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Abstract. An infinite two-player zero-sum game with a Borel

winning set, in which the opponent’s actions are monitored eventu-

ally but not necessarily immediately after they are played, admits

a value. The proof relies on a representation of the game as a sto-

chastic game with perfect information, in which Nature operates

as a delegate for the players and performs the randomizations for

them.

1. Setup

Consider an infinite two-player zero-sum game that is given by a

triple
(
A, (Pn)n∈N ,W

)
where A is a finite set of actions, Pn is a par-

tition of An for every n ∈ N, and W ⊆ AN is a Borel set, the winning

set of player 1. The game is played in stages: Player 1 chooses an

action a0 ∈ A; then player 2 chooses an action a1 ∈ A; then player 1

chooses an action a2 ∈ A, and so on, ad infinitum. Before choosing an,

the player who plays at stage n receives some information about his

opponent’s actions at previous stages: Let h = (a0, a1, . . . , an−1) be the

finite history that consists of the actions played before stage n; then
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before choosing an, the player who plays at stage n observes the atom

of Pn that contains h. Player 1 wins the game if the infinite history

(a0, a1, . . . ) is in W . When the action set and information partitions

are fixed, I denote the game by Γ(W ).

A behavioral strategy x = (xn)n∈N of player 1 is a sequence {xn :

Pn → ∆(A)}n=0,2,4,... of functions: At stage n, after observing the finite

history h = (a0, a1, . . . , an−1), player 1 randomizes his action according

to xn(πn(h)), where πn(h) is the atom of Pn that contains h. Abusing

notations, I sometimes write xn(h) instead of xn(πn(h)). Behavioral

strategies y of player 2 are defined analogously.

Every pair x, y of strategies induces a probability distribution µx,y

over the set AN of infinite histories or plays : µx,y is the joint distribution

of a sequence α0, α1, . . . . . . of A-valued random variables such that

(1) P (αn = a |α0, . . . , αn−1 ) =


xn(α0, . . . , αn−1)[a], if n is even,

yn(α0, . . . , αn−1)[a], if n is odd.

I call such a sequence of random variables an (x, y)-random play. If the

players play according to the strategy profile (x, y), then the expected

payoff for player 1 is given by

(2) µx,y(W ) = P ((α0, α1, . . . ) ∈ W ) ,

where α0, α1, . . . is an (x, y)-random play.
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The lower value val Γ(W ) and upper value val Γ(W ) of the game

Γ(W ) are defined by:

val Γ(W ) = sup
x

inf
y
µx,y(W ), and val Γ(W ) = inf

y
sup
x
µx,y(W ),

where the suprema are taken over all strategies x of player 1 and the

infima over all strategies y of player 2. The game is determined if the

lower and upper values are equal, val Γ(W ) = val Γ(W ), in which

case their common value is called the value of the game. For ε ≥ 0,

a strategy x of player 1 is ε-optimal if µx,y(W ) ≥ val Γ(W ) − ε for

every strategy y of player 2. We also say that player 1 can guarantee

payoff of at least val Γ(W )− ε by playing such a strategy x. ε-optimal

strategies of player 2 are defined analogously.

Let ∼n be the equivalence relation over infinite histories such that

u ∼n u′ whenever u|n and u′|n belong to the same atom of Pn, where

u|n and u′|n are the initial segments of u and u′ of length n. The inter-

pretation is that if u, u′ ∈ AN and u ∼n u′, then at stage n the player

cannot distinguish between u and u′. Say that at stage n the player

observes the action of stage m if, for every pair of infinite histories

u = (a0, a1, . . . ) and u′ = (a′0, a
′
1, . . . ), u ∼n u′ implies am = a′m.

1.1. Definition. The information partitions (Pn)n≥0 satisfy perfect re-

call if the following conditions are satisfied:

(1) Players know their own actions: at stage n the player observes

the action of stage n− 2.

(2) Players do not forget information: if u, u′ ∈ AN and u ∼n+2 u
′

then u ∼n u′.
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The setup of infinite games with perfect recall is general enough to

subsume two special cases which have been extensively studied:

Borel games. If, at every stage n, players observe previous actions

of their opponents, then the game is called a Borel game or a game

with perfect information. Gale and Stewart [3] proved that such games

are determined if the winning set W is closed. In a seminal paper,

Martin [7] proved that the game is determined for every Borel winning

set W . Borel games admit pure 0-optimal strategies, and the value is

0 or 1. Moreover, Borel games with an infinite action set A are also

determined.

Blackwell games. Assume that at even stages n = 2k, player 1

observes the actions of stages 0, 1, . . . , 2k − 1, and at odd stages n =

2k + 1, player 2 observes the actions of stages 0, 1, . . . , 2k− 1 (his own

actions and all the previous actions of his opponent except for the last

one), and that the information partitions are the roughest partitions

that satisfy these conditions. This means essentially that the players

play simultaneously at stages 2k and 2k + 1 for every k ∈ N, and

then both actions are announced. Such games are called Blackwell

games. Blackwell [1, 2] proved the determinacy of Blackwell games

(which he called “infinite games with imperfect information”) with a

Gδ winning set, and conjectured that every Blackwell game with a

Borel winning set is determined. Vervoort [11] advanced higher in the

Borel hierarchy, proving determinacy of games with Gδσ winning sets.

Blackwell’s conjecture was proved by Martin in 1998 [8].



EVENTUAL PERFECT MONITORING 5

Borel games and Blackwell games differ in the timing of monitoring

– the observation of the opponent’s actions: whereas in Borel games

monitoring is immediate, in Blackwell games player 2’s monitoring is

delayed by one stage. Both setups satisfy a property that I call eventual

perfect monitoring. This means that the entire history of the game is

known to every player at infinity. One example of eventual perfect

monitoring, of which Blackwell games are a special case, is delayed

monitoring, when the action of stage m is monitored after some delay

dm. But the setup of games with eventual perfect monitoring is more

general than the setup of games with delayed monitoring. First, the

former setup allows the length of the delay to depend on the history of

the games. Second, it allows the information to be revealed in pieces;

for example, a player can observe some function of the previous actions

of his opponent before he observes the actions themselves.

1.2. Definition. The information partitions {Pn}n∈N satisfy eventual

perfect monitoring if for every u, u′ ∈ AN such that u 6= u′, there exist

an even n such that u �n u
′ and an odd n such that u �n u

′.

The purpose of this paper is to prove the following theorem.

1.3. Theorem. Let Γ = (A, (Pn)n≥0,W ) be an infinite game with a

finite action set, a Borel winning set, perfect recall, and eventual perfect

monitoring. Then Γ is determined.

The proof of the theorem relies heavily on the stochastic extension

of Martin’s theorem about the determinacy of Blackwell games. How-

ever, except for the simple case in which the stages are divided into
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blocks and previous actions are monitored at the end of each block,

I was unable to find an immediate reduction of the eventual perfect

monitoring setup to the Blackwell games setup, nor was able to adapt

Martin’s proof to the eventual perfect monitoring setup.

Infinite games with Borel winning sets have recently been applied in

economics literature on testing the quality of probabilistic predictions.

Consider a forecaster who claims to know the probability distribution

that governs some stochastic process. To prove his claim, the forecaster

provides probabilistic predictions about the process. An inspector tests

the forecaster’s reliability using the infinite sequence of predictions pro-

vided by the forecaster and the observed realization of the process.

Using Martin’s Theorem about the determinacy of Blackwell games,

I proved [9] that any inspection which is based on predictions about

the next-day realization of the process is manipulable, i.e., it can be

strategically passed by a charlatan. Theorem 1.3 can be used to prove

that tests based on predictions about an arbitrarily long finite horizon

are also manipulable [9, Section 5].

In Section 2 I give some examples of games with and without eventual

perfect monitoring. In Section 3 I prove the determinacy of infinite

games with perfect recall and a compact winning set; this result is

used in the proof of Theorem 1.3. The proof of the theorem is in

Section 4. Martin’s Theorem is reviewed in the appendix.

2. Examples

All the examples in this section have the same action set and the

same winning set. The action set is A = {S,L}. At every stage,
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each player decides whether to Stay or Leave the game. Once a player

leaves, his future actions do not affect the outcome of the game. For an

infinite history u = (a0, a1, . . . ), let n1(u) = min {n even |an = L} be

the (possibly infinite) first stage in which player 1 left the game, and

let n2(u) be the first stage in which player 2 left. Let

W =
{
u ∈ AN ∣∣(n2(u) < n1(u) <∞

)
or
(
n1(u) <∞ and n2(u) =∞

)}
be the winning set of player 1. So player 1 wins if he leaves the game

after player 2 leaves, or if he leaves the game at some point and player

2 never leaves. In Example 2.1 both players have eventual perfect

monitoring. In Example 2.2 none of the players has eventual perfect

monitoring. In Example 2.3 only player 1 has eventual perfect moni-

toring.

2.1. Example. Let k be a positive integer. Assume that at stage n

each player observes his own actions and the actions of his opponent

at stages smaller than n − k. Then the value of the game is 0. An

optimal strategy for player 2 is to play S as long as he is not informed

that player 1 has played L. When player 2 knows that player 1 played

L at some point, player 2 then plays L.

Note that in the previous example, the number k need not be con-

stant. It can depend on the stage number, and can differ between the

players. As long as player 2 knows the actions of his opponent even-

tually, the game is determined and the value is 0. (The fact that the

value in this example does not depend on the information partitions is

not typical.)
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2.2. Example. Assume that each player knows his own previous ac-

tions, but does not observe his opponent’s actions. Then the game is

not determined. In fact, val Γ = 0 and val Γ = 1.

2.3. Example. Assume that player 1 observes the past actions of player

2, but player 2 doesn’t observe the past actions of player 1. Then the

game is not determined. In fact, val Γ = 1/2 and val Γ = 1. An optimal

strategy for player 1 is: At stage 0 play L or S with probability 1/2,

and, at stage 2k for k ≥ 1, play the action of player 2 from stage 2k−1.

3. Games with a compact winning set

The set AN of plays is naturally endowed with the product topology.

In this section I prove the special case of Theorem 1.3 for compact

winning sets. The determinacy follows from perfect recall alone, even

without eventual perfect monitoring. The proof relies on two stan-

dard results from game theory: the Minimax Theorem for normal form

games and Kuhn’s Theorem.

Recall that a normal form game is given by a triple (Σ,Θ, R) where

Σ and Θ are Borel spaces of pure strategies for players 1 and 2, and

R : Σ×Θ→ [0, 1] is the payoff function. A mixed strategy ξ of player

1 is a probability distribution over Σ. Mixed strategies τ of player 2

are defined analogously. Say that the mixed extension of the normal

form game (Σ,Θ, r) is determined if

sup
ξ∈∆(Σ)

inf
θ∈Θ

∫
R(σ, θ)ξ(dσ) = inf

τ∈∆(Θ)
sup
σ∈Σ

∫
R(σ, θ)τ(dθ).
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The Minimax Theorem [10, Proposition A.10] states that if Σ is a com-

pact topological space and the function R(·, θ) is upper semicontinuous

for every θ ∈ Θ, then the mixed extension of the normal form game

(Σ,Θ, R) is determined.

Let Γ = (A, {Pn}n∈N,W ) be an infinite game with perfect recall.

The normal form of Γ is the normal form game N(Γ) = (Σ,Θ, R)

defined as follows. A pure strategy σ ∈ Σ of player 1 is a sequence

{σn : Pn → A}n even of functions: at stage n, after the finite history h =

(h0, h1, . . . , hn−1) was played, player 1 plays σn(πn(h)), where πn(h) is

the atom of Pn that contains h. Pure strategies θ of player 2 are

defined analogously. Every pair σ, θ of pure strategies of players 1 and

2 determines an infinite history u(σ, θ) = (a0, a1, . . . ) that is given by

an =


σn (πn (a0, . . . , an−1)) , for even n,

θn (πn (a0, . . . , an−1)) , for odd n.

The payoff function of N(Γ) is R(σ, θ) = 1W (u(σ, θ)). Kuhn’s Theo-

rem [10, Theorem D.1] states the equivalence between mixed strategies

and behavioral strategies in games with perfect recall. In particular,

the game Γ is determined if and only if its normal form game N(Γ) is

determined.

3.1. Lemma. An infinite game with a finite action set, perfect recall,

and a compact winning set is determined.

Proof. Let Γ = (A, {Pn}n∈N,W ) be an infinite game with a finite ac-

tion set A, perfect recall, and a compact winning set W . By Kuhn’s
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Theorem it is sufficient to prove that the normal form game N(Γ) =

(Σ,Θ, R) of Γ is determined. This follows from the minimax theo-

rem. Indeed, the set Σ of pure strategies of player 1 is compact in the

product topology, and the payoff function R is upper semicontinuous

as a composition of the continuous function (σ, θ) 7→ u(σ, θ) and the

function 1W , which is upper semi continuous because W is closed. �

4. Proof of Theorem 1.3

Overview of the proof. Roughly speaking, I am going to construct

a stochastic game Γ∗ with perfect information that mimics the original

game Γ. In Γ∗, at every stage m, the player announces a mixture

over A contingent on his information at that stage. So in Γ∗, instead of

choosing an action which is not revealed his the opponent (as in Γ), the

player announces how he intends to randomize his action. The actual

randomization is performed by Nature at a future stage k(m), in which

the opponent should have observed the m-stage action in Γ, and the

realization of that randomization is immediately made public. So in

the game Γ∗, Nature performs the randomization for the player. By

Martin’s Theorem the game Γ∗ is determined, and I prove that the value

of Γ∗ is also the value of the original game Γ. For this purpose I have to

show that the fact that in Γ∗ the player announces his randomization

plan cannot be used by the opponent to change the payoff in the game.

This step, which is the core of the proof, uses approximations of the

winning set by compact sets, and the fact that by Lemma 3.1 the

original game Γ is determined when the winning set is compact.
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Since the sets of actions must be finite for Martin’s Theorem to apply,

I first prove that every behavioral strategy in Γ can be approximated

by a behavioral strategy in which all the mixtures are taken from some

finite sets. This is done in Lemma 4.2. Because of the approximation

argument, the stochastic game Γ∗ that is constructed in the proof de-

pends on an additional parameter ε which corresponds to the level of

approximation.

Preliminaries. Let A<N =
⋃
n∈NA

n be the set of finite histories of

the game. For a finite history h ∈ An, the length of h is given by

length(h) = n. For an infinite history u = (a0, a1, a2, . . . ) ∈ AN and

n ∈ N, let u|n = (a0, . . . , an−1) ∈ A<N be the initial segment of u of

length n. Similarly, for a finite history h ∈ A<N and n < length(h), let

h|n be the initial segment of h of length n.

Eventual perfect monitoring entails that the action of stage m is

known to the opponent at infinity. Lemma 4.1 below shows that in

fact more is true: for every m there exists some finite stage n > m at

which the opponent knows the action of stage m.

4.1. Lemma. If the game admits eventual perfect monitoring, then for

every m ∈ N there exists an n > m such that n 6= m mod 2 and

such that at stage n the opponent observes the action of stage m, i.e.,

for every pair u = (a0, a1, . . . ), u
′ = (a′0, a

′
1, . . . ) of infinite histories,

u ∼n u′ implies am = a′m.

Proof. This is an application of König’s Lemma. Assume without loss

of generality thatm is odd. Let a ∈ A, and let Ca = {u = (u0, u1, . . . ) ∈
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AN|um = a}. Then Ca and Cc
a are compact. Let Ta ⊆ A<N be the set

of all finite histories h of even length n such that π−1
n (h) ∩Ca 6= ∅ and

π−1
n (h) ∩ Cc

a 6= ∅, where πn(h) is the atom of Pn that contains h.

It follows from the perfect recall assumption that Ta is a tree over

A2. I claim that Ta is well-founded. Indeed, if v is an infinite branch of

T , then
⋂
n even π

−1
n (v|n) ∩ Ca and

⋂
n even π

−1
n (v|n) ∩ Cc

a are nonempty

as the intersections of decreasing sequences of compact sets. Let u =

(u0, u1, . . . ) ∈
⋂
n even π

−1
n (v|n)∩Ca and u′ = (u′0, u

′
1, . . . ) ∈

⋂
n even π

−1
n (v|n)∩

Cc
a. Then um = a 6= u′m and therefore u 6= u′, but u ∼n u′ for every

even n, in contradiction to the eventual perfect monitoring assumption.

By König’s Lemma, Ta is finite. Let na be the maximal length of

elements of Ta, and let n = max{na|a ∈ A}+2. Then at stage n player

1 observes the action of stage m. �

For two strategies x, x′ of player 1, let d(x, x′), the distance between

x and x′, be given by

d(x, x′) =
∑
n even

max
p∈Pn

‖xn(p)− x′n(p)‖1,

where the maximum is taken over all atoms p of Pn. The distance

d(y, y′) between two behavioral strategies y, y′ of player 2 is defined

analogously.

4.2. Lemma. Let x, x′ be strategies of player 1 and y, y′ be strategies

of player 2. Then

‖µx,y(W )− µx′,y′(W )‖ ≤
(
d(x, x′) + d(y, y′)

)
/2
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for every Borel subset W of AN.

Proof. The idea is to join a (x, y)-random play and a (x′, y′)-random

play such that the two random plays are equal with high probability.

Let zn : Pn → A be given by zn = xn for even n’s and zn = yn for odd

n’s and z′n : Pn → A be given by z′n = x′n for even n’s and z′n = y′n

for odd n’s. Let α0, α
′
0, α1, α

′
1, . . . be a sequence of A-valued random

variables defined inductively such that the conditional joint distribution

of the pair (αn, α
′
n) given the event {αi = ai, α

′
i = a′i for 0 ≤ i < n}

satisfies

P (αn = a |αi = ai, α
′
i = a′i for 0 ≤ i < n) = zn(a0, . . . , an−1)[a],

(3)

P (α′n = a′ |αi = ai, α
′
i = a′i for 0 ≤ i < n) = z′n(a′0, . . . , a

′
n−1)[a′], and

(4)

P (α′n 6= αn |αi = ai, α
′
i = a′i for 0 ≤ i < n) ≤ ‖zn(a0, . . . , an−1)− z′n(a′0, . . . , a

′
n−1)‖1/2,

(5)

for every n and every a0, a
′
0, . . . , an−1, a

′
n−1 ∈ A. The existence of ran-

dom variables αn, α
′
n with the prescribed conditional distribution fol-

lows from a standard coupling argument [4, Theorem 5.2]. From (3) it

follows that

P (αn = a |αi = ai for 0 ≤ i < n) = zn(a0, . . . , an−1)[a]

for every n and every a0, . . . , an−1 ∈ A, i.e., that α0, α1, . . . is an (x, y)-

random play of Γ(W ). Similarly, from (4) it follows that α′0, α
′
1, . . . is
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a (x′, y′)-random play of Γ(W ). From (5) it follows that

P (αn 6= α′n |αi = α′i for 0 ≤ i < n) ≤ max
p∈Pn

‖zn(p)− z′n(p)‖1/2.

Therefore,

P (αn 6= α′n for some n) ≤
∑
n∈N

P (αn 6= α′n |αi = α′i for 0 ≤ i < n)

≤
∑
n

max
p∈Pn

‖zn(p)− z′n(p)‖1/2 =
(
d(x, x′) + d(y, y′)

)
/2.

The assertion follows from the last inequality and the fact that µx,y and

µx′,y′ are the distributions of α0, α1, . . . and α′0, α
′
1, . . . , respectively. �

4.3. Corollary. Let ∆ε,n be a finite set which is ε/2n-dense in ∆(A)

endowed with ‖‖1, i.e., such that the ε/2n-balls around elements of ∆ε,n

cover ∆(A). Then there exists an ε-optimal strategy y for player 2 in

Γ(W ) such that yn(p) ∈ ∆ε,n(A) for every odd n and every atom p of

Pn.

Proof. Let y′ be an ε/2-optimal strategy of player 2 in Γ(W ) and let y

be a strategy of player 2 such that ‖yn(p)−y′n(p)‖1 < ε/2n and yn(p) ∈

∆ε,n(A) for every odd n and every atom p of Pn. Then d(y, y′) < ε,

and therefore,

µx,y(W ) ≥ µx,y′(W )− ε/2 ≥ valΓ(W )− ε

for every strategy x of player 1, where the first inequality follows from

Lemma 4.2, and the second inequality from the fact that y′ is ε/2-

optimal. Therefore y is ε-optimal. �
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Nature as the players’ randomization delegate. Let Γ = (A,Pn,W )

be an infinite game with perfect recall and eventual perfect monitoring.

In this section, I define an auxiliary stochastic game Γ∗ε = Γ∗ε(W ) with

perfect information, which mimics the original games Γ.

Fix ε > 0 and, for every n ∈ N, let ∆ε,n be a finite set which is ε/2n-

dense in ∆(A) endowed with ‖‖1, i.e., such that the ε/2n-balls around

elements of ∆ε,n cover ∆(A). For every m ∈ N, fix k(m) > m such

that m 6= k(m) mod 2, and such that at stage k(m) the opponent

observes the action of stage m, as in Lemma 4.1.

For every n, let Bn = {b : Pn → ∆ε,n} be the set of actions of

stage n in Γ∗ε(W ), so that an action is a function from Pn (viewed as

a collection of atoms) to ∆ε,n; and let Sn = AKn be the set of states

of stage n in Γ∗ε(W ), where Kn = {m|k(m) = n}. Let fn : An → Sn

be the projection over the corresponding coordinates m ∈ Kn, and let

F : S0 × S1 · · · → AN be such that

(6) F (f0(u|0), f1(u|1), . . . ) = u

for every u ∈ AN.

Γ∗ε(W ) is played as follows: Player 1 plays at even stages and player

2 at odd stages. At every stage n, Nature announces a state sn in Sn,

and then the player that play at that stage announces an action bn

in Bn. Nature chooses the state sn of stage n from the distribution
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z (s0, b0, . . . , sn−1, bn−1) that is given by

(7) z (s0, b0, . . . , sn−1, bn−1) [s] =

P (fn (ᾱ0, . . . , ᾱn−1) = s |fk(ᾱ0, . . . ᾱk−1) = sk for 0 ≤ k < n− 1) ,

where ᾱ0, . . . , ᾱn is a sequence of A-valued random variables such that

(8) P (ᾱk = a |ᾱ0, . . . , ᾱk−1 ) = bk (πk(ᾱ0, . . . , ᾱk−1))[a],

where πk(h) is the atom of Pk that contains h for every h ∈ Ak. Player

1 wins the game if F (s0, s1, . . . ) ∈ W .

A pure strategy of player 1 in Γ∗ε(W ) is a sequence {x∗n : S0 × B0 ×

· · · × Sn−1 × Bn−1 × Sn → Bn}n=0,2,... of functions: at stage n, after

observing the finite history (s0, b0, . . . , sn−1, bn−1, sn), player 1 plays

x∗ (s0, b0, . . . , sn−1, bn−1, sn). Pure strategies y∗ of Player 2 are defined

analogously. Let X∗ and Y ∗ be the sets of pure strategies of players 1

and 2 respectively. The expected payoff for player 1 in the game Γ∗ε(W )

when the players play according to (x∗, y∗) is given by R(x∗, y∗) =

P (F (ζ0, ζ1, . . . ) ∈ W ) where β0, ζ0, β1, ζ1, . . . is a sequence of random

variables, where the values of βn are in Bn and the values of ζn are in

Sn such that

P (ζn = s |ζ0, β0, . . . , ζn−1, βn−1 ) = z (ζ0, β0, . . . , ζn−1, βn−1) [s],

βn = x∗n (ζ0, β0, . . . , ζn−1, βn−1, ζn) for even n, and

βn = y∗n (ζ0, β0, . . . , ζn−1, βn−1, ζn) for odd n.
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I call such a sequence ζ0, β0, ζ1, β1, . . . of random variables an (x∗, y∗)-

random play of Γ∗ε(W ).

Identifying the game Γ∗ε(W ) with its normal form, say that Γ∗ε(W )

is determined if

sup
ξ∈∆(X∗)

inf
y∗∈Y ∗

∫
R(x∗, y∗)ξ(dx∗) = inf

τ∈∆(Y ∗)
sup
x∗∈X∗

∫
R(x∗, y∗)τ(dy∗).

In this case the common value of the two sides of the last equations is

called the value of the game, and is denoted by val Γ∗ε(W ).

4.4. Lemma. Let W ⊆ AN be a Borel set. Then the game Γ∗ε(W ) is

determined, and val Γ∗ε(W0) > val Γ∗ε(W )− ε for some compact subset

W0 of W .

Proof. In the terminology of appendix A, the game Γ∗ε(W ) is the sto-

chastic game with stochastic setup S = ((Sn, Bn)n∈N, z) and the win-

ning set η−1(W ), where η : S0 × B0 × S1 × B1 × · · · → AN is the

continuous map given by

(9) η (s0, b0, s1, b1, . . . ) = F (s0, s1, . . . ).

Thus η−1(W ) is a Borel set and therefore by Proposition A.1 the game

(S, η−1(W )) is determined. Moreover, there exists a compact set C ⊆

S0 × B0 × S1 × B1 × . . . such that C ⊆ η−1(W ) and val(S, C) >

val(S, η−1(W )) − ε. Let W0 = η(C). Then W0 is a compact subset

of W and val(S, η−1(W0)) ≥ val(S, C) > val(S, η−1(W )) − ε, since

η−1(W0) ⊇ C. The assertion follows from the fact that the games

(S, η−1(W0)) and (S, η−1(W )) are Γ∗ε(W0) and Γ∗ε(W ), respectively. �
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The following lemma says that, up to ε, player 2 can guarantee in

Γ∗ε the same amount he can guarentee in Γ. Intuitively, when player

2 computes the upper value of the game, he assumes that player 1 is

going to play the best response to player 2’s strategy; so the fact that

in Γ∗ε(W ) player 2 has to declare his contingent mixed action does not

reduce the upper value of the game.

4.5. Lemma. For every Borel set W of AN,

val Γ∗ε(W )− ε ≤ val Γ(W ).

Proof. Note first that by definition of Kn and from the perfect recall

assumption, there exist functions gn,k : Pn → Sk for every n and every

k ≤ n such that

(10) gn,k(πn(a0, . . . , an−1)) = fk(a0, . . . , ak−1)

for every h = (a0, . . . , an−1) ∈ An and where πn : An → Pn is the

natural projection.

Let y be an ε-optimal behavioral strategy for player 2 in Γ(W ) such

that yn(p) ∈ ∆ε,n(A) for every odd n and every atom p of Pn. The ex-

istence of such a strategy y follows from Corollary 4.3. Consider a pure

strategy y∗ of player 2 in Γ∗ε(W ) that is given by y∗n(s0, b0, . . . , sn−1, bn−1, sn) =

yn for every odd n and every partial history (s0, b0, . . . , sn−1, bn−1, sn) of

Γ∗ε(W ). (Thus, in every odd stage n, player 2’s action is yn, regardless

of the history.) Let x∗ be any strategy of player 1 in Γ∗. Let x be the
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behavioral strategy of player 1 in Γ(W ) that is given by

xn(p) = x∗n(s0, b0, . . . , sn−1, bn−1, sn)(p),

where (s0, b0, . . . , sn−1, bn−1, sn) is the finite history of Γ∗p(W ) defined

inductively by bk = x∗k (s0, b0, . . . , sk−1, bk−1, sk) for even k, bk = yk for

odd k, and sk = gn,k(p).

I am going to join an (x, y)-random play of Γ(W ) and an (x∗, y∗)-

random play of Γ∗ε(W ) with equal payoffs. Let ζ0, β0, α0, ζ1, β1, α1, . . .

be a sequence of random variables such that the values of ζn are in Sn,

the values of βn are in Bn, and the values of αn are in A, and such that

ζn = fn (α0, . . . , αn−1) ,(11)

βn = x∗n (ζ0, β0, . . . , ζn−1, βn−1, ζn) for even n,(12)

βn = y∗n (ζ0, β0, . . . , ζn−1, βn−1, ζn) for odd n, and(13)

P (αn = a |α0, . . . , αn−1 ) = βn (Πn) .(14)

From (10) and (11) it follows that

(15) ζk = gn,k (πn (α0, . . . , αn−1))

for every n and every k ≤ n. From (13) and the definition of y∗, it

follows that βn = yn for every odd n. In particular,

(16) yn(πn (α0, . . . , αn−1)) = βn(πn (α0, . . . , αn−1))
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for every odd n. From (12), the definition of x, the fact that βk = yk

for every odd k, and (15), it follows that

(17) xn (πn (α0, . . . , αn−1)) = βn (πn (α0, . . . , αn−1))

for every even n. From (14), (16), (17), it follows that

P (αn = a |α0, . . . , αn−1 ) =


xn(πn(α0, . . . , αn−1)), n even,

yn(πn(α0, . . . , αn−1)) n odd,

i.e., that α0, α1, . . . is an (x, y)-random play of Γ(W ).

From (11),(12),(13),(14), and (7), it follows that

(18) P(ζn = sn|ζ0, β0, . . . , ζn−1, βn−1) = z (ζ0, β0, . . . , ζn−1, βn−1) .

Indeed, given the event {ζ0 = s0, β0 = b0, . . . , ζn−1 = sn−1, βn−1 =

bn−1}, the conditional distribution of α0, . . . , αn is like the conditional

distribution of a sequence ᾱ0, . . . , ᾱn that satisfies (8) given that fk(ᾱ0) =

sk for k < n. (Here I use the fact that βn is measurable with respect

to ζ0, . . . , ζn.)

From (18),(12), and (13) it follows that ζ0, β0, ζ1, β1, . . . is an (x∗, y∗)-

random play of Γε(W ). Therefore, the expected payoff for player 1 in

Γ∗ε(W ) under (x∗, y∗) is

P (F (ζ0, ζ1, . . . ) ∈ W ) = P ((α0, α1, . . . ) ∈ W ) = µx,y(W ) ≤ val Γ(W )+ε,

where the first equality follows from (6) and (11), the second equality

from (2), and the inequality from the fact that y is ε-optimal.
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Summing up, I have provided a pure strategy y∗ of player 2 in

Γ∗ε(W ) (namely, play y1, y3, . . . ) that gives expected payoff of at most

val Γ(W )+ ε against any pure strategy x∗ of player 1 in Γ∗ε(W ). There-

fore, val Γ∗ε(W ) ≤ val Γ(W ) + ε. �

Proof of Theorem 1.3. Consider the stochastic game Γ∗ε(W ) defined

above. Let W0 be a compact subset of W such that val Γ∗ε(W0) >

val Γ∗ε(W )− ε, and whose existence follows from Lemma 4.4. Then

val Γ(W ) ≥ val Γ(W0) = val Γ(W0) ≥ val Γ∗ε(W0)−ε > val Γ∗ε(W )−2ε,

where the first inequality follows from the fact that W ⊇ W0, the first

equality follows from Lemma 3.1, the second inequality follows from

Lemma 4.5, and the third inequality follows from the choice of W0.

Similarly, for player 2 we get val Γ(W ) < val Γ∗ε(W ) + 2ε. It follows

that val Γ(W ) < val Γ(W ) + 4ε. Since ε was arbitrary, it follows that

val Γ(W ) = val Γ(W ). �

Appendix A. Martin’s Theorem for Stochastic Games

In this section I formulate Martin’s Theorem about the determinacy

of stochastic games. The stochastic game used in this paper has com-

plete information, while Martin studied a more general setup in which

the players play simultaneously. Note, however, that Martin’s older

theorem about the determinacy of Borel games [7] is not sufficient for

my purposes because of the presence of Nature.

A stochastic game with perfect information is given by ((Sn, Bn)n∈N, z, V ),

where B0, B1, . . . are finite sets of actions, S0, S1, . . . are finite sets of
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states or Nature’s actions, z = {zn : S0 × B0 × · · · × Sn−1 × Bn−1 →

∆(Sn)} is Nature’s strategy, and V ⊆ S0 × B0 × S1 × B1 × . . . is the

winning set of Player 1.

The game is played as follows: Player 1 plays at even stages and

player 2 at odd stages. At every stage n, Nature announces a state sn

in Sn, and then the player that play at that stage announces an action

bn in Bn. Nature chooses the state sn of stage n from the distribution

z(s0, b0, . . . , sn−1, bn−1). Player 1 wins the game if (s0, b0, s1, b1, . . . ) ∈

V .

I call a triple S = ((Sn, Bn)n∈N, z, ) of action sets, states sets, and

Nature’s strategy a stochastic setup. So the stochastic games that I use

in this paper are given by a stochastic setup S = ((Sn, Bn)n∈N, z}) and

a winning set V ⊆ S0 ×B0 × S1 ×B1 × . . . .

The definitions of strategies of the players, and of determinacy and

value of the game, are omitted. Note that since this is a game with

perfect information (i.e., before a player chooses the action bn of stage

n, he observes the finite history of the game (s0, b0, . . . , sn−1, bn−1, sn)

up to that stage), Kuhn’s Theorem [10, Theorem D.1] applies, so that

behavioral strategies and mixed strategies are equivalent.

The following proposition was proved by Martin [8]. For the sto-

chastic extension, see Maitra and Sudderth’s paper [6]. The fact that

the lower value of the game can be approximated by the value on some

compact subset was proved earlier by Maitra et al. [5], using Choquet’s

Capacity Theorem.
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A.1. Proposition. Let S = ((Sn, Bn)n∈N, z}) be a stochastic setup, and

let V be a Borel subset of S0 ×B0 × S1 ×B1 × . . . . Then:

(1) The game (S, V ) is determined.

(2) For every ε > 0, there exists a compact subset C of V such that

val (S, C) > val (S, V )− ε.
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