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Abstract

We develop a general method for solving multi-dimensional screening problems in which
the ‘physical’ allocation space is one-dimensional, and provide necessary and sufficient
conditions for the existence of ‘exclusion’ in the optimal mechanism. We illustrate the
application of our method to an example with quadratic utility and uniformly distributed
types. Interestingly, the optimal solution exhibits discontinuity along the boundary of the
region between exclusion and non-exclusion for a large set of parameter values.
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1 Introduction

This paper studies a screening problem in which the type space is multi-dimensional and the
allocation space is one-dimensional. Such problems are common in economics, for two distinct
reasons.

First, in many important economic environments agents typically differ along several di-
mensions on which there is private information. In the area of price discrimination, consumers
differ both in demand intensity (intercept of demand) and price sensitivity (slope of demand).
For example, high demand consumers can be price insensitive (because they are rich) or price
sensitive (because they are poor and have large families). Similarly, an industrial customer’s
valuation for an input may depend both on the technology this firm uses to process the input,
and the demand for the final product. Additionally, firms often have available multiple so-
cioeconomic data that are imperfectly correlated with customers’ purchase patterns. In other
areas, multi-dimensionality of types is also prevalent. In insurance, customers differ both in
risk aversion and the probability of having an accident. In labour taxation, the government
may wish to differentially treat individuals who have low ability and those who have a high
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preference for leisure. And in the regulation of monopolies, the regulatory agency may wish
to allow a different regulatory price and access charge for firms that have a high cost than for
firms that have a low demand.

Secondly, in many of these screening environments, the principal cannot discriminate be-
tween agents along more than one dimension. In price discrimination, firms can often differ-
entially treat customers only by purchase quantity. For non-durable consumption goods there
may be no opportunity to differentiate by quality, so quantity becomes the only instrument.
Examples include soft drinks (which come in various sizes), residential electricity, and public
transportation. On the other hand, for many consumer durables customers only purchase one
unit, so then the only available dimension for discrimination becomes quality. Frequently,
there is only one (or at least one dominant) dimension of quality, such as the speed of a micro-
processor or internet connection, or the number of megapixels in a camera. In auctions, there
is often only one unit offered for sale, and the single dimension then becomes the probability
of obtaining the object. In areas other than price discrimination, the allocation space if often
also one-dimensional. In insurance markets, the allocation consists of the amount of coverage,
in labour taxation the instrument is the tax rate, and in regulation it is the regulatory price.

Despite the existence of a rather voluminous literature on screening, relatively little is
known about the type of problem we study. There are several reasons for this. First, as
we will demonstrate, one of the dominant current approaches, the method of demand profiles
(pioneered by Goldman, Leland and Sibley (1984), and further popularized by Brown and
Sibley (1986) and, most forcefully, by Wilson (1993)) fails to adequately solve the problem.
The difficulty with the demand profile method is that it requires that the derived marginal price
schedule intersect a customer’s demand schedule from below. In the one-dimensional type
case, this is assured by the condition that marginal valuation is increasing in type (uqθ > 0),
and that the assignment of quantities to types is nondecreasing (ensured by a monotonic
inverse hazard rate, or by ironing). In the multi-dimensional case, no such sufficient condition
is known. Furthermore, crossing from below is hard to ensure, because demand curves vary
both in slope and intercept - sufficient variation in the intercept will thus necessarily lead to a
violation of the required condition. As a consequence, the allocation will fail to be incentive
compatible: the quantity assigned to customers whose demand curve intersects the tariff
from above will correspond to a local minimum rather than a global maximum of their surplus
maximization problem. Many of the worked out examples in the literature, such as the linear
quadratic one studied in Wilson (1993, p. 196), therefore involve tariffs that are not incentive
compatible.

A closely related approach is proposed in McAfee and McMillan (1988). These authors
introduce a condition termed “Generalized Single Crossing” which ensures that any solution
satisfying the first and second order conditions of the agent’s surplus maximization problem
is globally incentive compatible. Generalized Single Crossing implies that iso-price curves
are linear in the type space, thereby permitting a reduction to a one-dimensional screening
problem. McAfee and McMillan’s contribution is considerable, but suffers from a number
of drawbacks. First, the limitation to linear iso-price curves is significant in our context.
Second, their approach implicitly assumes that in equilibrium all agent types along an iso-
price line will participate. Unfortunately, as our analysis will reveal, this assumption is often
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violated.1

Lewis and Sappington (1988) adopt the Generalized Single Crossing assumption, but
instead of formulating the problem in terms of demand profiles use the direct method pioneered
by Mussa and Rosen (1978), leading to an objective based on virtual utility functions. Because
it is based upon McAfee and McMillan’s method for reducing the problem to a one-dimensional
screening problem, this approach suffers from the same drawbacks. In addition, Lewis and
Sappington’s analysis assumes that in equilibrium there is no exclusion. They do not provide
conditions for exclusion to be absent, and unfortunately, as we will show, exclusion is rather
prevalent. In particular, in the context of nonlinear pricing, absence of exclusion requires the
aggregate demand curve to be perfectly inelastic at the seller’s marginal cost of production.2

Finally, Lewis and Sappington implicitly assume that the slope of iso-price curves in type
space is constant, which (in the nonlinear pricing interpretation) can happen only if the slope
of the agent’s demand function is independent of type.3

Rochet and Stole (2001) develop the direct method for arbitrary multi-dimensional screen-
ing problems. Their approach has two drawbacks. First, because the problem is not reduced
to a one-dimensional screening problem, the associated first-order conditions require the solu-
tion of a partial differential equation, which cannot be solved analytically, except in very special
cases. Secondly, because the direct approach only imposes the local incentive compatibility
constraints, the solution typically violates the conditions for global incentive compatibility. A
general method for solving our type of problem therefore remains lacking.

Lastly, a solution method for our problem has recently become available for the special
case where the agent’s utility function is linear in type. This was made possible by two
breakthroughs in the analysis of multi-dimensional screening problems. First, Rochet and
Choné (1998) developed a “sweeping” procedure (analogous to ironing for the one-dimensional
case), which adjusts the solution derived by the direct method so as to ensure global incentive
compatibility. Rochet and Choné’s method requires that the dimension of the type space
and allocation space coincide. However, by interpreting the coefficients on consumer types
as artificial goods in the utility function, Basov (2001) was able to transform the problem
from one where the number of consumer characteristics exceeds the dimension of the physical
allocation space to one where the two dimensions coincide. While ingenious, this approach
also has several drawbacks. It requires agents’ utility functions to be linear in type, which is
great for applications such as auctions, but quite limiting in the current context. The method
also necessitates the solution of a partial differential equation, which generally can be solved
only numerically. Finally, sweeping is a complicated procedure which does lend not itself to
analytical solutions.

It is fair to conclude that because of all these issues, our type of screening problem has
hitherto remained inaccessible to most economists, and therefore failed to generate interesting

1Properly taking into account the agent’s participation constraint changes the integrand of principal’s ob-
jective function in an essential way: rather than depending only on the allocation q(t1) and its derivative q0(t1)
it now also depends on q(t01) for all t

0
1 > t1. As a consequence, McAfee and McMillan’s formulation of the

problem can no longer be solved by the method of calculus of variation.
2Armstrong (1999) already pointed out this deficiency, but was unable to either provide neccessary and

sufficient conditions for exclusion to occur, or solve the associated multi-dimensional screening problem.
3As a consequence, Lewis and Sappington’s characterization of an optimal mechanism (Proposition 1, p.

447) is generally incorrect. However, it does hold for the special example studied in Section 5 of their paper.
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practical applications.
Our paper contains several methodological contributions. First, by correctly character-

izing the isoquants, the set of agent types that consume the same quantity, we are able to
reduce the multi-dimensional screening problem to a one-dimensional optimal control prob-
lem, whose solution is governed by an ordinary differential equation. Our solution method
is therefore accessible to most economists, and generates analytical solutions. Second, we
formulate the multi-dimensional screening problem as one of assigning agent types and tariff
to the one-dimensional allocation. This approach is not only natural here, underscoring the
one-dimensional nature of the principal’s optimization problem, but also avoids some of the
difficulties associated with discontinuities in the quantity allocation as a function of types that
typically arise in our problem (see the discussion in the next paragraph). Our method also
handles bunching in a straightforward and transparent way, without any need to resort to
“ironing” or “sweeping”. Finally, we present a novel condition, termed Single Crossing of
Demand (SCD), which ensures that the solution to the principal’s relaxed problem is globally
incentive compatible.

The solution to our multi-dimensional screening problem exhibits several interesting prop-
erties. First, it may or may not be optimal to exclude some consumer types from consumption.
The result that it can be optimal to have full consumer participation contrasts with estab-
lished wisdom, which holds that when the type space is multi-dimensional, exclusion is generic
(Armstrong (1996), Basov (2005)). Second the optimal quantity allocation is discontinuous
at the boundary between the region of exclusion (where the optimal quantity is zero) and the
region of non-exclusion (where the optimal quantity is generally bounded away from zero).
Finally, and perhaps most surprisingly, we find that there can be a bunching of quantities
allocated to a type located on the boundary between exclusion and non-exclusion, i.e. there
can be a discontinuity of quantity as a function of type. The consumer type on which the
quantities are bunched is then indifferent between all quantities in the bunch.

The rest of the paper is organized as follows. Section 2 introduces the model. Section
3 introduces the SCD condition, and characterizes the associated implementable allocations.
Section 4 uses this characterization to reformulate the principals’ problem to a one-dimensional
screening problem in which the density of types is endogenous. Section 5 solves the associated
optimal control problem, and presents necessary and sufficient conditions for exclusion to
occur. Section 6 studies an example with linear quadratic utility and uniformly distributed
types. Section 7 contains the conclusion.

2 The Model

A monopolist supplier of a single good faces a population of consumers. Consumers are dis-
tinguished by a two dimensional preference parameter t = (α, θ), which is private information.
The limitation to two dimensions of uncertainty is made here for ease of exposition and com-
pactness in notation. With minor modifications, our results generalize to higher dimensions
(for details, see Deneckere and Severinov (2009a). When consuming a quantity q ∈ R+ of
the good, acquired at cost p, a consumer of type t receives net utility u(q, t)− p. Consumers’
reservation utilities are equal to zero.
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The distribution function F (t) of consumer types in the population is common knowledge.
We assume that F (.) is twice continuously differentiable function, with density function f(θ) >
0, and a rectangular support [a, b] × [c, d]. Renormalizing, we can without loss of generality
take the support to be [0, 1]× [0, 1].

We assume that the firm’s marginal and average cost of production is constant at the level
c > 0. To handle the case in which the monopolist’s aggregate cost C(Q) is an increasing
function of aggregate output Q =

R
q(t)f(t)dt we would need one extra step. Precisely, for

any given constant marginal cost level c, our model would predict the corresponding aggregate
output level Q selected by the firm. Equilibrium then obtains whenever C 0(Q) = c.

We maintain the following assumptions on preferences throughout the paper:

Assumption 1 The function u(q, α, θ) : R+ × [0, 1]2 is of class C3. Furthermore,
(i) u(0, α, θ) = 0 for all (θ, α) ∈ [0, 1]2;
(ii) uq(q, α, θ) > 0, uθ(q, α, θ) > 0 and uα(q, α, θ) > 0, for all q > 0 and (α, θ) ∈ [0, 1]2;
(iii) uθq(q, α, θ) > 0, uαq(q, α, θ) > 0, for all (α, θ) ∈ (0, 1]2and q > 0;
(iv) uqq(q, α, θ) < 0 for all θ, α and q.

Assumption 1 is fairly standard. Part (iii) requires consumer’s utility functions to be
supermodular. Part (iv) ensures that consumers’ demand functions are downward sloping.

We also make extensive use of a novel assumption, specific to the higher-dimensional type
space, which we term “Single-Crossing of Demand”:

Assumption 2 (SCD) d
dq

uqα
uqθ

> 0 for all q > 0.

The economic interpretation of Assumption 2 is that the inverse demand functions can
intersect at most once, as the next lemma demonstrates.

Lemma 1 Suppose Assumption 2 holds and α0 > α. Then uq(q, α
0, θ0) = uq(q, α, θ) implies

uqq(q, α
0, θ0) > uqq(q, α, θ) .

Assumption 2 should not be confused with the single-crossing condition in one-dimensional
screening problems, which guarantees that consumers’ indifference curves in (q, t) space in-
tersect at most once. In fact, the latter condition is extremely restrictive, as it implies that
consumers’ demand curves do not intersect at all, i.e. can be ranked. In the next section, we
will show that Assumption 2 has many important consequences: it implies that isoquants in
(θ, α) space cannot intersect, and must “fan out”.

The monopolist’s problem is to select a nonlinear pricing schedule, i.e. a lower semi-
continuous function P : R+ → R+, so as to maximize her profits subject to consumer max-
imization.4 Consumer maximization requires that if a consumer of type t consumes the
quantity q, then the following incentive compatibility and individual rationality constraints
must be satisfied:

u(q, t)− P (q) ≥ u(q0, t)− P (q0), for all q0 (1)

u(q, t)− P (q) ≥ 0 (2)
4The Taxation principle implies that the monopolist cannot gain by offering more complicated screening

mechanisms. Below, we show that the schedule T (·) may be taken to be continuous, so the assumption of l.s.c.
is without loss of generality.
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Let T ∗(q) denote the set of all types t for which (1) and (2) hold. Also let T ∗∗(q) be the set of
all types who consume q or more when facing the pricing schedule P , i.e. T ∗∗(q) = ∪q0≥qT ∗(q0).
Finally, let

ω(q) = 1−
Z
T∗∗(q)

f(t)dt (3)

denote the proportion of types who consume q or less when faced with the pricing schedule
P . Then the monopolist’s problem is to solve

max
P (·)

Z ∞

0
(P (q)− c)dω(T ∗∗(q)) (4)

This formulation of the monopolist’s problem underscores its fundamental one-dimensional
nature, but comes at the cost of characterizing the potentially quite complicated structure of
the set T ∗∗(q). Our next section shows that Assumption 2 lends a relatively simple structure
to this set.

3 Characterization of Isoquants

Let us start with an example which demonstrates the difficulties that must be overcome in
characterizing the set T ∗∗(q). This example also illustrates where the previous literature has
gone wrong.

Example 1: Let u(q, α, θ) = θq − b−α
2 q2, with b < 3

2 . Also let c = 0, and let F be the
uniform distribution on the unit square. Following Wilson (1993) define the demand profile
N(p, q) as the fraction of consumers in the population whose demand price uq exceeds p. A
simple calculation yields:

N(p, q) =

(
1
2q{(1− p− (b− 1)q)2 − (1− p− bq)2}, if p+ bq ≤ 1

1
2q (1− p− (b− 1)q)2, if p+ bq ≥ 1.

According to the demand profile approach,N(p, q) represents the demand schedule for quantity
increment q. Thus for each increment q, the monopolist should select the price for increment
q, p(q) = P 0(q) to solve

max
p
{(p− c)N(p, q)

Performing this maximization gives

p(q) =

½ 1
2 − 1

4(2b− 1)q, if q ≤ 2
2b+1

1
3(1− (b− 1)q), if q ≥ 2

2b+1 .
.

resulting in the rtariff P (q) =
R q
0 p(z)dz

P (q) =

(
1
2q +

¡
1
8 − b

4

¢
q2, if q ≤ 2

2b+1
1

6(2b+1) +
q
3 − b−1

6 q2, if q ≥ 2
2b+1 .

.
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For this approach to be correct, every consumer type whose demand price equals p(q) should
also be willing to purchase all increments q0 < q and not purchase any increments q0 > q. This
will be the case if the iso-price curves in type space, defined by the equation uq(q, t) = p(q),
do not intersect, for then every consumer type t will have only one solution to the first order
condition associated with her surplus maximization problem maxq{u(q, t)− P (q)}.5

Let us therefore examine the iso-price curves associated with the schedule P . Solving the
equation θ − (b− α)q = p(q) yields

θ(q, α) =

½ 1
2 +

1
4(2b+ 1− 4α)q, if q ≤ 2

2b+1
1
3 +

1
3(2b+ 1− 3α)q, if q ≥ 2

2b+1 .

Figure 1 illustrates these iso-price curves. All iso-price curves are straight lines. For q ∈
[0, 2

2b+1 ], iso-price lines go through the point (α, θ) = (
2b+1
4 , 12), rotating up form a flat line at

the level q = 0 to the the quantity q = 2
2b+1 , where the northwest corner point (α, θ) = (0, 1)

is reached. For q ≥ 2
2b+1 , all iso-price lines rotate up through the point (α, θ) = (2b+13 , 13),

until the quantity q = 1
b−1 is reached, when the north-east corner point (α, θ) = (1, 1) is hit.

This means that any point (α, θ) in the interior of triangle the ∆ defined by the inequalities
θ ≤ 1/2, α ≥ 2b+1

4 , and θ ≥ 1+2b−2α
1+2b is the intersection point of an iso-price line from the

region q < 2
2b+1 and an iso-price line from the region q > 2

2b+1 . The objective function of
such a type therefore has two stationary points, one at a quantity q−(α, θ) < 2

2b+1 and one at
a quantity q_(α, θ) > 2

2b+1 . It is easy to see that q− corresponds to a local minimum, and q+
to a local maximum.

The presence of a local minimum to the consumer’s objective function has two immedi-
ate consequences. First, the demand profile approach, in which consumers are presented
with marginal price schedules p(q), is no longer equivalent to the original approach, where
consumers are presented with a nonlinear tariff P (q). Indeed, any consumer in the above
mentioned triangle would be unwilling to purchase any quantity increment in the interval
[0, q−], whereas they might purchase this increment when presented with the nonlinear pricing
schedule P . Secondly, and more damagingly, the quantity q+ may no longer be a global
maximum to the consumer’s optimization problem. Since the only other candidate for an
optimum occurs at q = 0, this raises the important issue of whether all consumer types who
are purchasing increment q+ under the marginal schedule p(q) would be willing to participate
in the mechanism. As indicated above, this is not an issue for consumer types with θ ≥ 1

2 ,
since iso-price lines do not cross for such types. For consumers types in the triangle ∆, only
q > 2

2b+1 can be a maximum, and for such q we have

u(q, α, θ(q, α))− P (q) =
1

6

µ
(1 + 2b)q2 − 1

1 + 2b

¶
− α

2
q2

5More formally, consider any type t on the iso-price curve at the quantity q, i.e. uq(q, t)− p(q) = 0. Since
iso-price lines do not cross, iso-price curves at quantities q0 > q will lie to the northeast of the iso-price curve at
quantity q, and iso-price curves at quantities q0 < q will lie to the southwest of the iso-price curve at quantity
q. It then follows from assumption 1(iii) that uq(q0, t)−p(q0) > 0 for q0 < q, and uq(q0, t)−p(q0) > 0 for q0 > q.
Consequently, type t’s objective function is strictly quasiconcave, implying that q is a global maximum.
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Setting this expression equal to zero yields

α(q) =
1 + 2b

3
− 1

3(1 + 2b)q2

θ(q) =
1 + (1 + 2b)q

3(1 + 2b)q

These equations trace out a strictly decreasing a curve in type space, which may equivalently
be expressed as

θ(α) =
1

3
+

p
(1 + 2b)(1 + 2b− 3α)

3(2b+ 1)

Note that the participation constraint is violated for all types in ∆ that lie below the curve
θ. As a consequence, the demand profile approach necessarily fails whenever when b < 3

2 .
The crossing of iso-price lines also implies that the methods of McAfee and McMillan and

Lewis and Sappington are flawed. Indeed, since a consumer type can lie on two distinct
iso-price lines uq(q, t) − p(q) = 0, merely being located on an iso-price line generally cannot
identify the quantity purchased by a consumer.

There are several approaches to resolving these difficulties. One could try to identify
conditions under which iso-price curves never cross. This is a useful approach, and we pursue
it elsewhere (Deneckere and Severinov, 2009b). The main drawback of this approach is that
it fails to solve some of the most rudimentary examples, such as the one presented above.
For this reason, the present paper concentrates on the more difficult question of solving the
multi-dimensional screening problem when iso-price curves are allowed to intersect.

Since consumer participation is problematic under these conditions, let us start by ensuring
that the non-exclusion region takes on a simple form. The main ingredient that will make this
possible is the supermodularity assumption 1(iii). Let s denote the consumer’s equilibrium
surplus under tariff P (·), and let Q∗ the associated argmax correspondence:

s(t) = max
q
{u(q, t)− P (q)}

Q∗(t) = argmax
q
{u(q, t)− P (q)}

Then we have:

Lemma 2 Suppose Assumption 1 holds. Then s is an absolutely continuous function, and
the envelope condition ∇s(t) = ∇tu(q, t) holds for a.e. t. Furthermore, Q∗(t) is a non-empty
closed-valued u.h.c. correspondence, and every selection of Q∗(t) is an increasing function.6

Let q(t) = maxQ∗(t). An immediate consequence of Lemma 2 is that if type t is willing
to participate, i.e. q(t) > 0, then any type t0 to the northeast of t is also willing to participate,
i.e. has s(t0) > 0. As a consequence, the boundary between the region of participation and
non-participation,

θ(α) = inf{θ|s(α, θ) > 0}
6More precisely, if q0 is a selection from Q∗ then q0(θ0, α0) ≥ q(θ, α) whenever θ0 ≥ θ and α0 ≥ α.
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is well defined, and is downward sloping:7,8

Lemma 3 The function θ(α) is continuous, non-increasing in α, and strictly decreasing in α
whenever q(α, θ(α)) > 0 and θ(α) > 0.

Lemma 3 and 2 jointly imply that if q(α, θ(α)) = 0, and α > 0 then it is possible to have
θ(α0) = θ(α0) for all α0 < α, i.e. the lower boundary may have a flat segment [0, α]. Note that
at the right endpoint of such a flat initial segment, there can be an upward jump in q(α, θ(α)),
as is illustrated in Example 1. Flat sections can also be present because θ hits the lower or
upper boundaries of the type space.

Let us now turn to the structure of isoquants associated with quantities q > 0. The two
main ingredients that allow us to characterize these isoquants are the supermodularity of the
agent’s payoff function and SCD.

Lemma 4 Suppose Assumption 2 holds, and q1 ∈ Q∗(θ1, α1). Then for all (θ2, α2) s.t. α1 >
α2 and uq(q1, θ2, α2) = uq(q1, θ1, α1), one has q1 ∈ Q∗(θ2, α2).

Lemma 4 says that for any point (α, θ) in the participation region, the portion of the iso-
price curve at the quantity q(α, θ) that lies to the northwest of the point (α, θ) belongs to the
set the set T ∗(q(α, θ)). Accordingly, for any point (α, θ) in the participation region, define
I(α, θ) to be portion of the iso-price curve through the point (α, θ) at the quantity q(α, θ) for
which q(α, θ) is an optimal choice, i.e.

I(α, θ) = {(α0, θ0) : uq(q(α, θ), α0, θ0) = uq(q(α, θ), α, θ) and q(α, θ) ∈ Q∗(α0, θ0)}

We will refer to the set I(α, θ) as an isoquant at the quantity q(α, θ).9 Our next lemma shows
that isoquants associated with quantities q < q(α, θ) cannot intersect the isoquant I(α, θ) at
any point other than (α, θ):

Lemma 5 Suppose Assumption 2 and 1(iii) hold. Let (α, θ) be any point in the participation
region. Then q ∈ Q∗(α, θ0) and q < q(α, θ) imply θ0 ≤ θ. Furthermore, if θ0 = θ, then neither
I(α, θ) nor I(q, α, θ) contain a point (α00, θ00) with α00 > α.

In addition, except when q(θ, α) = 0, the isoquant I(α, θ) cannot intersect the lower
boundary at any point to the northwest of the point (θ, α):

Lemma 6 Suppose that Assumption 2 holds. Let q(θ, α) > 0. Then I(θ, α) does not intersect
the boundary θ(·) at any point to the northwest of (θ, α).

7We adopt the convention that the infimum of the empty set equals 1.
8 It follows from Lemma 2 that q(α, θ) = 0 for all θ < θ(α) and that q(α, θ) > 0 for all θ ≥ θ(α). Thus we

may equivalently define θ(α) = inf{θ|q(α, θ) > 0}.
9For (α, θ) where Q∗(α, θ) is multi-valued, which is a set of measure zero in type space, there may be

isoquants emanating from (α, θ) at quantities q ∈ Q∗(α, θ) s.t. q < q(α, θ). We will denote those isoquants by
I(q, α, θ).
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In general, this is as far as a characterization of isoquants can go. Indeed, isoquants may
emanate from the interior of the participation region, and may touch in the interior of that
region, as the next example demonstrates:

Example 2: Let u(q, α, θ) = θq − (1− α
2 )q

2 . Consider the following tariff:

P (q) =


1
9 if q ≤ 1

3
2
27 if 13 < q ≤ 2

3
∞ if q > 2

3

Then the lower boundary consists of two parts:

θ(α) =

½
19
36 − α

18 if α ≤ 1
2

5
9 − α

9 if α ≥ 1
2

Consumers types along the curve

θ12(α) =
7

12
− α

6
, α ≤ 1

2

are indifferent between consuming q1 =
1
9 and q2 =

2
9 . All isoquants associated with the

quantity q1 =
1
9 emanating from the portion of the lower boundary with α ≤ 1

2 end up along
the curve α = 0 , and so do all isoquants associated with the quantity q2 = 2

9 emanating from
the portion of the lower boundary with α ≥ 1

2 . All remaining isoquants at q1 and q2 emanate
from the curve θ12.

To simplify and complete our description of isoquants, we will therefore make one addi-
tional assumption:

Assumption 3 (Continuity) The allocation q(α, θ) is continuous on the interior of the par-
ticipation region.

Our justification for making this assumption is the following:

Lemma 7 Suppose the tariff P (·) solves problem (4). Then the associated allocation satisfies
Assumption 3.

Under Assumption 3 no isoquants can emanate from the interior of the participation region.
As a consequence, isoquants are entirely determined by the behavior of the allocation q(α, θ)
along the curve

L = {(α, θ(α)) : 0 ≤ α ≤ 1} ∪ {(1, θ) : θ ≥ θ(1)},
which traces out the lower boundary and the right boundary of the participation region.

Theorem 1 (Necessity) Suppose Assumptions 1, 2 and 3 hold, and suppose that sup uα
uθ
(q, α, θ) <

∞. Then for any tariff P (·) there exists (bα,bθ) with either bα = 0 or bθ = 1, and two non-
decreasing functions q(·) : [0, 1]→ R+ and q̄(·) : [bθ, 1]→ R+ with q(1) = q̄(bθ), such that
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(i) The lower boundary θ(α) is an absolutely continuous function, satisfying θ(α) > 0 for
all α ≤ bα and θ(α) = 0 for all α ∈ [bα, 1) . Furthermore, for almost every α s.t. 0 < θ(α) < 1
we have

dθ

dα
= −uα

uθ
(q(α, θ(α)), α, θ(α)) (5)

(ii) q(α) = minQ∗(α, θ(α)) for every α ∈ [0, 1], and q̄(θ) = minQ∗(1, θ) for every θ ∈ [bθ, 1].
(iii) P (q) is an absolutely continuous function, with

P (q) =


u(q, α, θ(α)) if q ∈ [q(0), q(bα)]

u(q(bα), bα, θ(bα)) + R qq(bα) uq(z, θ(α(z)), α(z))dz if q ∈ [q(bα), q(1)]
P (q̄(bθ)) + R q

q̄(bθ) uq(z, 1, θ(z))dz if q ∈ [q(1), q̄(1)]
(6)

If, in addition Assumption 3 holds, then:
(iv) Q∗(α, θ(α)) is convex-valued for every α ∈ [0, 1],and Q∗(1, θ) is convex valued for every

θ ∈ [bθ, 1].
(v) I(α, θ) ∩ L is a singleton, for all (α, θ) such that s(α, θ) > 0.

Part (i) of Theorem 1 links the lower boundary to the allocation along the lower boundary.
Part (ii) shows that the allocation is nondecreasing along the boundary L. Part (iii) links
the tariff P (·) to the allocation along along the boundary L. Part (iv) says that any point
(α, θ) ∈ L where the allocation jumps up, type (α, θ) is indifferent between all quantities in the
interval [minQ∗(α, θ),maxQ∗(α, θ)]. Part (v) asserts that every isoquant in the participation
region must emanate from a unique point in L. The final result of this section provides a
converse to Theorem 1:

Theorem 2 (Sufficiency) Suppose Assumptions 1, 2 hold, and sup uα
uθ
(q, α, θ) <∞. Suppose

we are given (bα,bθ) with either bα = 0 or bθ = 1, and two non-decreasing uppersemicontinuous
functions q(·) : [0, 1]→ R+ and q̄(·) : [bθ, 1]→ R+ with q(1) = q̄(bθ). Let

(i) θ(α) = min{bθ + R bαα uα
uθ
(q(a), a, θ(a))da} for α ≤ bα, and θ(α) = 0 for α > bα

(ii) q(α, θ) = q for any q > 0 s.t. uq(q, α, θ) = uq(q, α(q), θ(q)), where

(α(q), θ(q)) =

½
(α, θ(α)) if α = sup{a : q(a) < q}, and q ≤ q(1)

(1, θ) if θ = sup{τ : q̄(τ) < q}, and q > q(1)
(7)

and q = 0, otherwise
(iii)

P (q) =


u(q, α(q), θ(q)) if q ≤ q(bα)

u(q(bα), bα, θ(bα)) + R qq(bα) uq(z, α(z), θ(z))dz if q(bα) < q ≤ q̄(1)

∞ if q > q̄(1)

Then the allocation q(·) is incentive compatible for the tariff P (·), and satisfies Assumption
3. Furthermore, θ is the lower boundary associated with the tariff P (·).

11



Theorems 1 and 2 imply that the set T ∗∗(q) takes on a very simple form: it is the region of
type space bounded by the upper envelope of the lowest isoquant associated with the quantity
q (emanating from the point (α(q), θ(q)) and the lower boundary θ.

Before proceeding with the solution of problem (4) we need to address one more technical
issue. Note that flat sections in the allocation along the boundary L of the participation region
are associated with discontinuities in the function (α(·), θ(·)). Such discontinuities generate
discontinuities in the set T ∗∗(q), and hence the measure µ(q). This complicates the solution
of (4).

For simplicity, we will henceforth assume that the function (α(q), θ(q)) is absolutely con-
tinuous on the interval (q(0), q̄(1)]. This approach is justified by the following reasoning.
Suppose there exists a solution to problem (4) when (α(·), θ(·)) is restricted to be absolutely
continuous. Because absolutely continuous functions are dense in the set of measurable func-
tions, such a solution must also be a solution to the unrestricted problem. Our analysis below
will identify conditions under which the restricted problem has such a solution. These exis-
tence conditions automatically identify circumstances under which “ironing” of the allocation
along L will not be needed. When ironing is necessary, a more complicated approach using
impulse control is appropriate. We pursue this route elsewhere (Deneckere and Severinov,
2009c).

4 The Reformulated Problem

In this section, we use Theorem 2 to reformulate the monopolist’s problem (4) into an optimal
control problem. Suppose therefore that we are given a point (bα,bθ) with either bα = 1 orbθ = 0, and two strictly increasing functions q : [0, 1] → R+ and q̄ : [bθ, 1] → R+, satisfying

q̄(bθ) = q(1). Let (α(q), θ(q)) be defined by (7). Also, for any point (α, θ) let the function
σ(q, α, θ, ·.) represent the iso-price curve through (α, θ) at the quantity q. Thus σ solves the
equation

uq(q, σ, a) = uq(q, θ, α).

We may now state:

Theorem 3 Suppose Assumptions 1 and 2 hold, and suppose that (α(·), θ(·)) : [0, q̄(1)]→ R2+
is piecewise continuously differentiable. Define the functions

h(q, α, θ, α0, θ0) =
Z α

0
f(σ(q, α, θ, a), a)[σq(q, α, θ, a) + σθ(q, α, θ, a)θ

0 + σα(q, α, θ, a)α
0]da

and

H(q, α, θ) =

Z 1

0

Z ∞

σ(q,α,θ,a)
f(a, θ)dθda

12



Then the monopolist’s profits are given byZ q(bα)
0

u(q, α(q), θ(q))h(q, α(q), θ(q), α0(q), θ0(q))dq

+u(q(bα), bα,bθ)H(q(bα), bα,bθ) + Z q̄(1)

q(bα) H(q, α(q), θ(q))uq(q, α(q), θ(q))dq

Theorem 3 says that the monopolist’s profits can be split into two parts, one part that
depends only upon the allocation (α(q), θ(q)) for q ≤ q(bα), and another part that depends only
upon the allocation (α(q), θ(q)) for q ≥ q(bα). Over the first interval the tariff P (q) equals
the gross utility of the type (α(q), θ(q)) along the lower boundary that consumes q. The
number of types from which P (q) is collected is given by h(q, α(q), θ(q), α0(q), θ0(q)), which
represents the density of types located on the isoquant through the point (α(q), θ(q)). Over
the second interval, profits equals the sum of two terms. First, from each type that consumes
more than q(bα) , of which there are H(q(bα), bα,bθ) = 1 − µ(q(bα)), the monopolist collects the
price paid by type (bα,bθ), i.e. u(q(bα), bα,bθ). Second, the monopolist collects the marginal
price P 0(q) = uq(q, α(q), θ(q)) from each type that consumes more than q, of which there are
H(q, α(q), θ(q)) = 1− µ(q).

A consequence of Theorem 3 is that the monopolist’s optimization problem can be split
into three stages. First, given bq ∈ R+ and (bα,bθ) ∈ [0, 1]2 such that either bα = 1 or bθ = 0,
solve the following problem: Select q(1) and q̄(1) ∈ R+, and functions α ∈ Lip([bq, q(1)]) and
θ ∈ Lip([q(1), q̄(1)]) to maximize

W (bq, bα,bθ) = u(bq, bα,bθ)H(bq, bα,bθ) + Z q̄(1)

bq H(q, α(q), θ(q))uq(q, α(q), θ(q))dq (8)

subject to the constraints bq ≤ q(1) ≤ q̄(1)

α(q) = 1, for q ≥ q(1)

θ(q) = 0, for q ∈ (bq, q(1)]
θ(q̄(1)) = 1

α0(q), θ0(q) ≥ 0
In the second stage, select q(0), and functions α ∈ Lip([0, bq]) and θ ∈ Lip([0, bq]) to maxi-

mize

V (bq, bα,bθ) = Z bq
q(0)

u(q, α(q), θ(q))h(q, α(q), θ(q), α0(q), θ0(q))dq +W (bq, bα,bθ) (9)

subject to the constraints

α(q(0)) ≥ 0, α(bq) = bα, and θ(bq) = bθ
α0(q) ≥ 0

θ0(q) = −uα
uθ
(q, θ(q), α(q))α0(q)

Finally, in the last stage, select bq ∈ R+ , and (bα,bθ) ∈ [0, 1]2 such that either bα = 1 orbθ = 0 to maximize V (bq, bα,bθ).
13



5 Solving the Control Problems

In this section, we solve the optimal control problems (8) and (9).

5.1 Solving the Variational Problem (8)

First, let us consider the calculus of variations problem (8), with fixed left hand and right
hand boundaries, fixed initial “time” bq, and free right hand “time” q̄(1). Our next theorem
describes the solution to this problem

Theorem 4 Suppose that the functions

φ(q, θ) = uq(q, 1, θ)Hθ(q, 1, θ) + uθq(q, 1, θ)H(q, 1, θ)

κ(q, α) = uq(q, α, 0)Hα(q, α, 0) + uαq(q, α, 0)H(q, α, 0)

are increasing in q and decreasing in α and θ. Let ακ(q) denote the solution in α to the
equation κ(q, α) = 0, and let θφ(q) denote the solution to the equation φ(q, θ) = 0.

Then if bα = 1, we have θφ(q) ≤ bθ and the solution θ(q) to problem (8) satisfies θ(q) =
max{θφ(q),bθ}. If bα < 1 then q(1) solves φ(q, 0) = 0 , and ακ(q) < bα. Furthermore, over the
interval (bq, q(1)] the solution α(q) to problem (8) satisfies α(q) = max{ακ(q), bα}, and over
the interval [q(1), q̄(1)] it satisfies θ(q) = θφ(q).

Under the conditions of Theorem 4 the monotonicity constraints α0(q) ≥ 0 and θ0(q) ≥ 0
can be ignored, and problem (8) is solved by pointwise maximization under the integrand. The
conditions κ(q, α) = 0 and φ(q, θ) = 0 are a multi-dimensional version of a condition familiar
from the one-dimensional type case, that at the optimum marginal virtual surplus must be
equal to zero.10, 11 Using the facts that limq→q̄(1)H(q, q, θ(q) = 0 and limq→q̄(1)Hθ(q, q, θ(q) <
0, we also obtain the familiar condition that the allocation of the “top” type (1, 1) must be
undistorted.

uq(q̄(1), 1, 1) = 0.

When the monotonicity constraints are binding, we must associate Lagrange multipliers λ(q) ≥
0 and ν(q) ≥ 0 with the constraints α0(q) ≥ 0 and θ0(q) ≥ 0. Our next result describes how
to obtain an ‘ironed’ solution:

Corollary: The solution to (8) satisfies λ(q)α0(q) = 0 and ν(q)θ0(q) = 0. Over any
interval in (bq, q(1)] on which λ(q) > 0 we have λ0(q) = κ(q, α(q)) , and over any interval in
[q(1), q̄(1)] on which ν(q) > 0 we have ν0(q) = φ(q, θ(q)).

We can use Theorem 4 to establish necessary and sufficient conditions for the absence of
exclusion in the optimal screening mechanism:
10More explicitly, letting t denote the type parameter in the one-dimensional screening model, and letting

F (t) denote its distribution function, the optimality condition is uqF 0 + uqt(1− F (t)) = 0.
11Note that when the monopolist selects bθ < θ(bq) or bα < α(bq), there is a non-empty right neighborhood of bq

over which all isoquants emanate from (bα,bθ). We shall show in Theorem 7 below that it is never optimal to
do so.
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Theorem 5 Suppose the conditions of Theorem 4 hold. Then a necessary and sufficient
condition for the absence of exclusion is that there exist α̊ > 0 such that

−uq(0, α, 0)
Z α

0

f(a, 0)

uqθ(q, a, 0)
da+H(0, α, 0) = 0 (10)

and such that uqα(0, α, 0) = 0 for all α ∈ [0, α̊].

Theorem 5 sheds considerable light on how multi-dimensionality in customer types affects
the monopolist’s incentive to exclude some customers from the market. To this effect, let us
start by giving an economic interpretation to equation (10). Consider the aggregate demand
curve for the first increment, N(p, 0) = #{t : uq(0, t) ≥ p}. Let α(p) be such that the demand
price of type (α(p), 0) equals p, i.e. uq(0, α(p), 0) = p. Then we have N(p, 0) = H(0, α(p), 0).
Thus equation (10) says that the marginal price for the first increment must maximize the
profits from that increment:

p
∂N

∂p
(p, 0) +N(p, 0) = 0

Exclusion will occur if and only if at the monopoly price for this increment some consumers
decide not to purchase the increment, i.e. if there are some types α < α̊ for which uq(0, α, 0) <
uq(0, α̊, 0). The condition uqα(0, α, 0) = 0 for all α ∈ [0, α̊] rules this out.

As in the one-dimensional type case, absence of exclusion requires the demand curve for
the first increment to be perfectly inelastic at a price equal to marginal cost. Indeed, if there
is no “gap” between the lowest demand price for the first increment and marginal cost, i.e.
if uq(0, α, 0) = 0, then equation (5) can hold only if

R α
0 f(a, 0)da = ∞, i.e. if and only if

∂N
∂p (0, 0) = ∞. On the other hand, if the gap between the lowest demand price for the first
increment and marginal cost is sufficiently large, then like in the one-dimensional type case
there can be no exclusion, provided uqα(q, α, 0) = 0 for all α ∈ [0, α̊]. Our next example
shows that this can indeed happen.

Example 3: Let u(q, α, θ) = 1+θ+k
2 q − b−α

2 q2 for some k ≥ 0 and b ≥ 1, let c = 0, and
let f(α, θ) = 1 for all (α, θ) ∈ [0, 1]2. Then (10) becomes −(1 + k)α + 1 = 0, so we have
α̊ = 1

1+k ∈ (0, 1].

Armstrong (1996) has argued forcefully that exclusion necessarily occurs types are multi-
dimensional. Since our other assumptions are consistent with those put forth by Armstrong,12

Theorem 5 indicates that Armstrong’s conclusion is specific to cases where the allocation space
and the type space have the same dimensionality. Nevertheless, our theorem also demonstrates
that there is a sense in which non-exclusion is harder to obtain when the type space is multi-
dimensional. In considering raising the marginal price for the first increment above the level
where all consumers are included, the monopolist trades off the extra dollar gained on all
existing customers (measured by the term H(0, α, 0)) against the loss in revenue caused by
some consumers dropping out of the market (measured by the term in (10)). The number of
lost customers is measured (roughly) by the length of the isoquant emanating from the point

12 In particular, our type space is a strictly convex set with non-empty interior. Also, the utility function in
Example 3 is convex and homogeneous of degree one in types.
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(α̊, 0). If we had α̊ = 0, then the number of customers dropping out would be negligible, and
exclusion would always pay. This is essentially the effect identified by Armstrong. On the
other hand, if α̊ > 0, then for no customer to be excluded at the price uq(q, α̊, 0) the isoquant
through (α̊, 0) at the quantity q = 0 must be flat. If it were the case that uqα(0, α, θ) > 0 for
all (α, θ) then exclusion would necessarily occur.

5.2 Solving the Optimal Control Problem (9)

To solve (9), we formulate it as the following optimal control problem: Find piecewise contin-
uous control functions v(q) and w(q), and associated continuous and piecewise differentiable
state variables θ(q) and α(q), defined on the “time” interval [q(0), bq], that solve

W0(bq, bα,bθ) = max
(v(·),w(·))∈U,q(0)

Z bq
q(0)

u(q, α(q), θ(q))h(q, α(q), θ(q), v, w)dq, (11)

subject to the state evolution equations

α̇ = v, (12)

θ̇ = w,

initial conditions α(0) ≥ 0, terminal conditions α(bq) = bα and θ(bq) = bθ, and control variable
restrictions

(v,w) ∈ U(q, α, θ) ≡ {(v, w) : v ≥ 0 and w + vg(q, θ, α) = 0}
To solve this control problem, let

F (q, α, θ, v, w) = u(q, α, θ)h(q, α, θ, v, w)

and form the Hamiltonian

H(q, α, θ, v, w, λ, µ) = F (q, α, θ, v, w) + µv + λw

According to Pontryagin’s maximum principle, the optimal controls (v,w) must maximize H
over the set U , i.e. must be stationary points of the Lagrangian

L(q, α, θ, v,w, λ, µ, ξ, χ) = F (q, α, θ, v, w) + µv + λw + ξ(w + vg(q, α, θ)) + χv

and the costates variables µ and λ must satisfy the evolution equations

µ̇ = −∂L
∂α

λ̇ = −∂L
∂θ

Our next theorem summarizes the solution, using the following notation:

h0(q, α, θ) =

Z α

α(q,α,θ)
f(σ(q, α, θ, a), a)σq(q, σ(q, α, θ, a), a)da (13)

h1(q, α, θ) =

Z α

α(q,α,θ)
f(σ(q, α, θ, a), a)σθ(q, σ(q, α, θ, a), a)da

h2(q, θ, α) =

Z α

α(q,α,θ)
f(σ(q, α, θ, a), a)σα(q, σ(q, α, θ, a), a)da.

16



and
ψ(q, α, θ) =

uquθ
uqθ

(q, α, θ)h1(q, α, θ)

Theorem 6 (i) Over any nondegenerate interval on which α is strictly increasing, and hence
θ is strictly decreasing, the solution to (11) satisfies

µ(q) = −uh2 + ψg

λ(q) = −uh1 + ψ

ξ(q) = −ψ
χ(q) = 0

On such an interval, the state variables α and θ satisfy the pair of differential equations

α0(q) =
uθh0 − uqh1 + ψq

ufσθ + ψgθ + ψθg − ψα − uθ(h2 − gh1)
(14)

θ0(q) = −gα0.
(ii) Over any nondegenerate interval on which α (and hence) θ are constant, we have

ξ̇ = uθh0 − uqh1, and

χ̇ = −(ψ + ξ)gq

µ̇ = − ∂

∂α
uh0

λ̇ = − ∂

∂θ
uh0.

(iii) The functions λ(q), µ(q) and ξ(q) are continuous, except possibly at a point q∗∗ where
σ(q, α(q), θ(q), 0) = 1.

(iii) The solution satisfies α(q(0))q(0) = 0.

Theorem 6 tells us how to construct the solution (α(q),θ(q)), for q ∈ [0, bq]. Starting from
the point (bα,bθ) run the differential equation system (14) backwards, for as along as α0 > 0.
Remain at any point (α, θ) for any interval of q for which the constraint α0(q) ≥ 0 is violated,
then resume running (14) backwards, and continue this process until either α(q) = 0 or q = 0.

The reason for a potential discontinuity in the costate variables is that function h(q, α, θ, v, w) =
h0(q, α, θ)+h1(q, α, θ)v+h2(q, α, θ)w, and hence the objective F (q, α, θ, v, w), is not continu-
ously differentiable at a point q∗∗ at which the isoquant trough (α(q), θ(q)) hits the northwest
corner point (0, 1). The reason for this can be gleaned from equation (13): α(q, α, θ) > 0
for any q > q∗∗, but α(q, α, θ) = 0 for any q ≤ q∗∗. The derivatives of α, and hence of the
function h, will therefore exhibit a discontinuity at q = q∗∗.13

Our next lemma states some mild regularity conditions which yields more structure to the
solution of (11):
13Optimal control theory requires the objective function to be continuously differentiable in the state. To

handle the discontinuity at q∗∗, we split the single ‘time’ interval [q(0), q∗∗] into to two separate intervals,
[q(0), q∗∗] and [q∗∗, q̄(1)].

17



Lemma 8 (i) Suppose that u− uθuq
uqθ

> 0 for all q > 0 and t. Then α(q(0)) > 0 and q(0) = 0.

(ii) Suppose that ∂
∂q{uθh0−uqh1+ψq} < 0 . Then there is at most one interval on which

the constraint α0 ≥ 0 is binding. If there is such an interval, then it contains q = 0.

Lemma 8 reveals some important qualitative properties of the optimal mechanism. First,
whenever u− uθuq

uqθ
> 0 for all q > 0, the monopolist finds it optimal to sell quantities arbitrarily

close to zero to some consumer types. The required condition holds for most commonly
specified utility functions, and is satisfied whenever u − uθuq

uqθ
is strictly increasing in q. A

sufficient condition for the latter property is that uqqθ ≥ 0.14 Second, over any interval [q−, q+]
on which α0(q) is constant, all isoquants associated with q ∈ [q−, q+] emanate from the same
point (ᾰ, θ̆) on the lower boundary. In other words, there is a discontinuity in the allocation
assigned to types on the lower boundary at the point (ᾰ, θ̆). Unlike in the one-dimensional
type case, such discontinuities are not associated with gaps in the consumption schedule.15

Our regularity condition in (ii) ensures that there is at most one point on the lower boundary
where this can happen, in which case it is necessary that q− = 0.

5.3 Transversality Conditions for (bα,bθ) and bq.
It remains to determine the transversality conditions for (bα,bθ) and bq. Recall that there are
only two free variables, since either bα = 1 or bθ = 0. Our first result establishes that at
the optimum there is a one to one relationship between (bα,bθ) and bq, effectively reducing our
optimization problem to the determination of a single parameter.

Theorem 7 Suppose that the functions φ(q, θ) and κ(q, α) are increasing in q and decreasing
in α and θ. Then at the optimum, bθ = θφ(bq) whenever bα = 1, and bα = ακ(bq) wheneverbθ = 0.

Define q0 to be the unique solution to the equation φ(q, 0) = 0. According to Theorem
7 whenever bq ≥ q0 it must be that bθ = θφ(bq), and whenever bq ≤ q0we have bα = ακ(bq). It
remains to determine the optimal value of bq. Our next theorem addresses this issue, using
the notation µ−(q∗∗) = limq↑q∗∗ µ(q) and µ+(q

∗∗) = limq↓q∗∗ µ(q), and similarly for λ−(q∗∗)
and λ+(q

∗∗):

Theorem 8 Suppose that the functions φ(q, θ) and κ(q, α) are increasing in q and decreasing
in α. Then:

(i) If α(bq, bα,bθ) > 0 and α0(bq) > 0 the following transversality condition must hold:
[µ+(q

∗∗)− µ−(q
∗∗)]

dα∗∗

dbq + [λ+(q
∗∗)− λ−(q∗∗)]

dθ∗∗

dbq = 0;

14We have ∂
∂q
(uqθu− uθuq) = uqqθu− uθuqq > 0 whenever uqqθ >

uθuqq
uθ

.
15 In the one-dimensional type case, if there is an interval of [q−, q+] on which t(q) is constant, then no

consumer other than t(q−) purchases quantities in the interval [q−, q+].
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(ii) If α(bq, bα,bθ) = 0 , or if α0(q) = 0 for all q ≤ bq, the following transversality condition
must hold:16

λ(bq) = ψ(bq, 1, θφ(bq))− u(bq, 1, θφ(bq))h1(bq, 1, θφ(bq)), if θφ(bq) > 0
µ(bq) = ψ(bq, ακ(bq), 0)g(bq, ακ(bq), 0)− u(bq, ακ(bq), 0)h2(bq, ακ(bq), 0), if ακ(bq) < 1

To interpret Theorem 8 note that in case (i) the transversality condition only has bite if
α0(q) > 0 in a right neighborhood of q∗∗ but α0(q) = 0 in a left neighborhood of q∗∗. Theorem
8 therefore suggests that at the optimum, whenever bq > 0 or α(bq, bα,bθ) > 0, there will be an
interval of quantities (a left neighborhood of q∗∗ in case (i), and a left neighborhood of bq in
case (ii)) for which isoquants emanate from the same point (the point (α∗∗, θ∗∗) in case (i),
and the point (bα,bθ) in case (ii)). Our next lemma simplifies the task of applying Theorem 8,
under an additional regularity condition:

Lemma 9 Suppose that ∂
∂q{uθh0 − uqh1 + ψq} < 0, and suppose that α0(q) = 0. Then

λ(q) = − R q0 ∂(uh0)
∂θ (z, α(q), θ(q))dz and µ(q) = − R q0 ∂(uh0)

∂α (z, α(q), θ(q))dz.

We can use Theorem 8 to derive necessary conditions for the demand profile approach to
yield the correct optimal screening mechanism:

Theorem 9 Suppose that the functions φ(q, θ) and κ(q, α) are increasing in q and decreasing
in α and θ. Then for the demand profile approach to yield the optimal screening mechanism
it is necessary and sufficient that bq = 0 in the optimal mechanism.

The conditions of Theorem 9 are extremely stringent, as our example below will illustrate.

6 A linear-quadratic example

In this section, we derive an explicit solution for a parametrically specified example. Let

u(q, α, θ) = θq − b− α

2
q2 (15)

where b ≥ 1. Furthermore, let (α, θ) be uniformly distributed on the unit square I =
[0, 1]× [0, 1]:

f(α, θ) = 1 for all (α, θ) ∈ I. (16)

Note that since uq(0, α, 0) = 0, by Theorem 5 there will always be exclusion in the optimal
mechanism. The solution to this example takes on a different qualitative form depending
upon whether b ≥ 3

2 or b <
3
2 . We start with the case b ≥ 3

2 , which was previously analyzed
by Laffont, Maskin and Rochet (1987).

Theorem 10 The optimal screening mechanism for the linear-quadratic uniformly distributed
example (15)-(16) with b ≥ 3/2 is as follows:
16The proof of the Theorem states a more complicated condition that must hold if α0(bq) = 0, but α0(q) > 0

for some q < bq.
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Let q∗ = 2
2b+1 , θ

∗ = 2b−1
2b+1 , and q̄ = 1

b−1 . Then α(q) = 1 for all q ∈ [0, q̄] and

θ(q) =

(
1+2(b−1)q

3 , for q ∈ [q∗, q̄]
1+(b−3

2
)q

2 , for q ∈ [0, q∗].
Thus the optimal nonlinear tariff is given by:

P (q) =

(
1

6(2b+1) +
q(2−(b−1)q)

6 , for q ∈ [q∗, q̄]
q
8(4− (2b− 1)q), for q ∈ [0, q∗].

When b ≥ 3
2 , we have q

∗∗ = bq = 0 so the region associated with 9 is empty. All isoquants
therefore emanate from the portion of right hand boundary α = 1 above θ = 1

2 , i.e. the
interval of points {(1, θ) : θ ∈ [12 , 1]. Note in particular that the isoquant associated with
q = 0 is a flat line segment at θ = 1

2 , i.e. the collection of points {(α, 12) : α ∈ [0, 1]}.
Figure 2 illustrates the isoquants for this case. None of the iso-price lines associated with
this mechanism intersect each other in the type space. As a consequence, the demand profile
approach properly identifies the optimal mechanism. Since α varies from b − 1 to b, large
values of b are associated with low variability in the slope parameter. Thus, one way to
interpret this result is that when the uncertainty is (sufficiently) close to one dimensional, the
demand profile approach is valid. We now turn to the significantly more complicated case
where b < 3/2.

Theorem 11 The optimal screening mechanism for the linear-quadratic uniformly distributed
example (15)-(16) with b < 3/2 is as follows:

Let α∗∗ = 2b
3 , θ

∗∗ = 1− 2bq∗∗
3 , q∗∗ the unique non-negative root to the equation

(1 + bq − bq2(
3

2
+ 2b))2 = (1− bq)(1 + bq − bq2(

5

2
+ b))3, (17)

and bθ = 1 +
p
(1− bq)(4(1 + bq)− 2bq2(5 + 2b)

3
,

and bq = 3bθ−1
2(b−1) . Then

α(q) =


α∗∗, for q ∈ [0, q∗∗]

c0 +
c1
27(2−

q
1− 6

c1q
)(1 +

q
1− 6

c1q
)2, for q ∈ [q∗∗, bq]

1, for q ∈ [bq, q̄]
and

θ(q) =


θ∗∗, for q ∈ [0, q∗∗]

2
3 − 1

3

q
1− 6

c1q
, for q ∈ [q∗∗, bq]

1, for q ∈ [bq, q̄]
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where the constants c0 and c1 are related to bθ as follows:
c1 =

4(b− 1)
(1− bθ)(3bθ − 1)2 , and (18)

c0 =
bθ2(5 + 4b)− bθ(2 + 4b) + 1

(3bθ − 1)2 < 0 (19)

Thus the optimal nonlinear tariff is given by:

P (q) =

(
u(q, α(q), θ(q)) , for q ∈ [0, bq]
(b−1)bq2

3 + q
6(2− (b− 1)q), for q ∈ [0, q∗].

For b < 3
2 , in the optimal screening mechanism the isoquants for q ∈ [0, q∗∗] all emanate

from the point (α∗∗, θ∗∗) on the lower boundary. In particular, for q = 0 the isoquant is the
flat segment at the level θ = θ∗∗ with α = α∗∗, i.e. the collection of points {(α, θ∗∗) : α ∈
[0, α∗∗]}. For q ∈ [q∗∗, bq] the lower boundary is strictly decreasing, and given by the equation
α = c0 + c1θ(1 − θ)2. For this segment of q values there is a unique isoquant associated
with every point on the lower boundary. Note that since all types (α, θ∗∗) along the lower
boundary with α ≤ α∗∗ are assigned a quantity 0, and since all types along the lower boundary
with θ > θ∗∗ are assigned a quantity q ≥ q∗∗, there is a discontinuity in the optimal quantity
assignment along the lower boundary. Finally, for q ≥ bq, all isoquants emanate from the
portion of the right hand boundary α = 1 with θ ≥ bθ. Figure 3 illustrates the lower boundary
and the isoquants for the case b < 3

2 . It is important to observe that while the isoquants
associated with the optimal mechanism never intersect in the interior of the participation
region, the corresponding price lines would intersect in the region of non-participation. Thus
in accordance with Theorem 9 for every value of the parameter b with b < 3/2, the demand
profile is incapable of correctly identifying the optimal mechanism.

7 Conclusion

In this paper, we have shown that the traditional method for identifying an optimal screen-
ing mechanism, the demand profile approach, generally fails when there is multi-dimensional
uncertainty. Only under rather extreme conditions on the type distribution, essentially re-
ducing the problem to one with single dimensional uncertainty, will the chosen mechanism
be optimal. We identified the reason for this failure: with multi-dimensional uncertainty,
a consumer’s demand schedule must generally intersect the optimal marginal price schedule
multiple times, thereby wreaking havoc with the global incentive compatibility requirement.

We introduced a novel condition, termed single crossing of demand (SCD), under which
global incentive compatibility can nevertheless be assured. This condition guarantees that if a
quantity q > 0 solves the surplus maximization problem of an agent of type (α, θ), then q must
also be a global optimum for any type on the portion of the iso-price curve at the quantity
q going through the point (α, θ) that lies to the northwest of this point. As a consequence,
isoquants are the portions of isoprice curves that lie above a lower boundary defined by the
individual rationality constraint.
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Correct identification of these isoquants then allowes us to reduce the problem to a one-
dimensional screening problem, all be it a rather complicated one. We were able to reduce
the resulting optimization problem to an optimal control problem, and identify its solution.
We also illustrated application of our methodology to an example with quadratic demand and
uniformly distributed types.

Our methodology has already identified some relatively robust properties of optimal screen-
ing mechanism with multidimensional types. In particular, the allocation to an agent may
be discontinuous in type along the boundary of the participation region. We also showed
that the optimal mechanism may or may not exclude some types from participation. We
hope that our paper will stimulate new research into several of the applications cited in the
introduction.

While the present analysis was confined to the case where the (physical) allocation space
is one-dimensional, our approach should prove useful in analyzing more general screening
problems in which the dimensionality of the type space exceeds the dimensionality of the
allocation space.
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8 Appendix A

Proof of Lemma 1: Observe that, for a fixed q the relation uq(q, θ0, α0) = uq(q, θ, α) implicitly

defines a function eθ(α). Note that uqθ(q,eθ(α), α) deθdα+uqα(q,eθ(α), α) = 0. Hence uqq(q, θ0, α0)−
uqq(q, θ, α) =

R a0
α [uqqθ(q,

eθ(a), a) deθdα +uqqα(q,eθ(a), a)]da = R α0α [−uqqθ uqαuqθ
+uqqα]da > 0, proving

the desired result. Q.E.D.

Proof of Lemma 2: That Q∗ is a non-empty closed-valued u.h.c. correspondence, and that
s is a continuous function follows from the Generalized Theorem of the Maximum (Ausubel
and Deneckere, 1993). The Generalized Envelope Theorem (Milgrom and Segal, 2002) implies
that the envelope condition ∇s(t) = ∇tu(q(t), t) holds a.e. Monotonicity of Q∗ follows because
u is strictly supermodular. Q.E.D.

Proof of Lemma 3: We start by showing that s(α, θ) > 0 for all θ > θ(α). We also argue
that q(α, θ) = 0 for all θ ≤ θ(α) and q(α, θ) > 0 for all θ ≥ θ(α). By definition of θ(α), we have
s(α, θ) = 0 for all θ ≤ θ(α). It then follows from the envelope theorem, and Assumption 1(ii)
that q(α, θ) = 0 for all θ < θ(α). The monotonicity of Q∗ implies that for all θ > θ(α) we have
q(α, θ) > 0. Application of the envelope theorem then yields s(α, θ) =

R θ
θ(α) uθ(q(α, θ

0), θ0)dθ0

> 0 for all θ > θ(α).
Next let us show that α0 < α implies θ(α0) ≥ θ(α). Since q(θ, α) = 0 for all θ < θ(α), it

follows from monotonicity of q in α implies that q(θ, α0) = 0 for all α0 < α and all θ < θ(α),
implying the required inequality.

Finally, let us show that θ(α0) < θ(α) whenever α0 > α and q(α, θ(α)) > 0. Monotonicity
of q yields q(a, θ(α)) ≥ q(α, θ(α)) > 0 for all a ≥ α. From the the envelope theorem, we have
s(α0, θ(α)) = s(α, θ(α)) +

R α0
α uα(q(a, θ(α)), a, θ(α))da > s(α, θ(α)) for all α0 > α. Continuity

of s then implies that θ(α0) = inf{θ|s(θ, α0) > 0} < θ(α). Q.E.D.

Proof of Lemma 4: If q1 ∈ Q∗(α1, θ1) then u(q1, α1, θ1) − T (q1) ≥ u(q, α1, θ1) − T (q),
for all q. Rearranging, we have T (q) ≥ u(q, α1, θ1)− u(q1, α1, θ1) + T (q1), for all q. We
now claim that u(q, α1, θ1)− u(q1, α1, θ1) ≥ u(q, α2, θ2)− u(q1, α2, θ2), for all q and (α2, θ2)
satisfying the hypothesis of the Lemma. It then follows from the previous inequality that
T (q) ≥ u(q, α2, θ2)− u(q1, α2, θ2) + T (q1), for all q so that q1 ∈ Q∗(α2, θ2).

To prove the claim, we need to show that u(q, α1, θ1) − u(q, α2, θ2) ≥ u(q1, α1, θ1)−
u(q1, α2, θ2), for all q ∈ R+, i.e. that q1 minimizes ψ(q) ≡ u(q, α1, θ1)− u(q, α2, θ2). Now by
assumption q1 is a stationary point of ψ, and SCD implies that q1 is a strict local minimum
(see Lemma 1). In fact, single crossing implies that there is no other point q ∈ R+ such that
ψ0(q) = 0, i.e. that q1 is a global minimum of ψ, as was to be demonstrated. Q.E.D.

Proof of Lemma 5: By monotonicity of Q∗, if θ0 > θ we would have q ≥ q(α, θ), a contra-
diction. Next, for any α0 ≥ α let us define eθ(α0) so that type (α0, eθ(α0)) is indifferent between
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q and q(α, θ). Thus eθ(α0 /) solves the equation
u(q(α, θ), α0,eθ)− u(q, α0,eθ) = P (q(α, θ))− P (q).

By the implicit function theorem, we have

deθ
dα0

= −uα(q(α, θ), α
0,eθ)− uα(q, α

0,eθ)
uθ(q(α, θ), α0,eθ)− uθ(q, α0,eθ) = −

R q(α,θ)
q uqα(z, α

0,eθ)dzR q(α,θ)
q uqθ(z, α0,eθ)dz

It follows from Assumption 2 that

−uqα(q(α, θ), α
0,eθ)

uqα(q(α, θ), α0,eθ) < deθ
dα0

< −uqα(q, α
0,eθ)

uqα(q, α0,eθ)
Thus the iso-price line through the point (α, θ) at the quantity q is flatter than the curve eθ,
which is in turn flatter than the iso-price line through the point (α, θ) at the quantity q(α, θ).
It follows that for α0 > α types along the iso-price line through the point (α, θ) at the quantity
q strictly prefer q(α, θ) to q, so such types cannot belong to I(q, α, θ). Similarly, types along
the iso-price line through the point (α, θ) at the quantity q(α, θ) with α0 > α strictly prefer q
to q(α, θ), so such types cannot belong to I(α, θ). Q.E.D.

Proof of Lemma 6: We first show that Assumption 2 implies that uqα
uqθ
− uα

uθ
> 0 whenever

q > 0. For fixed (θ, α) define ϕ(q) = uqα
uqθ
(q, α, θ)−uα

uθ
(q, α, θ), so that ϕ0(q) = d

dq
uqα
uqθ
−ϕ(q)(uqθuθ ).

It then follows from Assumption 2 that for any q > 0 s.t. ϕ(q) ≤ 0 we have ϕ0(q) > 0. Thus
ϕ(q) ≤ 0 for some q > 0 would imply φ(q0) < φ(q) for all q0 < q, and in particular also
that limq0→0 ϕ(q0) < 0. But since uα and uθ both converge to zero as q → 0, it follows
from l’Hospital’s rule that limq→0 ϕ(q) = 0, a contradiction. We conclude that we must have
ϕ(q) > 0 whenever q > 0.

Next, let (α, θ) be s.t. q(α, θ) > 0. Let (a,eθ(a)) parameterize the isoquant I(α, θ), i.e.eθ(a) solves uq(q(α, θ), a,eθ(a)) = uq(q(α, θ), α, θ). Then we have

eθ0(a) = −uqα(q(α, θ), a,eθ(a))
uqθ(q(α, θ), a,eθ(a)) < 0.

By the envelope theorem s((α0,eθ(α0)) = s(α, θ)+
R α0
α {uθ(q(α, θ), a,eθ(a))eθ0(a)+uα(q(α, θ), a,eθ(a))}da.

Since s(α, θ) ≥ 0, and since q(α, θ) > 0 and Assumption 2 imply that uα
uθ
− uqα

uqθ
= −ϕ < 0, we

have s((α0,eθ(α0)) > 0 for all α0 < α. It follows that eθ(α0) > θ(a) for all α0 < α. Q.E.D.

Proof of Lemma 3: It follows from the results of Rochet and Stole (2003) and Basov (2001)
that the optimal allocation q(α, θ) must satisfy an elliptical partial differential equation. It
is well-known that solutions to elliptical partial differential equations on a domain with a
piecewise smooth boundary are continuous on the interior of that domain. Q.E.D.
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Proof of Theorem 1: (i) To prove absolute continuity of θ(α), observe that incentive com-
patibility implies

s(α, θ(α)) = u(q(α, θ(α)), α, θ(α))− T (q(α, θ(α))) ≤ u(q(α0, θ(α0)), α, θ(α))− T (q(α0, θ(α0)))
s(α0, θ(α0)) = u(q(α0, θ(α0)), α0, θ(α0))− T (q(α0, θ(α0)) ≤ u(q(α, θ(α)), α0, θ(α0))− T (q(α, θ(α))

Consequently, we have

u(q(α0, θ(α0)), α, θ(α))−u(q(α0, θ(α0)), α0, θ(α0)) ≤ s(α, θ(α))−s(α0, θ(α0)) ≤ u(q(α, θ(α)), α, θ(α))−u(q(α, θ(α)),

Using the mean value theorem, and the fact that s(α, θ(α)) = s(α0, θ(α0)) = 0, we obtain

uθ(q(α
0, θ(α0)), α0, θ(α0))(θ(α)− θ(α0)) + uα(q(α

0, θ(α0)), α0, θ(α0))(α− α0) ≤ 0 (20)

uθ(q(α, θ(α)), α1, θ(α1))(θ(α)− θ(α0)) + uα(q(α, θ(α)), α1, θ(α1))(α− α0) ≥ 0 (21)

for some α0 and α1 between α and α0. If α < α0 then inequalities (20) and (21) imply

−uα
uθ
(q(α0, θ(α0)), α0, θ(α0)) ≤ θ(α)− θ(α0)

α− α0
≤ −uα

uθ
(q(α, θ(α)), α1, θ(α1))

If α0 < α then inequalities (20) and (21) imply

−uα
uθ
(q(α, θ(α)), α1, θ(α1)) ≤ θ(α)− θ(α0)

α− α0
≤ −uα

uθ
(q(α0, θ(α0)), α0, θ(α0))

Define L = max(q,α,θ)
uα
uθ
(q, α, θ) < ∞. The previous two inequalities show that θ(α) is

Lipschitz continuous with Lipschitz constant L. It follows that θ(α) is absolutely continuous.
Furthermore, at all continuity points of q(α, θ(α)) (which in part (ii) we shall show excludes
all but at most a countable set of α) taking limits in the above two inequalities yields

θ0(α) = −uα
uθ
(q(α, θ(α)), α, θ(α)).

(ii) First, we shall argue that the correspondence Q∗ is nondecreasing along L. To this
effect, define an artificial type λ ∈ [0, 2−bθ] along L such that λ = α if α < 1 and λ = 1+(θ−bθ)
if α = 1. Lemma 6 implies that uqλ = uqθθ

0(α) + uqα > 0 for λ < 1 and q > 0, and
uqλ = uqα > 0 for λ ≥ 1. This supermodularity implies that every selection from Q∗(λ)
must be non-decreasing. Hence Q∗(λ) is single-valued for almost all λ, and any selection from
Q∗(λ) is a non-decreasing function. Since changing the allocation on a set of measure zero of
λ does not alter the monopolist’s expected profits, we may select q(α) = minQ∗(α, θ(α)) and
q(θ) = minQ∗(1, θ).

(iii) It follows from incentive compatibility that if q ∈ Q∗(α, θ(α)) and q0 ∈ Q∗(α0, θ(α0))
then:

u(q, α, θ(α))− u(q0, α, θ(α)) ≤ P (q)− P (q0) ≤ u(q, α0, θ(α0))− u(q0, α0, θ(α0))
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Using the mean value theorem, we obtain:

uq(z0, θ(α), α)(q − q0) ≤ P (q)− P (q0) ≤ uq(z1, θ(α
0), α0)(q − q0) (22)

for some z0 and z1between q and q0. Let M = max(θ,α)∈[0,1]2 uq(0, θ, α). Then it follows
from (22) that P is Lipschitz continuous with Lipschitz constant M , and hence absolutely
continuous.

If q ∈ [q(0), q(bα)], then q ∈ Q∗(α, θ(α)) for some α . Hence we have s(α, θ(α)) = 0,
implying u(q, α, θ(α))− P (q) = 0.

Next, suppose that bα < 1, and q ∈ [q(bα), q(1)]. First, consider any α ∈ [bα, 1] at which
q(α) is discontinuous, so that Q∗(α, θ(α)) is multi-valued. Let q1 = minQ∗(θ(α), α) and
q2 = maxQ∗(θ(α), α). By (ii) we have u(q, α, θ(α)) − P (q) = u(q1, α, θ(α)) − P (q1) for all
q ∈ [q1, q2], implying uq(q, α, θ(α)) = P 0(q) for all q ∈ (q1, q2). Next, consider any α ∈ [bα, 1]
at which q(α) is continuous and strictly increasing. Dividing (22) by (q0 − q) and taking
limits as α0 º α, it follows that P 0(q) = uq(q, α, θ(α)). We conclude that the Stieltjes integral
P (q) = u(q(bα), bα, θ(bα)) + R qq(bα) uq(z, θ(α(z)), α(z))dz holds. For q ∈ (q(1), q̄(1)] the argument
is analogous.

(iv) We show that Assumption 3 implies that Q∗(λ) is convex for every λ. Suppose that
(α, θ) ∈ L is such that q1, q2 ∈ Q∗(α, θ) with q1 < q2, and let q ∈ (q1, q2). For θ0 ∈ (θ, θ + ε),
let α1 and α2 be such that (α1, θ0) ∈ I(q1, α, θ) and (α2, θ0) ∈ I(q2, α, θ); such values of α
exists by Lemma 4. By Assumption 3 there exists α0(θ0) ∈ (α1, α2) such that q = q(α0(θ0), θ0).
Since this is true for all θ0 ∈ (θ, θ + ε), it follows from u.h.c. of the correspondence Q∗ that
q ∈ Q∗(α, θ).

(v) It follows from (ii) that the correspondence w : L→ R defined by w(α, θ) = {uq(q, α, θ) :
q ∈ Q∗(α, θ)} is convex valued and hence that w(L) is a closed interval. Furthermore, we claim
that for each (α, θ) /∈ L s.t. s(α, θ) > 0, there exists some (α0, θ0) ∈ L and q0 ∈ Q∗(α0, θ0)
such that uq(q0, α, θ) = uq(q

0, α0, θ0). Indeed, since uqθ > 0, we have uq(q(α, θ(α)), α, θ(α)) <
uq(q(α, θ(α)), α, θ), and since uqα > 0, we have uq(q(1, θ), 1, θ)) > uq(q(1, θ), α, θ). Hence
there exists (α0, θ0) on the segment of L connecting (α, θ(α)) to (1, θ) and q0 ∈ Q∗(α0, θ0) such
that uq(q0, α, θ) = uq(q

0, α0, θ0). Finally, (α, θ) can lie on at most one isoquant emanating from
L, for otherwise isoquants would intersect in the interior of the participation region, violating
Lemma 5. Q.E.D.

Proof of Theorem 2: First, we establish that the allocation q(α, θ) is incentive compatible
along L. It follows from (ii) that q(α, θ(α)) = q(α) for all α ∈ [0, 1], and q(1, θ) = q̄(θ)

for all θ ∈ [bθ, 1]. Hence the allocation is nondecreasing along L. Since uqλ > 0, it fol-
lows that the allocation is incentive compatible along L. Lemma 4 then implies that q(α, θ)
is incentive compatible for all (α, θ) in the participation region. It remains to be shown
that Q∗(α, θ) = {0} for all (α, θ) such that θ < θ(α). Note that for any q > 0, we have
u(q, θ, α) − P (q) < u(q, θ(α), α) − P (q) ≤ s(θ(α), α)) = 0. Thus for any such type it is
uniquely optimal to select q = 0. That (iii) holds follows from the proof of part (iii) of
Theorem 1.. Q.E.D.
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Proof of Theorem 3: It follows from Theorem 2 that

T ∗∗(q) = {(α, θ) ∈ [0, 1]2 : θ ≥ θ(α) and θ ≥ σ(q, α(q), θ(q), α)}

Using (3) then yields

µ(q) = 1−
Z 1

0

Z ∞

max{θ(a),σ(q,α(q),θ(q),a)
f(a, θ)dθda,

Thus over the interval [0, q(bα)] is absolutely continuous, and
µ0(q) =

Z α(q)

0
f(σ(q, α(q), θ(q), a)

d

dq
σ(q, α(q), θ(q), a)da = h(q, α(q), θ(q), α0(q), θ0(q)).

Moreover, over the interval [q(bα), q̄(1)] we have
µ(q) = 1−

Z 1

0

Z ∞

σ(q,α(q),θ(q),a)
f(a, θ)dθda = 1−H(q, α(q), θ(q)).

Using (6), we may re-write the monopolist’s profits asZ q(bα)
0

u(q, α(q), θ(q))µ0(q)dq +
Z q̄(1)

q(bα)
(
u(q(bα), bα,bθ) + Z q

q(bα) uq(z, α(z), θ(z))dz
)
dµ(q)

Integrating by parts, and using the fact that µ(q̄(1)) = 1, the second integral may be re-written
as

H(q(bα), bα,bθ)u(q(bα), bα,bθ) + Z q̄(1)

q(bα) H(q, α(q), θ(q))uq(q, α(q), θ(q))dq

Q.E.D.

Remark: We may compute

σq(q, α, θ, a) =
uqq(q, a, σ(q, α, θ, a))− uqq(q, α, θ)

uqθ(q, a, σ(q, α, θ, a))

σα(q, α, θ, a) =
uqα(q, α, θ)

uqθ(q, a, σ(q, α, θ, a))

σθ(q, α, θ, a) =
uqθ(q, α, θ)

uqθ(q, a, σ(q, α, θ, a))

It follows from Lemma 1 that σq(q, α(q), θ(q), a) > 0. Also, using (5) and the fact that
uqα − uα

uθ
uqθ > 0 (see the proof of Lemma 6) we have

σθθ
0(q) + σαα

0(q) =
uqα(q, α(q), θ(q))− uα

uθ
(q, α(q), θ(q))uqθ(q, α(q), θ(q))

uqθ(q, a, σ(q, α(q), θ(q)), a))
> 0
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We conclude that d
dqσ(q, α(q), θ(q), a) > 0.

Proof of Theorem 4: Define

F (q, α, θ) = uq(q, α, θ)H(q, α, θ).

First, let us consider the case where bα = 1. The first order condition for (8) then becomes
Fθ − d

dq
Fθ0 = φ(q, θ) = 0

If φq > 0 and φθ < 0, then application of the implicit function theorem to the equation
φ(q, θ) = 0 establishes the existence and strict monotonicity of the function θφ(q). If θφ(bq) >bθ then the boundary condition θ(bq) = bθ is necessarily violated. If θφ(bq) < bθ, then we must
set θ(q) = bθ for all q such that θφ(bq) ≤ bθ.

Next, let us consider the case where bα < 1 so that bθ = 0. Analogously to the proof in
the previous paragraph, we may establish the following. First, we must have θφ(q(1)) ≤ 0,
and that θ(q) = max{θφ(q), 0} for all q ∈ [bq, q(1)]. Second, we must have ακ(bq) ≤ bα
and ακ(q(1)) ≥ 1, and on the interval [bq, q(1)] we have α(q) = max{ακ(q), bα} whenever
ακ(q) ≤ 1, and α(q) = 1, otherwise. It remains to be shown that q(1) must be chosen so that
ακ(q(1)) = 1, or equivalently that θφ(q(1)) = 0. We shall establish below that φ(eq, 0) = 0

if and only if κ(eq, 1) = 0. This will imply the desired result, since θφ(q(1)) ≤ 0 requires
q(1) ≤ eq, and since q(1) < eq would imply ακ(q(1)) < 1 and hence α(q(1)) < 1.

We will now show thatHθ(eq, 1, 0) = uqθ
uqα
(eq, 1, 0)Hα(eq, 1, 0), so that φ(eq, 0) = uqθ

uqα
(eq, 1, 0)κ(eq, 1) ,

implying the desired result. Observe that

H(q, 1, θ) =

Z 1

α−(q,θ)

Z 1

σ(q,1,θ,a)
f(a, θ0)dθ0da (23)

where α−(q, θ) is the solution in a to the equation σ(q, 1, θ, a) = 1 if a nonnegative such a
solution exists, and α−(q, α) = 0, otherwise. Hence

Hθ(q, 1, θ) = −
Z 1

α−(q,θ)
f(a, σ(q, 1, θ, a)σθ(q, 1, θ, a)da (24)

Observe also that

H(q, α, 0) =

Z α

α−(q,θ)

Z 1

σ(q,1,θ,a)
f(a, θ0)dθ0da+

Z 1

α

Z 1

0
f(a, θ)dθda (25)

where, with some abuse in notation, α−(q, α) is the solution in a to the equation σ(q, α, 0, a) =
1, if a nonnegative such a solution exists, and α−(q, α) = 0, otherwise. Hence

Hα(q, α, 0) = −
Z 1

α−(q,θ)
f(a, σ(q, α, 0, a)σα(q, α, 0, a)da (26)
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Finally, application of the Implicit Function Theorem to the defining equation uq(q, a, σ) =
uq(q, α, θ) yields

σα(q, α, θ, a) =
uqα(q, α, θ)

uqθ(q, a, σ)
(27)

σθ(q, α, θ, a) =
uqθ(q, α, θ)

uqθ(q, a, σ)
(28)

Combining (24), (26), (27) and (28) then yields Hθ(eq, 1, 0) = uqθ
uqα
(eq, 1, 0)Hα(eq, 1, 0). Q.E.D.

Proof of Corollary 5.1: On the interval [q(1), q̄(1)] form the Lagrangian

L(q, 1, θ, θ0) = F (q, 1, θ) + λθ0

The first-order conditions associated with this variational problem are:

Lθ − d

dq
Lθ0 = φ(q, θ)− λ0 = 0 (29)

λ(q)θ0(q) = 0

λ(q) ≥ 0

θ0(q) ≥ 0

In addition, the transversality condition for the free ‘terminal time’ q̄(1) is :

L− Lθ0θ
0 = φ(q̄(1), 1) = 0

Since H(q̄(1), 1, 1) = 0, and since Hθ(q̄(1), 1, 1) < 0, the transversality condition yields
uq(q̄(1), 1, 1) = 0. From (29), we have λ0(q) = Fα(q, α(q), 0) = κ(q, α(q)). The proof
for ν 0(q) is analogous. Q.E.D.

Proof of Theorem 5: As a preliminary to the proof, note that (23), (24 and (28) imply
φ(q, θ) = uqθ(q, 1, θ)v(q, θ), where

v(q, θ) = −uq(q, 1, θ)
Z 1

α−(q,θ)

f(a, σ(q, 1, θ, a)

uqθ(q, a, σ(q, 1, θ, a))
da+H(q, 1, θ)

Also, it follows from (25), (26) and(27) that κ(q, α) = uqα(q, α, 0)ρ(q, α), where

((q, α) = −uq(q, α, 0)
Z α

α−(q,α)

f(a, σ(q, α, 0, a))

uqθ(q, a, σ(q, α, 0, a))
da+H(q, α, 0)

First, we argue necessity of condition (10). Suppose first that ρ(0, α̊) = 0 for some α̊ ∈
(0, 1] but uqα(0, α, 0) > 0 for some α ∈ (0, α̊) . Since σα(0, α, 0, a) = uqα(0, α, 0)/uqθ(0, a, σ(0, α, 0, a)),
it then follows that σ(0, α, 0, 0) > 0. Thus a positive measure of types must receive a zero
quantity. Next, suppose that uqα(0, α, 0) = 0 for all α, but there exists no α̊ ∈ (0, 1] such
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that ρ(0, α) = 0. Since ρ(0, 0) = 1, we must then have ρ(0, α) > 0 for all α. Because
φ(0, 0) = uqθ(0, 1, 0)ρ(0, 1) > 0, and because by assumption we have φθ < 0, it then follows
that φ(0, θ(0)) = 0 for some θ(0) > 0. Therefore all consumer types (α, θ) with θ < θ(0) are
excluded.

Next, we will argue that the if the conditions of the Lemma hold, then the associated
mechanism is optimal, and no consumer is excluded. Let the monopolist select (bα,bθ) = (α̊, 0)
and bq = 0. With these choices, it follows from Theorem 4 that q(1) is the solution to the
equation κ(q, 1) = 0, that on the interval [0, q(1)] the solution α(q) solves κ(q, α) = 0, and
that on the interval [q(1), q̄(1) the solution θ(q) solves φ(q, θ) = 0. This mechanism has no
exclusion, because the isoquant emanating from the point (α̊, 0) is flat, i.e. σa(0, α̊, 0, a) =

−uqα(0,a,0)
uqθ(0,a,0)

= 0. Q.E.D.

As a preliminary to the proof of Theorem 6 we prove the following lemma:

Lemma 10 We have

hα − d

dq
hα0 = f(θ, α)σθ(q, α, θ, a)θ

0(q) (30)

hθ − d

dq
hθ0 = −f(θ, α)σθ(q, α, θ, a)α0(q) (31)

Proof : Since

h(q, α, θ, α0, θ0) =
Z α

α(q,θ,α)
f(σ(q, α, θ, a), a)

©
σq + σθθ

0 + σαα
0ª da. (32)

we have

hθ = −αθfsq|a=α +
Z α

α(q)
fθσθsqda+

Z α

α(q)
f
©
σqθ + σθθθ

0 + σαθα
0ª da,

hθ0(q, θ, α, θ
0, α0) =

Z α

α(q,θ,α)
f(σ(q, α, θ, a), a)σθ(q, α, θ, a)da,

and

d

dq
hθ0 = α0fσθ |a=α −

©
αq + αθθ

0 + ααα
0ª fσθ |a=α +Z α

α(q)
fθsqσθda+

Z α

α(q)
f
©
σqθ + σθθθ

0 + σαθα
0ª

so

hθ − d

dq
hθ0 = −α0fσθ |a=α +

©
[αq + ααα

0]σθ − αθ[σq + σαα
0]
ª
f .

Now
[αq + ααα

0]σθ − αθ[σq + σαα
0 = 0.

This is obvious over any interval of q where α = 0. Over any interval where α > 0 it is
defined as the solution in a to the equation σ(q, θ, α, a) = 1. Thus we have σq+σaαq = 0 and

32



σθ + σaαθ = 0 , implying αqσθ − αθσq = 0. Furthermore, we have σα + σaαα = 0, so
αασθ − αθσα = 0. Thus (31) holds. Next, we have

hα = fsq |a=α −ααfsq |a=α +
Z α

α(q)
fθσαsqda+

Z α

α(q)
f
©
σqα + σθαθ

0 + σααα
0ª da,

hα0 =

Z α

α(q,θ,α)
f(σ(q, θ, α, a))σαda, and

d

dq
hα0 = fσαα

0 |a=α −fσαα0 |a=α +
Z α

α(q)
fθsqσαda+

Z α

α(q)
f
©
σαq + σθαθ

0 + σααα
0ª da.

Hence

hα − d

dq
hα0 =

©
sq − σαα

0ª f |a=α +f ©σαα0 − ααsq
ª |a=α

=
©
σq + σθθ

0ª f |a=α −fαα ©σαα0 + sq
ª |a=α

=
©
σq + σθθ

0ª f |a=α
where we used sq = σq + σθθ

0 + σαα
0 and the fact that s(q, α(q)) = 1 implies sq + σαα

0 = 0.
The identity σ(q, θ, α, α) = θ implies σq(q, θ, α, α), so we conclude that (30) holds. Q.E.D.

Proof of Theorem 6: We will start by showing that the solution to problem 11 satisfies

ξ(q) = −ψ(q, α, θ)− χ̇

gq
. (33)

The derivation of this equation is long and intricate. Maximization of the Lagrangian L w.r.t.
v and w yields

∂F

∂α0
(q, α, θ, α0, θ0) + µ+ ξg + χ = 0

∂F

∂θ0
(q, α, θ, α0, θ0) + λ+ ξ = 0

and so we have

µ = − ∂F

∂α0
(q, α, θ, α0, θ0)− ξg − χ (34)

λ = −∂F
∂θ0
(q, α, θ, α0, θ0)− ξ

Differentiating (34) w.r.t. q then yields

µ̇+ χ̇+
d

dq
ξg = − d

dq

∂F

∂α0
(35)

λ̇+ ξ̇ = − d

dq

∂F

∂θ0
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Multiplying the second equation in (35) by g, and subtracting from the first yields

µ̇+ χ̇+ ξġ − λ̇g = − d

dq

∂F

∂α0
+ g

d

dq

∂F

∂θ0

Substituting in the costate equations

µ̇ = −∂F
∂α
− ξgαα

0 (36)

λ̇ = −∂F
∂θ
− ξgθα

0,

and simplifying, we obtain

χ̇+ ξgq = (
∂F

∂α
− d

dq

∂F

∂α0
)− g(

∂F

∂θ
− d

dq

∂F

∂θ0
) (37)

Now

(
∂F

∂α
− d

dq

∂F

∂α0
)− g(

∂F

∂θ
− d

dq

∂F

∂θ0
)

= (uαh+ uhα)− d

dq
(uhv)− g(uθh+ uhθ) + g

d

dq
(uhw)

= h(uα − guθ) + u(hα − d

dq
hα0) + uqhα0 − gu(hθ − d

dq
hθ0) + guqhθ0

= u(hα − d

dq
hα0)− gu(hθ − d

dq
hθ0)− uq(hα0 − ghθ0)

= ufσθ(θ
0 + gα0)− uq(hα0 − ghθ0)

= −uq(hα0 − ghθ0)

= −uq
Z α

α(q,θ,α)
f(σ(q, α, θ, a), a)

©
σα(q, α, θ, a)− σθ(q, α, θ, a)g

ª
da

= −uq
½
uqα
uqθ
− uα

uθ

¾
h1 (38)

where the fourth equality follows from (30) and (31), and the last equality follows from the
fact that

σθ(q, θ, α, a) =
uqθ(q, θ, α)

uqθ(q, σ, a)

σα(q, θ, α, a) =
uqα(q, θ, α)

uqθ(q, σ, a)
.

Now we may compute

gq =
d

dq

uα
uθ
=

uαq
uθ
− uθquα

u2θ
=

uqθ
uθ
{uqα
uqθ
− uα

uθ
}. (39)

Substituting (39) and (38) into (37) then yields the desired formula for ξ(q).
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(i) Over any non-degenerate interval on which α(q) is strictly increasing, we have χ(q) = 0
and hence χ̇(q) = 0, so (33) becomes

ξ(q) = −ψ(q, α, θ). (40)

Furthermore, substituting this expression for ξ in (??) we obtain

µ(q) = −uh2 + ψg

λ(q) = −uh1 + ψ

Next, we derive the expression for α0(q). Equating the two expressions for λ̇ in (35) and (36)
yields

(
∂F

∂θ
− d

dq

∂F

∂θ0
) + ξgθα

0 − ξ̇ = 0

Using
∂F

∂θ
− d

dq

∂F

∂θ0
= uθh+ u(hθ − d

dq
hθ0)− uqhθ0

and (31) then yields
uθh− ufσθα

0 + ξgθα
0 − uqh1 − ξ̇ = 0 (41)

Finally, since ξ(q) = −ψ(q, α, θ), we have

ξ̇ = −ψq − ψθθ
0 − ψαα

0. (42)

Substituting (40), (42) and h = h0 + h1θ
0 + h2α

0 into (41), and solving for α0 then yields©
uθh0 − uqh1 + ψq

ª− α0{ufσθ + ψgθ + ψθg − ψα − uθ(h2 − gh1)} = 0

(ii) Over any interval on which the constraint α0 ≥ 0 binds, we have

χ̇ = −(ψ(q, α, θ) + ξ(q))gq (43)

Furthermore, it follows from (41) that

uθh0 − uqh1 − ξ̇ = 0 (44)

(iii) Let eH(q) = H(q, α(q), θ(q), v(q), w(q), λ(q), µ(q)). The transversality condition asso-
ciated with the free left hand ‘time’ q(0) is eH(q(0) = 0. Since F (q, α, θ, v, w) = u(q, α, θ){h0(q, α, θ)+
h1(q, α, θ)v + h2(q, α, θ)w}, it follows from (34) that eH(q) = u(q, α(q), θ(q))h0(q, α(q), θ(q)).
Hence we must either have u(q(0), α(q(0)), θ(q(0))) = 0, implying q(0) = 0, or h0(q(0), α(q(0)), θ(q(0))) =
0 implying α(q(0)) = 0. Q.E.D.

Proof of Lemma 8: (i) First, we will prove that α(q(0)) > 0. If α(q, α(q), θ(q)) > 0 for all q
in a right neighborhood of q(0), then the result is immediate, since α(q(0)) > α(q, α(q), θ(q)) ≥
0. Hence we may assume that there exists ε > 0 such that α(q, α(q), θ(q)) = 0 for all
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q ∈ [q(0), q(0) + ε). We shall argue that in this case there exists ᾰ > 0 such that for any
q ∈ (q(0), q(0) + ε) and α < ᾰ have α0(q) < 0, thereby implying that α(q(0)) ≥ ᾰ.

To prove the existence of such an ᾰ > 0, we must first compute the numerator and
denominator of α0 in some more detail. We claim that:

Numerator (14) = uθ

Z α

0
f(a, σ)

2uqq(q, α, θ)− uqq(q, a, σ)

uqθ(q, a, σ)
da+ (45)

uθuq

Z α

0

fθuqθ − fuqθθ
u2qθ

uqq(q, θ, α)− uqq(q, σ, a)

uqθ(q, σ, a)
da

Denominator (14) =

µ
u− uθuq

uqθ

¶
f + 2(uqθuα − uqαuθ)

Z α

0

f(a, σ)

uqθ(q, a, σ)
da (46)

+uq(uqθuα − uqαuθ)

Z α

0

fθuqθ − fuqθθ
u3qθ

(q, a, σ)da

To establish (45), observe that

σq(q, α, θ, a) =
uqq(q, α, θ)− uqq(q, a, σ)

uqθ(q, a, σ)

and

σθ(q, α, θ, a) =
uqθ(q, α, θ)

uqθ(q, a, σ)

α(q, α(q), θ(q)) = 0 imply that

h0(q, θ(q), α(q)) =

Z α

0
f(σ(q, α, θ, a), a)

uqq(q, α, θ)− uqq(q, a, σ(q, α, θ, a))

uqθ(q, a, σ(q, α, θ, a))
da (47)

h1(q, θ(q), α(q)) =

Z α

0
f(σ(q, α, θ, a), a)

uqθ(q, α, θ)

uqθ(q, a, σ(q, α, θ, a))
da (48)

Furthermore, since

ψ(q, α, θ) = uq(q, α, θ)uθ(q, α, θ)

Z α

0

f(a, σ)

uqθ(q, a, σ)
da

we have

ψq =


uqq(q, α, θ)uθ(q, α, θ)

R α
α(q,α,θ)

f(a,σ)
uqθ(q,a,σ)

da

+uq(q, α, θ)uqθ(q, α, θ)
R α
α(q,α,θ)

f(a,σ)
uqθ(q,a,σ)

da

+uq(q, α, θ)uθ(q, α, θ)
R α
0

fθuqθ−fuqθθ
u2qθ

uqq(q,θ,α)−uqq(q,σ,a)
uqθ(q,σ,a)

da

 (49)

Using (47), (48) and (49) then yields (45). To establish (46) note that:

ψgθ = uq(uαθ − uα
uθ

uθθ)

Z α

0

f(a, σ)

uqθ(q, a, σ)
da
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ψθg = (uqθuθ+uθθuq)g

Z α

0

f(σ, a)

uqθ(q, σ, a)
da+uquθg

Z α

0

fθ(a, σ)uqθ(q, a, σ)− f(a, σ)uqθθ(q, a, σ)

u2qθ(q, a, σ)
σθda

−ψα=

 −uθuq
uqθ

f − (uqαuθ+uθαuq)
R α
0

f(σ,a)
uqθ(q,σ,a)

da

−uquθ
R α
0

fθ(σ,a)uqθ(q,σ,a)−f(σ,a)uqθθ(q,σ,a)
u2qθ(q,σ,a)

σαda


−uθ(h2 − gh1) = −uθ(uqα − uα

uθ
uqθ)

Z α

0

f(a, σ)

uqθ(q, a, σ)
da.

Combining these four terms then yields (46).
Now consider any q ∈ (q(0), q(0) + ε). Since

lim
α→0{uqq(q, α, θ)− uqq(q, a, σ)} = 0

and since uqq(q, α, θ) it follows that (45) < 0 for α sufficiently small. Also since
³
u− uθuq

uqθ

´
>

0, it follows that (46) > 0 for α sufficiently small. Hence α0(q) < 0 for all α sufficiently small.
It follows that α must remain bounded away from zero.

(ii) Let us consider any interval over which α0 = 0. Then

ξ̇ = uθh0 − uqh1, and

χ̇ = −(ψ + ξ)gq.

Differentiating χ̇ and using (??) then gives

χ00 = −{ψ + ξ}gqq − {ψq + ξ0}gq (50)

χ000 = −{ψ + ξ}gqqq − 2{ψq + ξ0}gqq − {ψqq + ξ00)gq

Let eq be the left endpoint of an interval over which α0 = 0, and suppose that contrary
to the claim we had eq > 0. Since the constraint α0 ≥ 0 is not binding at eq, we have
ξ(eq) = −ψ(eq, θ(eq), α(eq)). Furthermore, since α0(eq) = 0 we have ψq = −uθh0 + uqh1, and
so ψq + ξ0(eq) = 0 . We therefore have χ(eq) = χ0(eq) = χ00(eq) = 0, and χ000(eq)) = −{ψqq + ξ00)gq.
From (44) we have ψqq + ξ00 = ∂

∂q{uθh0 − uqh1 + ψq} < 0. Since gq > 0, we conclude that

χ000(eq) > 0. A Taylor series expansion then yields µ(q) = 1
6µ
000(eq)(q − eq)3 < 0 for q in a left

neighborhood of eq, contradicting that the constraint α0 ≥ 0 is binding over this neighborhood.
We conclude that eq = 0. Q.E.D.

Proof of Theorem 7: There are several cases to be considered, depending upon whetherbα = 1 or bθ = 0, whether α(bq, bα,bθ) > 0 or α(bq, bα,bθ) = 0, and whether α(0, α(0), θ(0)) > 0
or α(0, α(0), θ(0)) = 0. Here, we will treat the case where bα = 1, α(bq, bα,bθ) > 0, and
α(0, α(0), θ(0)) > 0. The proof for the other cases is analogous.

First, let us establish that there is a unique value q = q∗∗ such that σ(q, α(q), θ(q)) = 1.
Applying the the implicit function theorem to the equation uq(q, a, σ) = uq(q, α, θ) yields:
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σq(q, α, θ, a) =
uqq(q, α, θ)− uqq(q, a, σ)

uqθ(q, a, σ)

σα(q, α, θ, a) =
uqα(q, α, θ)

uqθ(q, a, σ)

σα(q, α, θ, a) =
uqθ(q, α, θ)

uqθ(q, a, σ)

Now

uqq(q, α(q), θ(q))− uqq(q, 0, σ) =

Z α(q)

0

d

da
uqq(q, a, σ(q, α(q), θ(q), a)da

=

Z α(q)

0
(uqqα − uqqθσa) da

=

Z α(q)

0

µ
uqqα − uqqθ

uqα
uqθ

¶
da > 0

were the final equality follows from (SCD). Hence σq > 0. In the proof of Lemma 6 we also
established that uqα − uα

uθ
uqθ > 0 whenever q > 0. It then follows that

d

dq
σ(q, α(q), θ(q), 0) = σq + (σα − gσθ)α

0

= σq +
α0(q)

uqθ(q, σ, 0)
(uqα − uα

uθ
uqθ)(q, α(q), θ(q)) > 0

Therefore q∗∗ is uniquely determined.
Defining α∗∗ = α(q∗∗), θ∗∗ = θ(q∗∗) and

W1(q
∗∗, α∗∗, θ∗∗) =

Z q∗∗

0
u(q, α(q), θ(q))h(q, α(q), θ(q), α0(q), θ0(q))dq

W2(q
∗∗, α∗∗, θ∗∗, bq,bθ) =

Z bq
q∗∗

u(q, α(q), θ(q))h(q, α(q), θ(q), α0(q), θ0(q))dq

we may re-write (9) as

V (bq, 1,bθ) =W1(q
∗∗, α∗∗, θ∗∗) +W2(q

∗∗, α∗∗, θ∗∗, bq,bθ) +W (bq, 1,bθ)
where it is understood that q∗∗, α∗∗ and θ∗∗ are functions of (bq,bθ). The partial derivatives of
the value functions W1 and W2 are given by (Seierstad and Sydsaeter, p. 213):

∂W1

∂q∗∗
= u(q∗∗, α∗∗, θ∗∗)h0(q∗∗, α∗∗, θ∗∗)

∂W1

∂α∗∗
= −µ−(q∗∗);

∂W1

∂θ∗∗
= −λ−(q∗∗)
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∂W2

∂q∗∗
= −u(q∗∗, α∗∗, θ∗∗)h0(q∗∗, α∗∗, θ∗∗)

∂W2

∂α∗∗
= µ+(q

∗∗);
∂W2

∂θ∗∗
= −λ+(q∗∗)

∂W2

∂bq = u(bq, 1,bθ)h0(bq, 1,bθ); ∂W2

∂bθ = −λ(bq)
Furthermore, since

W (bq, 1,bθ) = u(bq, 1,bθ)H(bq, 1,bθ)+Z qφ(bθ)
bq H(q, 1,bθ)uq(q, 1,bθ)dq+Z q̄(1)

qφ(bθ)H(q, 1, θ(q))uq(q, 1, θ(q))dq
where qφ(bθ) is the unique solution to the equation θφ(q) = bθ, we have

∂W

∂bq = u(bq, 1,bθ)Hq(bq, 1,bθ)
∂W

∂bθ = uθ(bq, 1,bθ)H(bq, 1,bθ) + u(bq, 1,bθ)Hθ(bq, 1,bθ) + Z qφ(bθ)
bq φ(q,bθ)dq

Observe that since φθ < 0 is decreasing in θ, the value of the integral in the previous equation
is negative. Also, because

H(bq, 1,bθ) = Z 1

α(bq,1,bθ)
Z 1

σ(bq,1,bθ,a) f(a, θ)dθda
we have

Hθ(bq, 1,bθ) = −Z 1

α(bq,1,bθ) f(a, σ((bq, 1,bθ, a))σθ(q, 1, θ, a)da = −h1(bq, 1,bθ)
and

Hq(bq, 1,bθ) = −Z 1

α(bq,1,bθ) f(a, σ((bq, 1,bθ, a))σq(bq, 1,bθ, a)da = −h0(bq, 1,bθ)
Suppose now that contrary to the statement of the theorem we have bθ > θφ(bq). Consider the
following perturbation: lower bθ by the amount dbθ, and adjust bq by an amount dbq < 0 so as to
keep α∗∗ and θ∗∗ (and hence q∗∗) unchanged. Since W1 remains the same, the total effect on
the monopolist’s profit then equalsµ

∂W2

∂bq +
∂W

∂bq
¶
dbq +µ∂W2

∂bθ +
∂W

∂bθ
¶
dbθ (51)

Now
∂W2

∂bq +
∂W

∂bq = 0 (52)
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We also have

∂W2

∂bθ +
∂W

∂bθ = −λ(bq) + uθ(bq, 1,bθ)H(bq, 1,bθ) + u(bq, 1,bθ)Hθ(bq, 1,bθ) + Z qφ(bθ)
bq φ(q,bθ)dq(53)

= ψ(bq) + uθ(bq, 1,bθ)H(bq, 1,bθ) + Z qφ(bθ)
bq φ(q,bθ)dq

≤
Z qφ(bθ)
bq φ(q,bθ)dq < 0

where the second equality follows from we used λ(q) = −uh1 + ψ, and the penultimate in-
equality follows because φ(q, θ) is decreasing in θ yields:

φ(bq,bθ) = uq(bq, 1,bθ)Hθ(bq, 1,bθ) + uθq(bq, 1,bθ)H(bq, 1,bθ) ≤ φ(bq, θφ(bq)) = 0
and so

uθ(bq, 1,bθ)H(bq, 1,bθ) ≤ uquθh1
uqθ

(bq, 1,bθ) = ψ(bq, 1,bθ)
Combining (51), (52) and (53) established that the perturbation is profitable, contradicting
the optimality of (bq,bθ). We conclude that optimality requires φ(bq,bθ) = 0. Q.E.D.

Proof of Theorem 8: (i) There are two cases to be considered: bα = 1 and bθ = 0. We give
a proof for the case bα = 1. The proof for the case bθ = 0 is analogous. According to Theorem
7 we have bθ = θφ(bq). Hence

W (bq, θφ(bq)) = u(bq, 1, θφ(bq))H(bq, 1, θφ(bq)) + Z q̄(1)

bq H(q, 1, θφ(q))uq(q, 1, θ
φ(q))dq

Thus we have

d

dbqW (bq, θφ(bq)) = uHq + (uθH + uHθ)
dθφ

dq

= −uh0 + (uθuq
uqθ

− u)h1
dθφ

dq

where the final equality follows from φ(bq,bθ) = uqHθ+uθqH = 0, and the definition ψ = uquθ
uqθ

h1.
Furthermore, we have

∂W2

∂q
+

∂W2

∂θ

dθφ

dq
= uh0 − λ

dθφ

dq

Hence Ã
∂W2

∂q
+

∂W2

∂θ

dθφ

dq

!
+

d

dbqW (bq, θφ(bq)) = (ψ − uh1 − λ)
dθφ

dq
= 0 (54)

where the ultimate equality follows from the assumption that α0(bq) > 0 and the expression
for λ in Theorem 6.

40



Next, observe that
∂W1

∂q∗∗
+

∂W2

∂q∗∗
= 0

and

∂W1

∂α∗∗
+

∂W2

∂α∗∗
= µ+(q

∗∗)− µ−(q
∗∗)

∂W1

∂θ∗∗
+

∂W2

∂θ∗∗
= λ+(q

∗∗)− λ−(q∗∗)

Since at the optimum we must have

d

dbqV (bq, 1, θφ(bq)) = 0
it follows that we must have

[µ+(q
∗∗)− µ−(q

∗∗)]
dα∗∗

dbq + [λ+(q
∗∗)− λ−(q∗∗)]

dθ∗∗

dbq = 0

(ii) Again, there are two cases to be considered, bα = 1 and bθ = 0. We give a proof for
the case bα = 1. The proof for the case bθ = 0 is analogous. If α0(bq) = 0 then (54) still holds,
but we no longer have λ(bq) = ψ − uh1. Hence if α(bq, bα,bθ) ≤ 0 then

d

dbqV (bq, 1, θφ(bq)) = (−ψ − uh1 − λ)
dθφ

dq

It follows that we must have λ(bq) = ψ − uh1. If α(0, α∗∗(0), θ(0)) > 0, then V (bq, 1, θφ(bq)) =
W2(q

∗∗, α∗∗, θ∗∗, bq, θφ(bq)) +W (bq, θφ(bq) we have
d

dbqV (bq, 1, θφ(bq)) = (ψ − uh1 − λ)
dθφ

dq
+ µ(0)

dα∗∗

dbq + λ(0)
dθ∗∗

dbq − uh0
dq∗∗

dbq
The desired conclusion then follows from the transversality condition for problem (11): µ(0) =
λ(0) = 0, and the fact that u(0, α, θ) = 0 for all (α, θ). We are therefore left with the case
where α(bq, bα,bθ) > 0 and α(0, α∗∗(0), θ(0)) = 0. We then have

d

dbqV (bq, 1, θφ(bq)) = (ψ−uh1−λ)|q=bq dθφdq (bq)+[µ+(q∗∗)−µ−(q∗∗)]dα∗∗dbq +[λ+(q
∗∗)−λ−(q∗∗)]dθ

∗∗

dbq
The desired result then follows because α0(bq) = 0 and the regularity assumption ∂

∂q{uθh0 −
uqh1 + ψq} < 0 imply α0(q) = 0 for all q ∈ [0, bq]. In that case µ and λ are continuous on the
interval [0, bq], and so the last two terms in the above expression equal zero. Q.E.D.

Proof of Theorem 9: First, let us establish that it is necessary that α0(q) = 0 for all q ≤ bq.
Suppose instead that in the optimal mechanism there existed an interval [q−, q+] of q < bq
on which α0(q) > 0. Then for any q ∈ [q−, q+) we have θ > 0. It follows that the iso-
price line σ(q, α(q), θ(q), a) trough the point (α(q), θ(q)) at the level q contains points (those
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with coordinates a ∈ (α, α(bq)]) which violate the individual rationality condition. Types
(σ(q, α(q), θ(q), a), a) with a ∈ (α, α(bq)] will therefore not consume the the increment q, or
any of the increments z < q, as is assumed in the demand profile approach.

Next, we establish the necessity of bq = 0. Suppose to the contrary that we had bq > 0.
Let us now assume that θφ(0) > 0; and entirely analogous argument treats the case where
θφ(q) = 0 for some q > 0. It follows from Theorem 7 that bθ = θφ(bq), and so we have
φ(bq,bθ) = 0. Furthermore, since φ is decreasing in q, we have φ(q,bθ) > 0 for all q < bq, and so

uq(q, 1,bθ)Hθ(q,bθ) + uqθ(q, 1,bθ)H(q,bθ) > 0. (55)

Now recall thatN(p, q) is be the measure of types (α, θ) for whom uq(q, α, θ) ≥ p. Thus, lettingeθ(p, q) be the solution to uq(q, 1, θ) = p, we have N(p, q) = H(q,eθ(p, q)). The optimality
condition for the problem maxp pN(p, q) can thus be written as

N(p, q) + p
∂N

∂p
(p, q) = 0, (56)

or equivalently that

uqθ(q, 1, θ)H(q, θ) + uq(q, 1, θ)Hθ(q, θ) = 0 at θ = eθ(p, q). (57)

It follows from (55), (57) and the fact that φ is increasing in θ that bθ > eθ(p, q). Con-
sequently, the optimal mechanism must differ from the mechanism selected by the demand
profile approach.

Next, let us establish sufficiency. If bq = 0, then in the optimal mechanism we have
φ(q, θφ(q)) = 0 for all q ∈ [0, q̄(1)], implying that (56) holds at p = uq(q, 1, θ

φ(q)). Further-
more, the monotonicity of φ in θ implies that there is no θ 6= θφ(q) for which (57) holds, so p =
uq(q, 1, θ

φ(q)) is a global optimizer of (56). We conclude that the demand profile approach
identifies the optimal mechanism. Q.E.D.
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9 Appendix B

In this appendix, we prove Theorems 10 and 11. Observe that u− uθuq
uqθ

= (b−α)
2 q2 > 0 for all

q > 0. It then follows from Lemma 8(i) that q(0) = 0. We start by analyzing the solution to
(8).

Lemma 11 Consider the problem of quadratic utility and uniformly distributed types, (15)-
(16). Let q∗ = 2

2b+1 , θ
∗ = 2b−1

2b+1 , and q̄ =
1

b−1 . Then when bq ≥ q∗ the solution to problem (8)
equals:

θφ(q) =
1 + 2(b− 1)q

3
, for q ∈ [bq, q̄]. (58)

When bq < q∗ the solution to problem (??) is as follows. For b ≥ 3
2 we have

θφ(q) =

(
1+2(b−1)q

3 , for q ∈ [q∗, q̄]
1+(b− 3

2
)q

2 , for q ∈ [bq, q∗].
For b < 3/2 we have

θφ(q) =

½
1+2(b−1)q

3 , for q ∈ [q∗, q̄]
θ∗, for q ∈ [bq, q∗].

Proof: It follows from the definition of σ and (15) that

σ(q, θ, 1, a) = θ + (1− a)q.

Let q∗ be the solution to the equation α(q, 1, θφ(q)) = 0. Whenever q ≥ q∗, α is the solution
in a to the equation σ(q, θ, 1, a) = 1, so we have:

α(q, θ) = 1− 1− θ

q
. (59)

Thus

H(q, θ) =

Z 1

α(q)

Z 1

σ(q,θ,1,a)
dtda (60)

=
1

2

(1− θ)2

q

and hence φ(q, θ) = 0 yields

θφ(q) =
1 + 2(b− 1)q

3
, for q ∈ [bq, q̄].

Here q̄ is determined by the condition θφ(q̄) = 1, i.e.

q̄ =
1

b− 1 .
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Substituting the expression for θφ(q) into (59) then yields the values for q∗∗ and θ∗∗.
For q ≤ q∗ we have α(q, 1, θφ(q)) = 0, and so

H(q, θ) =

Z 1

0

Z σ(q∗,θ∗,α)

σ(q,θ,α)
dtdα+H(q∗, θ(q∗)) (61)

= 1− θ − 1
2
q

Thus for q ≤ q∗ the condition φ(q, θ) = 0 yields:

θφ(q) =
1 + (b− 3

2)q

2
, for q ∈ [bq, q∗]. (62)

whenever this expression is non-decreasing in q, i.e. whenever b ≥ 3
2 . When b < 3

2 , the
constraint θ0(q) ≥ 0 is binding, and so we have θφ(q) = θ∗ for all q ≤ q∗. Q.E.D.

Lemma 11 has an important immediate implication: if b ≥ 3
2 then

bθ = θφ(bq) ≥ θφ(0) = 1
2 ,

and if b < 3
2 then

bθ = θ∗ ≥ 1
3 . Hence regardless of the value of b, we will never be in a case

where bα < 1.
Next, we investigate the solution to (9). We start by characterizing the solution over the

region q ∈ [q∗∗, bq], when bq is not so chosen so large that the constraint α0(q) becomes binding
at a value of q ∈ (q∗∗, bq]:
Lemma 12 Suppose q∗ ≤ bq < qm, where qm = (3θm−1)

2(b−1) , and θm is the unique real root in the

interval [θ∗, 23 ] to the equation

−27(1− θ)(1− (2 + 4b)θ + (5 + 4b)θ2) = 1.

Then the interval [q∗∗, bq] is non-empty and the solution to (9) satisfies α0(q) > 0 for all
q ∈ [q∗∗, bq]. It is given by

α(q) = c0 +
c1
27
(2−

r
1− 6

c1q
)(1 +

r
1− 6

c1q
)2 (63)

θ(q) =
2

3
− 1
3

r
1− 6

c1q
(64)

where the constants c0 and c1 chosen so as to satisfy the two boundary conditions at q = bq,
i.e. θ(bq) = θφ(bq) and α(bq) = 1:

c1 =
4(b− 1)

(1− bθ)(3bθ − 1)2 , and
c0 =

bθ2(5 + 4b)− bθ(2 + 4b) + 1
(3bθ − 1)2 < 0
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Also, the initial terminal surface constraint σ(q∗∗, α(q∗∗), θ(q∗∗)) yields:

θ∗∗ = 1− (−2c0
c1
)
1
3 (65)

α∗∗ = 3c0 + c1(−2c0
c1
)
2
3 (66)

q∗∗ =
(−2c0c1 )

1
3

3c0 + c1(−2c0c1 )
2
3

(67)

Proof: In order for the middle region [q∗∗, bq] not to be empty, the indifference curve
emanating from the point (α, θ) = (1,bθ) must intersect the upper boundary θ = 1 at some
a > 0, i.e. we must have α(bq, 1,bθ) > 0. Since α(q, α, θ) is the solution in a to the equation
σ(q, α, θ, a) = 1, and since σ(q, α, θ, a) = θ + (α− a)q, we have

α(q, α, θ) = α− 1− θ

q
. (68)

The requirement α(bq, 1,bθ) > 0 can therefore be rewritten as bθ ≥ 1− bq. By Theorem 7 it
must be that bθ = θφ(bq). Using (58) and simplifying then yields bq ≥ q∗.

Next, let us derive the functional form for (14) over the region [q∗∗, bq]. Using (68) we may
compute

h(q, α, θ, θ0, α0) =

Z α

α(q,θ,α)

©
σq + σθθ

0 + σαα
0ª da

=
1

2

µ
1− θ

q

¶2
+

µ
1− θ

q

¶
(θ0 + qα0)

Thus

h0(q, α, θ) =
1

2

µ
1− θ

q

¶2
h1(q, α, θ) =

µ
1− θ

q

¶
= α

h2(q, α, θ) = 1− θ

Also

ψ(q, α, θ) =
uquθ
uqθ

(q, α, θ)h1(q, α, θ)

= (1− θ)(θ − (b− α)q)

and so (14) becomes

α0(q) =
(1− θ)(1− 3θ)
q2(3θ − 2) (69)

Let us now proceed to solve (69). Separating the variables produces

dq

q
= − 2(2− 3θ)

(1− θ)(3θ − 1)dθ
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Upon integrating both sides, we obtain:

Log(q) = −Log(1− 4θ + 3θ2)

and so

(1− θ)(3θ − 1) = k

q
, (70)

for some constant k > 0. Solving for θ, and setting k = 2/c1 then produces (64). The
boundary condition k = 2

c1
is derived as follows. Evaluating (70) at q = bq yields k =

(1− bθ)(3bθ − 1)bq, where bq = 3bθ−1
2(b−1) . It follows that k =

(1−bθ)(3bθ−1)2
2(b−1) = 2

c1
.

Let us now proceed to derive (63). Define the function eα(θ) implicitly through α(q) =eα(θ(q)). Then α0(q) = eα0(θ(q))θ0(q) so
eα0(θ(q)) = −2

q
(71)

eα00(θ(q)) =
2

q2θ0(q)

Then using (69) to substitute for θ0(q) yields

eα00eα0 = 2(2− 3θ)
(1− θ)(3θ − 1)

which may be integrated to obtain

eα0(θ) = −c1(1− θ)(3θ − 1). (72)

Integrating once more then produces

eα(θ) = c0 + c1θ(1− θ)2. (73)

Setting θ = θ(q), and using (64) then produces(63).
To find θ∗∗, invert (71) to yield

q(θ) = − 2eα0(θ) = 2

c1(1− θ)(3θ − 1) (74)

Now the initial boundary condition σ(q∗∗, θ(q∗∗), α(q∗∗), 0) = 1 can be rewritten as

θ + q(θ)eα(θ) = 1 (75)

Substituting (74) and (73) into (75) and solving yields (65). Substituting (65) into (73) and
simplifying produces (66). Finally, it follows from (75) that q∗∗ = (1−θ∗∗)/α∗∗ , which yields
(67). Next, let us derive the equations fro c0 and c1. From (75) we have

c1 =
2bq(1− bθ)(3bθ − 1)
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Using the equation bq = 3bθ−1
2(b−1) then yields the required formula for c1. It follows from (73)

that c0 + c1bθ(1− bθ)2 = 1. Solving for c0, and substituting in the formula for c1 then yields
c0 = 1− 4(b− 1)

bθ(1− bθ)
(3bθ − 1)2

It remains to be shown that α0(q) > 0 for all q ∈ [q∗∗, bq]. From (69), this will be true pro-
vided 1

3 ≤ θ(q) < 2
3 . Since θ is decreasing in q, to establish these inequalities it suffices to

show that bθ ≥ 1
3 and θ∗∗ ≤ 2

3 . Now bθ = θφ(bq) ≥ θφ(q∗) = θ∗; the inequality bθ ≥ 1
3 then

follows because θ∗ is increasing in b, and because θ∗ = 1
3 at b = 1. Form (65) the inequal-

ity θ∗∗ ≤ 2
3 holds if and only if (−2c0c1 ) ≥ 1

27 . Using (19) and (18), and rearranging yields

−27(1− θ)(1− (2 + 4b)θ + (5 + 4b)θ2) ≥ 1, which holds if and only if bθ ≤ θm. Q.E.D.

Our next lemma characterizes the solution over the interval [0, q∗∗] when bq ≥ q∗, and over
the interval [0, bq] when bq ≤ q∗.

Lemma 13 (i) Suppose that bq ≥ q∗. Then the solution to (9) satisfies α0(q) = 0 for all
q ∈ [0, q∗∗). Thus we have α(q) = α∗∗ and θ(q) = θ∗∗.

(ii) Suppose that bq ≤ q∗. Then the solution to (9) satisfies α0(q) = 0 for all q ∈ [0, bq).
Thus we have α(q) = 1, and θ(q) = bθ.

Proof: Theorem 6 is applicable to these regions, but since α(q, θ(q), α(q)) = 0 for all
q ≤ q∗∗, the formulae ψ and h need to be adjusted. We may compute:

h(q, θ, α, θ0, α0) =

Z α

0
f(σ(q, θ, α, a), a)

d

dq
σ(q, θ(q), α(q), a)da (76)

=
1

2
α2 + α(θ0 + qα0)

and

ψ(q, θ, α) = −uq(q, θ, α)uθ(q, θ, α)
Z α

0

f(σ(q, θ, α, a), a)

uqθ(q, σ(q, θ, α, a), a)
da

= −q(θ − (b− α)q)α

Using these formulae, we (14) becomes

α0(q) =
α(3α− 2b)
(b− 3α)q (77)

(i) We divide the analysis into three cases. First, consider the case where α∗∗ > 2b
3 .

Suppose that contrary to the statement of the Lemma there existed a q+ < q∗ such that
α(q+) < α∗∗. Without loss of generality, we may assume that α(q+) ≥ 2b

3 . We now claim
that for any q ∈ (q+, q∗∗) it must be that α0(q) = 0, yielding an immediate contradiction to
the assumption that α(q+) < α∗∗. Indeed, if we had α0(q) > 0, then from Theorem 6 equation
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(77) would hold. But (77) yields α0(q) ≤ 0 whenever α(q) ∈ [2b3 , α∗∗), a contradiction to the
assumption that α0(q) > 0. We conclude that whenever α∗∗ > 2b

3 we must have α(q) = α∗∗

for all q ∈ [0, q∗∗].
Next, consider the case where α∗∗ ≤ b

3 . Suppose that contrary to the statement of the
lemma there existed a q− < q∗ such that α(q−) < α∗∗. Let q+ = min{z : α(z) = α∗∗}. We
now claim that for any q ∈ (q−, q+) we must have α0(q) = 0 , contradicting the assumption
that α(q−) < α∗∗. To establish the claim, suppose to the contrary that we had α0(q) > 0 for
some q ∈ (q−, q+). Then equation (77) must hold. But since α(q) < b

3 , it follows from (77)
that α0(q) < 0, a contradiction. We conclude that whenever α∗∗ ≤ b

3 we have α(q) = α∗∗ for
all q ∈ [0, q∗∗].

Finally, consider the case where α∗∗ ∈ ( b3 , 2b3 ]. First, we claim the constraint α0(q) ≥ 0
must be binding somewhere on the interval [0, q∗∗). Indeed, if this were not the case, then
from Theorem 6 equation (77) would hold for all q ∈ [0, q∗∗). Separating by variables, this
equation can be rewritten as

dq

q
=
1

2
d ln(α(2b− 3α))

Integrating both sides yields

α(q) =
b

3
+
1

3

q
b2 − 3c22q−2 (78)

or equivalently that
q =

c2p
α(2b− 3α) (79)

The constant c2 is chosen so that the boundary condition α(q∗∗) = α∗∗ is satisfied, i.e.

c2 = q∗∗
p
α∗∗(2b− 3α∗∗)

If α∗∗ = 2b
3 , then c2 = 0 and so (78) yields α(q) = 2b

3 for all q, contradicting the presumption
that α0(q) > 0 for all q ∈ [0, q∗∗). If α∗∗ ∈ ( b3 , 2b3 ) it follows from (78) that α(q) ≥ b

3 for all q,
and so from (79) we obtain a bound

q ≥ c2

b
√
3

below which (77) no longer has a solution, also contradicting the presumption that α0(q) > 0
for all q ∈ [0, q∗∗). This establishes the claim that we cannot have α0(q) > 0 for all q ∈ [0, q∗∗].
The same proof also establishes that there cannot exist a neighborhood of q = 0 on which the
constraint α0(q) ≥ 0 is never binding.

Next, suppose that contrary to the statement of the lemma, there existed an interval
(q−, q+) ⊂ (0, q∗∗) such that α0(q) > 0 for all q ∈ (q−, q+). Without loss of generality, let q−
= inf{z : α0(q) > 0 for all q ∈ (q, q+)}. Then since µ(q) = 0 for all (q−, q+), we would have
µ(q−) = µ0(q−) = 0. By the previous claim, there exists a sequence {qn} with qn ↑ q− such
that µ(qn) > 0. By Theorem 6, we have µ0(qn) = (ψ − λ)gq|q=qn . Taking limits as n→∞ it
follows that µ0(q−) = (ψ−λ)gq|q=q− = 0. Now gq =

1
2 > 0, so we must have (ψ−λ)|q=q− = 0.
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Furthermore, we may calculate that at q = qn :

µ00(q) = (ψq − λ0)gq + (ψ − λ)
d

dq
gq

= (ψq − uθh0 − uqh1)gq + (ψ − λ)
d

dq
gq

Therefore

µ00(q−) = (ψq − uθh0 − uqh1)gq|q=q−
=

qα

4
(2b− 3α)|q=q−

Since α(q−) < α∗∗ ≤ 2b
3 we therefore have µ

00(q−) > 0. But µ(q−) = 0 and µ00(q−) > 0 implies
that there exists ε > 0 such that µ(q) < 0 for all q ∈ (q− − ε, q−). This contradicts that
µ(qn) > 0 for all n. We conclude that we must have α0(q) = 0 for all q ∈ [0, q∗∗].

(ii) The proof for this case is analogous to the proof for case (i). Q.E.D.

Proof of Theorem 11: According to Lemma 11 we must have bθ ≥ θ∗. Since Theorem 7
we must have bθ = θφ(bq), it follows that we must have bq ≥ q∗. Lemmas 11, 12 and 13 then
characterize the solution as a function of the parameter bq, as bq ranges over the interval [q∗, qm].
We shall prove that over this range the profit function V (bq, 1, θφ(bq)) is strictly quasiconcave
in bq, attaining a maximum at the unique value of bq for which α∗∗(bq) = 2b

3 :
17

d

dbqV (bq, 1, θφ(bq)) ≶ 0 as α∗∗ ≷ 2b3 (80)

From the proof of Theorem 8(i), we have

d

dbqV (bq, 1, θφ(bq)) = [µ+(q∗∗)− µ−(q
∗∗)]

dα∗∗

dbq + [λ+(q
∗∗)− λ−(q∗∗)]

dθ∗∗

dbq
Let us first calculate µ−(q∗∗) and λ−(q∗∗). Since 11 has free left hand endpoints α(0) and θ(0),
it must be the case that µ(0) = λ(0) = 0. Furthermore, since by Lemma 13 the constraint
α0(q) ≥ 0 is binding on the interval [0, q∗∗), it follows from Theorem 6 that µ̇ = − ∂

∂αuh0
and λ̇ = − ∂

∂θuh0 on [0, q
∗∗). Furthermore, the proof of Lemma 13 also established that

u(q, α(q), θ(q)) = u(q, α∗∗, θ∗∗) and h0(q, α(q), θ(q)) =. 12(α
∗∗)2. It follows that

λ̇ = −1
2
(α∗∗)2q

µ̇ = −qα
∗∗

4
(4θ∗∗ + q(3α∗∗ − 2b))

Integrating then yields

λ−(q∗∗) = −1
2
(α∗∗)2

Z q∗∗

0
qdq = −(α

∗∗q∗∗

2
)2

17 It is straightfowrward to characterize the solution when bq > qm, and to show that
d
dbqV (bq, 1, θφ(bq)) < 0 for q > qm. For the sake of brevisty, we omit the details here.
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µ−(q
∗∗) = −α

∗∗(q∗∗)2

12
((2b− 3α∗∗)q∗∗ − 6θ∗∗)

Next, since α0(q) > 0 for all q ∈ (q∗∗, bq), it follows from Theorem 6 that

λ+(q
∗∗) = −uh1 + ψ

µ+(q
∗∗) = −uh2 + ψg

By Lemma 12 we have h1(q
∗∗, α∗∗, θ∗∗) = α∗∗ and h2(q

∗∗, α∗∗, θ∗∗) = 1 − θ∗∗ = α∗∗q∗∗.
Furthermore

ψ(q∗∗, α∗∗, θ∗∗) =
uquθ
uqθ

(q∗∗, α∗∗, θ∗∗)h1(q∗∗, α∗∗, θ∗∗)

= α∗∗q∗∗(θ∗∗ − (b− α∗∗)q∗∗)

Hence

λ+(q
∗∗) = −α∗∗(q∗∗)2 (b− α∗∗)

2

µ+(q
∗∗) = −α

∗∗(q∗∗)2

2
θ∗∗

and so

λ+(q
∗∗)− λ−(q∗∗) =

α∗∗(q∗∗)2

4
(3α∗∗ − 2b)

µ+(q
∗∗)− µ−(q

∗∗) =
α∗∗(q∗∗)3

12
(2b− 3α∗∗)

Now over the considered range, we have dα∗∗
dbq < 0 and dθ∗∗

dbq > 0, so (80) follows. Furthermore,

since dα∗∗
dbq < 0, (80) implies that

d

dbqV (bq, 1, θφ(bq)) ≷ 0 as bq ≶ q̊

where q̊ solves (17). Thus V (bq, 1, θφ(bq)) is strictly quasiconcave in bq over the range [q∗∗, qm],
attaining a unique maximum at bq = q̊. Q.E.D.

Proof of Theorem 10: .For the case b ≥ 3
2 , Lemmas 11, and 13 characterize the solution

as a function of the parameter bq, as bq ranges over the interval [0, q∗]. We shall first prove
that over this range the profit function V (bq, 1, θφ(bq)) is strictly quasiconcave in bq, attaining a
maximum at the unique value of bq = 0:18

d

dbqV (bq, 1, θφ(bq)) ≤ 0, with equality only if bq = 0 (81)

18 It is straightfowrward to characterize the solution when bq > q∗, and to show that
d
dbqV (bq, 1, θφ(bq)) < 0 for q > q∗. For the sake of brevisty, we omit the details.
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