selection from it is used if agents do

not “agree” on the allocation that should result from the allocation process (Velez and
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Thomson, 2008). This augmented protocol defines a game form whose Nash-equilibrium

outcome correspondence can be evaluated. If the resulting outcome correspondence does

not depend on the selection used to determine the outcome when the agents do not agree,

then one can regard these outcomes as the ones resulting from the manipulation of S.

We follow Velez and Thomson (2008) and complete the description of the allocation

protocol as follows. We assume that agents report not only preferences but also a bundle,

which can be interpreted as the bundle they request. If the reported list of bundles is one

of the S-optimal allocations for the reported preference profile, then it is the outcome of

the allocation process. Otherwise, there is a selection s ∈ S that determines this outcome.

Let D ⊆ R be a sub-domain of preferences, S be an SCC, and s ∈ S. The game form

〈D × (R × A), S, s〉 is defined as follows:

• Each agent’s strategy space is D × (R × A).

• Given strategy profile (R, z) ≡ (Ri, zi)i∈N ∈ (D × (R × A))N , the outcome is

O〈D × (R × A), S, s〉(R, z) ≡

{
z if z ∈ S(R)

s(R) otherwise.

For each R0 ∈ RN , the game 〈D × (R × A), S, s, R0〉 is obtained by augmenting the

game form 〈D × (R × A), S, s〉 by the preference profile R0. Since the consumption space

is fixed throughout, we simplify the notation for 〈D × (R × A), S, s〉 to 〈D, S, s〉; likewise,

we simplify the notation for 〈D × (R × A), S, s,R0〉 to 〈D, S, s,R0〉

A Nash equilibrium of 〈D, S, s, R0〉 is a strategy profile (R, z) ∈ (D × (R × A))N ,

such that for each i ∈ N and each (R′
i, z

′
i) ∈ D × (R × A),

O〈D, S, s〉(R, z)R0
i O〈D, S, s〉(R−i, R

′
i, z−i, z

′
i).

For each game 〈D, S, s,R0〉 the set of Nash equilibria is N〈D, S, s, R0〉 and the set of

Nash equilibrium outcomes is O〈D, S, s, R0〉.

If for any two selections of S, s and s′, O〈D, S, s,R0〉 = O〈D, S, s′, R0〉, we denote this

common set by O〈D, S, R0〉.

2.3 Implementation of a social choice correspondence

Let S and S′ be two SCCs, s′ ∈ S′, D ⊆ R, and D′ ⊆ R. The pair 〈D′, S′〉 implements

S on D if for each R0 ∈ D, O〈D′, S′, R0〉 = S(R0). The correspondence S′ naturally

implements S on D if 〈D, S′〉 implements S on D.

We consider also a stronger form of implementation. Let D ⊂ R be a sub-domain

of preferences, S be an SCC, s ∈ S, and R0 ∈ RN . A strong Nash equilibrium of

〈D, S, s, R0〉 is a strategy profile (R, z) ∈ (D × (R × A))N , such that for each N ′ ⊆ N ,
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each (R′
N ′ , z′N ′) ∈ (D × (R × A))N

′
, if there is i ∈ N ′ such that

O〈D, S, s〉(R−N ′ , R′
N ′ , z−N ′ , z′N ′)P 0

i O〈D, S, s〉(R, z),

then there is j ∈ N ′ such that

O〈D, S, s〉(R, z)P 0
i O〈D, S, s〉(R−N ′ , R′

N ′ , z−N ′ , z′N ′).

For each game 〈D, S, s,R0〉 the set of strong Nash equilibria is N ∗〈D, S, s, R0〉 and

the set of strong Nash equilibrium outcomes is O∗〈D, S, s, R0〉.

If for any two selections of S, s and s′, O∗〈D, S, s,R0〉 = O∗〈D, S, s′, R0〉, we denote

this common set by O∗〈D, S, R0〉.

Let S and S′ be two SCCs, s′ ∈ S′, D ⊆ R, and D′ ⊆ R. The pair 〈D′, S′〉 implements

S in strong Nash equilibria on D if for each R0 ∈ D, O∗〈D′, S′, R0〉 = S(R0). The

correspondence S′ naturally implements S in strong Nash equilibria on D if 〈D, S′〉

implements S in strong Nash equilibria on D.

2.4 Decomposition and perturbation lemmas

In this section we state three lemmas which we use repeatedly in our proofs.

First, let us introduce some definitions. Let K ⊆ N and B ⊆ A be such that |B| =

|K|. For each R ∈ R(B)K , each {m,m′} ⊂ R, each z ≡ (x, µ) ∈ Z(B,R,m), and each

z′ ≡ (x′, µ′) ∈ Z(B,R,m′), let Kz′

z ≡ {i ∈ K : z′ Pi z}, Kz′z ≡ {i ∈ K : z′ Ii z}, Bz′

z ≡ {α ∈

B : x′
α > xα}, and Bzz′ ≡ {α ∈ B : x′

α = xα}. The following lemma states that the set

B can be partitioned into three subsets: the objects received, both at z and z′, by agents

who prefer z′ to z; the objects received, both at z and z′, by agents who prefer z to z′;

and the objects received, both at z and z′, by agents who are indifferent between z and z′.

Moreover, these sets are Bz′

z , Bz
z′ , and Bz′z, respectively.

Lemma 1 (Decomposition lemma). Let K ⊆ N , B ⊆ A be such that |B| = |K|, R ∈

R(B)K , {m,m′} ⊂ R, z ≡ (x, µ) ∈ F (B,R,m), and z′ ≡ (x′, µ′) ∈ F (B,R,m). The

functions µ and µ′ are bijections between Kz′

z and Bz′

z , between Kz′z and Bz′z, and between

Kz
z′ and Bz

z′ .

We refer the reader to Alkan et al. (1991, Lemma 3) for a proof of Lemma 1.

The next lemma states that starting from a fair allocation for some economy e, for each

positive amount of money, ε, one can find fair allocations for the economy obtained from e

by adding ε to its budget, and at which each agent is better off.

Lemma 2 (Right perturbation lemma). Let K ⊆ N , B ⊆ A be such that |B| = |K|, R ∈

R(B)K , m ∈ R, z ≡ (x, µ) ∈ F (B,R,m). For each ε ∈ R++ there is z(ε) ∈ F (B,R,m + ε)

such that for each i ∈ K, z(ε)Pi z.
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We refer the reader to Alkan et al. (1991, Theorem 4) for a proof of Lemma 2.5

The next lemma states that starting from a fair allocation for some economy e, for each

positive amount of money, ε, one can find fair allocations for the economy obtained from e

by subtracting ε from its budget, and at which each agent is worse off.

Lemma 3 (Left perturbation lemma). Let K ⊆ N , B ⊆ A be such that |B| = |K|, R ∈

R(B)K , m ∈ R, z ≡ (x, µ) ∈ F (B,R,m). For each ε ∈ R++ there is zε ∈ F (B,R,m − ε)

such that for each i ∈ K, z Pi z(ε).

We refer the reader to Velez (2007) for a proof of Lemma 3. Let us emphasize that even

though Lemmas 2 and 3 are symmetric statements, there is an asymmetry in the techniques

that successfully have established them.

3 Generalized Money Rawlsian Fair correspondences

A Money Rawlsian Fair allocation is a fair allocation that maximizes the minimal con-

sumption of money among the set of fair allocations given the resources available. Let

us formalize this definition. Let K ⊆ N and e ≡ (B,R,m) ∈ EK . The set of Money

Rawlsian Fair (MRF) allocations for e is:

ℜ(e) ≡ arg max
(x,µ)∈F (e)

{
min
β∈B

xβ

}
.

Since F (e) is compact, then ℜ(e) is non-empty.6

The MRF correspondence, ℜ, associates to each R ∈ RN the set ℜ(A,R,M).

Selecting a money Rawlsian allocation one guarantees that the minimal consumption

of money at the allocation is maximal among all the available fair allocations given agents’

preferences and resources in the economy. More generally, one may want to assign different

importance to the consumption of money associated to each object and maximize the

minimal adjusted consumption of money. To formalize this idea, let K ⊆ N , B ⊆ A be such

that |K| = |B|, I be the space of real-valued, continuous, and monotone increasing functions

defined on R, f ≡ (fβ)β∈B ∈ IB, and e ≡ (B,R,m) ∈ EK . The set of Generalized

Money Rawlsian Fair (GMRF) allocations with respect to f for e is:

ℜf(e) ≡ arg max
(x,µ)∈F (e)

{
min
β∈B

fβ(xβ)

}
.

Since F (e) is compact, then ℜf (e) is non-empty.7

5Velez (2007) provides an alternative proof of Lemma 2.
6Since preferences are continuous, then F (e) is closed. Now, since at each z ∈ Z(B, R, m), at least, one

agent consumes no less than m
|K|

, then F (e) is bounded, and thus compact.
7See footnote 6.
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Let f ∈ IA. The GMRF correspondence with respect to f , ℜf , associates to

each R ∈ RN the set ℜf (A,R,M).

Money Rawlsian allocations are GMRF allocations with respect to the family of identity

functions indexed by the set of objects in the economy.

The following example illustrates that, in some cases, depending on the structure of

the family of functions f , the description of GMRF allocations with respect to f can be

simplified.

Example 1. Let K ⊆ N , B ⊆ A be such that |K| = |B|, β ∈ B, and e ≡ (B,R,m) ∈ EK .

The set of β-money maximal fair allocations for e is:

ℜβ(e) ≡ arg max
(x,µ)∈F (e)

{xβ} .

One can easily see that for each family of functions f ∈ IB such that for each δ ∈ B \ {β},

supRange(fβ) ≤ inf Range(fδ), ℜ
β(e) coincides with the set ℜf (e).8

3.1 Characterization of Generalized Money Rawlsian Fair allocations

In this subsection we develop a mathematical characterization of GMRF allocations, which

allows us to understand, in the next section, how agents manipulate generalized Money

Rawlsian correspondences.

Let K ⊆ N , e ≡ (B,R,m) ∈ EK , and z ≡ (x, µ) ∈ Z(e). A binary relation �(R, z)

on B is defined as follows: for each {α, β} ⊆ B, α �(R, z)β if and only if there are

{β0, . . . , βT } ⊆ B such that β0 = α, βT = β, and

(xβ0 , β0) Iµ−1(β0) (xβ1 , β1) . . . (xβT−1
, βT−1) Iµ−1(βT−1) (xβT

, βT ).

The next lemma states two basic properties of �(R, z). This binary relation is transitive.

Let i ∈ N . If an object dominates the object received by agent i at z, then the domination

relation is preserved if agent i’s preferences are replaced by some arbitrary preferences.

Lemma 4. For each K ⊆ N , each e ≡ (B,R,m) ∈ EK , and each z ≡ (x, µ) ∈ Z(e),

�(R, z) is transitive. Moreover, for each i ∈ K and each R′
i ∈ K, if α ∈ B is such that

α �(R, z)µ(i), then α �(R−i, R
′
i, z)µ(i).

We omit the straightforward proof.

Let K ⊆ N , B ⊆ A be such that |B| = |K|, R ∈ R(B)K , and {m,m′} ⊆ R. Suppose

that z ≡ (x, µ) ∈ F (B,R,m). The following lemma states that for each allocation z′ ≡

(x′, µ′) ∈ F (B,R,m′) and each β ∈ B, if x′
β ≥ xβ, then for each other object α ∈ B that

dominates β with respect to �(R, z), x′
α ≥ xα. Moreover, the statement is also true for

8For instance, fβ : R →] −∞, 0[ and for each δ ∈ B \ {β}, fδ : R →]0, +∞[.
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strict inequalities, i.e., if x′
β > xβ and α �(R, z)β, then x′

α > xα. Thus, the consumptions

of money in fair allocations are “increasing with respect to the relation �(R, z)”.

Lemma 5. Let K ⊆ N , B ⊆ A be such that |B| = |K|, R ∈ R(B)K , {m,m′} ⊆ R,

z ≡ (x, µ) ∈ F (B,R,m), z′ ≡ (x′, µ′) ∈ F (B,R,m′), and β ∈ B. If x′
β ≥ xβ and α ∈ B

is such that α �(R, z)β, then x′
α ≥ xα. Moreover, if x′

β > xβ and α ∈ B is such that

α �(R, z)β, then x′
α > xα.

Proof. Let K, B, R, {m,m′}, z, z′, and β be as in the statement of the lemma. Suppose

that x′
β ≥ xβ and α ∈ B is such that α �(R, z)β. We want to prove that x′

α ≥ xα.

Since α �(R, z)β, then there are {β0, . . . , βT } ⊆ B such that β0 Iµ−1(β0) β1 . . . Iµ−1(βT−1) βT ,

β0 = α, and βT = β. Since x′
β ≥ xβ, then βT ∈ Bz′

z ∪ Bz′z. Let 1 ≤ t ≤ T . Suppose that

{βt, βt+1, . . . , βT } ⊆ Bz′

z ∪ Bz′z. We claim that βt−1 ∈ Bz′

z ∪ Bz′z. Suppose w.l.o.g. that

i = µ−1(βt−1). Since z′ ∈ F (B,R,m′) and x′
βt

≥ xβt
, then z′i Ri (x

′
βt

, βt)Ri (xβt
, βt) Ii zi.

Thus, i ∈ Kz′

z ∪ Kz′z. By Lemma 1, βt−1 = µ(i) ∈ Bz′

z ∪ Bz′z. We conclude from the

recursive argument that β0 ∈ Bz′

z ∪ Bz′z. Thus, x′
α ≥ xα.

Finally, a similar argument shows that if x′
β > xβ and α ∈ B is such that α �(R, z)β,

then x′
α > xα.

We now characterize the GMRF allocations with respect to a family of functions f .

These allocations are the fair allocations for which each object dominates, in terms of the

binary relation induced by the allocation, one of the objects that is received by an agent

whose f -adjusted consumption of money is minimal.

Proposition 1. Let K ⊆ N , B ⊆ A be such that |B| = |K|, f ∈ IB, e ≡ (B,R,m) ∈ EK ,

and z ∈ Z(e). Then z ∈ ℜf (e) if and only if z ∈ F (e) and for each α ∈ B, there is

β ∈ arg minδ∈B fδ(xδ) such that α �(R, z)β.

Proof. Let K, B, f , R, e, and z ≡ (x, µ) be as in the statement of the lemma.

(⇒) We prove that if z ∈ ℜf (e) and α ∈ B, then there is β ∈ arg minδ∈B fδ(xδ) such

that α �(R, z)β. Let C ≡ {α ∈ B : there is β ∈ arg minδ∈B xδ, s.t. α �(R, z)β}. We want

to prove that C = B. Suppose by contradiction that B \ C 6= ∅.

Let K(C) ≡ µ−1(C) and K(B \C) ≡ µ−1(B \C). We claim that for each i ∈ K(B \C)

and each β ∈ C, zi Pi (xβ , β). Suppose by contradiction that there is α ∈ B such that

(xα, α)Ri zi. Since ℜ(e) ⊆ F (e), then zi Ii (xα, α). Thus, µ(i) �(R, z)α. Now, since

there is β ∈ arg minδ∈B fα(xδ) such that α �(R, z)β, then by Lemma 4, µ(i) �(R, z)β.

Consequently, µ(i) ∈ C. This is a contradiction.

Since preferences are continuous, then there is ε ∈ R++ such that for each i ∈ K(B \C)

and each j ∈ K(C), (xµ(i)−ε, µ(i))Pi (xµ(j)+ε, µ(j)). Since the relation �(R, z) is reflexive,

then arg minδ∈B fδ(xδ) ⊆ C. Thus, since f is a family of continuous functions, then ε can

be chosen small enough that minδ∈B\C fδ(xδ −ε) > minδ∈C fδ(xδ +ε). Since z ∈ F (e), then

z|C ≡ (x|C , µ|K(C)) ∈ F (C,R|K(C),
∑

δ∈C xδ).
9 From Lemma 2, there exists v ≡ (w, λ) ∈

9R|K(C) ≡ (Ri|R×C)i∈K(C).
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F (C,R|K(C),
∑

δ∈C xδ + ε) such that for each i ∈ K(C), vi Pi zi. Thus, from Lemma 1,

w ≫ x|C .10 Consequently, for each α ∈ C, xα + ε > wα. Since z ∈ F (e), then z|B\C ≡

(x|B\C , µ|K(B\C)) ∈ F (B \ C,R|K(B\C),
∑

δ∈B\C xδ). Let m∗ ≡
∑

δ∈B\C xδ − ε. From

Lemma 3, there exists

y ≡ (u, σ) ∈ F (B \ C,R|K(B\C),m
∗) such that for each i ∈ K(B \ C), zi Pi yi. Thus,

from Lemma 1, x|B\C ≫ u. Consequently, for each α ∈ B \ C, uα > xα − ε.

Let xε ∈ R
B be the vector obtained by concatenating w and u. Let µε ∈ BK be the

bijection that coincides with λ on K(C) and with σ on K(B \ C). Let zε ≡ (xε, µε).

Since
∑

B xε
α =

∑
δ∈C xδ + ε +

∑
δ∈B\C xδ − ε =

∑
δ∈B xδ, then zε ∈ Z(e). We claim that

zε ∈ F (e), i.e., for each {i, j} ⊆ K, zε
i Ri zε

j . There are three cases.

Case 1: {i, j} ⊆ K(C) or {i, j} ⊆ K(B \ C). This case is trivial because zε|C = v ∈

F (C,R|K(C),
∑

δ∈C xδ + ε) and zε|B\C = y ∈ F (B \ C,R|K(B\C),
∑

δ∈B\C xδ − ε).

Case 2: i ∈ K(C) and j ∈ K(B \ C). Since, zε
i = vi Pi zj and z ∈ F (e), then zε

i Pi zj .

Now, since x|B\C ≫ u, then zj Pi z
ε
j . Consequently, zε

i Pi zε
j .

Case 3: j ∈ K(C) and i ∈ K(B\C). Since zε|B\C = y ∈ F (B\C,R|K(B\C),
∑

δ∈B\C xδ−

ε) and for each α ∈ B \ C, uα > xα − ε, then zε
i Ri (x

ε
µ(i), µ(i))Pi (xµ(i) − ε, µ(i)). Recall

that (xµ(i) − ε, µ(i))Pi (xµ(j) + ε, µ(j)). Thus, zε
i Pi (xµ(j) + ε, µ(j)). Now, since for each

α ∈ C, xα + ε > wα, then (xµ(j) + ε, µ(j))Pi zε
j . Thus, zε

i Pi zε
j .

Now, we claim that minδ∈B fδ(x
ε
δ) > minδ∈B fδ(x

ε
δ). Since minδ∈B\C fδ(xδ − ε) >

minδ∈C fδ(xδ+ε), then arg minδ∈B fδ(x
ε
δ) ⊂ C. Since xε|C = w ≫ x|C , then minδ∈B fδ(x

ε
δ) >

minδ∈B fδ(xδ). Thus, z 6∈ ℜ(e). This is a contradiction.

(⇐) Suppose that z ∈ F (e) and for each α ∈ B there is β ∈ arg minδ∈B fδ(xδ) such

that α �(R, z)β. We want to prove that z ∈ ℜf (e). Suppose by contradiction that there

is z′ ≡ (x′, µ′) ∈ F (e) such that minδ∈B fδ(x
′
δ) > minδ∈B fδ(xδ). Thus, since f is a family

of monotone increasing functions, then for each β ∈ arg minδ∈B fδ(xδ), x′
β > xβ. Now,

let α ∈ B. By the hypothesis there is β ∈ arg minδ∈B fδ(xδ) such that α �(R, z)β. By

Lemma 5 and since x′
β > xβ and {z, z′} ∈ F (e), then x′

α > xα. Thus,
∑

δ∈B x′
δ >

∑
δ∈B xδ.

This is a contradiction.

Let e ≡ (B,R,m) ∈ E , z ∈ F (e), and f ∈ IB. Proposition 1 provides a simple test

to verify whether z ∈ ℜf (e) or z 6∈ ℜf (e). Figure 1 illustrates it for money Rawlsian

allocations.

Let e ≡ (B,R,m) ∈ E , f ∈ IB, and ε ∈ R++. The following corollary establishes

properties of GMRF corresponcences. First, they are essentially single-valued. Second,

they satisfy a strong form of solidarity when budget changes: Let R be a preference profile

and S a GMRF correspondence. At the S-optimal allocations for R, the welfare of each

10We follow the convention of vector inequalities: for each B ⊂ A and each {x, x′} ⊂ R
B, x′ ≫ x if and

only if for each β ∈ B, x′
β > xβ, and x′ ≥ x if and only if for each β ∈ B, x′

β ≥ xβ.
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Figure 1: Verifying whether z ∈ ℜ(e) or z 6∈ ℜ(e). Let K ≡ {1, 2, 3, 4, 5} and B ≡ {α, β, θ, γ, ρ}.
Panels (a) to (d) display the the consumption space R×B (for some range of consumptions of money); each
point xα on the axis corresponding to object α, represents bundle (xα, α). Let R ∈ R(B)K , m ∈ R, and
z ≡ (x,µ) ∈ Z(B, R,m). Panels (a) and (b) display the consumption of each agent at z as a black dot with
the identity of the agent next to it. Panel (a) also displays agents 1, 2, and 3’s “indifference curves” through
their respective allotment at z, i.e., bundles that are indifferent for the agent are joined by a line. Panel (b)
displays agents 4 and 5’s “indifference curves” at their respective allotment at z. Panel (b) also displays
alternative preferences for agent 5, i.e., R′

5. To check if z ∈ ℜ(e) one has to: (i) verify that z ∈ F (e);
and (ii) construct “arrows” from each agent’s allotment to the other bundles at the allocation for which
the agent is indifferent to her own consumption; then, verify that from each consumption bundle at the
allocation there is a “path of arrows” which “flows” from the reference bundle to one of the bundles with
minimal consumption of money. If at least one of these two tests fail, then z 6∈ ℜ(e). Panel (c) displays
this construction for z at profile R. Observe that z passes both tests (i) and (ii). Thus, z ∈ ℜ(e). Panel
(d) displays this construction for (R−5, R

′
5). Observe that z passes test (i), but not (ii): there is no path of

arrows flowing from the bundles with objects θ and γ to one of the bundles with minimal consumption of
money. Thus, z 6∈ ℜ(B, R−5, R

′
5, m).

agent is an increasing function of the budget. In our interpretation of the model as the

allocation of rooms and rent among housemates, this means that each agent benefits if the

rent decreases; analogously, each agent contributes (in welfare terms) if the rent increases.

Corollary 1. (Alkan et al., 1991, Theorem 6) Let K ⊆ N , e ≡ (B,R,m) ∈ EK . For each

z ≡ (x, µ) ∈ ℜf (e) and each z ≡ (x′, µ′) ∈ ℜf (e), x = x′ and for each i ∈ K, z′ Ii z. For

each ε ∈ R++, each z ≡ (x, µ) ∈ ℜf (e), and each z′ ≡ (x′, µ′) ∈ ℜf (B,R,m + ε), x′ ≫ x

and for each i ∈ K, z′ Pi z.

Proof. Let K, e, and ε be as in the statement of the corollary. Suppose that z ≡ (x, µ) ∈

ℜf (e) and z ≡ (x′, µ′) ∈ ℜ(e). We will prove that x = x′. Since minδ∈B fδ(xδ) =

minδ∈B fδ(x
′
δ), then for each β ∈ arg minδ∈B fδ(xδ), x′

β ≥ xβ. Since z ∈ ℜf (e), then

by Proposition 1, for each α ∈ B, there is β ∈ arg minδ∈B fδ(xδ) such that α �(R, z)β.

Thus, by Lemma 5, x′
α ≥ xα. Consequently, x′ ≥ x. Since {z, z′} ⊂ Z(e), then x = x′ and

thus, Bz′z = B. By Lemma 1, Kz′z = K. Thus, for each i ∈ K, z′ Ii z.

Now, let z ≡ (x, µ) ∈ ℜf (e), z′ ≡ (x′, µ′) ∈ ℜf (B,R,m + ε). By Lemma 2 there is

zε ∈ F (B,R,m+ε) such that for each j ∈ K, zε Pi z. Thus, minδ∈B fδ(x
′
δ) > minδ∈B fδ(xδ).

Let α ∈ B. By Proposition 1, there is β ∈ arg minδ∈B fδ(xδ) such that α �(R, z)β. Now,
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since x′
β > xβ, then by Lemma 5, x′

α > xα. Thus, Bz′

z = B and by Lemma 1, Kz′

z = K.

Thus, for each i ∈ K, z′ Pi z.

Let e ≡ (B,R,m) ∈ EK . The following corollary characterizes the set ℜ(e): An al-

location z ∈ Z(e) is a MRF allocation for e if and only if it is a fair allocation for e for

which each object dominates, in terms of the binary relation associated to (R, z), one of

the objects that is consumed by an agent whose consumption of money is minimal.

Corollary 2. (Alkan et al., 1991; Alkan, 1994) Let K ⊆ N , B ⊆ A be such that |B| = |K|,

e ≡ (B,R,m) ∈ EK , and z ∈ Z(e). Then z ∈ ℜ(e) if and only if z ∈ F (e) and for each

α ∈ B there is β ∈ arg minδ∈B xδ such that α �(R, z)β.

We omit the straightforward proof.

Let e ≡ (B,R,m) ∈ EK and β ∈ B. The following corollary characterizes the set ℜβ(e):

An allocation z ∈ Z(e) is an element of ℜβ(e) if and only if it is a fair allocation for e for

which each object dominates object β, in terms of the binary relation associated to (R, z).

Corollary 3. Let K ⊆ N , B ⊆ A be such that |B| = |K|, β ∈ B, e ≡ (B,R,m) ∈ EK ,

and z ∈ Z(e). Then z ∈ ℜβ(e) if and only if z ∈ F (e) and for each α ∈ B, α �(R, z)β.

We omit the straightforward proof.

3.2 How Rawlsian are Generalized Money Rawlsian Fair allocations?

This subsection investigates the sense in which GMRF correspondences achieve some form

of “Democratic Equality.” In Rawls’s Theory of Justice, this principle of distributive justice

calls for the minimal welfare among the agents, measured by means of some index, to be

maximized (Rawls, 1972). GMRF allocations instead, maximize among the fair allocations,

the minimal individual adjusted consumption of money. Both objectives are seemingly

independent, but there is a formal connection between them.

Fix R ∈ RN . Let Λ be a function that associates to each m ∈ R a subset of allocations

Λ(m) ⊆ F (A,R,m). Then, Λ has the Maxmin property if there exists a continuous

representation of R, u, such that for each m ∈ R,

Λ(m) ≡ arg max
z∈F (A,R,m)

{
min
i∈N

ui(z)

}
.

Suppose that a function Λ has the Maxmin property and let m ∈ R. The set Λ(m)

contains the fair allocations for (A,R,m) that maximize the agents’ individual minimum

welfare with respect to a representation of preferences. So the sets selected by Λ can be

interpreted in the following way. These are the allocations selected by an arbitrator who,

based on the democratic equality principle, fixes a representation for R, u, and selects the

fair allocations that maximize the agents’ individual minimum welfare with respect to u.
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The following theorem states that the functions induced by GMRF correspondences

have the Maxmin property.

Theorem 1. Let f ∈ IA. The function that associates to each m ∈ R the set ℜf (A,R,m)

has the Maxmin property.

We refer the reader to Velez (2007) for the proof.

Consider the problem of fairly allocating the objects A and an amount of money m

among a group of agents with preferences R. If one were to include the democratic equality

principle as a consideration in the solution to this problem, it would be necessary to select

a utility representation with respect to which the agents’ minimal welfare is maximized.

Theorem 1 states that by following the recommendations of a GMRF correspondence this

task is performed implicitly.

4 Manipulation of Generalized Money Rawlsian Fair corre-

spondences

In this section we study the manipulation of GMRF correspondences. Our main theorem

characterizes the Nash-equilibrium-outcome correspondence of the game form associated

to each ℜf and each of its selections in the domain R. It is the correspondence, F , which

associates to each economy its set of fair allocations.

Theorem 2. Let f ∈ IA. For each R0 ∈ RN , O〈R,ℜf , R0〉 = F (R0).

The proof of Theorem 2 follows from four lemmas.

The key to understanding the extent to which agents can manipulate GMRF corre-

spondences is to establish under what conditions an agent is able to unequivocally gain by

changing her report given the others’ reports. The following lemma states such conditions.

Lemma 6. Let K ⊆ N e ≡ (B,R,m) ∈ EK , and z ≡ (x, µ) ∈ F (e). If i ∈ K is

such that for each α ∈ B, α �(R, z)µ(i), then for each ε ∈ R++, there is an allocation

zε ≡ (xε, µε) ∈ Z(B,R,m + ε) such that:

1. xε ≫ x,

2. for each j ∈ K \ {i} and each l ∈ K, zε
j Rj zε

l ,

3. µε(i) = µ(i), and

4. for each α ∈ B, α �(R, zε)µε(i).

Proof. Let K, e, z ≡ (x, µ), and ε be as in the statement of the lemma. Let R̂i be a

preference relation such that for each α ∈ B \ {µ(i)}, (xµ(i) − ε, µ(i)) P̂i (xα + 2ε, α). Since

z ∈ F (e), then z ∈ F (B,R−i, R̂i,m). Observe that since for each α ∈ B, α �(R, z)µ(i),
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then for each α ∈ B, α �(R−i, R̂i, z)µ(i). Thus, z ∈ ℜµ(i)(B,R−i, R̂i,m). Let zε ≡

(xε, µε) ∈ ℜµ(i)(B,R−i, R̂i,m + ε). By Corollary 1, xε ≫ x. Since ℜµ(i)(B,R−i, R̂i,m) ⊆

F (B,R−i, R̂i,m), then for each j ∈ K \ {i} and each l ∈ K, zε
j Rj zε

l . Since for each

j ∈ K \ {i}, zi R̂i zj , for each α ∈ B \ {µ(i)}, (xµ(i) − ε, µ(i)) P̂i (xα + 2ε, α), and xε ≫ x,

then µ(i)ε = µ(i). Now, since zε ∈ ℜµ(i)(B,R−i, R̂i,m), then by Corollary 3, for each

α ∈ B, α �(R−i, R̂i, z
ε)µε(i). Thus, for each α ∈ B, α �(R, zε)µε(i).

The following lemma states that at equilibrium the binary relation induced by the

reported preferences and the equilibrium outcome, is maximal (with respect to inclusion).

That is, a necessary condition at equilibrium is that each object dominates each other

object with respect to the binary relation induced by the reported preferences and the

equilibrium outcome.

Lemma 7. Let D ⊆ R be such that D ⊇ Q, f ∈ IA, and r ∈ ℜf . For each R0 ∈ RN , if

(R, z) ∈ N〈D,ℜf , r, R0〉 then for each {α, β} ∈ A, α �(R,O〈D,ℜf , r〉(R, z))β.

Proof. Let D and r be as in the statement of the lemma. Let R0 ∈ RN . Suppose that

(R, z) ∈ N〈D,ℜf , r, R0〉 and assume w.l.o.g. that z ≡ (x, µ) = O〈D,ℜf , r〉(R, z).11 We

will prove that for each {α, β} ∈ A, α �(R, z)β. Suppose by contradiction that there are

{α, β} ∈ A, such that ¬(α �(R, z)β). Let C ≡ {δ ∈ B : δ �(R, z)β}. Since α 6∈ C, then

B\C 6= ∅. We claim that for each γ ∈ B\C and each δ ∈ C, (xγ , γ)Pµ−1(γ) (xδ, δ). Suppose

by contradiction that there are γ ∈ B \ C and δ ∈ C, such that (xδ, δ)Rµ−1(γ) (xγ , γ).

Since z ∈ ℜf (R) ⊆ F (R), then (xγ , γ)Rµ−1(γ) (xδ, δ). Thus, (xγ , γ) Iµ−1(γ) (xδ , δ) and

consequently, γ �(R, z) δ. Now, since δ ∈ C, then δ �(R, z)β. By Lemma 4, γ �(R, z)β.

This is a contradiction because γ ∈ B \ C.

We claim that for each γ ∈ B \ C, there is ρ ∈ (B \ C) ∩ arg minδ∈B fδ(xδ) such that

γ �(R, z) ρ.12 Since z ∈ ℜf (R), then by Proposition 1, there is ρ ∈ arg minδ∈B fα(xδ) such

that γ �(R, z) ρ. We claim that ρ ∈ B \ C. To prove this, suppose by contradiction that

ρ ∈ C. Thus, ρ �(R, z)β. By Lemma 4, γ �(R, z)β. This is a contradiction because

γ ∈ B \ C.

Let N(C) ≡ µ−1(C), N(B \ C) ≡ µ−1(B \ C), and z|B\C ≡ (x|B\C , µ|N(B\C)). Since

z ∈ F (R), then z|B\C ∈ F (B \ C,R|N(B\C),
∑

γ∈B\C xγ). Since for each γ ∈ B \ C,

there is ρ ∈ (B \ C) ∩ arg minδ∈B fδ(xδ) such that γ � (R, z) ρ, then by Proposition 1,

z|B\C ∈ ℜf (B \ C,R|N(B\C),
∑

γ∈B\C xγ). Recall that for each γ ∈ B \ C and each δ ∈ C,

(xγ , γ)Pµ−1(γ) (xδ, δ). Thus, there is ε ∈ R++ such that for each i ∈ N(B \ C) and each

j ∈ N(C), (xµ(i)−ε, µ(i))Pi (xµ(j) +ε, µ(j)). Let e|ε
B\C ≡ (B \C,R|N(B\C),

∑
γ∈B\C xγ −ε)

and y ≡ (u, σ) ∈ ℜf (e|ε
B\C ). By Corollary 1, x|B\C ≫ u. Let z|C ≡ (x|C , µ|N(C)). Since

z ∈ F (R), then that z|C ∈ F (C,R|N(C),
∑

δ∈C xδ). Let k ≡ µ−1(β).

Let j ∈ N(C). Since µ(j) �(R, z)µ(k), then µ(j) �(R|N(C), z)µ(k), for otherwise there

is α ∈ B \ C such that α �(R|N(B\C), z)µ(k) = β. By Lemma 6, there is v ≡ (w, λ) ∈

11If z 6= O〈D,ℜf , r〉(R, z), the same argument applies. Just let z ≡ O〈D,ℜf , r〉(R, z).
12This proves in particular that (B \ C) ∩ arg minδ∈B fδ(xδ) 6= ∅.

18



Z(C,RN(C),
∑

δ∈C xδ + ε) such that: (1) w ≫ x|C ; (2) for each j ∈ N(C) \ {k} and each

l ∈ N(C), vj Rj vl; (3) λ(k) = µ|C(k); and (4) for each δ ∈ C, δ �(R|N(C), v)λ(k).

We claim that there exists R′
i ∈ Q such that

O〈D,ℜ, r〉(R−i, R
′
i, z)P 0

i O〈D,ℜ, r〉(R, z).

Let ρ ∈ arg minγ∈B\C fγ(wγ) and R′
k ∈ Q be such that (wβ , β) I ′k (wρ, ρ) and for each

δ ∈ B \ {β, ρ}, (wβ, β)P ′
k (xδ + ε, δ).

Let xε be the vector obtained by concatenating u and w, and let µε be the bijection

that coincides with σ on B \ C and with λ on C. Let zε ≡ (xε, µε). We claim that

zε ∈ F (R−k, R
′
k). Since x + 1ε ≥ xε, then for each j ∈ K, zε

k R′
k zε

j .
13 Thus, it remains to

prove that for each i ⊆ K \ {k} and each j ∈ K, zε
i Ri zε

j . There are four cases.

Case 1: {i, j} ⊆ N(C). Since v satisfies property (2) stated above and i 6= k, then

zε
i = vi Ri vj = zε

j .

Case 2: {i, j} ⊆ N(B \ C). Let ê = (B \ C,R|N(B\C),
∑

γ∈B\C xγ − ε). Then y ∈

ℜf (ê) ⊆ F (ê). Thus, zε
i = yi Ri yj = zε

j .

Case 3: i ∈ N(B \ C) and j ⊆ N(C). Since z ∈ ℜf (R) ⊆ F (R), then zε
i =

yi Ri (uµ(i), µ(i)). Since x|B\C ≫ u and
∑

γ∈B\C xγ−ε =
∑

γ∈B\C uγ , then uµ(i) > xµ(i)−ε.

Thus, (uµ(i), µ(i))Pi (xµ(i) − ε, µ(i)). Recall that (xµ(i) − ε, µ(i))Pi (xµε(j) + ε, µε(j)).

Now, since w ≫ x|C and
∑

δ∈C wγ =
∑

δ∈C xδ + ε, then xµε(j) + ε > wµε(j). Thus,

(xµε(j) + ε, µε(j))Pi (wµε(j), µ
ε(j)) = zε

j . Consequently, zε
i Pi z

ε
j .

Case 4: i ⊆ N(C)\{k} and j ∈ N(B\C). Since v satisfies property (2) stated above and

i 6= k, then zε
i = vi Ri (wµ(i), µ(i)). Since w ≫ x|C , then (wµ(i), µ(i))Pi (xµ(i), µ(i)). Since

z ∈ ℜf (R), then (xµ(i), µ(i))Ri (xµε(j), µ
ε(j)). Now, since x|B\C ≫ u, then (xµε(j), µ

ε(j))Pi yj =

zε
j . Thus, zε

i Pi z
ε
j .

Now, we claim that for each α ∈ B, there is δ ∈ arg minδ∈B fδ(x
ε
δ), such that α �

(R−k, R
′
k, z

ε) δ. First, observe that since (B \C)∩argminδ∈B xδ 6= ∅, x|B\C ≫ u, w ≫ x|C ,

and f ∈ IB, then arg minδ∈B\C fδ(uδ) = arg minδ∈B fδ(x
ε
δ). There are two cases.

Case 1: α ∈ B \ C. Since y ∈ ℜf (B \ C,R|N(B\C),
∑

γ∈B\C xγ − ε), then there exists

δ ∈ arg minδ∈B\C fδ(uδ) such that α �(R−k, R
′
k, z

ε) δ.

Case 1: α ∈ C. Since v satisfies property (4) stated above, then α �(R|C , v)λ(k).

Thus, α �(R, zε)λ(k) and consequently, α �(R−k, R
′
k, z

ε)λ(k). Now, since zε
k Ik (xε

ρ, ρ) and

ρ ∈ arg minδ∈B\C fδ(uδ), then λ(k) �(R−k, R
′
k, z

ε) ρ. By Lemma 4, α �(R−k, R
′
k, z

ε) ρ.

Since zε ∈ F (R−k, R
′
k) and for each α ∈ B there is δ ∈ arg minδ∈B fδ(x

ε
δ) such that

α �(R−k, R
′
k, z

ε) δ, then by Proposition 1, zε ∈ ℜf (R−k, R
′
k).

We claim that for each ẑ ∈ ℜf (R−k, R
′
k), ẑk = zε

k. Let ẑ ≡ (x̂, µ̂) ∈ ℜf (R−k, R
′
k).

By Corollary 1, Nbzz = N and thus, ẑk I ′k zε
k. Since, ℜf (R−k, R

′
k) ⊂ F (R−k, R

′
k), then

either ẑl = zε
k or ẑi = (xε

ρ, ρ). Recall from the proof that zε ∈ F (R−k, R
′
k), Case 3, that

for each i ∈ N(B \ C) and each j ⊆ N(C), zε
i Pi z

ε
j . Since Nbzz = N , then for each

13Here 1ε is the vector in R
A with all components equal to ε.
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i ∈ N(B \ C), µ̂(i) ∈ B \ C. Now, since µ̂ is a bijection and |N(B \ C)| = |B \ C|, then

µ̂(N(B \ C)) = B \ C. Since k ∈ N(C) and ρ ∈ B \ C, then µ̂(k) 6= ρ and thus, ẑk = zε
k.

Now, since zε
k = (xε

µ(k), µ(k)) and xε
µ(k) = wµ(k) > xµ(k), then for each ẑ ∈ ℜf (R−k, R

′
k),

ẑ P 0
k z. Thus,

O〈D,ℜf , r〉(R−k, R′
k, z)P 0

k O〈D,ℜf , r〉(R, z).

Consequently, (R, z) 6∈ N 〈D,ℜf , r, R0〉. This is a contradiction.

A symmetric statement to Lemma 6 also holds.

Lemma 8. Let K ⊆ N , e ≡ (B,R,m) ∈ EK , z ≡ (x, µ) ∈ F (e), and ε ∈ R++. If i ∈ K

is such that for each α ∈ B, α �(R, z)µ(i), then there is an allocation zε ≡ (xε, µε) ∈

Z(B,R,m − ε) such that:

1. x ≫ xε,

2. for each j ∈ K \ {i} and each l ∈ K, zε
j Rj zε

l ,

3. µε(i) = µ(i), and

4. for each α ∈ B, α �(R, zε)µε(i).

Proof. Let K, e, z ≡ (x, µ), and ε be as in the statement of the lemma. Let R̂i be

a preferences such that for each α ∈ B \ {µ(i)}, (xµ(i) − ε, µ(i)) P̂i (xα + 2ε, α). Since

z ∈ F (e), then z ∈ F (B,R−i, R̂i,m). Observe that since for each α ∈ B, α �(R, z)µ(i),

then for each α ∈ B, α �(R−i, R̂i, z)µ(i). Thus, z ∈ ℜµ(i)(B,R−i, R̂i,m). Let zε ∈

ℜµ(i)(B,R−i, R̂i,m− ε). A similar argument to the one in Lemma 8 shows that zε satisfies

conditions 1 to 4.

The following lemma states that if the agents’ strategy space contains the quasi-linear

preferences, then the Nash-equilibrium outcome correspondence of the game form associ-

ated to each GMRF correspondence coincides with the fair correspondence.

Lemma 9. Let D ⊆ R be such that D ⊇ Q, f ∈ IA, and r ∈ ℜf . For each R0 ∈ RN ,

O〈D,ℜf , r, R0〉 = F (R0).

Proof. Let D and r be as in the statement of the lemma. Let R0 ∈ RN . We will prove that

O〈D,ℜf , r, R0〉 = F (R0).

First, we prove that O〈D,ℜf , r, R0〉 ⊇ F (R0). Let z ≡ (x, µ) ∈ F (R0). Let R ∈ QN be

such that for each {i, j} ⊆ N , zi Ii zj . We claim that (R, z) ∈ N〈D,ℜf , r, R0〉. Suppose by

contradiction that there is i ∈ N and (R′
i, z

′
i) ∈ D × (R × A) such that

O〈D,ℜf , r〉(R−i, R
′
i, z−i, z

′
i)P 0

i O〈D,ℜf , r〉(R, z).
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Let y ≡ (u, σ) ≡ O〈D,ℜf , r〉(R−i, R
′
i, z−i, z

′
i). Since, z ∈ F (R0), then uσ(i) > xσ(i). Since

y ∈ ℜf (R−i, R
′
i) ⊂ F (R−i, R

′
i), then for each j ∈ N , uσ(j) > xσ(j). This is a contradiction

because
∑

α∈A uα =
∑

α∈A xα.

Second, we prove that O〈D,ℜf , r, R0〉 ⊆ F (R0). Let (R, z) ∈ N〈D,ℜf , r, R0〉. We claim

that O〈D,ℜf , r〉(R, z) ∈ F (R0). Suppose by contradiction that O〈D,ℜf , r〉(R, z) 6∈ F (R0).

Suppose w.l.o.g. that z = O〈D,ℜf , r〉(R, z). Since z 6∈ F (R0), then there are {i, j} ⊆ N

such that zj P 0
i zi. By Lemma 7, µ(j) �(R, z)µ(i). Thus, there are {αt}

T
t=0 ⊆ A such that

α0 = µ(j), αT = µ(i), and (xα0 , α0) Iµ−1(α0) . . . Iµ−1(αT−1) (xαT
, αT ). Let C ≡ {α0, . . . , αT }.

Let z′ = (x′, µ′) ∈ Z(A,R,M) be the allocation defined as follows: (1) for each k ∈ N such

that µ(k) ∈ A \ C, z′k ≡ zk; (2) for each k ∈ N such that there is t ∈ {0, . . . , T − 1}, such

that µ(k) = αt, let z′k ≡ (xαt+1 , αt+1); and (3) let z′i ≡ (xα0 , α0). Observe that x′ = x.

Let R′
i ∈ R. We claim that for each α ∈ A, α �(R−i, R

′
i, z

′)α0. By the definition of z′,

(xαT
, αT ) I(µ′)−1(αT ) . . . I(µ′)−1(α1) (xα0 , α0). Thus, for each α ∈ C, α � (R−i, R

′
i, z

′)α0.

Let α ∈ A \ C. We claim that α �(R−i, R
′
i, z

′)α0. Since α �(R, z)α0, then there are

{βt}
T ′

t=0 ⊆ A such that β0 = α, βT ′ = µ(i), and (xβ0 , β0) Iµ−1(β0) . . . Iµ−1(βT ′−1) (xβT ′ , βT ′).

Let t∗ ≡ arg min{0 ≤ t ≤ T : βt ∈ C}. The index t∗ is well defined because βT ′ ∈ C.

Moreover, t∗ > 0 since β0 ∈ A \ C. Since for each β ∈ A \ C, µ−1(β) = (µ′)−1(β),

then (xβ0 , β0) I(µ′)−1(β0) . . . I(µ′)−1(βt∗−1)
(xβt∗

, βt∗). Thus, β0 �(R−i, R
′
i, z

′)βt∗ . Since βt∗ �

(R−i, R
′
i, z

′)α0, then by Lemma 4, β0 �(R−i, R
′
i, z

′)α0.

Let R′
i ∈ R be such that for each α ∈ A \ {α0}, z′i R

′
i (x

′
α, α). We claim that z′ ∈

F (R−i, R
′
i). Since for each α ∈ A \ {α0}, z′i R′

i (x
′
α, α), then it remains to prove that for

each k ⊆ K \ {i} and each l ∈ N , z′k Rk z′l. There are two cases.

Case 1: µ(k) ∈ A \ C. Since z′k = zk, z ∈ F (R), and x′ = x, then for each l ∈ N ,

z′k Rk z′l.

Case 2: There is t ∈ {0, . . . , T − 1} such that µ(k) = αt. Since z′k = (xαt+1 , αt+1),

(xαt , αt) Ik (xαt+1, αt+1), z ∈ F (R), and x′ = x, then for each l ∈ N , z′k Rk zl.

We claim that there exists R′
i ∈ Q such that

O〈D,ℜf , r〉(R−i, R
′
i, z)P 0

i O〈D,ℜf , r〉(R, z).

There are two cases.

Case 1: α0 ∈ arg minα∈A fα(xα). Let R′
i ∈ Q be a quasi-linear preference such that for

each α ∈ A \ {α0}, z′i P
′
i (x′

α, α). We claim that z′ ∈ ℜf (R−i, R
′
i). Since z′ ∈ F (R−i, R

′
i),

α0 ∈ arg minα∈A fα(x′
α), and for each α ∈ A, α �(R−i, R

′
i, z

′)α0, then by Proposition 1,

z′ ∈ ℜf (R−i, R
′
i).

Now, we claim that for each ẑ ∈ ℜf (R−i, R
′
i), ẑi = z′i. Let ẑ = (x̂, µ̂) ∈ ℜf (R−i, R

′
i). By

Lemma 1, ẑi I
′
i z′i. Since ℜf (R−i, R

′
i) ⊆ F (R−i, R

′
i) and for each α ∈ A \ {α0}, z′i P

′
i (x′

α, α),

then µ̂(i) = µ′(i). Thus, for each ẑ ∈ ℜf (R−i, R
′
i), ẑ P 0

i z. Consequently,

O〈D,ℜf , r〉(R−i, R
′
i, z)P 0

i O〈D,ℜf , r〉(R, z).
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Thus, (R, z) 6∈ N 〈D,ℜf , r, R0〉. This is a contradiction.

Case 2: α0 6∈ arg minα∈A fα(xα). Let R′
i ∈ Q be a quasi-linear preference such that

for each α ∈ A \ {α0}, z′i R
′
i (x′

α, α). Let C ⊆ A be the set of objects α such that there are

{β0, . . . , βT } ⊆ A \ {α0} such that β0 = α, βT ∈ arg minδ∈A fδ(xδ), and

(x′
β0

, β0) I(µ′)−1(β0) . . . I(µ′)−1(βT−1) (x′
βT

, βT ).

Since α0 6∈ arg minα∈A fα(xα), then arg minα∈A fα(xα) ⊆ C and thus, C 6= ∅. More-

over, α0 ∈ A \ C. Let N(C) ≡ (µ′)−1(C) and e|C ≡ (C,R|N(C),
∑

α∈C xα). Let z′|C ≡

(x′|C , µ′|N(C)) ∈ Z(e|C). Since z′ ∈ F (R−i, Ri), then z′|C ∈ F (e|C). Observe that for each

α ∈ C, there are {β0, . . . , βT ′} ⊆ C such that β0 = α, βT ′ ∈ arg minδ∈A fα(xδ), and

(x′
β0

, β0) I(µ′)−1(β0) . . . I(µ′)−1(βT ′−1)
(x′

βT ′
, βT ′).

Thus, for each α ∈ C there is β ∈ arg minδ∈C fδ(xδ) such that α � (R|C , z′|C)β. By

Proposition 1, z′|C ∈ ℜf (e|C).

We claim that for each β ∈ A \ C, there are {βt}
T
t=0 ⊆ A \ C such that β0 = β,

βT = α0, and (x′
β0

, β0) I(µ′)−1(β0) . . . I(µ′)−1(βT−1) (x′
βT

, βT ). Since for each β ∈ A, and

in particular for each β ∈ A \ C, β � (R−i, R
′
i, z

′)α0, then there are {δt}
T
t=0 ⊆ A such

that δ0 = β, δT = α0, and (x′
δ0

, δ0) I(µ′)−1(δ0) . . . I(µ′)−1(δT−1) (x′
δT

, δT ). We claim that

{δt}
T
t=0 ⊆ A \ C. Suppose by contradiction that there is 0 < t∗ ≤ T such that δt∗ ∈ C.

Since (x′
δt∗−1

, δt∗−1) I(µ′)−1(δt∗−1) (x′
δt∗

, δt∗), then δt∗−1 ∈ C. The recursive argument shows

that β = δ0 ∈ C. This is a contradiction. Let R′ ≡ (R−i, R
′
i), N(A \ C) ≡ (µ′)−1(A \ C)

and e|A\C ≡ (A \ C,R′|N(A\C),
∑

α∈A\C xα). Let z′|A\C ≡ (x′|A\C , µ′|N(A\C)) ∈ Z(e|A\C).

Since z′ ∈ F (R′), then z′|A\C ∈ F (e|A\C ). Now, since for each β ∈ A\C there are {βt}
T
t=0 ⊆

A\C such that β0 = β, βT = α0, and (x′
β0

, β0) I(µ′)−1(β0) . . . I(µ′)−1(βT−1) (x′
βT

, βT ), then for

each β ∈ A\C, β �(R′|N(A\C), z
′|N(A\C))α0. Now, we claim that for each k ∈ N(A\C)\{i}

and each j ∈ N(C), z′k Pk z′j . Since z′ ∈ F (R′), then if there are k ∈ N(A \ C) \ {i}

and j ∈ N(C) such that ¬(z′k Pk z′j), then z′k Ik z′j . Thus, µ′(k) ∈ C and therefore k ∈

N(C). This is a contradiction. Thus, there is ε ∈ R++ such that for each for each

k ∈ N(A \ C) \ {i} and each j ∈ N(C), (xµ′(k) − ε, µ′(k))Pk (xµ′(j) + ε, µ′(j)). Since

arg minα∈A fδ(x
′
α) ⊂ C, then ε can be chosen small enough that minα∈C fα(x′

α + ε) <

minα∈A\C fα(xα − ε). Moreover, since (xα0 , α0)P 0
i (xµ(i), µ(i)), then ε can be chosen small

enough that (xα0 − ε, α0)P 0
i (xµ(i) + ε, µ(i)).

Let y ≡ (u, σ) ∈ ℜf (C,R|N(C),
∑

α∈C xα + ε). By Corollary 1, y ≫ x′|C . Thus, for each

α ∈ C, uα < x′
α + ε.

Since z′|A\C ∈ F (e|A\C) and for each β ∈ A \ C, β �(R′|N(A\C), z
′|N(A\C))α0, then

by Lemma 8, there is v ≡ (w, λ) ∈ (A \ C,R′|N(A\C),
∑

α∈A\C xα − ε) such that: (1)

x′|N(A\C) ≫ w, (2) for each k ∈ N(A \ C) \ {i}, and each l ∈ N(A \ C) \ {i}, vk Rk vl, (3)

λ(i) = µ′(i), and (4) for each β ∈ A \ C, β �(R′|N(A\C), v)α0. Thus, for each β ∈ A \ C,

wβ > x′
β − ε.
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Let xε be the vector obtained by concatenating u and w, and let µε be the bijec-

tion that coincides with σ on N(C) and with λ on N(C). Let zε ≡ (xε, µε). Since∑
α∈C uα +

∑
β∈A\C wβ =

∑
δ∈A x′

δ, then zε ∈ Z(A,R′,M). Let ρ ∈ arg minα∈C fδ(uα).

Since minα∈C fα(x′
α + ε) < minα∈A\C fα(xα − ε), then ρ ∈ arg minα∈C fδ(x

ε
α). Let us

complete the definition of R′
i. Assume that (xε

ρ, ρ) I ′i (xε
α0

, α0) and for each δ ∈ A \

{α0, ρ}, (wα0 , α0)P ′
i (xδ, δ).

14 A similar argument to the one in Lemma 7, shows that

zε ∈ ℜf (R−i, R
′
i) and for each ẑ ∈ ℜf (R−i, R

′
i), ẑi = zε

i . Thus, for each ẑ ∈ ℜf (R−i, R
′
i),

ẑ P 0
i z. Consequently,

O〈D,ℜf , r〉(R−i, R
′
i, z)P 0

i O〈D,ℜf , r〉(R, z).

Thus, (R, z) 6∈ N 〈D,ℜf , r, R0〉. This is a contradiction.

The proof of Theorem 2 is a straightforward implication of Lemma 9.

Proof of Theorem 2. Since R ⊃ Q, then by Lemma 9, for each r ∈ ℜf , and each

R0 ∈ RN , O〈R,ℜf , r, R0〉 = F (R0). Thus, for each R0 ∈ RN , O〈R,ℜf , R0〉 = F (R0).

5 Implementation of the fair correspondence

In this section we investigate the implications of our results for the so called implementation

of the fair correspondence. First, each GMRF correspondence naturally implements F

on R.

Corollary 4. For each f ∈ IA, ℜf naturally implements F on R.

Corollary 4 follows from Theorem 2. We omit the proof.

Each GMRF correspondence not only naturally implements F on R, but also imple-

ments it in strong Nash equilibria on R:

Proposition 2. For each f ∈ IA, ℜf naturally implements F in strong Nash equilibria on

R.

Proof. Let f ∈ IA and r ∈ ℜf . We will prove that for each R0 ∈ RN , O∗〈R,ℜf , r, R0〉 =

F (R0). Since O∗〈R,ℜf , r, R0〉 ⊆ O〈R,ℜf , r, R0〉, then by Theorem 2, it is enough to prove

that F (R0) ⊆ O∗〈R,ℜf , r, R0〉. Let z ≡ (x, µ) ∈ F (R0). Let R ∈ QN be such that for

each {i, j} ⊆ N , zi Ii zj . We claim that (R, z) ∈ N ∗〈D,ℜf , r, R0〉. Suppose that there is

N ′ ⊆ N , i ∈ N ′ and (R′
N ′ , z

′
N ′) ∈ D × (R × A) such that

O〈D,ℜf , r〉(R−N ′ , R′
N ′ , z−N ′ , , z′N ′)P 0

i O〈D,ℜf , r〉(R, z).

14This assumption is compatible with our previous assumption that R′
i ∈ Q is such that for each α ∈

A \ {α0}, z′
i R′

i (x′
α, α).
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Let y ≡ (u, σ) ≡ O〈D,ℜf , r〉(R−i, R
′
i, z−i, z

′
i). Since z ∈ F (R0), then uσ(i) > xσ(i). Since

y ∈ ℜf (R−N ′ , R′
N ′) ⊆ F (R−N ′ , R′

N ′), then for each k ∈ N \ N ′, uσ(k) > xσ(k). Since∑
α∈A xα =

∑
α∈A uα, then there is j ∈ N ′ such that uµ(k) < xµ(k). Since z ∈ F (R0), then

O〈D,ℜf , r〉(R, z)P 0
j O〈D,ℜf , r〉(R−N ′ , R′

N ′ , z−N ′ , , z′N ′).

Thus, (R, z) ∈ N ∗〈R,ℜf , r, R0〉. Since z = O〈D,ℜf , r〉(R, z), then z ∈ O∗〈R,ℜf , r, R0〉.

The following corollary states that for the purpose of implementing F , one can reduce

the agents’ strategy space to the sub-domain of quasi-linear preferences and the desired

consumption bundle.

Corollary 5. Let f ∈ IA. For each D ⊆ R such that D ⊇ Q, 〈Q,ℜf 〉 implements F on D

and 〈Q,ℜf 〉 implements F in strong Nash equilibria on D.

Proof. By Lemma 9, 〈Q,ℜ〉 implements F on D. A similar argument to the one used to

prove Proposition 4, shows that 〈Q,ℜf 〉 implements F in strong Nash equilibria on D.

One can think that a game form with simple strategy spaces is more “realistic.” For

instance, it is more realistic to imagine agents reporting elements of a finite dimensional

space as is the case in game form 〈Q,ℜ, r〉 for some r ∈ ℜ. Another goal that one achieves

with the reduction of strategy spaces is that the “complexity” of the mechanism may be

reduced. In contrast to the unrestricted domain of preferences, given reports (R, z) ∈

(Q × (R × A))N , there is a polynomially bounded algorithm to calculate O〈Q,ℜ, r〉(R, z)

(Aragones, 1995).

The reduction of strategy space in Corollary 5 could be seen also as a consequence of a

more general result. Let us first introduce some definitions.

Let D′ ⊆ D ⊆ R. Then, D′ is a rich sub-domain of D if for each R0 ∈ D and each

z0 ∈ R × A, there is R′
0 ∈ D′, such that the indifference sets through zi of Ri and R′

i

coincide. One can see easily that Q is rich on R.

An SCC S is level-set-only if for each R ∈ RN and each z ∈ S(R), if R′ ∈ RN is such

that for each i ∈ N , the indifference sets through zi of R′
i and Ri coincide, then z ∈ S(R′).

One can see easily that F is level-set-only.15

The following proposition states conditions under which strategy spaces can be reduced.

Proposition 3. Let D′ be a rich sub-domain of D and let S and S′ be two correspondences.

If S is level-set-only and S′ naturally implements S on D′, then 〈D′, S′〉 implements S on D.

Proof. Let D′, D, S, and S′ be as in the statement of the lemma. Let s′ ∈ S′. We will prove

that 〈D′, S′, s′〉 implements S on D. Let R0 ∈ DN . We claim that S(R0) ⊆ O〈D′, S′, s′, R0〉.

Let z ∈ S(R0). We claim that z ∈ O〈D′, S′, s′, R0〉. Let R′ ∈ D′ be such that for each

15In classical economies, the Walrasian and Constrained Walrasian correspondences are level-set-only.
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i ∈ N , the indifference sets through zi of R′
i and Ri coincide. Since S is level-set-only, then

z ∈ S(R′). Thus, there is (R∗, z∗) ∈ N〈D′, S′, s′, R′〉 such that O〈D′, S′, s′〉(R∗, z∗) = z.

Consequently, for each i ∈ N and each (R̃i, z̃i) ∈ D′ × (R × A),

O〈D′,ℜ, r〉(R∗, z∗)R′
i O〈D′, S′, s′〉(R∗

−i, R̃i, z−i, z̃i).

Now, since for each for each i ∈ N , the indifference sets through zi of R′
i and Ri coincide

and preferences are money-monotone, then for each i ∈ N and each (R̃i, z̃i) ∈ D′× (R×A),

O〈D′,ℜ, r〉(R∗, z∗)R0
i O〈D′, S′, s′〉(R∗

−i, R̃i, z−i, z̃i).

Thus, (R∗, z∗) ∈ N〈D′, S′, s′, R0〉 and z ∈ O〈D′, S′, s′, R0〉.

Now, we claim that O〈D′, S′, s′, R0〉 ⊆ S(R0). Let z ∈ O〈D′, S′, s′, R0〉. Then, there is

(R∗, z∗) ∈ N〈D′, S′, s′, R0〉 such that O〈D′, S′, s′〉(R∗, z∗) = z. Let R′ ∈ D′ be such that for

each i ∈ N , the indifference sets through zi of R′
i and R0

i coincide. A similar argument to

the one above shows that (R∗, z∗) ∈ N〈D′, S′, s′, R′〉 and z ∈ O〈D′, S′, s′, R′〉. Thus, since

S′ naturally implements S on D′, then z ∈ S(R′). Now, since S is level-set-only and for

each i ∈ N , the indifference sets through zi of R′
i and Ri coincide, then z ∈ S(R0).

A parallel statement to Proposition 3 also holds for implementation in strong Nash

equilibria.

Proposition 4. Let D′ be a rich sub-domain of D and let S and S′ be two correspondences.

If S is level-set-only and S′ naturally implements S in strong Nash equilibria on D′, then

〈D′, S′〉 implements S in strong Nash equilibria on D.

Proposition 4 follows from a similar argument to the one in the proof of Proposition 3.

We omit the proof.16

Propositions 3 and 4 not only allow us to identify situations in which strategy space

can be reduced, but also situations in which implementation results for small domains can

be extended. For instance, Āzacis (2008) defines a selection, SĀ ∈ F , which naturally

implements F on Q and also naturally implements F in strong Nash equilibria on Q.

Proposition 3 allows us to conclude that 〈Q, SĀ〉 implements F on R. Proposition 4 allows

us to conclude that 〈Q, SĀ〉 implements F in strong Nash equilibria on R. The following

corollary formalizes this result.

Corollary 6. 〈Q, SĀ〉 implements F on R. Moreover, 〈Q, SĀ〉 implements F in strong

Nash equilibria on R.

We omit the proof.

16See, Section 8, Additional material for referees.
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6 Discussion

In this section we discuss the extension of our results when individual consumptions of

money are bounded. We concentrate on an upper bound. A symmetric argument applies

to a lower bound.

If we interpret our model as the allocation of rooms and rent among housemates, one

may want to consider the requirement that each agent contribute to the rent, i.e., that

individual consumptions of money be non-positive.

We first observe that the set of fair allocations in which individual consumptions of

money are non-positive may be empty on the unrestricted domain of preferences. What

may happen is that preferences are such that the agents “coincide” in that some rooms are

considerably “inferior” to the other. That is, it is necessary that the agents who receive

such rooms be compensated in order for fairness to be satisfied.

Suppose that the rooms in a house do not differ from each other in such a stark contrast.

Then, this restriction should be formalized and imposed in the domain of preferences in

which agents’ preferences are supposed to belong to. For instance let M < 0 be the rent to

collect in a particular application. Suppose that preferences belong to the domain in which

receiving each room for free is preferred to receiving any other room and paying an equal

share of the rent:

D∗ ≡

{
R0 ∈ R : for each {α, β} ⊆ A, (0, α)P0

(
1

n
M,β

)}
.

One can easily see that if preferences belong to D∗, then at each fair allocation each agent

contributes to the rent, i.e., has a negative consumption of money. Thus, all fair allocations

are “interior” and all of our proofs are easily modified to deliver parallel results on this

domain.

7 Conclusion

In this paper we studied incentives for the truthful revelation of preferences in the problem

of fairly allocating a set of objects among a set of agents agents when monetary compensa-

tion is possible. Previous literature shows that incentives go against the truthful revelation

of preferences for each selection of the fair correspondence (Tadenuma and Thomson, 1995).

Nevertheless, we show that for the GMRF correspondences, the extent to which each agent

can manipulate the outcome is restricted by the other agents’ behavior. In equilibrium,

and regardless that all agents may lie about their preferences, the outcomes that ensue

from the manipulation of these correspondences are fair and efficient with respect to true

preferences. We conclude that incentives are against the truthful revelation of preferences,

but not against fairness and efficiency.

Our results also imply that the direct revelation game associated with each GMRF
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correspondence implements in Nash and Strong Nash equilibria the Fair correspondence.

Moreover, this implementation result is maintained if agents’ reports are restricted to quasi-

linear preferences.

It is an open question to study incentives issues for the variation of the model presented

in this paper in which agents experience consumption externalities as in Velez (2008).
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