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Abstract

In the usual persuasion game framework, where an informed sender tries to persuade
an uninformed receiver to take a certain action by selectively communicating verifiable
information, all the relevant information is revealed in equilibrium because any action of
the sender can be outguessed by the receiver. If the sender is unable to interpret her
own information, however, this classical unraveling argument breaks down. When the
receiver is sufficiently inclined to act as the sender wishes without any information, the
sender has no incentive to inform her. This paper examines whether full disclosure can be
restored with competition between multiple senders. In the model, the senders compete
for a limited number of prizes allocated by the receiver. Full disclosure can be restored
only in the presence of weak candidates, that is ex ante unpromising candidates. With
sufficiently many weak candidates, it is always possible to ensure full disclosure.
Keywords: Strategic Information Transmission, Persuasion Games, Disclosure, Commu-
nication, Competition, Advertising, Lobbying.
JEL classification: C72, D82, D83, L15, M37.

1 Introduction

Economic agents sometimes control the access of others to information but are not able to

predict others’ reactions to it. A climate expert may understand the environmental effects of a

particular emission reduction policy, but lack the economic and political expertise to apprehend

its electoral value to those in charge of approving it. A movie producer may find it impossible

to predict how the information conveyed in a trailer will affect the willingness of any particular

∗I am indebted to Doug Bernheim, Matt Jackson and Paul Milgrom for their guidance. I also thank Romans
Pancs, Ilya Segal, and Andy Skrzypacz for useful comments, as well as the members of Paul Milgrom’s reading
group.
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consumer to watch a movie, or an advertiser or a search engine to know how the information

contained in a sponsored link will influence a particular consumer.

In spite of its opacity, the control of the information can grant its gatekeeper some power

over the decisions of other parties. A job candidate with a good resume, for example, is

unlikely to reveal additional information about herself in a statement of purpose. Since it

is both difficult to appreciate how such information will be interpreted by the employer and

easy to make the statement of purpose deliberately vague, a candidate who thinks that she

will be hired on the basis of her resume alone will not communicate potentially detrimental

information. Furthermore, common knowledge that information is equivocal to the candidate

prevents the employer from drawing any unfavorable inferences from her behavior. Conversely,

a candidate with a weaker resume has to provide as much additional information as possible in

order to sway the employer’s decision. Similarly, this analysis suggests that the best strategy to

advertise a movie from a popular director is to keep the trailer elliptic and mysterious, while the

trailer of a movie from an unknown director will feature all its best scenes in order to attract

audiences.

Such reasoning on the part of a job candidate or a movie producer should, however, be

altered by the presence of competitors. If an ex ante weaker job candidate has to provide more

information about herself in order to stay in the race, this behavior could make her stronger than

other candidates ex post, compelling ex ante stronger candidates to disclose more information

as well, so as not to run the risk of losing their initial advantage. Thus, intuitively at least,

the forces of competition may be expected to mitigate the real authority1 of ex ante strong

candidates over the employment decision and lead to more disclosure.

One of the main results of the literature on persuasion games, as most generally stated

in Milgrom and Roberts (1986), is the identification of a set of assumptions that, by ensur-

ing skepticism on the part of the receiver, leads to efficient provision of information by the

sender. Such skepticism occurs when the receiver (buyer, decision maker) is capable of strate-

1As defined by Aghion and Tirole (1997), real authority is the effective control over decisions as determined
by the information structure, rather than by the formal right to decide.
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gic reasoning, informed about the interests of the sender (seller, candidate) and aware of the

type of information that is available to the sender. Milgrom and Roberts (1986) and Mil-

grom (2008) argue that, even when these assumptions fail, competition among senders can

sometimes provide an (imperfect) substitute and lead to more disclosure. My analysis of the

single-sender/single-receiver case points at another important assumption in the usual persua-

sion games: that the sender is able to anticipate the impact of the information she holds on the

receiver. Interestingly, the inability of the sender to interpret her information is an advantage

as, by effectively eliminating the asymmetry of (interpretable) information between the sender

and the receiver, it renders the observable actions of the sender completely uninformative for

the receiver. This allows the sender to fully benefit from the control she exerts on information2.

This paper investigates the effects of competition in a theoretical framework designed to

fit several economic situations. Several candidates with heterogeneous prospects compete for a

limited number of homogeneous prizes or slots (jobs, funding or political clearance to implement

a project or a policy, purchase decisions of a buyer). The model incorporates the search strategy

of the agent who decides how to allocate the slots (the decision maker). A candidate’s prospect

is her probability of being a good fit. I analyze the case in which the prospects of all candidates

are common knowledge among them, as well as the case in which candidates know only their

own prospect but not others’ (asymmetric information among candidates).

The main finding is that in either case sufficient competition leads to full disclosure (i.e.

disclosure by all candidates) only if some of them are weak (their prospects are sufficiently low

that approving them without further investigation would be wasteful in expectation). This

result emphasizes the importance of weak candidates in this type of contests. It may have

policy implications for the preselection of pools of candidates in procurement contests or when

hiring. The results can also be applied to the disclosure or information to buyers in a market.

A market with strong competitors3 only may harm the consumer by limiting disclosure. For

2Note that the single-sender/single-receiver case used as a benchmark in this paper is analyzed in Caillaud
and Tirole (2007).

3The model will make the meaning of strong clearer. For this discussion, it means competitors whose products
are sufficiently likely to be satisfactory to the consumer that she would make the purchase in the absence of
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instance, a horizontal merger between two weak competitors is often considered to be pro-

competitive if it allows to create a stronger player able to compete more aggressively with other

strong players. The model suggests that such a merger may harm the consumer by reducing

her information. The model is too limited to be used as a policy guide for mergers, but the

consequences of horizontal mergers on information provision may be worth considering. Yet

this aspect of mergers is not even mentioned in the 1992 Horizontal Merger Guidelines4 jointly

issued by the Federal Trade Commission and the Department of Justice.

The cost of processing or acquiring information can have important consequences in many

environments. In the examples above, it is often costly to process additional information

about candidates, even when they make this information available. If an engineer’s project

has sufficiently good prospects, the CEO of a company may be willing to fund it without

further assessments because learning about these details would be too costly, or she may be

constrained to rubberstamp the project in the absence of more detailed information that she

would have preferred to consult. In the presence of many candidates with different prospects,

about which additional information may or may not be available, and may be costly to process

when available, the decision maker faces a complex search problem. For example, the presence

of a second candidate with a sufficiently strong prospect, by changing the outside option of the

decision maker, may make it valuable to conduct a further assessment that would otherwise

have been wasteful. In the absence of processing costs, a decision maker would optimally

start by processing all available information, before rubberstamping any project. A theoretical

contribution of this paper is to provide conditions on the prospects under which she adopts

a similar behavior in the presence of processing costs, and to characterize an optimal search

algorithm for the decision maker in such cases, for any number of available slots. However, the

presence of small processing costs also induces an optimal order in the treatment of available

information: in order to save on processing costs, it is optimal to process projects with better

prospects first. Therefore the set of optimal policies in the presence of these costs, even as they

additional information, even though she would prefer to consult this additional information.
4Available at http://www.ftc.gov/bc/docs/horizmer.htm.
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go to zero, is a subset of the policies that are optimal when processing is costless.

In the model, a project is either good or bad for the decision maker. Each of the candidates

has information that would allow the decision maker to perfectly figure out the value of her

project, but is unable to process this information in the decision maker’s place and therefore to

anticipate its effect on her. A candidate decides whether to provide documentation about her

project. The decision maker can process each piece of information at a cost. If the processing

cost is sufficiently low, I show that it is an optimal policy for the decision maker to first

learn sequentially about all the documented projects, and allocate a slot to each project that

is found to be good. In this processing phase, she examines the projects in the order of

decreasing prospects as long as there remains some slots to allocate. She starts allocating

slots to undocumented projects only after having examined all the documented projects, even

those less promising than the non-documented ones. Hence, by withholding information, a

candidate loses her priority in the choice process of the decision maker. It might, however,

still be beneficial to do so in equilibrium if the probability that the decision maker can find

sufficiently many good projects in the set of documented projects is low . As for the decision

maker, she is clearly best of when all information is made available to her since it expands her

choice set.

When candidates are perfectly informed about their opponents, I show that there is no

equilibrium with full disclosure in the absence of weak candidates. With one slot, increasing

the number of weak candidates and improving their initial prospects both make full disclosure

more likely. Furthermore, in the game with a single slot to fill, when a pure strategy equilibrium

exists, it is unique. In such an equilibrium, at most one candidate withholds information. I

show that increasing the number of weak candidates or improving their initial prospects always

leads to a weaker candidate withholding information, to the benefit of the decision maker. I also

analyze the bayesian game with imperfect information of the candidates about the prospects

of their peers. Full disclosure never obtains in the absence of weak types, but is the unique

equilibrium in their presence whenever there are sufficiently many candidates.
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Related Literature. There is a large economic literature on the strategic communication of

information that distinguishes between soft information (Crawford and Sobel (1982)), and hard

information (Grossman (1981), Grossman and Hart (1980), Milgrom (1981)). The literature

on persuasion games5 studies the case of hard (certifiable) information in problems with a single

sender trying to persuade a single receiver to take a certain action. For example, a seller tries to

influence the decision of a buyer with verifiable information. I also focus on hard information6.

Caillaud and Tirole (2007) analyze a single-sender/multiple-receivers model from a mech-

anism design perspective in order to understand optimal persuasion strategies when decisions

affecting the sender are made by a committee under a qualified majority rule, with obvious po-

litical economy applications to lobbying situations. I analyze a multiple-senders/single-receiver

version of the same benchmark model from a game-theoretic perspective to explore the effects

of competition. Competition is an important feature of lobbying, and as such this paper is a

contribution to a growing literature (e.g. Gul and Pesendorfer (2007)) that views lobbying as

a competition in the provision of information.

The assumption that an economic agent can control access to information that she cannot

process plays an important role in several other recent papers than Caillaud and Tirole (2007).

Eso and Szentes (2003) propose an agency model where the principal can release, but not

observe, information that would allow the agent to refine her knowledge of her own type.

They show that when the full mechanism design problem is considered altogether, the optimal

mechanism calls for full disclosure and allows the principal to appropriate the rents of the

information she controls exactly as if it were observable to her. Eso and Szentes (2007) develop

an auction model in which similar conclusions hold, reversing the results of earlier auction papers

that considered the problem of disclosure and the design of the selling mechanism separately

(Bergemann and Pesendorfer (2007)).

5For a review of this literature see Milgrom (2008). Sobel (2007) summarizes the literature on information
transmission.

6The distinction between soft and hard information is less meaningful in the context of this paper, since it
is not clear how and why the sender would falsify information that she cannot interpret. In this light, it seems
natural to assume non-falsifiable information, as implicitly done in this paper.
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This paper is also connected to the economic literature on advertising. It makes predictions

about the relationship between product quality and the informativeness of advertising. This

question is connected to the analysis of the relationship between product quality and levels of

advertising in the literature. As summarized in Bagwell (2007), the empirical literature on

the topic does not strongly support a systematic positive relationship. Bagwell and Overgaard

(2006) and Bar-Isaac, Caruana and Cuñat (2008) offer possible theoretical explanations for a

negative relationship. To the extent that the quantity of advertising is an acceptable measure

of its informativeness, this paper offers an alternative and simple theoretical explanation, in

the case of a monopolist. Furthermore, it allows to analyze the case of competition which was

not done with other models in the literature. This topic is discussed further in Section 6.

2 The Model

2.1 Setup

For clarity, the model is described in the language of project adoption, although it fits other

situations as well. Finitely many candidates with a single project, indexed by the set N =

{1, . . . , N}, seek to maximize the probability that their project adopted by a decision maker

who can implement only M ≤ N of them. A project is either good or bad for the decision

maker. A good project yields an expected gain G > 0 for the decision maker, whereas a bad

project yields an expected loss L > 07.

All the players share the belief that the projects are of independent values from one another,

and assign probability ρn ∈ (0, 1) to the event that project n is good8 . Without loss of

generality9, ρ1 > · · · > ρN . I refer to the order that underlies this ranking as the strength

7In the multi-seller/buyer interpretation of the model, projects are items for sale to a seller with demand for
a fixed quantity M and these payoffs implicitly assume away any price heterogeneity across sellers.

8This assumption is relaxed in Section 5, where the prospect of a project is known by its sponsor and the
decision maker, but not by other candidates.

9There is in fact a small loss of generality since ties are ruled out, but this is a measure 0 event as long as
the probability profile is drawn from an atomless joint distribution on [0, 1]N .
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order on projects. Each candidate n controls information that would allow the decision maker

to figure out the value of project n but are irrelevant to other projects. However, the candidate

is unable to process this information10: she can only decide whether to communicate it to the

decision maker, who can then process it at a cost c > 0. Investigation by the decision maker is

not contractible. A project whose information is made available to the decision maker is said

to be documented.

The timing is as follows. First, the candidates decide simultaneously whether to disclose

their information. Then the decision maker decides which information to process and which

projects to approve.

2.2 Assumptions and Notations

Assumptions. Approving a project with prospect ρ without learning about it provides the

decision maker with an expected incremental payoff ρ(G + L) − L, whereas processing and

conditionally approving the project gives the expected incremental payoff ρG− c. Let ρ = c/G,

ρ̂ = L/(L+G) and ρ = 1− c/L.

Assumption 1 (Affordable Learning (AL)). The processing cost is sufficiently low to ensure

that learning can take place

c < LG/(L+G). (1)

(AL) ensures that ρ < ρ̂ < ρ. It is easy to see (Figure 1) that the interval (0,1) can then be

partitioned in four intervals such that:

(i) if ρ ∈ (0, ρ), the project is not worth considering for either immediate (i.e. rubberstamp-

ing) or conditional approval (i.e. after investigation);

(ii) if ρ ∈ (ρ, ρ̂), the project only deserves conditional approval, but rubberstamping is waste-

ful;

10Alternatively, I could assume that the candidates must commit to a communication decision before observing
the value of their project.
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Figure 1: Discarding, Learning and Approving with One Candidates: Payoffs.

(iii) if ρ ∈ (ρ̂, ρ), the first-best option is conditional approval, but rubberstamping beats mere

rejection;

(iv) if ρ > ρ, rubberstamping is the first-best option: learning about the project would be

wasteful.

In this light, (AL) simply says that at least some projects are worth processing.

Notations. For any subset J ⊆ N , denote its cardinality by J , and let j(1) < · · · < j(J)

be the ordered elements of this subset, so that ρj(1) > · · · > ρj(J) gives the decision maker’s ex

ante preference order over this subset of projects.

Definition 1 (Truncated Subsets). For any subset J = {j(1), . . . , j(J)} ⊆ N and any k < J ,

let J −(k) ≡ {j(1), . . . , j(k)} and J +(k) ≡ {j(k+ 1), . . . , j(J)} be the left and right truncations

of J at k. Also for 1 ≤ k < k + r ≤ J , write J (k, k + r) = {j(k + 1), . . . , j(k + r)}. By

convention, J −(0) = J +(J) = ∅.

For a project n ∈ N , and a subset of projects J ⊆ N , let rJ (n) be the rank of n in J . This

does not require n to be an element of J : if n is not in J then rJ (n) is the rank that n would

have in J ∪{n}. For example, if N consists of three projects 1, 2 and 3 such that ρ1 > ρ2 > ρ3
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and J = {1, 3}, then rJ (3) = rJ (2) = 2 as project 3 is the second strongest project in J and

project 2 would be the second strongest project in J ∪ {2}.
For comparisons between sets of projects, I will use the usual set containment order ⊂, as

well as the strength order for sets of the same cardinality, as defined below.

Definition 2 (Strength Order on Sets). For two sets of projects K,K′ ⊆ N with the same

cardinality K = K ′, K is stronger than K′, denoted K > K′ if for every κ = 1, . . . , K, ρk(κ) ≥
ρk′(κ), with at least one of these inequalities holding strictly.

3 The Decision Maker’s Choice11

3.1 Game Reduction and an Additional Assumption

Game Reduction. As a preliminary, notice that projects with ρ < ρ will never be considered

for either processing or approval. Indeed, since such a project n’s prospect satisfies ρn < c/G <

L/(L + G), the expected incremental payoff from examination, ρnG − c, is negative, as is the

expected incremental payoff from rubberstamping ρn(G+L)−L. The presence of these projects

is also irrelevant to the communication game, since they have no effects on the payoffs of other

candidates.

In the remainder of the paper, I therefore assume without loss of generality that there are

no such projects: ρn > ρ (∀n ∈ N ). I also assume, though not without loss of generality, that

no candidate is sufficiently strong to make the incremental payoff from learning less than the

incremental payoff from rubberstamping12: ρn < ρ, (∀n ∈ N ). LetNW ≡
{
n ∈ N ; ρ < ρn < ρ̂

}
be the set of weak candidates or weak set, and define NS ≡

{
n ∈ N ; ρ̂ < ρn < ρ

}
as the set of

strong candidates or strong set.

11See Appendix A for proofs that are not in the text.
12It is intuitive that projects with very high prospects can be eliminated without loss of generality because they

would be rubberstamped without affecting the rest of the game. This intuition is addressed in Proposition 11
of Section 4.4 for the single slot case, showing that when the prospect of the best project ex ante exceeds a
certain threshold ρ+ > ρ, project 1 is rubberstamped in equilibrium.
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Additional Assumption. In the remainder of the paper, I also make the following assumption

to simplify the analysis.

Assumption 2 (Learning Priority (LP)).

Whenever N ≥ 2,

ρN(1− ρ1) > c/(L+G) (2)

This assumption is satisfied if NS = ∅ or if NW = ∅, but it is not satisfied in general. If, for

example, ρ1 ' ρ = 1− c/L and ρN ' ρ = c/G, then ρN(1− ρ1) ' c2/(LG) < c/(L+G), where

the last inequality is a consequence of (AL). Note that the assumption is satisfied when learning

is costless for the decision maker (c = 0). (LP) can be interpreted as bounding processing costs

above, or as ruling out extreme prospects.

It is called a learning priority assumption because it implies, a decision maker with one

slot to fill and a pool of projects reduced to the best and the worst projects from the original

pool would always choose to process all available information before rubberstamping a project.

Indeed, suppose the decision maker has received documentation about N only, and is therefore

contemplating two choices: either rubberstamping 1 directly obtaining the payoff ρ1(G+L)−L,

or processing the information of N first and rubberstamping 1 if she finds that N is a bad

project, yielding ρNG+(1−ρN). The latter dominates the former if and only if (LP) is satisfied.

Proposition 1 in the next section shows that this assumption ensures that the decision maker

prioritizes learning in any situation.

3.2 Discarding, Learning, Approving

The only variable relevant to a decision maker with M slots to fill and a pool of candidates N
is her learnable set: the subset of projects that are documented. Let I ⊂ N denote this subset,

and H = N r I. I is called the information set of the decision maker, while H is her hidden

set. The partition [I,H] of the set of projects N is her learning partition. The set of expected

payoffs that she can reach given any policy is completely characterized by the triple (I,H,M),
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which consists of the two sets of her learning partition and the number of available slots. Let

HW ≡ H ∩ NW , HS ≡ H ∩ NS, IW ≡ I ∩ NW and IS ≡ I ∩ NS denote the weak and strong

subsets of the two elements of the learning partition.

The policies available to the decision maker can be described as finite sequences of process-

ing and approval decisions with bounded lengths. Hence the decision maker’s problem is to

maximize a function over a finite set: this implies the existence of an optimal policy. Because

I excluded projects for which it is not optimal to learn on an individual basis (ρ < ρ or ρ > ρ),

any policy is equivalent to a sequential policy where, at each stage, the decision maker can

either approve a project from H or process and conditionally approve a project from I13. A

policy in state (I,H,M) is therefore well-described by a vector π =
(
πd
)

1≤d≤D of dimension

D ≤ N , listing elements of N in the order of their examination, where it is understood that if

πd ∈ I, the policy involves processing πd at cost c, conditionally approving it, and then moving

on to πd+1, while if πd ∈ H, the policy consists in rubberstamping πd at step d and then moving

on to step d+ 1.

Let Π(I,H,M) denote the set of optimal policies at (I,H,M) and let V (I,H,M) be the

maximum achievable payoff. It is intuitive that, at each stage, the decision maker is best off by

choosing between the strongest project in H and the strongest project in I. Hence in each state

(I,H,M), the choice of the decision maker can be described as a choice between (i) approving

h(1) and moving on to the state (I,H+(1),M − 1); or (ii) processing i(1), then approving it

if it is good and moving on to the state (I+(1),H,M − 1), or simply moving on to the state

(I+(1),H,M) if i(1) is bad. Of course there is also the option to rubberstamp a project in I,

but processing it is always better because of the assumption that all projects have prospects

below ρ. The following lemma presents some useful remarks about optimal policies.

Lemma 1.

(i) Projects in HW are optimally discarded and only the first M projects in HS are ever

13In principle, the decision maker could delay approval after observing that a project is of good value, but
there is no advantage in doing so since all projects of the same value yield equal expected payoffs.
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considered: Π(I,H,M) = Π(I,H−S (M),M).

(ii) If M > I it is optimal to rubberstamp the first K = min(M − I,HS) projects in HS:

any policy in Π(I,H,M) is a policy resulting from the combination of a policy π ∈
Π(I,H+

S (K),max(I,M − HS)) with the rubberstamping of every project in H−S (K) in

any order and at any point in the sequence.

(iii) If M > HS, there is an optimal policy that consists in filling as many of the first M −HS

slots as possible with projects in I that are found to be good after processing, and then

solving for the continuation problem.

The next result shows that an optimal policy for the decision maker is to start by learning

about all the documented projects, and then to fill the remaining slots by rubberstamping

strong undocumented projects with positive expected incremental payoff in the order of their

ex ante ranking. Hence, withholding information implies losing one’s ex ante priority in the

order of attribution, generating a cost to non-disclosure.

Proposition 1. Given any triple (I,H,M), the procedure described below is an optimal policy

for the decision maker.

An Optimal Policy

Step 1 Process and conditionally approve all projects in I sequentially in the

increasing order (i(1) → i(2) → . . . ), as long as there are some empty

slots.

Step 2 Fill the m ≥ 0 remaining slots after step 1 with the min {m,HS} strongest

projects in HS.

Furthermore, given I,H and M , the probability that a given project is implemented is invariant

across all optimal policies of the decision maker.

The proof of the proposition consists in showing by a double induction on M and N that

the result of LP extends to more candidates and more slots. Induction works because of the

recursive nature of the decision maker’s problem, as is usual in search models.
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As c approaches 0, any pool of projects satisfies the assumptions of the model ensuring that

the policy is an optimal one. When it is costless to process information, it is natural for the

decision maker to prioritize learning. The proposition says that this priority is maintained for

sufficiently small processing costs where small is defined by (LP). Note, however, that when

c = 0, the order in which the documented projects are processed is irrelevant to the decision

maker. Therefore, while the policy of the proposition is still an optimal one, it is not true

anymore that the probability that a given project is implemented is invariant across all the

optimal policies. For instance, another optimal policy would be to process all the documented

and then implement as many of the good ones as possible, using a randomization device if their

number is greater than the number of slots. This implies that different optimal policies give

different incentives to the candidates for the communication game when c = 0. Taking the limit

as c goes to 0 of the equilibria analyzed below provides a method for selecting equilibria in the

game with c = 0.

As a consequence of the proposition, the probability that a project is implemented therefore

depends on the probabilities of finding good projects in subsets of I. Hence it is useful to

introduce the following notations. For a subset K of I, where f(p,K) denotes the probability

of finding exactly p good projects in K, let

F (p,K) ≡
p∑
q=0

f(q,K)

be the probability that there are fewer than p good projects in K. These probabilities can be

expressed as follows:

f(p,K) =
∑
J⊂K
J=p

∏
j∈J

∏
l∈KrJ

ρj(1− ρl), (3)

and

F (p,K) =
∑
J⊂K
J≤p

∏
j∈J

∏
l∈KrJ

ρj(1− ρl). (4)
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F (p,K) is obviously increasing in p. It is also decreasing in K for the set containment

order and decreasing in ρk for any k ∈ K, as (6) shows. It is therefore decreasing in K for the

strength order. Intuitively, adding new candidates to a pool or increasing the probability that

any project already in the pool is of good value reduces the probability that there are fewer

than p good projects in the pool, that is, it increases the probability that at least p projects in

the pool are good. These results are direct consequences of the following lemma.

Lemma 2. For any K ⊆ N , k ∈ K, p ∈ {1, · · · , K} and q ≤ K,

f(p,K) = ρkf(p− 1,K r {k}) + (1− ρk)f(p,K r {k}), (5)

and

F (q,K) = F (q,K r {k})− ρkf(q,K r {k}). (6)

Another useful property of these probabilities is given in the following lemma. It says that

the probability of finding at least p good projects in a given initial set becomes higher after

having made k good picks and no bad picks.

Lemma 3. For fixed p > 0 and J ⊆ N , and any subset of projects K ⊆ N such that J ∩K = ∅
and 0 < K < p,

F (p,J ∪ K) > F (p−K,J ) (7)

With these notations, and as a corollary of Proposition 1, the following expressions can be

given to the probability that a project is implemented by the decision maker

Corollary 1. The probability that i(k), the k-th project in I, is implemented by an optimizing

decision maker is equal to

F (M − 1, I−(k − 1))ρi(k),

and the probability that h(k), the k-th project in H, is implemented is equal to

F (M − k, I) · 1h(k)∈HS
.
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These formulas give the payoffs of the candidates when the decision maker acts optimally.

3.3 Implied Preferences for the Decision Maker

Proposition 1 implies the following expression for the expected payoff of the decision maker

V (I,H,M), where M ′ = min(M,HS)

V (I,H,M) = (1− F (M − 1, I))MG+G
M−1∑
p=1

pf(p, I)

−c
I−1∑
q=0

F (M − 1, I−(q)) +
M ′∑
r=1

F (M − r, I)
(
ρh(r)(G+ L)− L) . (8)

The first term measures the payoff from implementing M good projects, weighted by the

probability 1 − F (M − 1, I) of finding them. The second term measures the expected payoff

obtained when fewer than M − 1 good projects are found in I. The third term measures the

expected cost of the search in I. If fewer than M − 1 projects are found among the first q < I

projects in I, at least one more project has to be investigated at the cost of c. Finally, the last

term measures the payoff from filling with projects in HS the slots that are still unallocated

after the search in I.

Proposition 2. Consider two information sets I0 ⊆ I1 ⊆ N . Then V (I1,H1,M) ≥ V (I0,H0,M).

The intuition (and the proof) is that a larger information set gives more options to the

decision maker who can process, rubberstamp or discard any project in her information set

while she can only rubberstamp or discard other projects.

Proposition 3. When M = 1, a decision maker who can choose from which candidate to get

information between a stronger and a weaker one always opts for the stronger one.

Consider an exchange of the following type: for a fixed set of projects N take two projects

n and m, with n < m, so that ρn > ρm, and let [Î, Ĥ] be a partition of N r {n,m}. Let
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I0 = Î ∪ {m}, H0 = Ĥ ∪ {n}, I1 = Î ∪ {n} and H1 = Ĥ ∪ {m}. Then [I0,H0] and [I1,H1]

are both partitions of N that are obtained from one another by exchanging the roles of n and

m, so that I1 > I0 and H1 < H0. The decision maker of the proposition is asked to choose

between (I1,H1) and (I0,H0), and the proposition says that it is optimal to choose (I1,H1),

that is V (I1,H1, 1) ≥ V (I0,H0, 1).

Note that, maybe surprisingly, the result does not hold in general for M > 1, as the following

example shows.

Example 1. Consider the case of three strong candidates for two slots. If the two most promising

candidates disclose their information while the third one does not, the payoff of a decision

maker is V1 = 2ρ1ρ2G + G(ρ1(1 − ρ2) + ρ2(1 − ρ1)) − 2c + (1 − ρ1ρ2)(ρ3(G + L) − L). The

first term gives the payoff of the decision maker if the search in her information set is fully

successful weighted by the probability of such a success; the second term is the weighted payoff

of the search when it is only partially successful, the third term is the cost of the search,

it is 2c for sure since there are two slots to fill and only two candidates in the information

set; the last term is the weighted payoff from rubberstamping the third project in case the

search is not fully successful. The decision maker’s payoff in the case that the first and the

third candidate disclose their information while the second does not is obtained by symmetry

V2 = 2ρ1ρ3G + G(ρ1(1− ρ3) + ρ3(1− ρ1))− 2c + (1− ρ1ρ3)(ρ2(G + L)− L). Substracting the

first expression from the second one yields V2 − V1 = (1 − ρ1)(ρ2 − ρ3)L > 0 and this proves

that in this example the decision maker prefers to get information from candidate 3 than from

candidate 2 when candidate 1 is disclosing her information anyway. In fact, it is easy to show

that with 3 strong candidates and two slots, the decision maker always prefers to obtain her

information from weaker candidates.
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4 The Simultaneous Communication Game14

4.1 Benchmark: One Candidate

This benchmark case is also used as a benchmark in Caillaud and Tirole (2007), which studies

the problem of decision making by a committee with a single candidate. The only problem for

the decision maker is to know whether project 1 is worth implementing. Let ρ be the prospect of

the single project. If ρ > ρ̂ the decision maker accepts the project based on her prior. She would,

however, be willing to get more information about the project when ρG− c > ρG− (1− ρ)L,

or equivalently ρ < ρ. If on the other hand ρ < ρ̂, the decision maker is willing to acquire

information about 1 if ρG− c > 0, i.e. ρ > ρ.

Proposition 4 (Caillaud and Tirole (2007)). If ρ < ρ, the project is refused without examina-

tion, if the project is in the weak set, it is examined and approved if it is good, while if ρ > ρ̂ it is

rubberstamped by the decision maker. If however the project is in the strong set (ρ ∈ (ρ̂, ρ)), the

decision maker would prefer to examine the project, but the candidate is not willing to disclose

her information. The expected payoff of the decision maker is given by

(
ρG− c

)
1ρ∈NW

+
(
ρ(L+G)− L

)
1ρ∈NS

.

The result of Proposition 4 is illustrated in Figure 2. The candidate has real authority over

the final decision when ρ ∈ (ρ̂, ρ). This generates a non-monotonicity in the expected payoff of

the decision maker as a function of ρ.

4.2 Multiple Candidates

An action profile is equivalent to a partition [I,H] of N . Given a project n ∈ N , denote by

[I,H]−n an action profile of all the candidates except n. It is a partition of N r {n}. Since,

by Lemma 1, any project in HW is discarded by the decision maker, a candidate n ∈ NW is

14Proofs that are not in the text can be found in Appendix B
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certain that her project stands no chance of being implemented if she refuses to communicate

her information. Were she, on the other hand, to disclose this information, and given any action

profile [I,H]−n of the other candidates, that she would face a probability of adoption given by

F
(
M − 1, I−(rI(n)− 1

))
ρn > 0.

Hence:

Remark 1. It is a dominant strategy for candidates in NW to disclose their information.

Therefore, in any equilibrium H = HS ⊆ NS, and NW ⊆ I. Note that the argument

of the proof relies on the fact that disclosing information always yields a positive probability

of implementation. Withholding information, on the other hand, yields a null probability of

implementation for all but the first M projects in HS. The consequence of this observation is

that in any equilibrium H ≤M , for otherwise project h(M+1) would stand no chance of being

implemented and the candidate would benefit by disclosing her information.

Remark 2. Any equilibrium action profile [I,H] satisfies H ≤M .

A closely related result is that, when H = M , no candidate weaker than h(M) has any

incentive to hide information.

Remark 3. Given any action profile [I,H] such that H = M , a candidate n ∈ I such that

rN (n) > rN (h(M)) has no incentive to deviate.

In principle there are as many incentive constraints to satisfy in any equilibrium as there

are candidates. Fortunately, many of these constraints do not bind, as I show next after

introducing some new definitions. A subset of projects M ⊆ N is a chain if it consists of

consecutive elements of N i.e. M = {n, n + 1, . . . , n + k} ⊆ N . A chain M ⊆ L ⊆ N is said

to be maximal in L if any other chain M′ ⊆ L satisfies M′ ⊆M or M∩M′ = ∅.
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The next result states that, if M = 1 or ρ1 ≤ 1/2, for any action profile, and along any

subset of IS that is also a chain, the incentive to deviate from disclosure is higher for weaker

projects.

Lemma 4. Suppose M = 1 or ρ1 ≤ 1/2. Pick an action profile [I,H], and a chain J ⊆ IS.

Then for any p < J , candidate j(p + 1) has a higher incentive to deviate from disclosure than

j(p).

The preceding series of results allows a practically useful characterization of the pure strat-

egy equilibria of the perfect information communication game. The following proposition pro-

vides this characterization. It implies in particular that in order to check whether a certain

action profile is an equilibrium, the number of incentive constraints to satisfy is less than

min(2M,NS) ≤ N . Indeed among projects in I, only the incentives of the weakest projects of

the maximal chains of IS need to be checked. The set of possible equilibria among all action

profiles is also considerably reduced by Remark 1 and Remark 2.

Proposition 5. If M = 1 or ρ1 ≤ 1/2, an action profile [I,H] is a pure strategy equilibrium

of the communication game if and only if it satisfies

(i) H ⊂ NS.

(ii) H ≤M .

(iii) For any maximal chain J ⊆ IS,

F
(
M − 1, I−(rI(j(J))− 1

))
ρj(J) ≥ F

(
M − rH(j(J)), I r {j(J)}

)
.

(iv) For any project h ∈ H,

F
(
M − 1, I−(rI(h)− 1

))
ρh ≤ F

(
M − rH(h), I

)
.
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Proof. The necessity is obvious since (iii) and (iv) constitute a subset of the incentive conditions

required by the equilibrium. Sufficiency holds as a direct consequence of Lemma 4.

Note that in practice, situations where the number of slots available is small compared

to the number of projects are more likely to be of interest. The reduction on the number of

incentives to check is particularly effective in these situations. For example, if M = 2, NS = 7

and NW = 5, supposing that ρ1 ≤ 1/2, at most 1 +NS + (NS − 1)NS/2 = 29 action profiles are

candidate equilibria, and the total number of incentive conditions to check in order to find all

the pure strategy equilibria is at most 1+2NS+4NS(NS−1)/2 = 99 instead of N2N = 12×212.

Note that a similar reduction of the set of equilibrium incentive constraints for candidates in

H can be provided under different conditions. This result can be found in Appendix D.

4.3 Full Disclosure

The results of Section 3.3 show that full disclosure is the optimal outcome of the communication

game from the point of view of the decision maker. It is therefore interesting to know under

what conditions full disclosure obtains. The first result states that there must be at least one

weak candidate in the pool for full disclosure to be possible. The intuition behind this result is

simple: if all the projects are strong and every other candidate discloses, the candidate with the

lowest prospect has the same probability of being reached by the search whether she discloses

her information or not, but conditionally on being reached her project is certain to be accepted

if she withholds her information and not otherwise. This proves the proposition.

Proposition 6. Full disclosure is impossible in the absence of weak candidates.

When Proposition 5 applies, it is easy to provide a necessary and sufficient conditions for

the existence of a full disclosure equilibrium. Indeed, the only condition to check is that the

weakest candidate in NS has no incentive to deviate from the full disclosure profile.

Proposition 7. If M = 1 of ρ1 ≤ 1/2 , full disclosure is an equilibrium of the communication

game if and only if the weakest of the strong candidates has no incentive to deviate, that is if
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and only if

ρNS
≥ F (M − 1,N r {NS})
F (M − 1,N−(NS − 1))

. (9)

Furthermore, the communication game is dominance solvable whenever the inequality in (9)

holds strictly.

Proposition 6 and Proposition 7 are the first results to shed light on one of the main intuitions

of the paper: the important role of weak candidates in pushing for disclosure. Indeed, it states

that when all candidates are strong (i.e. NW = ∅) full disclosure can never be an equilibrium

outcome, irrespective of the degree of competition as measured by N/M . It is competition from

weak candidates who cannot afford secrecy that puts pressure on stronger candidates to reveal

their information. More generally, the right-hand side of (9) is decreasing in NW both for the

set order and for the strength order, implying that a better pool of weak candidates makes

condition (9) easier to satisfy.

For the single-slot case, a sufficient condition for full disclosure can be provided in the form

of a lower bound on the number NW of weak candidates.

Proposition 8. If M = 1, full disclosure is an equilibrium if and only if

ρNS
≥
∏
k∈NW

(1− ρk). (10)

In particular NW ≥ B(ρNS
) is a sufficient condition for the existence of a full disclosure equi-

librium, where

B(ρ) ≡ min
{
P ∈ N; (1− c/G)P < ρ

}
=

⌈
log ρ

log(1− c/G)

⌉
.

An alternative sufficient condition that does not depend on the prospect of any particular project

is

NW > B(ρ̂).
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4.4 The Single-Slot Case

Let n∗ = min{n ∈ NS; ρn ≤ (1 − ρn+1) . . . (1 − ρN)}, and n∗ = ∞ when the set on the right-

hand side is empty. n∗ is the strongest candidate of the strong set whose prospect is less than

the probability that none of the projects with lower prospects is good. It is also the strongest

candidate of the strong set who prefers to withhold when everyone else discloses. If there is no

such candidate, full disclosure is the equilibrium outcome. If n∗ = 1, then candidate 1 is the

only one withholding information in equilibrium. Otherwise, either the candidate immediately

above n∗ has no incentive to withhold information given that n∗ withholds and other candidates

disclose, and then this is an equilibrium, or there is no pure strategy equilibrium.

Proposition 9. In the case M = 1 there exists an equilibrium in pure strategies if n∗ ∈ {1,∞}
or if n∗ satisfies ρn∗−1 ≥ (1 − ρn∗+1) . . . (1 − ρN). When it exists, this equilibrium is unique.

It is full disclosure if n∗ = ∞, and otherwise the only candidate withholding information in

equilibrium is n∗.

The next proposition shows that improving the set of weak candidates NW can only lead

to a better pure strategy equilibrium of the communication game from the point of view of the

decision maker.

Proposition 10. Let N0 = NS ∪ NW0 and N1 = NS ∪ NW1 be two sets of projects such

that each of them leads to a pure strategy equilibrium [I,H]γ (γ = 0, 1), of the corresponding

communication games Γγ, with M = 1. Then, if either NW0 < NW1 or NW0 ⊂ NW1, the

decision maker prefers N1 to N0, that is

V ([I,H]1,M = 1) > V ([I,H]0,M = 1).

With a single slot, it is also possible to know in which case the strongest project would be

optimally rubberstamped by the decision maker as the outcome of the game. There exists a

threshold ρ+ > ρ such that project 1 is rubberstamped whenever ρ1 > ρ+.
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Proposition 11 (Outstanding Candidates). If ρ1 > ρ+, the decision maker optimally rub-

berstamps project 1 given any information set that excludes project 1 (that is for every action

profile in which 1 withholds her information), where

ρ+ =
1

2

(
1 +

√
1− 4c

L+G

)
.

As a consequence, in any equilibrium of the game, project 1 is rubberstamped, and candidate 1

either withholds her information or is indifferent between withholding and disclosing.

It is interesting to note that the threshold ρ+ is does not depend on the number of candidates,

or the particular profile of prospects. Naturally, ρ+ is decreasing in the processing cost c.

To conclude this section, it is useful to consider the example of two strong candidates, and

possibly many weak candidates. In the general case, mixed strategy equilibria are difficult to

characterize and may involve mixing by more than two candidates, but they can be analyzed

in a simple way in this example.

Example 2 (Two Strong Candidates (and Many Weak) for One Slot). When NS = 2, a mixed

strategy equilibrium obtains under (AL) and (LP) whenever (1−ρ2)f(0,NW ) < ρ1 < f(0,NW )

(from Proposition 9). In this case, the mixed strategy equilibrium is unique and the two strong

candidates play as follows. The leading candidate discloses her information with probability

λ = ρ2
ρ1ρ2+(1−ρ1)f(0,NW )

, while the second candidate discloses her information with probability

µ = f(0,NW )−ρ1
ρ2f(0,NW )

(see the argument in Appendix B).

5 Incomplete Information of the candidates15

In some applications, it may be unreasonable to assume that the candidates know the initial

prospects of each other, especially when their number is large. The candidates share the

common belief that the prospects of the projects are drawn independently from an atomless

15All proofs are in Appendix C.
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distribution with cumulative density function H and full support16 S = [x, x] ⊆ [ρ, ρ] such

that x(1 − x) > c/(L + G)17. The corresponding probability density function h is assumed to

be bounded away from 0 by some m > 0, hence for every ρ ∈ S, h(ρ) ≥ m. The prospects

of all the candidate projects are observed by the decision maker so that the optimal policy of

the decision maker established in Section 3.2 remains optimal. The number N of candidates is

common knowledge. The type of candidate n is her realized prospect ρn ∈ S. Types lying in

S ∩ (0, ρ̂) are weak, and types in S ∩ (ρ̂, x) are strong. If ρ̂ ≤ x, weak types are absent, and

otherwise they are present. A distributional strategy of candidate n is a probability measure

λn on the Borelians of S × {0, 1} for which the marginal distribution of S is h, where {0, 1}
is a description of the action set and 1 corresponds to disclosing information. This formalism

introduced by Milgrom and Weber (1985) allows to describe mixing behaviors by the players

while avoiding the measurability issue noted in Aumann (1964). The probability that player n

discloses information given that her type is ρ is then λn(1|ρ). To simplify the notations, I denote

this probability by λn(ρ). The equilibrium notion for the communication game is Bayesian Nash

equilibrium in distributional strategies. I will generally consider symmetric equilibria in which

λ1 = λ2 = · · · = λN . In this section, I call full disclosure the strategy profile such that all the

candidates disclose with probability 1. When full disclosure is not an equilibrium outcome, it

is still possible that the realized types of the candidates results in each candidate disclosing

information ex post, but the ex ante probability of this happening is less than 1.

5.1 The single slot case M = 1

Let λ = (λ1, · · · , λN) be a strategy profile. Supposing that all other candidates are playing

according to λ, the contingent payoffs of candidate n are given by18

16That is h > 0 everywhere on the support.
17Hence any particular realization of the vector of prospects satisfies (LP).
18In both equations, the equality is a consequence of the independence of the prospects.
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V λ
I,n(ρ) ≡ ρE

[∏
m6=n

(1− λm(ρm)ρm1ρm>ρ)

]

= ρ
∏
m 6=n

(
1−

∫ x

ρ

xλm(x)dH(x)

)
, (11)

if she discloses, and

V λ
H,n(ρ) ≡ E

[∏
m 6=n

λm(ρm) (1− ρm) + (1− λm(ρm))1ρm<ρ

]
1ρ≥ρ̂

= 1ρ≥ρ̂
∏
m6=n

(∫ x

x

λm(x)(1− x)dH(x) +

∫ ρ

x

(1− λm(x)) dH(x)

)
, (12)

if she withholds. Note that V λ
I,n is continuous in type19 on S while V λ

H,n has a single discontinuity

at ρ̂ if weak types are present. V λ
I,n is also strictly increasing in ρ, while V λ

H,n is only weakly

increasing in ρ. In particular, it is constant on any interval of the type space on which all other

players disclose with probability 1. This is intuitive as the probability of being ever considered

by the decision maker when withholding depends on a player’s own type ρ only through the

implied probability that a player with type higher than ρ also withholds which is invariant

while ρ stays on an interval on which all the other players disclose.

If λ is a symmetric strategy profile, dropping the n index for the payoff functions,

V λ
I (ρ) = ρ

(
1−

∫ x

ρ

xλ(x)dH(x)

)N−1

, (13)

and,

19The only non-obvious part of the argument consists in showing that
∫ x
ρ
xλm(x)dH(x) is continuous in ρ.

Because λm is bounded between 0 and 1,
∣∣∣∫ xρ xλm(x)dH(x)− ∫ x

ρ′ xλ(x)dH(x)
∣∣∣ ≤ ∣∣∣∫ ρ′

ρ
dH(x)

∣∣∣ = |H(ρ)−H(ρ′)|
for any pair (ρ, ρ′). Hence, H being atomless, this difference goes to 0 when ρ′ → ρ, and that concludes the
argument. A similar argument works for V λH .
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V λ
H(ρ) =

(∫ x

x

λ(x)(1− x)dH(x) +

∫ ρ

x

(1− λ(x)) dH(x)

)N−1

1ρ≥ρ̂. (14)

A profile λ is an equilibrium if n is willing to play according to λn when other candidates

follow λ. I define the sets Λn = {ρ ∈ S|λn(ρ) ∈ (0, 1)}, Λ0
n = {ρ ∈ S|λn(ρ) = 0} and

Λ1
n = {ρ ∈ S|λn(ρ) = 1}, and denote the interior of a set with the operator Int(.). Then λ is

an equilibrium strategy if and only if:

(i) ∀ρ ∈ Int (Λ0
n) , V λ

I,n(ρ) < V λ
H,n(ρ),

(ii) ∀ρ ∈ Λn, V λ
I,n(ρ) = V λ

H,n(ρ),

(iii) ∀ρ ∈ Int (Λ1
n) , V λ

I,n(ρ) > V λ
H,n(ρ).

Before going further, note that there exists a Bayesian Nash equilibrium in distributional

strategies. This is a direct application of Milgrom and Weber (1985), Proposition 1, and

Theorem 1. This equilibrium, however, is not necessarily symmetric. At this point, it may be

worthwhile to notice that the payoff of a candidate depends on both the types and actions of

other candidates, and as a consequence, the purification theorem of Milgrom and Weber (1985)

does not apply.

Proposition 12. There exists a Bayesian Nash Equilibrium in distributional strategies for the

communication game.

As in the case with perfect information, a weak candidate always discloses with probability

1 in equilibrium. More precisely:

Lemma 5. Any strategy λn such that for some ρ < ρ̂, λn(ρ) < 1 is strictly dominated.

Therefore in equilibrium S ∩ [x, ρ̂) ⊆ Λ1
n. Before going further, it is easy to prove that when

weak types are present, sufficient competition yields full disclosure. The proposition shows
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that when full disclosure is an equilibrium it is generically unique, and the game is actually

dominance solvable, meaning that full disclosure is the only strategy profile that survives the

iterated deletion of strictly dominated strategies

Proposition 13. If weak types are present, full disclosure is an equilibrium if and only if

N ≥ N̂ , where

N̂ = 1 +
log(1/ρ̂)

log
(

1− ∫ x
ρ̂
xdH(x)

)
− log

(
1− ∫ x

x
xdH(x)

) , (15)

furthermore the game is dominance solvable whenever this inequality holds strictly (in particular,

full disclosure is the unique equilibrium). In the absence of weak types, full disclosure is never

an equilibrium.

In order to understand the role of weak and strong candidates, it is interesting to look at

the effect of the distribution of types on the threshold N̂ . The next result shows that increasing

the weight on stronger types in the weak set and decreasing the weight on stronger types

in the strong set while keeping the relative weights of these two sets constant leads to a lower

threshold N̂ . Hence it is easier to obtain full disclosure with a distribution concentrated around

the frontier type ρ̂. Obviously it is also better to have stronger candidates for the decision maker,

therefore decreasing the weight on stronger types in the strong set has an additional detrimental

effect. Increasing the weight on stronger types in the weak set is unambiguously better for the

decision maker.

Proposition 14. Consider two distributions G and H with the same support S and such that

for every x ∈ S, G(x) ≤ H(x) for every x ≤ ρ̂ and G(x) ≥ H(x) for every x ≥ ρ̂. Suppose

also that the support includes weak types, ρ̂ ∈ S, and that the two distributions put the same

weights on the weak and the strong sets H(ρ̂) = G(ρ̂). Then N̂G ≤ N̂H .

The next lemma shows that if a strong type ρ discloses information with probability 1

in a symmetric equilibrium, then all the types above ρ also disclose with probability 1. The

intuition for this is as follows. If there exists some interval Ω on which λ is equal to 1, then V λ
H
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is independent of ρ as can be seen on the expression of V λ
H . Intuitively this is because when

ρ is moving in a neighborhood on which every type discloses, the probability that there is a

withholding candidate with a type higher than ρ does not decrease with ρ. Therefore V λ
H is

constant on Ω while V λ
I is strictly increasing. If λ is an equilibrium strategy, V λ

I > V λ
H on Ω.

But then, the continuity of the two payoff functions implies that V λ
H can never catch up with

V λ
I as ρ increases, so that disclosing must be strictly better than withholding.

Lemma 6. If λ is a strategy that defines a symmetric equilibrium strategy profile such that

there exists a strong type ρ ∈ S ∩ (ρ̂, x) satisfying ρ ∈ Int(Λ1), then S ∩ (ρ, x) ⊆ Λ1.

Therefore, in any equilibrium Int(Λ1) = (x, ρ̂) ∪ (ρ∗, x) for some ρ∗ ∈ [ρ̂, x]. In the absence

of weak types, Int(Λ1) = (ρ∗, x). With the help of the lemma, I show that with sufficient com-

petition almost no type discloses with probability 1. The next proposition, which characterizes

the symmetric equilibria in pure strategies, is an immediate corollary of this lemma.

Proposition 15. If λ is a strategy that defines a symmetric equilibrium in pure strategies, it

must take the form

λ(ρ) = 1ρ∈Λ1 ,

where

Λ1 = [x, ρ̂) ∪ 〈ρ∗, x]

for some ρ∗ ≥ ρ̂, and where 〈 denotes either ( or [. When the threshold ρ∗ is interior, ρ∗ ∈ (ρ̂, x),

it is a solution to the following equation in ρ

(
1− ρ 1

N−1

)(
1−

∫ x

ρ

xdH(x)

)
=

∫ ρ̂

x

xdH(x). (16)

Furthermore, in the absence of weak types, no such equilibrium exists.

Hence, symmetric pure strategy equilibria other than full disclosure, when they exist, must

be non-monotonic in the presence of weak types. The characterization of the threshold ρ∗ in
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(16) derives from the fact that a player with type ρ∗ must be indifferent between disclosing and

withholding. The next proposition shows that in fact, with sufficient competition and in the

absence of weak types, in any symmetric equilibrium, all the types are strictly mixing.

Proposition 16. In the absence of weak types, if {λN}N≥1 is a sequence of symmetric equi-

librium strategies for the N-candidates communication game, there exists some Ñ such that

Int(Λ1
N) = Int(Λ0

N) = ∅ for every N > Ñ . That is in equilibrium, almost every type is strictly

mixing. For N > Ñ , λN is almost everywhere equal to a continuous function. Furthermore, for

almost every ρ ∈ S,

lim
N→∞

λN(ρ) =
1

1 + ρ
.

In particular, stronger candidates are less likely to disclose information than weaker ones

in the limit. Interestingly, the limit equilibrium strategy is independent of the particular dis-

tribution of types. Note however, that the proposition does not establish the existence of a

symmetric equilibrium (equilibria exist from Proposition 12, but they are not necessarily sym-

metric) for each N , but merely describes the asymptotic behavior of a sequence of equilibria if

they were to exist.

5.2 Multiple Slots M ≥ 1

The case with multiple slots is far less tractable. However some of the results extend to this

case.

Proposition 17. With multiple slots, any symmetric pure strategy equilibrium must take the

form

λ(ρ) = 1ρ∈Λ1 ,

where

Λ1 = [x, ρ̂) ∪ 〈ρ∗, x]

for some ρ∗ ≥ ρ̂, and where 〈 denotes either ( or [. In the absence of weak types, there is no pure
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strategy equilibrium. In particular, full disclosure is impossible in the absence of weak types.

The arguments used to prove this proposition extend those of the single slot case. In the

remaining of the section, I describe how the essential intuitions translate in the multiple-slots

case.

For any Borel set K ⊆ S, let η (K) =
∫
K dH(x) be the measure of this set according to the

measure implied by the distribution H, and let xe(K) = 1

η
(
K
) ∫
K xdH(x) denote the expected

type of a candidate knowing that her type lies in K. When M ≥ 1 and all the candidates except

i play according to the pure strategy: disclose on Λ1, withhold on Λ0 = Sr Λ1, the payoff from

disclosing for candidate n as a function of her type ρ is given by

VI(ρ) = ρ · Pr
(

there are less than M − 1 good projects in Λ1 ∩ (ρ, x)
)

= ρ ·
{
N−1∑
m=0

(
m

N − 1

)
η
(
Λ1 ∩ (ρ, x)

)m(
1− η(Λ1 ∩ (ρ, x)

))N−1−m

×
min(m,M−1)∑

k=0

(
k

m

)
xe
(
Λ1 ∩ (ρ, x)

)k(
1− xe

(
Λ1 ∩ (ρ, x)

))m−k}
, (17)

and the payoff from withholding

VH(ρ) = 1ρ>ρ̂ Pr
(

the number of good projects in Λ1+ the number of projects in Λ0 ∩ (ρ, x) ≤M − 1
)

= 1ρ>ρ̂

N−1∑
m=0

(
m

N − 1

)
η
(
Λ1
)m(

1− η(Λ1
))N−1−m

×
min(m,M−1)∑

k=0

(
k

m

)
xe
(
Λ1
)k(

1− xe
(
Λ1
))m−k

×
M−1−k∑
l=0

(
l

N − 1−m
)(

η
(
Λ0 ∩ (ρ, x)

)
η
(
Λ0
) )l(

η
(
Λ0
)− η(Λ0 ∩ (ρ, x)

)
η
(
Λ0
) )N−1−m−l

.

(18)

The intuition works in the same way as in the case with M = 1: VI is increasing in ρ
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everywhere (because the set Λ1∩ (ρ, x) is shrinking as ρ increases implying that if there are less

than M − 1 good projects in that set for a certain ρ then there are also less than M − 1 good

projects in that set for a higher ρ), whereas VH is constant in ρ on Λ1 and increasing elsewhere.

Both functions are continuous on (ρ̂, x). Therefore Λ1 = [x, ρ̂)∪〈ρ∗, x] for some ρ∗ ∈ [ρ̂, x]. The

threshold ρ∗ is now characterized by the following equation which says that VI(ρ
∗) = VH(ρ∗)

and makes use of the particular form of Λ1.

ρ∗

{
N−1∑
m=0

(
m

N − 1

)(
1−H(ρ∗)

)m
H(ρ∗)N−1−m

×
min(m,M−1)∑

k=0

(
k

m

)(
1

1−H(ρ∗)

∫ x

ρ∗
xdH(x)

)k (
1− 1

1−H(ρ∗)

∫ x

ρ∗
xdH(x)

)m−k}

=
N−1∑
m=0

(
m

N − 1

)(
1−H(ρ∗) +H(ρ̂)

)m(
H(ρ∗)−H(ρ̂)

)N−1−m

×
min(m,M−1)∑

k=0

(
k

m

)(
1

1−H(ρ∗) +H(ρ̂)

∫
(x,ρ̂)∪(ρ∗,x)

xdH(x)

)k
×
(

1− 1

1−H(ρ∗) +H(ρ̂)

∫
(x,ρ̂)∪(ρ∗,x)

xdH(x)

)m−k
. (19)

(19) simply states that the frontier type ρ∗ must be indifferent between disclosing (on the

left-hand side) and withholding (on the right-hand side). If for ρ∗ = ρ̂, the left-hand side is

greater than the right-hand side, then full disclosure is an equilibrium. If for ρ∗ = x, the left-

hand side is less than the right-hand side, then no disclosure is an equilibrium. If the left-hand

side is strictly greater than the right-side for every ρ∗ ∈ (ρ̂, x), full disclosure is the unique

symmetric equilibrium in pure strategies, and if the opposite inequality holds on (ρ̂, x), no

disclosure is the unique equilibrium. Note that in the absence of weak candidates H(ρ̂) = 0 and

the left-hand side of (19) is then equal to its right-hand side multiplied by ρ∗ < 1. Therefore,

in the absence of weak types, no disclosure is the only possible symmetric equilibrium in pure

strategies. However it is clear that no disclosure cannot be an equilibrium as the lowest type

would clearly be better off by disclosing, and therefore there is no symmetric pure strategy
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equilibrium in the absence of weak types.

6 Advertising and Product Information

The model developed in this paper provides an original framework to study advertising. It

gives a new theoretical explanation of a negative relationship between product quality and the

informational content of advertising. Consider the case of a monopolist, for example. The

model can be interpreted in two ways in an advertising context. The first way consists in

considering that ρ is a proxy for quality itself and that it is public information. The experience

of the consumer with the good is more likely to be pleasing when the quality is higher, but it

may depend on other factors as well. By advertising informatively, the producer of the good

can inform the consumer about these other factors but she cannot perfectly infer how well

the information will please the taste of the consumer. After all, marketing and advertising

would not be so important if consumers’ tastes were not so elusive. Then the model clearly

predicts that higher quality producers (higher ρ) advertise less (or at least less informatively).

A second way to interpret the model that leads to the same conclusion is to interpret the

value of the good for the consumer (“good” or “bad”) as its quality, and ρ as the empirically-

rooted ex ante probability that the product is of good quality. ρ is then a proxy for the

reputation of the producer and is inferred from her product history. Then assuming that the

distribution of ρ across time and industries is given by a density function g over (0, 1), the

cross-probability that a product that is advertised informatively is of good quality is qa =

Pr[G|advertising] =
∫ ρ̂

0
ρg(ρ)dρ and it is less than the cross-probability that a product that is

not advertised informatively is of good quality qna = Pr[G|no advertising] =
∫ 1

ρ̂
ρg(ρ)dρ > qa.

Apart from the different nature of the explanation, this model has the advantage over other

models in the literature (Bagwell and Overgaard (2006), Bar-Isaac, Caruana and Cuñat

(2008)) that it allows to study the effects of competition on advertising content. The imperfect

information framework of Section 5 in particular, shows that, in the absence of weak sellers,
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increasing competition asymptotically leads to a negative relationship between the strength

of candidates and their probability to disclose. The inability of competition to generate full

disclosure in the absence of weak producers, in particular, may be a source of concern for

consumers. A limitation of the model, however, is that it does not take pricing into account.

7 Conclusion

Common knowledge that information is unequivocal to its owners is a crucial assumption in

problems of strategic transmission of hard information. If it does not hold, the receiver cannot

second-guess the actions of the sender, and skepticism does not ensure full revelation. Compe-

tition can mitigate this problem, but only under certain conditions. The results of this paper

highlight the importance of ex ante weaker candidates to elicit information transmission in

certain types of contests.

The equivocal information assumption, that agents control information but cannot predict

its effect on others, deserves further examination. In the context of this model, the inability of

the sender to understand the consequences of her information gives her an advantage. This may

give an incentive to a sender who can interpret information to pretend she cannot, a question

that it may be interesting to explore in a reputation model, for example, where it could be

valuable to establish a reputation of limited understanding. The model offers several insights

into practical situations of advertising in particular. It would be interesting to analyze this

link with advertising further, notably by considering heterogeneous consumers and allowing for

price competition. This is only one way of introducing heterogeneity on the receiving side.

Another obvious, but nonetheless interesting, and difficult extension, for example, would

be to blend the framework of this paper with that of Caillaud and Tirole (2007), allowing

for multiple senders and a committee of receivers with heterogeneous beliefs. As analyzed in

Caillaud and Tirole (2007), this correlations in the preferences of the committee members give

the opportunity for a sender to engineer cascades of information among members to push her
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case. These forces seriously complicate the analysis of the competition among senders.

In addition to the connections to the literature drawn in the introduction, this paper is also

related, although more tenuously, to the search literature, and to multi-armed bandit problems

which have been used to model the tradeoff between exploration and exploitation. It is clear

that the problem of the decision maker in this paper is a search problem, and the dynamic

programming techniques that I use to solve it are typical of this literature. But it can also be

understood as a multi-armed-bandit problem in which rubberstamping a project that cannot

be learned about is akin to exploitation, while learning more about one of the other projects is

akin to exploration. Under this interpretation, this paper is related to recent work that makes

the value of the tradeoff on each arm endogenous through pricing by the owner of the arm

(Bergemann and Välimäki (1996), Felli and Harris (1996), Bergemann and Välimäki (2006)).

Looking at the model of this paper from the point of view of this literature raises the following

question: what happens to the exploration/exploitation tradeoff when in a bandit problem

the information available on each arm is the fruit of an endogenous decision by an interested

gatekeeper with limited processing abilities?

APPENDIX

Appendix A Optimal Policy of the Decision Maker

Proof of Lemma 1. The first part of (i) comes from the fact that projects in HW cannot be

learnt about, and the incremental expected payoff of rubberstamping them is negative. The

second part of the statement is obvious given the existence of the cap M on the number of

projects that can be implemented. (ii) is true because any project in HS has a positive expected

incremental payoff, and therefore the first min(M − I,HS) projects in HS should be used to

fill the slots that cannot be filled by projects in I since I < M . Finally (iii) holds because it

cannot hurt to fill slots that cannot be filled by projects in HS with projects in I.
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Proof of Proposition 1. If I = N it is clearly optimal to learn about each of the projects

starting from the strongest one and then moving down in the strength order, approving a

project each time it is found to be good, and continuing until all slots are filled. The policy

of the proposition clearly fulfills these criteria. If H = N it is also clear that the policy of the

proposition is optimal: since projects in NS have positive expected incremental payoffs they

should be approved orderly and according to the availability of slots.

Consider states that satisfy I ≥M = H and H ⊆ NS. Below, I show, by a double induction

on I and M = H, that the policy described in the proposition is optimal for all such states,

and that it is the unique optimal policy up to some details in the order of learning explained

below. I will take this result as given for now and argue that it implies that the policy of the

proposition is optimal, although not uniquely, in any other state. This is a consequence of

Lemma 1. Indeed, by point (i) of the lemma, projects in HW are irrelevant. By point (ii), I can

assume I ≥M for otherwise the optimal policy consists in rubberstamping projects in H until

a state where I = M is reached and then continuing with the optimal policy. Furthermore,

the lemma says that this rubberstamping can occur at any place in the sequence describing

the optimal policy. Hence they can be placed in the sequence so that the optimal policy is as

described in the proposition. This is the first source of non uniqueness of the optimal policy

in general. Since the projects rubberstamped in this operation are the strongest in H, and

are certain to get approved, they are also irrelevant to the probability that any given project

is approved in any of the optimal policies. Point (i) and (iii) of the lemma allow to consider

only the cases where H = M . As a consequence, an optimal policy can always be described as:

always start by learning as much as possible, and then rubberstamp. Therefore, the order of

learning never affects the probability of having to rubberstamp some projects in the end. As

a consequence, it is always optimal to learn about stronger projects first as it minimizes the

cost of the search. This is not uniquely optimal, however, for the following reason: if there are

M slots available then the order in which the first M projects in I are processed is irrelevant.

Hence the argument below shows optimality, and uniqueness up to this subtlety. Note that the
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argument above also proves that the probability that a given project is approved is unaltered

by which particular optimal policy is used.

Initiation I = {i}, H = {h}, M = 1. In this case the choice is between rubberstamping

h, or examining i, approving i if it is of the good type, rejecting i and rubberstamping h

if it is of the bad type. The first choice pays ρh(G + L) − L while the second one pays

ρiG− c+ (1− ρi)(ρh(G+ L)− L). Letting ∆ be the gain from learning,

∆ = ρi(1− ρh)(G+ L)− c > 0.

where the inequality holds because of the learning priority assumption (LP). Hence the unique

optimal policy is to learn first.

Induction Step, I > M = H = 1. Suppose the result holds for any triple (I,H,M) such

that I = K > H = M = 1 and H ⊆ NS, and consider a state (I,H,M) with I = K + 1. The

decision maker can either rubberstamp h and end, or choose to learn about a project i in I,

approve i and end if it is of the good type, and move on to the state (Ir{i}, {h}, 1) otherwise.

Hence we only need to compare the payoffs of these choices

ρiG− c+ (1− ρi)V (I r {i}, {h}, 1),

to the payoff ρh(G+ L)− L of rubberstamping h. Letting ∆ denote the gain from learning

∆ = ρi(1− ρh)(G+ L)− c+ (1− ρi)V (I r {i}, {h}, 1) > 0,

where the first term is positive by the learning priority assumption (LP), and the second term

is non-negative because the decision maker always has the option to discard all remaining

projects and get 0. Hence, learning before moving on is once again optimal policy, and by the

induction hypothesis it is also the best continuation policy. Because learning in the strength

order minimizes the cost of search, it is optimal to do so. This proves the claim. It is unique
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up to the subtlety about the order of learning explained above.

Induction Step, I > M = H > 1. Suppose the result holds for all (I,H,M) with H ⊆ NS
and H = M ≤ K or H = M = K + 1 but I ≤ J , and consider a triple (I,H,M) where

H = M = K + 1 and I = J + 1. Consider the choice between examining (and conditionally

approving) project i(1) in I, and rubberstamping a project h ∈ H, and then move on with the

optimal policy in the new state. The first option leads to the continuation value

ρi(1)

(
G+ V (I r {i(1)},Hr {H},M − 1)

)
+ (1− ρi(1))V (I r {i(1)},H,M)− c,

while the second option yields

ρh(G+ L)− L+ V (I,Hr {h},M − 1),

which by induction can be rewritten as

ρh(G+L)−L+ρi(1)

(
G+V (Ir{i(1),Hr{h,H},M−2)

)
+(1−ρi(1))V (Ir{i(1)},Hr{h},M−1)−c

The gain from learning is then

∆ =ρi(1)

(
V (I r {i(1)},H,M − 1)− (V (I r {i(1)},Hr {h,H},M − 2) + ρh(G+ L)− L))︸ ︷︷ ︸

A

+ (1− ρi(1))
(
V (I r {i(1)},H,M)− (V (I r {i(1)},Hr {h},M − 1) + ρh(G+ L)− L))︸ ︷︷ ︸

B

.

A > 0. Indeed in state (I r {i(1)},H r {H},M − 1) an available policy is to rubberstamp h

and then move on to state (Ir{i(1)},Hr{h,H},M−2) and continue with the optimal policy.

Because of the induction hypothesis, this is not optimal at (I r {i(1)},Hr {H},M − 1), and

A is exactly the difference of payoffs between the former policy and the optimal one. A similar

argument shows that B > 0. Therefore ∆ > 0 implying that learning is optimal at (I,H,M).
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Once again this implies that the policy of the proposition is uniquely optimal up to the order

of learning.

Induction Step, I = M = H. Suppose now that the result holds for all (I,H,M) with

H ⊆ NS and H = M ≤ K, and consider a triple (I,H,M) such that I = H = M = K + 1.

Then the payoff of learning about i(1) is

ρi(1)

(
G+V (Ir{i(1)},Hr{(H},M−1)

)
+
(
1− ρi(1)

) (
ρh(1)(G+L)−L+V (I+(1),H+(1),M−1)

)
−c,

and the payoff of rubberstamping h(1) (h(1) is clearly better than any other h here) is

ρh(1)(G+ L)− L+ V (I,Hr {h(1)},M − 1),

or, because of the induction hypothesis,

ρh(1)(G+L)−L+ρi(1)

(
G+V (Ir{i(1)},Hr{h(1), H},M−2)

)
+
(
1− ρi(1)

)
V (Ir{i(1)},Hr{h(1)},M−1)−c.

Hence the gain from learning is

∆ =ρi(1)

(
V (I r {i(1)},Hr {H},M − 1)− (V (I r {i(1)},Hr {h(1), H},M − 2) + ρh(1)(G+ L)− L)).

By the induction hypothesis, rubberstamping h(1) is an available but non optimal policy at

(I r {i(1)},Hr {H},M − 1), hence ∆ > 0. This concludes the proof.

Proof of Lemma 2. For p ≥ 1 the probability of finding p good projects in K is equal to the

probability of finding p − 1 good projects in K r {k} times the probability that k is a good

project plus the probability of finding p good projects in Kr {k} times the probability that k

is not a good project. This is exactly (5). (6) is obtained by summation of (5) for p ≤ q.

Proof of Lemma 3. I show the result for K = 1. The general result follows by iteration. Let k

40



be the unique project in K. Then, by Lemma 2

F (p,J ∪ {k}) = F (p,J )− ρkf(p,J ).

Therefore

F (p,J ∪ {k})− F (p− 1,J ) = F (p,J )− F (p− 1,J )− ρjf(p,J )

= (1− ρj)f(p,J ) > 0.

Proof of Proposition 3. I prove the proposition for the case where the two projects exchanged

are consecutive projects in N , that is m = n + 1. Evidently this proves the general result, as

any other exchange can be decomposed in a series of exchanges between consecutive projects.

When M = 1 and the learning partition of the decision maker is given by [I,H], the expected

payoff of the decision maker is

V (I,H, 1) = (1− f(0, I))G+ f(0, I)

(
ρh(1)(G+ L)− L

)
− c

I−1∑
q=0

F (0, I−(q)).

Let ∆ be the change in payoffs due to the exchange of projects ∆ = V (I1,H1, 1)−V (I0,H0, 1).

Using Lemma 2, and supposing rH(n) > 1 or n /∈ NS, it is equal to

∆ = (ρn − ρn+1)f(0, Î)(1− ρh(1))(G+ L) + c
I∑

q=Q

(
F (0, I−0 (q))− F (0, I−1 (q))

)
,

where Q = rI(n). The first term is clearly positive, and the second term, that corresponds

to the decrease of the search cost when the set of searchable projects is improved, is positive

because for any q = Q, . . . , I, it is true that I−0 (q) < I−1 (q) and F (., .) is decreasing in its second

argument for the strength order.
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If {n, n+ 1} ⊆ NS and rH(n) = rH(n+ 1) = 1, then

∆ = (ρn−ρn+1)f(0, Î)G−(ρn−ρn+1)f(0, Î)(G+L)+Lf(0, Î)(ρn−ρn+1)+c
I∑

q=Q

(
F (0, I−0 (q))−F (0, I−1 (q))

)
,

and the first three terms sum up to 0 so that ∆ > 0.

Finally, if n ∈ NS, n+ 1 /∈ NS and rH(n) = 1, then

∆ = (ρn−ρn+1)f(0, Î)G−f(0, Î)(1−ρn+1)

(
ρn(G+L)−L

)
+c

I∑
q=Q

(
F (0, I−0 (q))−F (0, I−1 (q))

)
,

so that

∆ = f(0, Î)ρn+1(1− ρn)(G+ L) + c
I∑

q=Q

(
F (0, I−0 (q))− F (0, I−1 (q))

)
> 0.

Appendix B The Communication Game

The incentive of a candidate n to deviate from an action profile [I,H] is defined as the ratio

of her deviation payoff over her current payoff, and it is denoted by δ(n, [I,H]) or simply δ(n)

when the context is clear.

Proof of Lemma 4. Let n and n + 1 be two consecutive elements of N in J , let r = rH(n) =

rH(n+ 1) be the rank that any of these projects would occupy in H and i = rI(n) be the rank

of n in I, so that rI(n + 1) = i + 1. Then the incentives to deviate of the two candidates are

given by

δ(n) =
F (M − r, I r {n})

F (M − 1, I−(i− 1))ρn
,

and

δ(n+ 1) =
F (M − r, I r {n+ 1})
F (M − 1, I−(i))ρn+1

.
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Therefore, with the help of Lemma 2

δ(n+ 1)

δ(n)
=

ρn
(
X − Y ρn

)
ρn+1

(
X − Y ρn+1

) F (M − 1, I−(i− 1))

F (M − 1, I−(i))
,

where

X = F (M − r, I r {n, n+ 1}) > 0,

and

Y = f(M − r, I r {n, n+ 1}) > 0.

The second fraction is clearly greater than 1 because F (P, .) is decreasing in its second argument

for the set order. As for the first fraction, notice that the function ρ(X − ρY ) is increasing in

ρ on (0, 1/2) whenever X/Y ≥ 1, and the latter is obviously satisfied. Since ρn > ρn+1, this

fraction is also greater than 1 when ρ1 ≤ 1/2. Therefore δ(n+ 1) > δ(n), which concludes the

proof for this case.

When M = 1, δ(n+ 1)/δ(n) is equal to ρn/(ρn+1(1− ρn)) > 1.

Proof of Proposition 7. By Proposition 5, the only incentive condition that needs to be checked

is that of NS, the weakest candidate in NS, which is done in (9). When NW = ∅, the right-hand

side of (9) becomes equal to 1, proving the second statement. For the last point, remember that

it is a dominant strategy forall the candidates in NW to disclose their information. Consider,

NS, the weakest candidate in NS. When (9) holds strictly, the proof is immediate if NS = 1,

while if NS > 1 it is strictly optimal for NS to disclose when all the candidates in N−(NS − 1)

disclose as well. If on the other hand M or more candidates in N−(NS − 1) were to withhold

their information, it would clearly be strictly optimal for NS to disclose her information as

she would stand no chance of being rubberstamped otherwise. Finally, suppose that K < M

candidates in N−(NS − 1) withhold their information and denote by K ⊆ N−(NS − 1) this

set of candidates, and J = N−(NS − 1) r K. In this case, NS strictly prefers to disclose her
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information if and only if

ρNS
>
F (M −K − 1,N+(NS) ∪ J )

F (M − 1,J )
. (20)

Because F is decreasing in its second argument for the set order, F (M − 1,J ) > F (M −
1,N−(NS−1)). And by Lemma 3, F (M−K−1,N+(NS)∪J ) < F (M−1,N+(NS)∪J ∪K) =

F (M−1,N r{NS}). Therefore, (9) implies (20), showing that it is a dominant strategy for NS

to disclose. Now consider candidate NS − 1. By Lemma 4, the equation obtained by replacing

NS by NS − 1 in (9) is satisfied. Hence, repeating the above argument implies that it is also a

dominant strategy for NS − 1 to disclose. By induction, this shows that the game is dominance

solvable.

Proof of Proposition 9. The fact that the equilibrium described in the proposition exists under

the condition given is a direct consequence of Proposition 5. In fact there is an equilibrium such

that n is the only candidate withholding information if and only if ρn ≤ (1− ρn+1) . . . (1− ρN)

and ρn−1 ≥ (1 − ρn+1) . . . (1 − ρN). The only point to prove is therefore uniqueness. Let

Fn = (1−ρn+1) . . . (1−ρN), and note that Fn is an increasing sequence while ρn is a decreasing

sequence. Then, by definition of n∗, ρn ≤ Fn if and only if n ≥ n∗. But since for an equilibrium

at n ρn−1 ≥ Fn must also hold, n∗ is the only possible n. Indeed if n ≥ n∗, ρn−1 ≤ Fn−1 < Fn

so that the second condition for an equilibrium cannot hold.

Proof of Proposition 10. Because F (0, .) is decreasing in its second argument for the set order as

well as for the strength order, and for any N and any n ∈ NS it is true that NW ⊆ N+(n), and

therefore for every n ∈ NS, F (0,N+
1 (n)) < F (0,N+

0 (n)). Hence if nγ is the unique candidate

who withholds information in the equilibrium of the game γ ∈ {0, 1}, it must be true that

n1 ≥ n0 that is the withholding candidate is a weaker candidate in game 1 than in game 0.

Since all the candidates in NWγ disclose their information in equilibrium, this implies that the

decision maker prefers Γ1 to Γ0.
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Proof of Proposition 11. First note that ρ+ > ρ so that rubberstamping project 1 beats learning

about it. Since 1 is the best project, any alternative policy of the decision maker that stands

a chance of being optimal given that 1 is not providing information consists in learning about

k projects and rubberstamping 1 only if this search proves unfruitful. The payoff of such a

policy is of the form P1 + P2 where P1 = ρ1G− c+ (1− ρ1)(ρ2G− c+ (1− ρ2)(ρ3G− c+ . . . ))

where the sum stops at ρkG − c, and P2 = (1 − ρ1) . . . (1 − ρk)(ρ1(G + L) − L), and where

ρ1, . . . , ρk denote the unordered prospects of the k projects in the seacrh of the decision maker.

Because ρ1, . . . , ρk < ρ1 and because the payoff P1 + P2 is increasing in each ρi, it is true

that P1 + P2 < (ρ1G − c)(1 + (1 − ρ1) + · · · + (1 − ρ1)k−1) + (1 − ρ1)k(ρ1(G + L) − L) =

(ρ1G − c)(1 − (1 − ρ1)k)/ρ1 + (1 − ρ1)k(ρ1(G + L) − L). The payoff of rubberstamping 1

without going through the preliminary search is ρ1(G + L) − L, and it is greater than the

former expression if and only if (with some algebra)

ρ2
1 − ρ1 +

c

G+ L
> 0.

The greatest root of the second degree equation associated with the former is

ρ+ =
1

2

(
1 +

√
1− 4c

L+G

)
,

where 1 > 4c/(L + G) is implied by the assumption that c < LG/(L + G) as it is easy to

see that LG/(L + G) < (L + G)/4. Therefore ρ1 > ρ+ implies that rubberstamping 1 beats

the alternative strategy. Because, by withholding her information candidate 1 can force the

decision maker to rubberstamp her project irrespective of the behavior of other candidates and

therefore have her project implemented with probability 1, rubberstamping 1 has to be the

outcome of the game.

Proof of the Characterization of the Mixed Strategy Equilibrium in Example 2. Let λ be the prob-

ability of disclosure for candidate 1 and µ the same probability for candidate 2. In order
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to make 1 indifferent between disclosing and withholding her information, µ must satisfy

(µ(1 − ρ2) + (1 − µ))f(0,NW ) = ρ1 where the left-hand side is 1’s payoff when withholding

her information and the right-hand side is her payoff when she plays transparently. The same

indifference condition for candidate 2 gives λ(1− ρ1)ρ2 + (1− λ)ρ2 = λ(1− ρ1)f(0,NW ).

Appendix C Proofs for the Incomplete Information Case

Proof of Lemma 5. A weak type is never rubberstamped by the decision maker.

Proof of Proposition 13. First note that (15) is equivalent to

ρ̂

(
1− ∫ x

ρ̂
xdH(x)

1− ∫ x
x
xdH(x)

)N−1

≥ 1,

and the left-hand side is equal to the ratio V 1
I (ρ̂)/V 1

H(ρ̂) of the payoffs of a player with type

ρ̂ when all other players disclose with probability 1. Therefore, (15) means that there is no

incentive of a player with type ρ̂ to deviate from the full disclosure profile. It is therefore clearly

a necessary condition for equilibrium.

To show that it is also sufficient, note that for a candidate with type ρ > ρ̂, when all the

other candidates disclose with probability 1,

V 1
I (ρ)

V 1
H(ρ)

= ρ

(
1− ∫ x

ρ
xdH(x)

1− ∫ x
x
xdH(x)

)N−1

> ρ̂

(
1− ∫ x

ρ̂
xdH(x)

1− ∫ x
x
xdH(x)

)N−1

≥ 1,

implying that there is no incentive to deviate from the full disclosure profile for such a candidate.

Since it is a dominant strategy for the types below ρ̂ to disclose, this proves that (15) is also a

sufficient condition.

In the absence of weak types, N̂ is infinite and full disclosure cannot be an equilibrium.

Now suppose that (15) holds with a strict inequality. Consider a profile λ such that for

every candidate n, ρ < ρ̃ implies λn(ρ) = 1, that is all players adopt a strategy that prescribes

to disclose with probability 1 when ρ < ρ̃. Suppose also that ρ̃ ≥ ρ̂. Then consider the same
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ratio of payoffs as above for a player n with type ρ ≥ ρ̃ when other players are playing according

to λ

V λ
I,n(ρ)

V λ
H,n(ρ)

= ρ
∏
m 6=n

1− ∫ x
ρ
xλm(x)∫ x

x
λm(x)(1− x)dH(x) +

∫ ρ
ρ0

(1− λm(x)) dH(x)

≥ ρ̂

(
1− ∫ x

ρ̂
xdH(x)

1− ∫ x
x
xdH(x)

+H(ρ)−H(ρ̃)

)N−1

. (21)

where the lower bound is obtained from (11) and (14) by choosing λm adequately in each of

the integrals.

The strict inequality in (15) implies by continuity that for some η > 0,

ρ̂

(
1− ∫ x

ρ̂
xdH(x)

1− ∫ x
x
xdH(x)

+ η)

)N−1

> 1.

I have already proved that it is a dominant strategy for weak types to disclose with prob-

ability 1. Therefore I can eliminate all strategies that do not satisfy this. Now, taking ρ̃ = ρ̂

and applying (21) to the types ρ ≥ ρ̂ such that H(ρ) ≤ H(ρ̂) + η shows that it is also a dom-

inant strategies to disclose with probability one at these types. But then, taking ρ̃ to be the

type such that H(ρ̃) = H(ρ̂) + η, and reapplying the same idea to the types ρ > ρ̃ such that

H(ρ) ≤ H(ρ̃) + η = H(ρ̂) + 2η shows that it is a dominant strategy to disclose with probability

one for these types as well. Obviously, reiterating this procedure a finite number of times is

sufficient to cover all the types in the type space S. This proves that full disclosure is the unique

strategy profile that survives the iterated elimination of strictly dominated strategies.

Proof of Proposition 14. To show that N̂G ≤ N̂H , note that I can rewrite

N̂H = 1 +
log(1/ρ̂)

− logRH

,

where
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RH =
1− ∫ x

x
xdH(x)

1− ∫ x
ρ̂
xdH(x)

= 1−
∫ ρ̂
x
xdH(x)

1− ∫ x
ρ̂
xdH(x)

,

and N̂ is increasing in RH .

Integrating by parts, I obtain

RH = 1 +

∫ ρ̂
x
H(x)dx− ρ̂H(ρ̂)

1− x+ ρ̂H(ρ̂) +
∫ x
ρ̂
H(x)dx

.

And clearly, RG ≤ RH since G(x) ≤ H(x) on [x, ρ̂] and G(x) ≥ H(x) on [ρ̂, x]. Hence

N̂G ≤ N̂H .

Proof of Lemma 6. Let Ω ⊆ S ∩ (ρ̂, x) be an open interval such that λ = 1 on Ω and x ∈ Ω.

Let y = sup{ρ|∀ρ′ ∈ [x, ρ], λ(ρ′) = 1}. Suppose y < x. By continuity of the payoff functions,

it must be true that V λ
I (y) = V λ

H(y). However, V λ
I (.) is strictly increasing on (x, y) while V λ

H is

constant on the same interval. Furthermore, since λ is an equilibrium strategy, V λ
I (x) > V λ

H(x),

but then by continuity V λ
I (y) > V λ

I (x) > V λ
H(x) = V λ

H(y), a contradiction.

Proof of Proposition 15. The only claim that needs to be proved is the last point of the propo-

sition. By Proposition 13, full disclosure is not an equilibrium. No disclosure at all can-

not be an equilibrium either as then V 0
I (x) = x > 0 = V 0

H(x). By Lemma 6, a pure

strategy equilibrium must be of the type λ(ρ) = 1ρ>ρ∗ for some ρ∗ ∈ (x, x). But then,

V λ
I (ρ∗) = ρ∗

(
1− ∫ x

ρ∗
xdH(x)

)N−1

<
(

1− ∫ x
ρ∗
xdH(x)

)N−1

= V λ
H(ρ∗) which is a contradiction

since the type ρ∗ should be indifferent between the two actions.

Before proving Proposition 16 I establish the following lemma.

Lemma 7. Let λ be an equilibrium strategy. V λ
I and V λ

H are continuously differentiable, and λ

is continuous almost everywhere on S Furthermore, for almost every ρ ∈ Int(Λ),

λ(ρ)(1 + ρ1+ 1
N−1 ) = 1− 1

(N − 1)h(ρ)

(
1−

∫ x

ρ

xλ(x)dH(x)

)
ρ

1
N−1

−1. (22)
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Proof. For any strategy λ, V λ
I and V λ

H are clearly differentiable, and their derivative are contin-

uous on Λ0 ∪Λ1. On Int(Λ), because V λ
I is equal to V λ

H if λ is an equilibrium, their derivatives

are also equal. This equality yields (22), which shows that λ is continuous on Int(Λ). Since λ

is clearly continuous on Λ1 and Λ0, it is continuous on S.

Proof of Proposition 16. I proved in Proposition 15 that there is no equilibrium in pure strate-

gies in the absence of weak types. Therefore Int(Λ) 6= ∅. Let (y, z) be a maximal interval of

Int(Λ). If y > x then there exists some η > 0 such that (y − η, y) ⊆ Λ0 (λ could not be equal

to 1 on (y − η, y) because of Lemma 6). By continuity of the payoff functions V λ
I (y) = V λ

H(y),

and by Lemma 7 and the equilibrium condition (i), the left derivatives of the payoff functions

at y must be ordered as follows

(
V λ
H

)′
L

(y) = (N − 1)h(y)
(
V λ
H(y)

)N−2
N−1 <

(
V λ
I

)′
L

(y) = V λ
I (y)/y,

because V λ
I (y) = V λ

H(y) I can rewrite

(N − 1)h(y) <
(
V λ
H(y)

) 1
N−1 = y

1
N−1

(
1−

∫ x

y

xλ(x)dH(x)

)
< y

1
N−1 < 1,

because h(y) and y are bounded away from 0 and from 1, the last equation clearly does not

hold for N greater than some Ñ1 . Therefore, for N > Ñ1, y = x, that is the lowest types are

strictly mixing.

Similarly, if z < x, there exists η > 0 such that (z, z + η) ⊆ Λ1 or (z, z + η) ⊆ Λ0.

Start with the first case. Then, by Lemma 6, (z, x) ⊆ Λ1, and

V λ
I (z) = z

(
1−

∫ x

z

xdH(x)

)N−1

,

and

V λ
H(z) =

(
1−

∫ x

z

xdH(x)−
∫ z

x

λ(x)xdH(x)

)N−1
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Hence

V λ
H(z)

V λ
I (z)

=
1

z

(
1−

∫ z
x
λ(x)xdH(x)

1− ∫ x
z
xdH(x)

)N−1

.

And this ratio is equal to 1 if and only if z
1

N−1 = 1 −
R z

x λ(x)xdH(x)

1−
R x

z xdH(x)
. Since the left hand-side

goes to 1 as N →∞ because 0 < x < z < x < 1, the right hand-side must go to 1 as well. This

occurs if and only if z → x as N →∞. But in this case

lim
N→∞

V λ
H(x)

V λ
I (x)

= 1/x > 1,

which is a contradiction because it implies that for N sufficiently high, there is a neighborhood

of x on which all types are withholding with probability 1.

Now suppose (z, z + η) ⊆ Λ0. Then the derivatives of the payoff functions on (z, z + η) are

given by (
V λ
I

)′
(ρ) =

(
1−

∫ x

ρ

λ(x)xdH(x)

)N−1

= V λ
I (z)/z,

and

(
V λ
H

)′
(ρ) = (N − 1)h(ρ)

(∫ x

x

λ(x)(1− x)dH(x) +

∫ ρ

x

(1− λ(x))dH(x)

)N−2

≥ (N − 1)m
(
V λ
H(z)

)N−2
N−1 ,

where m > 0 is the lower bound of h (see the setup of the incomplete information model in

Section 5).

Hence, using V λ
I (z) = V λ

H(z):

(
V λ
H

)′
(ρ)(

V λ
I

)′
(ρ)
≥ (N − 1)x1− 1

N−1m.

This implies that for N sufficiently high, V λ
H grows faster than V λ

I on (z, z + η). Since

V λ
H(z) = V λ

I (z), V λ
I and V λ

H cannot cross on (z, x), implying that Int(Λ0) = (z, x).
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Then I can write

V λ
H(z)

V λ
I (z)

=
1

z

(
1−

∫ z

x

xλ(x)dH(x)

)N−1

This ratio must be equal to 1. This cannot happen as N →∞ unless z → x. But if that is

the case, picking some ρ ∈ (x, x), I have

lim
N→∞

V λ
H(ρ)

V λ
I (ρ)

= lim
N→∞

1

ρ

(
1−

∫ z

x

λ(x)xdH(x)

)N−1

= 0,

implying that for N sufficiently high ρ is not disclosing (because for N sufficiently high

z < ρ), but would prefer to disclose, which contradicts the fact that λ is an equilibrium. Note

that the intuition comes from the fact that no disclosure at all cannot be an equilibrium for

any candidate would prefer to disclose if nobody else does.

This concludes the first part of the argument, showing that for N sufficiently high, an

equilibrium strategy λ must be strictly mixing almost everywhere.

Then, taking the limit whenN goes to∞ in (22), and because 1
h(ρ)

(
1− ∫ x

ρ
xλ(x)dH(x)

)
ρ

1
N−1

−1

is bounded,

lim
N→∞

λ(ρ) =
1

1 + ρ
a.e.

Appendix D Further Reduction of Equilibrium Incen-

tive Constraints

In this appendix, I prove a result similar to Lemma 4 in that it allows to reduce the incentives

that need to be checked for chains of projects in H. This result does not hold in general however

(counterexamples can indeed be exhibited), and some restricting assumptions are needed. The
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next lemma is conducive to these assumptions, and the lemma and its corollary present some

intrinsic interest as they provide a sufficient condition on the primitives of the framework under

which the probability of finding exactly p good projects in a given set of projects is increasing

in p.

Lemma 8. Let K ⊆ N such that there is a lower bound b satisfying ρk/(1− ρk) > b, for every

k ∈ K. Then, f(p,K) is increasing in p for p < K + 1− 1/b. That is the probability of finding

exactly p good projects in K is increasing in p for low values of p.

Proof.

f(0,K) =
∏
k∈K

(1− ρk),

f(1,K)

f(0,K)
=
∑
k∈K

ρk
1− ρk ,

more generally

f(p,K)

f(0,K)
=
∑
k1∈K

ρk1
1− ρk1

∑
k2∈Kr{k1}

ρk2
1− ρk2

· · ·
∑

kp∈Kr{k1,...,kp−1}

ρkp

1− ρkp

.

Therefore, for p > 1

f(p,K)

f(p− 1,K)
=

∑
k1∈K

ρk1

1−ρk1

∑
k2∈Kr{k1}

ρk2

1−ρk2
· · ·∑kp−1∈Kr{k1,...,kp−2}

ρkp−1

1−ρkp−1

∑
kp∈Kr{k1,...,kp−1}

ρkp

1−ρkp∑
k1∈K

ρk1

1−ρk1

∑
k2∈Kr{k1}

ρk2

1−ρk2
· · ·∑kp−1∈Kr{k1,...,kp−2}

ρkp−1

1−ρkp−1

.

The sum at the numerator is a weighted sum of the same terms as the sum in the denominator

with weights of the form
∑

kp∈Kr{k1,...,kp−1}
ρkp

1−ρkp
on each term. With ρ/(1 − ρ) > b for each

term of the sum in the latter, and K − p + 1 terms, each of these weights is greater than

(K − p+ 1)b > 1 whenever p < K + 1− 1/b. Therefore f(p,K) > f(p− 1,K).

This leads to.

Corollary 2. If [I,H] is an action profile such that H ≤M and H ⊆ NS (hence in particular

if it is an equilibrium action profile) and 2M < N + 1 − 1/ρ̂ then the probability of finding
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p ≤M good projects in I, f(p, I), is increasing in p for p ≤M .

Proof. H ⊆ N ′ implies that for every project h ∈ H, ρh > ρ̂. By Lemma 8, f(p, I) is increasing

in p whenever p < I + 1− 1/ρ̂ = N −H + 1− 1/ρ̂. Since p ≤M and H ≤M , it must be true

that p+H ≤ 2M < N + 1− 1/ρ̂ which concludes the proof.

Therefore, using the terminology of Appendix B, the main result of this appendix can be

stated as

Lemma 9. Take an action profile [I,H] satisfying H ≤M and HS ⊆ NS and a chain K ⊆ H.

Then, assuming

M < min

(
N + 1− 1/ρ̂

2
, min

(n,n+1)∈N 2
S

(
ρn

ρn − ρn+1

))
, (23)

for any p < H, k(p+ 1) has a higher incentive to deviate to disclosure than k(p).

Proof. Let n and n + 1 be two consecutive projects of N in the chain K, let h = rH(n) so

that rH(n + 1) = h + 1 be the ranks of these projects in H and i = rI(n) = rI(n + 1) be the

rank either project would occupy in I if the candidate were to switch to disclosure. Then the

incentives to deviate of the two candidates are given by

δ(n) =
ρnF

(
M − 1, I−(i− 1)

)
F
(
M − h, I) ,

and

δ(n+ 1) =
ρn+1F

(
M − 1, I−(i− 1)

)
F
(
M − h− 1, I) .

Hence

δ(n+ 1)

δ(n)
=
ρn+1

ρn

F
(
M − h, I)

F
(
M − h− 1, I) .

Notice that the second fraction satisfies

F
(
M − h, I)

F
(
M − h− 1, I) = 1 +

f(M − h, I)

F (M − h− 1, I)
= 1 +

1∑M−h−1
p=0 f(p, I)/(f(M − h, I))

.
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By Corollary 2, under the assumption that M < (N + 1 − 1/ρ̂)/2, each term in the sum

is less than 1, and therefore the sum is less than M − h ≤ M − 1. Therefore the second

fraction is greater than 1 + 1/(M − 1) and M < min(n,n+1)∈N 2
S

(ρn/(ρn − ρn+1)) implies that

δ(n+ 1)/δ(n) > 1. This proves the claim.

And this leads to a new characterization of equilibrium action profiles.

Proposition 18. If (23) is satisfied and M = 1 or ρ1 < 1/2, an action profile [I,H] is a pure

strategy equilibrium of the communication game if and only if it satisfies

(i) H ⊂ NS.

(ii) H ≤M .

(iii) For any maximal chain J ⊆ IS,

F
(
M − 1, I−(rI(j(J))− 1

))
ρj(J) ≥ F

(
M − rH(j(J)), I r {j(J)}

)
.

(iv) For any maximal chain K ⊆ H,

F
(
M − 1, I−(rI(k(K))− 1

))
ρk(K) ≤ F

(
M − rH(k(K)), I

)
.

Note that condition (23) can be interpreted in two ways: the upper bound on M says that

the environment must be sufficiently competitive for the result to hold; it is also more easily

satisfied when strong projects are close to one another, that is when the ex ante prospects of

the projects in NS are homogeneous.
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