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Abstract

This paper considers a model where agents receive private signals correlated
with the unknown state of the world. The standard approach to this problem is
to assume that agents maximize their (objective) expected utility based on their
Bayesian posteriors. We present a repeated, non-strategic version of this model
and show that the expected utility rule is evolutionarily suboptimal. We provide
a characterization of the evolutionarily optimal rule. Compared to the behavior
rule that maximizes the expected utility, our evolutionary criterion provides
more �smoothing�of the population growth rate across states of the world. This
translates into two properties of the optimal behavior rule: contrarian behavior
and caution. Contrarian behavior consists of a probabilistic bias towards actions
that defy the �common wisdom�embedded in the prior beliefs. Agents exhibit
caution when, compared to expected utility maximizers, a more extreme prior
is required before disregarding their private information. We extend the model
of social learning of Smith and Sørensen (2000) to a general class of behavior
rules that includes the evolutionary and the expected utility behavior rules. We
show that the qualitative properties of the model are preserved within this class.
In particular, herds eventually arise. The limit distributions of public beliefs,
however, are di¤erent. We �nd that our evolutionary-founded rule induces
herding on the optimal action with higher probability than the expected utility
rule.

JEL Classi�cation: D81, D82, D83

1 Introduction

Economic agents often rely on private information to make decisions when the state

of the world is unknown. Some well known examples include bidders in common
�I am indebted to Bill Sandholm for his guidance and support in all stages of this project. I am

also grateful to Dan Quint, Ricardo Serrano-Padial and seminar participants at the University of
Wisconsin - Madison for their comments. All remaining errors are mine.
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value auctions (Milgrom and Weber, 1982), informed voters choosing among candi-

dates (Feddersen and Pesendorfer, 1996, 1997), traders of �nancial assets in com-

petitive markets (Grossman, 1976) and oligopolists with unknown common costs

(Palfrey, 1985). These models share and important feature: the state of the world

not only a¤ects the payo¤s of a particular agent, but it rather a¤ects a large group of

them. In other words, the realization of a particular state of the world is aggregate

risk.

The standard approach to this problem in economics and other disciplines is

to assume that agents maximize their (objective) expected utility. The probability

distribution is obtained from the Bayesian update of the prior beliefs after observing

the private signal. We refer to this approach as the expected utility criterion.

In this paper we asses whether this approach can be justi�ed using evolutionary

arguments. More concretely, we ask whether the behavior rule induced by the ex-

pected utility criterion is evolutionarily successful. We �nd that this is not the case.

Our next question is then, what is the behavior rule selected by evolution?

We will consider a sequence of generations, each facing an (ex-ante) identical

decision problem with uncertainty as the ones described above. The initial society

consists of agents that behave according to several behavior rules. Higher payo¤s for

a particular agent imply more agents carrying the same behavior trait in the sub-

sequent generation. We keep track of the number of agents following each behavior

rule.

We �nd that there is a unique behavior rule that dominates in the long run.

That is, the fraction of the society that follows one particular rule converges to one.

Moreover, this rule is not consistent with the expected utility criterion.

In the presence of aggregate risk, the population growth rate depends on the

realization of a random variable even in the long run, when the population is large.

Therefore a bad realization of this random variable has a multiplicative e¤ect on the

population size for all subsequent generations. Evolution �penalizes�behavior rules

that allow for large di¤erences in the population growth rates across states. Put

di¤erently, evolution selects a pattern of population growth rates across states that

is �smooth�.

Because of the multiplicative nature of population dynamics, the appropriate

measure of evolutionary success is the geometric mean across states. That is, agents

that maximize this objective function are evolutionarily successful. Conditional

on a given state, however, evolution selects according to the standard arithmetic

expectation. This is consistent with the �ndings of Blume and Easley (1992) and
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Robson (1996)1.

Once the correct measure of evolutionary success is established, we turn to one of

the main questions of this paper: what is the evolutionarily optimal behavior after

receiving private information about the underlying state of the world? Building on

the ideas described above, we characterize the evolutionary-founded behavior rule.

We show that the evolutionary rule provides more smoothing across state-contingent

payo¤s than the expected utility rule. This is achieved through two mechanisms:

contrarian behavior and caution. If the prior beliefs indicate that a particular state is

relatively more likely, a contrarian behavior rule exhibits a bias towards actions that

are optimal in other states. If agents are too keen on following the �common wisdom�,

then there is a high correlation of choices across the population. As a consequence,

there is a large di¤erence in state-contingent expected payo¤s. Contrarian behavior

partially insures the population against this form of correlation.

The evolutionarily optimal rule exhibits also caution. In our model, the informa-

tiveness of private signals is bounded. In this case, it is well known that under the

expected utility behavior rule, agents disregard their private information if the prior

is informative enough. This is also true under the evolutionary behavior rule. How-

ever, the smoothing introduced by the geometric mean �tness implies that priors

have to be even more informative before making private signals obsolete.

As it was discussed above, the evolutionary rule in the presence of aggregate

uncertainty does not have an expected utility representation. In addition to this,

we �nd another departure from the standard expected utility model: the evolution-

arily optimal behavior rule cannot be fully expressed in terms of Bayesian posteri-

ors. This follows from the fact that the evolutionary rule depends directly on the

state-contingent expected payo¤s. Therefore, the complete distribution functions

for private signals are necessary to compute the optimal behavior rule. In contrast,

Bayesian posteriors are only �local�statistics: they depend only on the probabilities

of the signal that was actually received and they ignore any other information from

the distribution function.

Despite the mentioned di¤erences, the evolutionary rule shares many properties

with the expected utility maximizing rule. In some applications, these similarities

permit studying the consequences of the evolutionary rule using tools similar to

those developed in the literature for the expected utility rule. In this paper we take

this approach to analyze evolutionary rules in a well-known social learning model.

1There is also a signi�cant literature in biology that uses this notion. See for example Crow and
Kimura (1970), Cooper and Kaplan (1982) and McNamara (1995).
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Section 4 presents a model of sequential social learning à la Bikhchandani, Hir-

shleifer and Welch (1992), Banerjee (1992) and Smith and Sørensen (2000). In this

model, agents make a single decision sequentially, with the order of decisions ex-

ogenously given. As in our original setting, agents receive private signals correlated

with the unknown state of the world. In addition, agents observe the decisions

made by previous agents, but not their signals. While our previous analysis was

concerned with a in�nite generation problem, in this section we will consider only

one generation and the state is realized once.

The main result of this literature is that eventually, the history of past play

carries more information than a single private signal, so agents disregard the latter.

When this occurs, the history of play stops incorporating new information and all

subsequent agents choose the same actions. This phenomenon is called herding.

In our social learning model we consider monomorphic populations. That is,

populations whose members follow the same rule from a class of behavior rules that

we call CM-threshold rules. Within this class, that agents disregard their private

signals when the informativeness of the public signal is higher than some value. The

expected utility and the evolutionary rules are particular cases of this class. To

start our analysis, we extend some of the results of Smith and Sørensen (2000) to

any CM-threshold rule. In particular, we show that public beliefs converge in the

long run and herds eventually arise.

Notice that in this context, public information is now endogenous: the choices

made by agents a¤ect the public signal received by subsequent agents. In other

words, the social learning model presents an informational externality. Therefore,

the evolutionary rule is not necessarily optimal in the social learning model. Nev-

ertheless, we �nd that the probability of herding on the optimal action is higher for

the evolutionary rule than for the expected utility rule.

The intuition behind our result is the following. There are three main di¤erences

between the evolutionary and the expected utility rule that have to be taken into

account. First, the evolutionary rule exhibits caution. Therefore it requires more

information from the history of play in order to disregard the private signal. This

e¤ect increases the probability of herding on the correct action under the evolution-

ary rule. Another property of the evolutionary rule is contrarianism. The second

di¤erence is that with contrarian behavior, it is less likely that individuals follows

suit when the history of past play suggests that a particular state is more likely.

This e¤ect also increases the probability of herding on the correct action under the

evolutionary rule. The third e¤ect is the following. In a population of agents that
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follow the evolutionary rule, when agents make inferences from the actions of oth-

ers, they take into account the contrarianism embedded in their behavior. Even in a

population that follows the evolutionary rule there is a positive chance that agents

will choose the action suggested by the history of play. A contrarian agent that fol-

lows suit provides much information to other agents, since it takes a more revealing

private signal to do so. Therefore, their beliefs are updated more under the evolu-

tionary rule than with the expected utility rule when this choice is observed. This

e¤ect decreases the probability of herding on the correct action under the evolution-

ary rule. Since public beliefs are martingales, the second and third e¤ects cancel

each other. Therefore, caution is the only remaining force and the evolutionary rule

induces herding on the optimal action with higher probability.

The paper is organized as follows. Section 2 discusses some related work. Section

3 studies the model of evolution with private information. Section 4 analyzes a

sequential social learning problem. Section 5 concludes. All the proofs are collected

in the Appendix, unless noted otherwise.

2 Related literature

There is a long tradition in economics of analyzing the evolutionary �tness of stan-

dard behavior assumptions, starting with Alchian (1950) and Friedman (1953) and

continuing with Becker (1976) and Hirshleifer (1977).

The population dynamics in our model (section 3.2) are closely related to Robson

(1996). He presents a decision-making model where agents have to choose over

lotteries. He argues that evolution selects for agents that have di¤erent attitudes

towards risk, depending of the source of the uncertainty. In particular, he notes

that individuals should be more risk averse towards aggregate uncertainty than

idiosyncratic uncertainty. The measure of evolutionary success presented in Robson

(1996) is the same as the one presented here. The novelty introduced in our paper

is to study the implications of this criterion to behavior rules in a particular model

of private information.

The literature on evolution of expectations in competitive markets has used

also the geometric mean �tness criterion. In particular, Blume and Easley (1992,

2006), Sandroni (2000) show that evolution may select against agents with rational

expectations.

Two other applications of the geometric mean �tness in economics are Curry

(2001) and Robson and Samuelson (2008). Curry (2001) considers a model were
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agents choose over lotteries and shows that the adaptive behavior consists in maxi-

mizing the expected payo¤ relative to the population mean. Robson and Samuelson

(2008) study a life-cycle model in the presence of aggregate uncertainty. Using the

geometric mean �tness criterion, they obtain a present bias in intertemporal prefer-

ences.

In our model, the results are driven in part by the fact that decisions are made

in groups of agents that follow the same behavior rule2. Eliaz, Ray & Razin (2006)

also �nd that decision-making in groups alters individuals�attitudes towards risk

and that these �shifts�are consistent with the Allais paradox.

We show the evolutionarily rule does not involve randomization. This contrasts

with the large literature in biology that followed the seminal paper of Cooper and

Kaplan (1982). Using a simple model where the only source of uncertainty is aggre-

gate, Cooper and Kaplan (1982) show that in order to achieve diversi�cation at the

population level, the optimal behavior rule involves randomization at the individual

level. Our results are di¤erent in appearance only. In our model, individuals choose

a deterministic action almost surely, but the heterogeneity in private information

guarantees the appropriate randomization at the population level.

A similar question to the one posed in this paper has been studied in the liter-

ature of evolution of preferences in games. When preferences are unobservable, Ok

and Vega-Redondo (2001), Ely and Yilankaya (2001) and Dekel, Ely and Yilankaya

(2007) show that evolution selects for expected utility maximizers. In this litera-

ture, all uncertainty is introduced through some random matching mechanism and

the (potential) strategy mixing of the opponent. Since all uncertainty is idiosyn-

cratic, the expected �tness is the appropriate measure of evolutionary performance.

The model of social learning that is considered in this paper is similar to the

ones in Bikhchandani et al (1992), Banerjee (1992) and Smith and Sørensen (2000).

In these models, agents make decisions sequentially. In contrast, the models of

Ellison and Fudenberg (1993, 1995) and Banerjee and Fudenberg (2004) consider

large groups of agents that make decisions simultaneously. Our conclusions on the

performance of the evolutionary behavior rule in the social learning model are similar

to the ones presented in Bernardo & Welch (2001) for overcon�dent individuals. In

our model, however, we consider a particular behavior rule that is optimal in a

speci�c sense, while in their paper di¤erent types of overcon�dent individuals are

introduced exogenously.

2 In biological terms, these agents share the same genes.
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3 Evolution with private information

3.1 The model

Time is discrete and in�nite. In each period t = 0; 1; 2; : : : there is only one gen-

eration alive. The set of states of the world is S = fA;Bg. In each period, the
state st 2 S is realized independently. The probability of state A being drawn is

p 2 (0; 1). Agents have to choose an action x 2 fa; bg. The number of o¤spring left
by an agent who chooses x in state s is given by w (s; x) 2 N. It is assumed that
w (A; a) > w (A; b) and w (B; b) > w (B; a). In other words, action a is optimal if the

true state is A while action b is optimal if the true state is B. For simplicity, we will

assume w (s; x) � 1. Since each agent leaves at least one o¤spring, this assumption
rules out the possibility of extinction regardless of the action chosen by the agents.

In section 3.2 we discuss how this assumption can be relaxed without a¤ecting the

results of the paper based on the �ndings of Robson (1996). We will sometimes need

the following additional assumption:

Assumption 1 (Undominated states) The o¤spring function satis�es

w (A; a) > w (B; a) and w (B; b) > w (A; b).

Assuming undominated states eliminates the cases where o¤spring is higher in

one of the states irrespective of the action chosen. In other words, it is better to be

right than to be wrong in a good environment.

As is customary in many economic models of evolution, we identify o¤spring with

utility. O¤spring (or �tness) is the currency of evolution. Thus, we interpret that

agents that are successful in an evolutionary sense behave as if they were maximizing

o¤spring. We will use the terms payo¤, utility, o¤spring and �tness interchangeably.

Each agent receives a private signal, � 2 [�; �] � R. Private signals in state
s are realized independently according to the density function gs. It is assumed

that gs has full support on [�; �] and has no atoms. The cumulative distribution

is Gs (�) �
R �
� g

s (�) d� . For simplicity, we will assume that the likelihood ratio

g (�) � gA(�)
gB(�)

is continuous and strictly increasing. The informativeness of the

signal is bounded: g (�) = g > 0 and g (�) = g <1. The strict monotonicity of the
likelihood ratio implies that g < 1 < g.

A behavior rule is a function � : [�; �]! � fa; bg, where �x (�) is the probability
of choosing action x after observing signal �. Conditional on the state of the world

being s, the action chosen by an agent that follows behavior rule � is a random

7



variable denoted X� (s) with a distribution given by:

Pr
h
X� (s) = x

i
=

�Z
�

�x (�) g
s (�) d� (1)

There are N �
t agents in period t who follow behavior rule �, with N

�
0 � 1 given. It

is assumed that there are no mutations (i.e. o¤spring follow the same behavior rule

as their parents). Since there are no strategic interactions in our model, there is no

loss of generality in studying the performance of each behavior rule independently.

Also, the lack of externalities of any kind makes the timing of decisions within a

generation irrelevant.

3.2 Population dynamics

In period t, conditional on state st, the choices of agents n = 1; : : : ; N �
t are i.i.d.

random variables X�
n (st), each of them distributed according to (1). The number

of agents that follow rule � is a stochastic process
n
N �
t

o
with

N �
t+1 =

PN�
t

n=1w
�
st; X

�
n (st)

�
(2)

Since the o¤spring of all agents following rule � in the same generation have the

same distribution,
n
N �
t

o
is a branching (or Galton-Watson) process with a random

environment. In particular, it is a single-type branching process, as there are no

mutations. This class of processes was introduced by Smith and Wilkinson (1969)

for i.i.d. environments, as the one considered here.

The population growth rate for rule � in period t is denoted by ��t (st), where

��t (st) �
N �
t+1

N �
t

(st) =
1

N �
t

PN�
t

n=1w
�
st; X

�
n (st)

�
(3)

The population growth rate has two sources of randomness. First, there is idio-

syncratic risk through X�
n (st). This source of risk disappears in the long run by the

law of large numbers, since N �
t !1 as t!1 almost surely for all �. As the pop-

ulation becomes large, the population growth rate conditional on state s converges

to E
�
�� (s)

�
� E

�
w
�
s;X� (s)

�
j s
�
.

Second, there is aggregate risk introduced by st. Every period, the reproductive

success of all agents depends on the realization of this random variable. Even in the
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long run, the population growth rate E
�
�� (s)

�
depends only on st. The evolutionar-

ily optimal behavior rule will maximize an average of the state-contingent population

growth rates. The main result in this section is that appropriate averaging in this

model is geometric.

As it was pointed out before, every rule � gives N �
t ! 1 a.s.. We de�ne the

evolutionarily optimal rule as the one that makes the population size grow fastest in

the limit. The rationale behind this criterion is that if multiple rules are present, even

though there will be an in�nite number of agents following each rule, the fraction of

agents using the evolutionary rule converges to one.

To formalize this idea, we de�ne the geometric average �tness as follows:

W � (�) =
�
E
h
�� (A)

i�p �
E
h
�� (B)

i�1�p
Proposition 1 Consider the process

n
N �
t

o1
t=0

de�ned by (1) and (2). If W � (�) >

1, then 1
t lnN

�
t ! lnW � (�) as t!1 a.s.

Proof. See Tanny (1977), Theorem 5.5.

Proposition 1 is a consequence of the law of large numbers. We know that

N �
t ! 1 as t ! 1. Therefore, for a �xed state s, ��t (s) ! E

�
�� (s)

�
. Since

the state of the world is i.i.d., the evolutionarily successful behavior rule has to

maximize the average expected population growth rate. Proposition 1 establishes

that the appropriate average measure is the geometric mean. To understand why,

consider for a moment the case in which the population growth rate is exactly equal

to E
�
�� (s)

�
in every period. Then,

N �
t+1 = N �

0

tY
i=0

E
h
�� (si)

i
= N �

0

�
E
h
�� (A)

i�kt(A) �
E
h
�� (B)

i�t�kt(A)
where kt (A) =

Pt
i=0 1fsi=Ag. The law of large numbers gives

1
t kt (A)! p as t!1.

Therefore, when t is large,

N �
t � N

�
0 [W

� (�)]t

Therefore, W � (�) is the average population growth rate in the long run. In the

general case, the state-contingent population growth rate is random in the short run

due to idiosyncratic uncertainty. However, since ��t (s) ! E
�
�� (s)

�
, our previous

argument still applies in the long run.
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The geometric average is a consequence of the multiplicative nature of repro-

duction. Instead of maximizing the population growth rate of any given period,

evolution selects the behavior that maximizes the expected compounded growth

rate. The behavior rule that dominates in the long run is the one that maximizes

W � (�).

In the same vein as in Robson (1996), W � (�) is not an expected utility repre-

sentation. This is because there are di¤erent attitudes towards risk, depending on

its source. In particular, conditional on the state of the world, W � (�) evaluates risk

through the standard expectation. Across states, however, W � (�) exhibits a higher

degree of risk aversion.

In our model, the process
n
N �
t

o
is a single-type branching process. In contrast,

the population dynamics in Robson (1996) consider the possibility of extinction.

If arbitrarily unlikely mutations are allowed, the evolutionarily optimal behavior

rule dominates in the long run. Even in the case where the optimal rule becomes

temporarily extinct, mutations guarantee that agents that follow the optimal rule

eventually are born again. This analysis is based in the more complex theory of

multi-type branching processes. Since the population dynamics presented here are

the same as in Robson (1996), our no extinction assumption is without loss of

generality for obtaining the long run average population growth rate.

3.3 The expected utility criterion

The expected utility criterion is the standard approach in economics and other

disciplines. It is assumed that agents update their beliefs after observing their

private signals according to Bayes� rule. These beliefs are used to compute the

(objective) expected payo¤. The expected utility criterion states that agents follow

a behavior rule that maximizes this expected utility. We show below that in the

present setting, the evolutionarily optimal rule is di¤erent from the one induced by

the expected utility criterion.

Let l = 1�p
p be the prior likelihood ratio. De�ne the Bayesian posterior proba-

bility of A being the true state of the world after observing signal � as

q (�) =
pgA (�)

pgA (�) + (1� p) gB (�)

=
g (�)

g (�) + l
(4)
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The (ex-post) expected payo¤ is

q (�) [�aw (A; a) + �bw (A; b)] + [1� q (�)] [�aw (B; a) + �bw (B; b)]

The (ex-post) expected payo¤ is related to the unconditional expectation of the

population growth rate. The expected population growth rate is

WEU (�) = E

"
N �
t+1

N �
t

#
= pE

h
�� (A)

i
+ (1� p)E

h
�� (B)

i
= pE

h
w
�
s;X� (s)

�
j s = A

i
+ (1� p)E

h
w
�
s;X� (s)

�
j s = B

i
(5)

It can be seen from (5) that the expected population growth rate is the ex-ante

expected utility. Therefore, maximizing the unconditional expectation of the popu-

lation growth rate is equivalent to maximizing the (ex-post) expected payo¤.

3.4 Level curves

It is immediate thatW � (�) is a strictly quasiconcave function of the state-contingent

expected population growth rates. In contrast, level curves of WEU (�) are linear.

Figure 1 shows level curves for W � (�) and WEU (�). The slope of a level curve for

W � (�) is �E[��(A)]
E[��(B)]

l while the slope of a level curve for WEU (�) is �l. Therefore,

level curves of W � (�) are steeper if and only if E
�
�� (A)

�
> E

�
�� (B)

�
. As we will

see in section 3.6, this property drives an important result of this paper: evolution

selects behavior rules that smooth the population growth rates across states more

than the expected utility rule.

3.5 State-contingent expected payo¤ frontier

In this section we will construct the frontier of the feasible set of state-contingent

expected o¤spring. In other words, we want to �nd all the e¢ cient pairs�
E
�
�� (A)

�
; E
�
�� (B)

��
that can be obtained from a behavior rule �. The char-

acterization of this set is useful in order to �nd the behavior rules prescribed by the

expected utility and evolutionary criteria above.

Sections 3.2 and 3.3 deal with issues that are common to any evolutionary model

with aggregate risk. In contrast, this section is concerned with the particular aspects

of the private information model at hand. Given our assumptions on the signal
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E[νξ(A)]

E[νξ(B)]

W∗ (ξ ) = k1

E[νξ(A)]
E[νξ(B)]

lE[νξ(A)]
E[νξ(B)]

l

l

45°

WEU (ξ ) = k2

Figure 1: Level curves for W � (�) and WEU (�). The former are steeper if and only
if E

�
�� (A)

�
> E

�
�� (B)

�
.

structure, we are able to focus on the class of threshold behavior rules.

De�nition 1 A behavior rule � is a threshold rule if there exists � 2 [�; �] such
that:

�a (�) =

(
1 if � > �

0 if � < �
(6)

The simple structure of (6) is a consequence of the monotone likelihood ratio

property of private signals. We show below that all the e¢ cient pairs of state-

contingent payo¤s are of this form. Our notion of e¢ ciency is the following:

De�nition 2 The state-contingent expected payo¤ frontier is a set U �
[w (A; b) ; w (A; a)]� [w (B; a) ; w (B; b)] such that if u 2 U , then there is no behavior
rule � such that u <

�
E
�
�� (A)

�
; E
�
�� (B)

��
.

Lemma 1 Let U be the state-contingent expected payo¤ frontier. If u 2 U ,

then there exists a unique behavior rule � such that
�
E
�
�� (A)

�
; E
�
�� (B)

��
=

u. Moreover, � a is threshold rule. Conversely, if � is a threshold rule, then�
E
�
�� (A)

�
; E
�
�� (B)

��
2 U .
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Lemma 1 states that the frontier U can be fully characterized by threshold rules.

Therefore, we will restrict attention to this class in the remainder of the paper.

Lemma 1 implies that we can characterize the frontier in parametric form by

u (�) =
�
E
�
�� (A)

�
; E
�
�� (B)

��
, with � 2 [�; �] and

E
h
�� (A)

i
= w (A; a)� [w (A; a)� w (A; b)]GA (�) (7)

E
h
�� (B)

i
= w (B; a) + [w (B; b)� w (B; a)]GB (�) (8)

Since the distribution of signals is given by atomless density functions, the frontier

is di¤erentiable. The slope of the frontier is given by

dE
�
�� (A)

�
dE [�� (B)]

=

@E[��(A)]
@�

@E[��(B)]
@�

= �Kg (�)

where K � w(A;a)�w(A;b)
w(B;b)�w(B;a) .

Let � be a threshold behavior rule with threshold � and de�ne:

Y (�) �
E
�
�� (A)

�
E [�� (B)]

where E
�
�� (A)

�
and E

�
�� (B)

�
are given by (7) and (8) respectively. It is immediate

that Y : [�; �] ! R is continuous and strictly decreasing. Under assumption 1, we
have Y (�) = w(A;a)

w(B;a) > 1 and Y (�) = w(A;b)
w(B;b) < 1. Moreover, there exists a unique

�0 2 (�; �) such that Y (�0) = 1.
Figure 2 depicts the frontier U . When � travels along [�; �],�

E
�
�� (A)

�
; E
�
�� (B)

��
moves along the frontier from (w (A; a) ; w (B; a)) to

(w (A; b) ; w (B; b))3. The slope of the frontier is �Kg (�). For any � 2 [�; �], Y (�)
gives the slope of the line that connects the origin with the corresponding point in

the frontier. Threshold �0 gives the intersection of the frontier and the 45� line.

3.6 Evolutionary and expected utility behavior rules: caution and
contrarianism

We now characterize the behavior rules that are optimal according to the expected

utility and evolutionary criteria. We denote these rules �EU and ��, respectively.

Since the expected utility and evolutionary criteria prescribe maximization of objec-

3The �rst coordinate corresponds to the vertical axis.
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E[νξ(A)]

E[νξ(B)]w(B,a) w(B,b)

w(A,a)

w(A,b)
θ = σ

Kg(θ0 )

Y(θ0 ) = 1

θ = σθ = σ

θ = θ0

45°

w(B,b)
w(A,b)

Y(σ ) =

U

Y(σ ) = w(B,a)
w(A,a)

Figure 2: The state-contingent expected payo¤ frontier U parametrized by � with
undominated states. The slope of the frontier is �Kg (�). Y (�) gives the slope
of the line that connects the origin with the corresponding point in the frontier.
Threshold �0 gives the intersection of the frontier and the 45� line.

tive functions that are strictly monotonic in state-contingent payo¤s, both criteria

will choose an element of the frontier U . By Lemma 1, this implies that �EU and ��

are threshold rules, with thresholds �EU and ��, respectively. Propositions 2 and 3

characterize these thresholds for all possible prior likelihood ratios. De�ne lEU � Kg
and l

EU � Kg.

Proposition 2 Let �EU be the expected utility behavior rule. Then �EU is a thresh-
old rule with threshold �EU : (0;+1)! [�; �], where

1. If lEU < l < l
EU
, then �EU (l) is de�ned implicitly by Kg

�
�EU

�
= l.

2. If l � lEU , then �EU (l) = �. If l � lEU , then �EU (l) = �.

Analogously, de�ne l
� � w(B;b)

w(A;b)Kg and l
� � w(B;a)

w(A;a)Kg.

Proposition 3 Let �� be the evolutionary behavior rule. Then �� is a threshold rule
with threshold �� : (0;+1)! [�; �], where
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1. If l� < l < l
�
, then �� (l) is de�ned implicitly by Kg (��) = Y (��) l.

2. If l � l�, then �� (l) = �. If l � l�, then �� (l) = �.

The Implicit Function Theorem implies that threshold functions �EU (l) and

�� (l) are continuous and strictly increasing on l 2
�
lEU ; l

EU
�
and l 2

�
l�; l

��
,

respectively.

Propositions 2 and 3 allow for the possibility that agents disregard their private

information when one of the states is a priori very likely. This is a consequence

of the bounded informativeness of private signals. When this happens, actions are

perfectly correlated in the population. Even if agents do take into account their

private signals, having one of the states a priori more likely than the other induces

some form of correlation. More correlation of actions across the population imply

that the state-contingent expected payo¤s are further apart.

The di¤erence in the curvature of W � and WEU gives the main intuition for

comparing both rules: the evolutionary criterion is more averse to correlation of

actions. This aversion is manifested in the properties of the evolutionary rule. Our

next result formalizes the comparison of rules �EU and ��.

Proposition 4 Assume that states are undominated. Then, l� > lEU and l� < lEU .
Additionally, there exists � 2

�
lEU ; l

EU
�
such that �EU (l) < �� (l) for all l 2 (l�; �)

and �EU (l) > �� (l) for all l 2
�
�; l

��
.

Proposition 4 establishes two main di¤erences between the expected utility rule

to the evolutionarily optimal rule. First, the evolutionary rule exhibits caution: a

more revealing prior than the expected utility criterion is required for agents to

disregard their private information.

Second, the evolutionarily optimal rule is contrarian. When agents do not dis-

regard their private information, behavior rules �EU and �� di¤er in the threshold

private signal for almost every prior. This �bias�is the mechanism in which the evo-

lutionary criterion introduces smoothing of the state-contingent expected payo¤s.

Contrarianism operates through the ratio Y =
E[��(A)]
E[��(B)]

. If the expected payo¤ in

state B is larger than the expected payo¤ in state A (i.e. Y < 1), the optimal rule

prescribes choosing action a (the optimal action in state A) more often than the

expected utility criterion. Figure 3(a) illustrates this point. The consequence of this

bias is that the di¤erence between E
�
�� (A)

�
and E

�
�� (B)

�
is reduced. Figure 3(b)

shows the same mechanism for the case in which Y > 1.
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E[νξ(A)]
45°

w(B,a) w(B,b)

w(A,a)
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(b)
E[νξ(B)]

E[νξ(A)]
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w(B,a) w(B,b)

w(A,a)
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Υ(θ∗)
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(b)

E[νξ(B)]

E[νξ(A)]
45°

w(B,a) w(B,b)

w(A,a)

w(A,b)

Υ(θ∗)=Υ(θEU)=1

(c)
E[νξ(B)]

E[νξ(A)]
45°

w(B,a) w(B,b)

w(A,a)

w(A,b)

Υ(θ∗)=Υ(θEU)=1

(c)

E[νξ(A)]

E[νξ(B)]

45°

w(B,a) w(B,b)

w(A,a)

w(A,b)

Υ(θ∗)

Υ(θEU)

(a)

E[νξ(A)]

E[νξ(B)]

45°

w(B,a) w(B,b)

w(A,a)

w(A,b)

Υ(θ∗)

Υ(θEU)

(a)

Figure 3: Population growth rate smoothing: the evolutionary rule reduces the
di¤erences between E

�
�� (A)

�
and E

�
�� (B)

�
compared to the expected utility rule.

Panels: (a) l > �, (b) l < � and (c) l = � (perfect insurance).

The evolutionarily optimal rule induces a ratio Y closer to 1 than the expected

utility rule. In the borderline case when l = �, depicted in Figure 3(c), both rules

give E
�
�� (A)

�
= E

�
�� (B)

�
(i.e. perfect insurance). Notice that �EU (�) = �� (�) =

�0, the threshold at which the utility frontier and the 45� line intersect (see Figure

2).

As Proposition 4 shows, if the prior indicates that a particular state is likely the

optimal rule has a bias towards actions that are optimal in the other state. For

instance, if the prior suggests state A is relatively more likely (i.e. l < �), then

�EU < ��. This implies that the population that follows the optimal rule chooses

action b with higher probability. Figure 4 illustrates this point.

If assumption 1 is not veri�ed, then either Y > 1 or Y < 1 for all thresholds �.

Therefore, only one of the situations depicted in Figure 3 applies (panel (a) or (b),

respectively).
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llEU lEU

σ

σ
θEU

σ

l* l*λ

θ∗

Bias

ξ=1

Figure 4: Threshold functions for the evolutionary and expected utility behavior
rules. If state A is more likely a priori (l < �), then the evolutionary rule exhibits
a bias towards action b.

Notice that caution and contrarianism are two di¤erent aspects of the same

phenomenon. While we have distinct interpretations for each of them, it is not

possible to have one without the other in our model.

Finally, notice that Proposition 2 implies that the expected utility rule can be

fully determined by the likelihood ratios g and l. In contrast, Proposition 3 shows

that this is not true for the evolutionary rule. In particular, the evolutionary rule

cannot be expressed as a function of the Bayesian posterior of the private signal

observed given by (4). This is because the threshold signal �� is determined implicitly

by

Y (��) =
w (A; a)� [w (A; a)� w (A; b)]GA (�)
w (B; a) + [w (B; b)� w (B; a)]GB (�)

The Bayesian posterior q (�) as de�ned in (4) is only a �local�measure, since it

depends on the the density functions gA (�) and gB (�) only at the signal observed.

In contrast, Y (��) depends on the cumulative distributions GA (�) and GB (�).

Therefore, in order to compute �� not only we need to know the values of the

density function at the signal received, but also how much probability is placed to
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the left and right of that signal.

3.7 A numerical example

In this section, we present a particular case for our evolutionary model from sections

3.1-3.6. The private signal set is [�; �] = [0; 1]. The density functions are gA (�) = 1

and gB (�) = 3
2��. Therefore, the cumulative distribution functions are G

A (�) = �

and GB (�) = 3���2
2 . The private likelihood ratio is g (�) = 2

3�2� , with g =
2
3 and

g = 2.

Payo¤s are given by w (A; a) = w (B; b) = 3 and w (A; b) = w (B; a) = 2. These

payo¤s satisfy Assumption 1. Thus we obtain, lEU = 2
3 ; l

EU
= 2; l� = 4

9 and l
�
= 3,

which satisfy l
�
> l

EU
and l� < lEU as it was established in Proposition 4.

We can compute the private signal threshold functions for the expected utility

and evolutionary behavior rules for these values. We obtain

�EU (l) =
3

2
� 1
l

(9)

�� (l) =
3 + 9l �

�
25 + 50l + 9l2

� 1
2

2 + 4l
(10)

The threshold functions (9) and (10) satisfy �EU
�
lEU

�
= �, �EU

�
l
EU
�
= �,

�� (l�) = � and ��
�
l
��
= � as established in Propositions 2 and 3. Additionally,

it can be checked that they are continuous and strictly increasing functions

Using the cumulative distribution functions, we get Y (�) = 6�2�
4+3���2 . By Propo-

sition 4, we know that there is a unique � such that �EU (�) = �� (�) = �0 2 (�; �)
and therefore Y (�0) = 1. Solving gives �0 = 5�

p
17

2 � :438. Using either (9) or (10)
we obtain � = 2p

17�2 � :942. Figure 5 shows the private signal thresholds �EU (l)

and �� (l).

In line with Proposition 4, we obtain �EU (l) < �� (l) if l < 2p
17�2 and �

EU (l) >

�� (l) if l > 2p
17�2 .

3.8 Public signals

Our previous analysis assumes that the underlying properties of the environment are

summarized by a common prior p that is also invariant over time. We also implicitly

assumed that all public information was summarized in the prior. The latter might

look surprising, since we have shown that the evolutionarily optimal behavior rule

cannot be summarized by a private belief when agents have private information. In
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σ

1
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θ ∗
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0

Figure 5: Numerical example for private signal thresholds for �� and �EU . Parameter
values: [�; �] = [0; 1], gA (�) = 1, gB (�) = 3

2 � �, w (A; a) = w (B; b) = 3 and
w (A; b) = w (B; a) = 2.

this section we show that relaxing these simplifying assumptions does not a¤ect our

results.

We modify our model in the following sense. In addition to private information,

all agents receive a public signal ! correlated with the state of the world. The

key assumption that we need to maintain is that public and private signals are

independent, conditional on the state of the world.

As before, the prior probability of state A in any given period is p. In each period

all agents receive (the same) public signal, ! 2 
 where 
 is an arbitrary set. The
probability of signal ! being drawn in state s is fs (!). Behavior rules are functions

� : 
� [�; �]! � fa; bg, where �x (!; �) is the probability of choosing action x after
observing signals ! and �.

The main observation is that in this context, the pair (s; !) is the e¤ective �state�,

even though ! is irrelevant in terms of payo¤s. De�ne the random variable eX� (s; !),
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where

Pr
h eX� (s; !) = x

i
=

�Z
�

�x (!; �) g
s (�) d� (11)

The population growth rate is given by

e��t (st; !t) = 1

N �
t

PN�
t

n=1w
�
st; X

�
n (st; !t)

�
(12)

De�ne the geometric average �tness:

fW (�) =
Y
!2


h
E
he�� (A;!)iipfA(!) hE he�� (B;!)ii(1�p)fB(!)

Once the �state� is appropriately rede�ned as (s; !), the limit result is a simple

extension of Proposition 1.

Corollary 1 Consider the process
n
N �
t

o1
t=0

de�ned by (11) and (12). If fW (�) > 1,

then 1
T lnN

�
T ! lnfWP (�) as T !1 a.s.

De�ne the Bayesian posterior (of state A being true) after observing signal !:

r (!) =
pfA (!)

pfA (!) + (1� p) fB (!)

Let e� 2 argmaxfW (�) and �x !. SincefW (�) is a product of independent factors,

e�j! 2 argmax
h
E
he�� (A;!)iipfA(!) hE he�� (B;!)ii(1�p)fB(!)

= argmax
h
E
he�� (A;!)iir(!) hE he�� (B;!)ii(1�r(!))

Therefore, e� (!; �) is equivalent to rule �� (�) if the prior is adjusted to account for
the public signal. In sum, the Bayes�posterior of public signal is a su¢ cient statistic

and our previous approach was without loss of generality.

Finally, the extension presented in this section is not the most general version

of the model that we could think of. In fact, the results in Tanny (1977) establish

that the convergence rate for single-type branching processes is the geometric mean

across states when s follows any stationary and ergodic process.
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4 Sequential social learning

This section presents a sequential social learning model, similar to the ones intro-

duced by Banerjee (1992) and Bikhchandani et al (1992). The setting considered

here follows Smith and Sørensen (2000) closely. The literature focuses on the ex-

pected utility rule. We show here that many well-known results can be extended to

subclass of threshold rules that satisfy some additional regularity conditions. This

subclass includes the expected utility and the evolutionary behavior rules from sec-

tion 3.6. This result will allow us to easily compare the performance of rules within

that class.

Section 3.1 considers a model where there are no externalities of any kind. In

contrast, informational externalities are present in social learning models. While

each agent maximizes its own payo¤ based on its private information, they also

observe the decisions made and make inferences about the signals received by others.

Therefore, an agent�s action a¤ects the information received by others.

We have shown in section 3.6 that the evolutionary rule is optimal in an envi-

ronment without externalities of any kind. However, there is no reason to expect

it to be optimal in a model of social learning where informational externalities are

present. We show, nevertheless, that the evolutionary rule outperforms the expected

utility rule.

We will not provide a characterization the (constrained) e¢ cient behavior rule

according to the evolutionary criterion presented in section 3.2. Smith and Sørensen

(2006) address this issue using the expected utility criterion and �nd that the (con-

strained) e¢ cient behavior rule also exhibits contrarianism. Further connections

between their approach and ours are left for future research.

While section 3 was concerned with a in�nite generation problem, in this section

we will consider only one generation in which the state is realized once.

4.1 The model

The state of the world s is drawn from fA;Bg, each with equal probability. There
is an in�nite sequence of individuals ordered exogenously. An agent in stage n =

0; 1; : : : receives an independent signal �n 2 [�; �] according to the density functions
gs (�). Agents choose an action x 2 fa; bg after observing their own signal and the
actions of the agents that preceded them. Past actions in stage n are an element of

Hn = fa; bgn�1. The set of histories is H =
S1
n=0H

n, with H0 = f?g and typical
element h.
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The history of past play is public information and can be interpreted as a public

signal. The Bayesian posterior after observing history h. This posterior will serve

as the prior distribution when we apply the behavior rules from section 3.6. The

argument presented in section 3.8 guarantees that we can focus on this posterior

without loss of generality.

We restrict attention to monomorphic populations playing a �xed behavior rule

�. An agent in position n follows the behavior prescribed by � (�n). Moreover, this

fact is common knowledge among agents. This assumption is needed for agents to

make inferences about previous agents�private signals after observing histories.

The decision of an agent in state s is a random variable X� (s), where

Pr
h
X� (s) = x

i
=

�Z
�

�x (�) g
s (�) d�

De�ne

'� (x; l) �
Pr
�
X� (B) = x

�
Pr [X� (A) = x]

(13)

where l is the public likelihood ratio used to compute behavior rule �. Bayes�rule

implies that, if action x is observed and Pr
�
X� (s) = x

�
2 (0; 1), the public likelihood

ratio is updated according to

l�n+1

�
x; l�n

�
= '�

�
x; l�n

�
l�n

If Pr
�
X� (s) = x

�
2 f0; 1g, then l�n+1 (x; ln) = ln.

Notice that conditional on A,
n
l�n
o
is a martingale, since when Pr

�
X� (s) = x

�
2

(0; 1) we have

E
h
l�n+1 j l�n

i
= Pr

h
X� (A) = a

i
'�
�
a; l�n

�
l�n + Pr

h
X� (A) = b

i
'�
�
b; l�n

�
l�n

= Pr
h
X� (B) = a

i
l�n + Pr

h
X� (B) = b

i
l�n = l

�
n

By the same reasoning,
��
l�n
��1�

is a martingale conditional on state B. This

property will drive many of the results below.

4.2 CM-threshold behavior rules

Even though the evolutionarily optimal rule and the expected utility rule are dif-

ferent in many respects, they share a common structure. In particular, section 3.6
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shows that these rules are threshold rules. In this section, we show that if thresh-

old rules satisfy some regularity conditions, then the outcome of the social learning

model exhibits the same qualitative properties that were established in the literature

for expected utility rules.

We will focus on a subset of the threshold rules from De�nition 1.

De�nition 3 A behavior rule � is a CM-threshold rule if there are some public

likelihood ratio values l 2 (0; 1) and l 2 (1;+1) and a private signal threshold
function � : (0;+1)! [�; �] such that:

�a (�) =

(
1 if � > � (l)

0 if � < � (l)

where � (l) = � for all l � l and � (l) = � for all l � l. Additionally, � (l) is

continuous and strictly increasing on
�
l; l
�
.

A CM-threshold rule requires that the threshold is a continuous and strictly

monotonic function of the public likelihood ratio. The expected utility and evolu-

tionary rules are also CM-threshold rules. In this section we will extend many of

the results from Smith and Sørensen (2000) for this class of behavior rules.

Let � be a CM-threshold behavior rule with thresholds l, l and � (l). By de�n-

ition, Pr
�
X� (s) = x

�
2 (0; 1) if and only if ln 2

�
l; l
�
. Since l0 = 1, we have thatn

l�n
o
is a stochastic process with the transition law de�ned by:

l�n+1

�
x; l�n

�
=

(
'�
�
x; l�n

�
l�n if l�n 2

�
l; l
�

l�n if l�n =2
�
l; l
� (14)

If l�n =2
�
l; l
�
for some n, then behavior rule � prescribes that agent n should

disregard its private information and base its decision only on the public likelihood

ratio. Consider now the agent in position n + 1. There is no information to infer

from agent n�s choice, so the public likelihood ratio is not updated. By induction,

we can conclude that if l�n =2
�
l; l
�
, then l�m = l

�
n for every m > n. Notice also that

this implies that actions must also coincide (i.e. �
�
x j �; s; l�m

�
= �

�
x j �; s; l�n

�
for every m > n). When l�n =2

�
l; l
�
for some n, we say that the process

n
l�n
o
has

entered a cascade. Additionally, it is possible that the public likelihood ratio never

enters a cascade, but approaches it in the limit. In this case, CM-threshold rules

prescribe that the probability of one of the actions approaches unity. We call the
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latter phenomenon a herd4. Cascades imply herds, but the converse is not true.

If � is a threshold rule, then Pr
�
X� (s) = b

�
= 1 � Pr

�
X� (s) = a

�
= Gs (�).

Therefore, if l 2
�
l; l
�
, (13) becomes:

'� (x; l) =

8<:
1�GB(�(l))
1�GA(�(l)) if x = a
GB(�(l))
GA(�(l))

if x = b
(15)

Proposition 5 extends some facts about the continuation functions ' that are

well known in the social learning literature for expected utility maximizers to CM-

threshold behavior rules.

Proposition 5 Let � be a CM-threshold behavior rule. Then, for all l 2
�
l; l
�
,

1. '� (a; l) < 1 < '� (b; l).

2. '� (x; l) is continuous and strictly decreasing in l.

3. liml!l '� (a; l) = liml!l '
� (b; l) = 1.

The monotone private likelihood ratio implies that the cumulative distribution

function GA �rst order stochastically dominates GB. This gives part 1 of Proposi-

tion 5. This condition guarantees l�n+1
�
a; l�n

�
< l�n < l

�
n+1

�
b; l�n

�
. In other words,

barring a cascade, observing a makes the public likelihood ratio in the subsequent

stage indicate that state A is more likely. Conversely,.observing b makes the public

likelihood ratio in the subsequent stage strictly larger, an consequently, public infor-

mation indicates that state B more likely. The monotone likelihood ratio of private

signals is not necessary for obtaining this result, although it simpli�es the argument.

The second part of Proposition 5 states that less likely actions are more infor-

mative. For CM-threshold rules, as l increases, action b becomes more likely and,

consequently, action a less likely. Proposition 5 part 2 says that as l increases,

'� (b; l) becomes closer to 1 while '� (a; l) moves away from 1. As l increases, action

b is more frequent and therefore provides less information, so the public likelihood

ratio is updated by a smaller amount. On the other hand, action a becomes more

rare. If action a is observed, the public likelihood ratio is updated by a large amount.

Part 3 of Proposition 5 establishes that l�n+1 (a; l) is continuous at l and that

l�n+1 (b; l) is continuous at l. This is a consequence of having a continuum of private

signals together with a continuous threshold function � (l). As the public likelihood

4This distinction was introduced by Smith and Sørensen (2000).
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Figure 6: Public likelihood dynamics where l�n+1
�
a; l�n

�
< l�n < l

�
n+1

�
b; l�n

�
(implied

by Proposition 5 part 1), l�n+1 (a; l)! l as l! l and l�n+1 (b; l)! l as l! l (implied

by Proposition 5 part 3) and l�n+1
�
x; l�n

�
is increasing in l�n.

approaches say, l, the probability of observing a signal that would induce choosing

action b approaches zero. In earlier papers from this literature, where discrete private

signals were considered, this probability is bounded away from zero. If l�n+1 (a; l) is

increasing in l, this continuity result precludes cascade formation (see Proposition

8).

Figure 6 shows the basic properties implied in Proposition 5. First, l�n+1
�
a; l�n

�
<

l�n < l�n+1

�
b; l�n

�
(Proposition 5 part 1). Second, l�n+1 (a; l) ! l as l ! l and

l�n+1 (b; l) ! l as l ! l(Proposition 5 part 3). Finally, since l�n+1
�
x; l�n

�
=

'�
�
x; l�n

�
l�n if l

�
n 2

�
l; l
�
, Proposition 5 part 2 allows for the possibility that

l�n+1

�
x; l�n

�
is decreasing at some l�n. Figure 6 depicts the case in which the ef-

fect of Proposition 5 part 2 is dominated and l�n+1
�
x; l�n

�
is increasing in l�n. We

will focus on the case in which l�n+1
�
x; l�n

�
is increasing in l�n, since many private

signal distribution functions satisfy this property.
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Denote by �� (s) the probability of herding on the optimal action in state s.

Then, we have:

�� (A) = Pr
h
l�1 (A) 2 (0; l] j A

i
�� (B) = Pr

h
l�1 (B) 2

�
l;1

�
j B
i

Our next result is well known in the literature. It establishes that public beliefs

converge to a cascade with probability one (although they might never enter the

cascade). We present a version of this result close to the one in Smith and Sørensen

(2000), again extending the arguments to the class for CM-threshold behavior rules.

Proposition 6 Let � be a CM-threshold behavior rule. Then,

1. Conditional on state s, l�n ! l�1 (s) almost surely as n!1, where l�1 (s) is a
random variable and l�1 (s) =2

�
l; l
�

2. �� (s) < 1

3. If l�n+1
�
x; l�n

�
is increasing in l�n, then l

�
n (s) 2

�
l; l
�
for all n and l�1 (s) 2

�
l; l
	

Proposition 6 exploits the Markov-martingale nature of the stochastic processn
l�n
o
. Part 1 establishes that beliefs converge to a cascade with probability one.

In other words, learning eventually stops. The history of past play becomes so

informative that agents start disregarding their private information almost surely.

The Martingale Convergence Theorem guarantees that l�n ! l�1 almost surely, since

conditional on s, either
n
l�n
o
or
��
l�n
��1�

is a martingale. The Markov property

implies that every l in the support of l�1 has to be pointwise stationary. Finally,

Proposition 5 implies that l is pointwise stationary if and only if l 2 (0; l][
�
l;+1

�
.

Part 2 establishes that there is a positive probability of herding on the ine¢ cient

action. Since flng is bounded, E
h
l�1 j l0; A

i
= l0 = 1 2

�
l; l
�
. If l�1 (s) puts all the

mass either on (0; l] or
�
l;+1

�
, then we could not have E

h
l�1 j l0; A

i
2
�
l; l
�
.

Part 3 establishes that even though public beliefs converge to a cascade, they

may never enter one. That is, it is possible that l�n ! l�1 2
�
l; l
�
with l�n 2

�
l; l
�

for all n. Notice that the continuity of � (l) implies that if l�n ! l1 =2
�
l; l
�
, then

Pr
�
X� (s) = x

�
! f0; 1g. Therefore, action convergence (herding) eventually arises.

When l�n+1
�
x; l�n

�
is increasing in l�n, the only elements of the cascade sets that are

accessible from
�
l; l
�
are

�
l; l
	
. Therefore, cascades cannot occur. Herding, on the

other hand, occurs with probability one.
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4.3 Evolutionary versus expected utility behavior rules

As it was established in section 3.6, the evolutionary rule introduces smoothing

across states through two di¤erent mechanisms. First, caution implies the cascade

sets are smaller. Second, when the public likelihood ratio gets closer to a cascade set,

the evolutionary rule has a bias towards the opposite action. These properties are

established in Proposition 4. Together with Proposition 5, we obtain the following

result as a corollary:

Proposition 7 There exists � 2
�
lEU ; l

EU
�
such that l�n+1 (a; l) < l

EU
n+1 (a; l) for all

l < � and l�n+1 (b; l) > l
EU
n+1 (b; l) for all l > �.

Figure 7 illustrates the result from Proposition 7. If l < �, then the past history

indicates that state A is relatively more likely. Contrarian behavior implies that the

evolutionary rule exhibits a bias towards action b. Therefore, action a is more rare

in a population of agents that follow the evolutionary rule than the expected utility

rule. Proposition 5 part 2 implies that if action a is observed, the public likelihood

ratio adjusts more under the expected utility rule than under the evolutionary rule.

Symmetrically, if l > � is observed, action b is more frequent in a population of

expected utility maximizers. If action b is observed, the public likelihood adjusts

more in a population that follows the evolutionary rule.

We are interested in comparing the performance of both rules in the social learn-

ing model. Since herding occurs almost surely, we compare the probability of herding

on the optimal action. Since prior probabilities assign equal probability to each state,

this probability is given by

 (�) =
1

2
�� (A) +

1

2
�� (B)

Proposition 8 Let l�n+1
�
x; l�n

�
be increasing in l�n for � 2

�
��; �EU

	
. Then,

 (��) > 
�
�EU

�
.

Proposition 8 establishes that, under some technical assumptions, the evolution-

ary rule induces herding on the correct action with a higher probability than the

expected utility rule. When making this comparison, there are three di¤erent ef-

fects that have to be taken into account. First, caution requires more information

from the history of play in order to enter a cascade. Since private signals are cor-

related with the true state of the world, caution increases the probability that this

information points in the correct direction.
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Figure 7: Public likelihood ratio dynamics for �� and �EU . Caution implies l
�
> l

EU

and l� < lEU . Contrarian behavior implies l�n+1 (a; l) < l
EU
n+1 (a; l) for all l < � and

l�n+1 (b; l) > l
EU
n+1 (b; l) for all l > �.

Second, contrarian behavior makes less likely for individuals to follow suit when

the public likelihood ratio approaches the cascade set. This e¤ect also increases the

probability of herding on the correct action under the evolutionary rule.

Third, when agents make inferences from the actions of others, they take into

account the contrarianism embedded in the behavior rule. Even in a population that

follows the evolutionary rule there is a positive chance that agents will choose the

action suggested by the history of play. If this happens, Proposition 5 part 2 implies

that beliefs are updated more under the evolutionary rule than with the expected

utility rule. This e¤ect decreases the probability of herding on the correct action

under the evolutionary rule.

Proposition 8 can establish the desired result because the martingale property

of public beliefs make the second and third e¤ect to perfectly cancel each other.

Therefore, caution is the only remaining force that drives our result.

Proposition 8 does not imply that the probability of herding on the optimal

action is higher for the evolutionarily rule in every state. Nevertheless, it is higher

when taking the average probability across states. Also, this implies that while the
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probability may be lower in some state, it cannot be lower in both states.

We are also interested in comparing the long run population growth rates if

populations were to face this sequential social learning problem in every generation.

Under some assumptions on the payo¤ structure, the result from Proposition 8

implies that the our evolutionary rule has a higher average long run population

growth rate than the expected utility rule.

Following Banerjee (1992), from an ex-ante point of view if all agents have the

same probability of being the nth decision-maker for n = 0; 1; : : :, the appropriate

measure of �welfare�is the average payo¤. Since herds eventually arise, it is natural

to compare the evolutionary performance in the limit. As in our analysis in section

3.8, there are four e¤ective states, determined by the two underlying states of the

world and herding on two possible actions. The average long run population growth

rate for � is given by

W1 (�) = [w (A; a)]
��(A)
2 [w (A; b)]

1���(A)
2 [w (B; b)]

��(B)
2 [w (B; a)]

1���(B)
2 (16)

If the payo¤ function w (s; x) is symmetric (i.e. w (A; a) = w (B; b) and w (A; b) =

w (B; a)), then W1 (��) > W1 ��EU� if and only if  (��) > 
�
�EU

�
. Therefore,

Proposition 8 implies that the average long run population growth rate for �� is

higher than for �EU .

4.4 A numerical example

In this section, we continue the numerical example from section 3.7. Recall that the

model�s parameters are given by [�; �] = [0; 1], gA (�) = 1 and gB (�) = 3
2 � �. The

cumulative distribution functions give:

1�GB (�)
1�GA (�) = 1� �

2

GB (�)

GA (�)
=

3

2
� �
2

O¤spring is given by w (A; a) = w (B; b) = 3 and w (A; b) = w (B; a) = 2.
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Therefore, since lEU = 2
3 ; l

EU
= 2; l� = 4

9 and l
�
= 3, we obtain:

'EU (a; l) =
1

4
+
1

2l

'EU (b; l) =
3

4
+
1

2l

'� (a; l) =
1� l +

�
25 + 50l + 9l2

� 1
2

4 + 8l

'� (b; l) =
3 (1 + l) +

�
25 + 50l + 9l2

� 1
2

4 + 8l

Consistently with Proposition 5 part 1 , 'EU (a; l) < 1 < 'EU (b; l) for all l 2
�
2
3 ; 2
�

and '� (a; l) < 1 < '� (b; l) for all l 2
�
4
9 ; 3
�
. Clearly, 'EU (a; l) and 'EU (b; l)

are decreasing in l. The same can be checked for '� (a; l) and '� (b; l) (Proposi-

tion 5 part 2). Finally, liml! 2
3
'EU (a; l) = liml! 4

9
'� (a; l) = liml!2 '

EU (b; l) =

liml!3 '
� (b; l) = 1, as established in Proposition 5 part 3.

The results of Proposition 7 are veri�ed since, for � = 2p
17�2 � :942, we obtain

'EU (a; �) = '� (a; �) =
p
17�1
4 and 'EU (b; �) = '� (b; �) =

p
17+1
4 . Moreover,

'EU (x; l) > '� (x; l) for all l < 2p
17�2 and '

EU (x; l) < '� (x; l) for all l > 2p
17�2 .

It can be checked that the continuation functions l�n+1
�
x; l�n

�
are strictly increas-

ing. Figure 8 depicts the dynamics for the public likelihood ratio for the parameters

considered in this example.

Since '� (x; l) l and 'EU (x; l) l are strictly increasing, Proposition 6 implies that

if A is the true state, then l�n ! l�1 (A) 2
�
4
9 ; 3
	
and lEUn ! lEU1 (A) 2

�
2
3 ; 2
	
and if

B is the true state, then l�n ! l�1 (B) 2
�
1
3 ;
9
4

	
and lEUn ! lEU1 (B) 2

�
1
2 ;
3
2

	
.

The probabilities of herding on the correct action satisfy

�� (A)
4

9
+ [1� �� (A)] 3 = 1

�EU (A)
2

3
+
�
1� �EU (A)

�
2 = 1

�� (B)
1

3
+ [1� �� (B)] 9

4
= 1

�EU (B)
1

2
+
�
1� �EU (B)

� 3
2

= 1

Solving gives �� (A) = 18
23 while �

EU (A) = 3
4 <

18
23 .and �

� (B) = 15
23 while �

EU (B) =
1
2 <

15
23 . Therefore, the evolutionary rule induces herding on the correct action with

higher probability. Therefore, Proposition 8 is veri�ed, as  (��) = 33
46 � 0:717 >

0:625 = 5
8 = 

�
�EU

�
.
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Figure 8: Numerical example for public likelihood ratio dynamics. Parameter values:
� 2 [0; 1], gA = 1, gB = 3

2 � �, w (A; a) = w (B; b) = 3 and w (A; b) = w (B; a) = 2.

Finally, since payo¤s are symmetric, Proposition 8 implies that the popula-

tion growth rate de�ned in (16) is higher for the evolutionary rule. We obtain

W1 ��EU� = 3(�EU)21�(�EU) � 2:577 < 2:675 � 3(��)21�(��) =W1 (��).

5 Summary and further research

We presented a model where agents receive private signals correlated with the under-

lying state of the world. We found the appropriate measure of evolutionary perfor-

mance and characterized the optimal behavior rule using this criterion. Compared to

the standard expected utility rule, the evolutionary rules exhibits contrarianism and

caution. Contrarian behavior consists of a probabilistic bias towards actions that

defy the �common wisdom�embedded in the prior beliefs. Agents exhibit caution

when, compared to expected utility maximizers, a more extreme prior is required

before disregarding their private information.

We introduced a class of behavior rules (CM-threshold rules) that include the

evolutionary and the expected utility rules. We presented an application to social
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learning and showed that the basic properties of CM-threshold rules are su¢ cient

to extend many well known results in the literature. In particular, public beliefs

converge in the long run and herds eventually arise. Additionally, we showed that

the evolutionary rule outperforms the expected utility. In this particular application,

caution drives the result.

There are many issues that are left for future research. First, it would be interest-

ing to study the consequences of the evolutionary rules to other models with private

information, such as common value auctions, voting and information aggregation in

markets, among others.

Second, the evolutionary model from section 3 can be extended in more than one

direction. We assumed that private signals were received exogenously. However, the

same reasoning used in this paper can be used in an information acquisition model.

Intuitively, we expect that more revealing public information will increase incentives

to acquire private information.

Also, it would be interesting to consider models in which there are strategic

interactions between agents. The speci�c measure of evolutionary success would

probably depend on the application at hand. In our model, there is a unique behavior

rule that eventually dominates the population. Strategic interactions may provide

conditions under which more than one behavior rule can be a nonvanishing fraction

of the population in the long run.

Finally, the characterization of the constrained e¢ cient behavior rule using the

evolutionary criterion of section 3.1 remains an open question. Further research

should only focus on this rule and compare it to the rules presented in this paper

and in Smith & Sørensen (2006).

Appendix

Proof of Lemma 1. By de�nition,

E
�
�� (s)

�
= E

�
w
�
s;X� (s)

�
j s
�

= w (s; b) + Pr
�
X� (s) = a

�
[w (s; a)� w (s; b)]

Fix E
�
�� (A)

�
. This is equivalent to setting Pr

�
X� (A) = a

�
= z, where z is a constant.

We want to �nd the behavior rule � that maximizes E
�
�� (B)

�
from the set of rules that
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satisfy Pr
�
X� (A) = a

�
= z. In other words, we need to solve the following linear program:

min
�

�Z
�

�a (�) g
B (�) d� (A.1)

s.t.
�R
�

�a (�) g
A (�) d� = z

�a (�) 2 [0; 1] for all � 2 [�; �]

De�ne the multipliers � for the Pr
�
X� (A) = a

�
= z constraint, � (�) for the �a (�) � 1

constraint and � (�) for the �a (�) � 0 constraint. The �rst order conditions are, for every
�,

gB (�)� �gA (�) + � (�)� � (�) = 0 (A.2)

where �; � (�) ; � (�) � 0.
Suppose that �a (�) 2 (0; 1). Then, � (�) = � (�) = 0 and in consequence g (�) = ��1.

Therefore, there can be only one � 2 [�; �] such that �a (�) 2 (0; 1). We will call this signal
�. Suppose that � < �. The monotone likelihood ratio property implies g (�) < g (�) = ��1.
Therefore, (A.2) gives necessarily � (�) > 0 and consequently �a (�) = 0. Symmetrically,
� < � implies � (�) > 0 and �a (�) = 1.

Therefore, threshold rules with threshold � attains the frontier U . Moreover, since the
solution to the program (A.1) is unique, only threshold rules can attain the frontier U .

For the converse statement, notice that if � is a threshold rule with threshold �, then

E
�
�� (A)

�
= w (A; a)� w (A; b)GA (�)

Since gA is an atomless density function, the distribution function GA (�) is continuous.
Therefore, for every z 2 (w (A; b) ; w (A; a)) there is a � 2 [�; �] such that z = w (A; a) �
w (A; b)GA (�).

Proof of Proposition 2. The expected utility rule �EU is a behavior rule that maximizes
(5). Since (5) is strictly increasing in E

�
�� (s)

�
for s = A;B, then �EU is an element of

the frontier U . By Lemma 1, �EU is a threshold rule, with threshold �EU . The monotone
likelihood ratio property of private signals implies that U can is a concave function in
the space

�
E
�
�� (A)

�
; E
�
�� (B)

��
. Notice that �EU = � only if �Kg (�) = �Kg < �l.

Alternatively, if l � Kg � lEU then �EU (l) = �. Symmetrically, if l � Kg � l
EU

then

�EU (l) = �. Finally, if l 2
�
lEU ; l

EU
�
, then the solution to the optimization problem is

interior and the tangency condition �Kg
�
�EU

�
= �l must apply.

Proof of Proposition 3. The evolutionary rule �� is a behavior rule that maximizes
W � (�). Since W � (�) is strictly increasing in E

�
�� (s)

�
for s = A;B, then �� is an element

of the frontier U . By Lemma 1, �� is a threshold rule, with threshold ��. The monotone
likelihood ratio property of private signals implies that U can is a concave function in the

space
�
E
�
�� (A)

�
; E
�
�� (B)

��
. Notice that �� = � only if �Kg (�) = �Kg < �E[��(A)]

E[��(B)]
l =

�w(A;a)
w(B;a) l. Alternatively, if l � w(B;a)

w(A;a)Kg � l� then �� (l) = �. Symmetrically, if l �
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w(B;b)
w(A;b)Kg � l

�
then �� (l) = �. Finally, if l 2

�
l�; l

��
, then the solution to the optimization

pproblem is interior and the tangency condition �Kg (��) = �E[��(A)]
E[��(B)]

l must apply.

Proof of Proposition 4. First notice that for a continuous strictly increasing private

signal threshold function �EU (l), we have that Y
�
�EU (l)

�
is continuous and strictly de-

creasing function of l. Also, Y
�
�EU

�
lEU

��
= Y (�) > 1 and Y

�
�EU

�
l
EU
��
= �(�) < 1.

Therefore, there exists a unique � 2
�
lEU ; l

EU
�
such that Y

�
�EU (�)

�
= 1.

If l 2
�
l�; lEU

i
, then �EU (l) = � < �� (l). Suppose now that l 2

�
lEU ; �

�
. Then �EU

and �� are determined by (??) and (??), respectively. We want to show that �EU (l) < �� (l).
Assume in negation that �� (l) � �EU (l). Then,

g
�
�EU (l)

�
=

w (B; b)� w (B; a)
w (A; a)� w (A; b) l

< Y
�
�EU (l)

� w (B; b)� w (B; a)
w (A; a)� w (A; b) l

� Y (�� (l))
w (B; b)� w (B; a)
w (A; a)� w (A; b) l

= g (�� (l))

where the �rst inequality follows from Y
�
�EU (l)

�
> 1 and the second one from the fact

that � is decreasing. Since g is strictly increasing, we get �� (l) > �EU (l), a contradiction.
This proves that �EU (l) < �� (l) for all l 2 (l�; �).

Using the symmetrical argument, it follows that �EU (l) > �� (l) for all l 2
�
�; l

��
.

Finally, we have

l
�
=

w (B; b)

w (A; b)
l
EU

> l
EU

l� =
w (B; a)

w (A; a)
lEU < lEU :

Under our assumptions on w (s; x), l
�
> l

EU
and l� < lEU .

Proof of Proposition 5. Notice that part 1 is equivalent to GA (� (l)) < GB (� (l)) for all

l 2
�
l; l
�
. This is implied by the monotone likelihood ratio g � gA

gB
. Since gA and gB integrate

to one, there exists some � 2
�
l; l
�
such that gA (� (�)) = gB (� (�)). Moreover, because of

the strict monotonicity, g (� (l)) < g (� (�)) = 1 for all l < � and g (� (l)) > g (� (�)) = 1
for all l > �. This implies GA (� (l)) < GB (� (l)) for all l 2 (l; �). Now suppose that
GA (� (l)) > GB (� (l)) for some l 2

�
�; l
�
. Since gA (� (l)) > gB (� (l)) for all l 2

�
�; l
�
, then

1 = GA (�) > GB (�) = 1, a contradiction.
For part 2, �rst notice that since Gs and � (l) are continuous and Gs (� (l)) 2 (0; 1) for
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all l 2
�
l; l
�
, then '� (x; l) is continuous. The strict monotonicity of g implies

GA (�) =
R �
�
gA (�) d�

=
R �
�
g (�) gB (�) d�

< g (�)
R �
�
gB (�) d

= g (�)GB (�)

Now take l1; l2 2
�
l; l
�
such that l1 < l2. We have

GA (� (l2))�GA (� (l1)) =
R �(l2)
�(l1)

gA (�) d�

=
R �(l2)
�(l1)

g (�) gB (�) d�

> g (� (l1))
R �(l2)
�(l1)

gB (�) d�

= g (� (l1))
�
GB (� (l2))�GB (� (l1))

�
>

GA (� (l1))

GB (� (l1))

�
GB (� (l2))�GB (� (l1))

�
which implies GB(�(l2))

GA(�(l2))
< GB(�(l1))

GA(�(l1))
.

Analogously, 1 � GA (�) > g (�)
�
1�GB (�)

�
, which in turn implies 1�G

B(�(l2))
1�GA(�(l2))

<

1�GB(�(l1))
1�GA(�(l1))

.

For part 3, simply notice that liml!l '
� (a; l) = 1�GB(�(l))

1�GA(�(l))
= 1�GB(�)

1�GA(�)
= 1 and

liml!l '
� (b; l) =

GB(�(l))
GA(�(l))

= GB(�)
GA(�)

= 1.

Proof of Proposition 6. First, we need to show that l�n is a bounded random variable.
It su¢ ces to show that l�n+1 (x; l) 2 (0;1) for every l 2

�
l; l
�
. Since l�n+1 is continuous

everywhere in
�
l; l
�
, we only need to check that it is bounded in a neighborhood of l 2�

l; l
	
. Proposition 5 part 3 guarantees this for l�n+1 (a; l) and l

�
n+1

�
b; l
�
. For l�n+1 (b; l) and

l�n+1
�
a; l
�
, it follows from L�Hopital rule and the bounded informativeness of the private

signals.
Since l�n is a bounded, so there are its second moments. Therefore, the Martingale

convergence theorem implies l�n ! l�1 a.s. See Karlin and Taylor (1975), Theorem 5.2.
Next, we have that

�
l�n
	
is a Markov chain. Since l�n+1 is continuous everywhere in�

l; l
�
;it follows from Smith and Sørensen (2000), Theorem B.2 that every l in the support

of l1 needs to satisfy l�n+1 (x; l) = l. Therefore, by Proposition 5 part 1 if l 2
�
l; l
�
, then it

cannot be in the support of l1.
Since l�n is bounded, the Dominated Convergence Theorem gives E [l1 j l0; A] = l0 =

1 2
�
l; l
�
. If Pr

�
l�1 2 (0; l] j A

�
= 1, then E [l1 j l0; A] 2 (0; l], a contradiction.

Finally, since limln!l l
�
n+1

�
a; l�n

�
= l�n and l

�
n+1

�
a; l�n

�
< l�n < l�n+1

�
a; l�n

�
for l�n 2�

l; l
�
, then the strict monotonicity implies that all l 2 (0; l) are not accessible from

�
l; l
�
.

Analogously, l 2
�
l;1

�
are not accessible either.

Proof of Proposition 8. Since l�n+1
�
x; l�n

�
is strictly increasing in l�n for � 2

n
��; �EU

o
,
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Proposition 6 gives l�1 (s) 2
�
l; l
	
. Notice that l�1 is a bounded random variable. Therefore,

the Dominated Convergence Theorem implies E
h
l�1 (A) j l

�
0; A

i
= l�0 = 1. Since l�1 (A) 2�

l; l
	
, �� (A) l +

�
1� �� (A)

�
l = 1. Symmetrically, E

h
1

l�1(B)
j l�0; A

i
= 1

l�0
= 1 and l�1 (B) 2�

l; l
	
. Therefore, �� (B) 1

l
+
�
1� �� (B)

�
1
l = 1. Solving these equations gives

�� (A) =
l � 1
l � l

�� (B) =
l � ll
l � l

Proposition 4 gives l
�
> l

EU
> 1 and l� < lEU < 1. Therefore, it would su¢ ce to show

that �� (A)+�� (B) is strictly increasing in l and strictly decreasing in l. Since �� (A)+�� (B)
is di¤erentiable, we compute the partial derivatives:

@

@l

�
�� (A) + �� (B)

�
=

�
1� l
l � l

�2
> 0

@

@l

�
�� (A) + �� (B)

�
= �

�
l � 1
l � l

�2
< 0

This implies �� (A) + �� (B) > �EU (A) + �EU (B) and concludes the proof.
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