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Abstract

We study Nash-rationalizable joint choice behavior under restriction on zero-sum

games. We show that interchangeability of choice behavior is the only additional con-

dition which distinguishes zero-sum games from general non-cooperative games with

respect to testable implications. This observation implies that in some sense inter-

changeability is not only a necessary but also a sufficient property which differentiates

zero-sum games.

1 Introduction

Sprumont (2000) investigates an abstract joint choice problem without assuming an ex-

plicit economic environment. He assumes that the joint behavior is simultaneous and is

captured as a tuple of actions where each action is chosen by a player. Sprumont provides

conditions on the testable implications such that observed joint behavior is a Nash equi-

librium behavior if and only if it satisfies these conditions. They are similar to classical

axioms of choice theory (see Moulin (1985)).
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We retain Sprumont’s basic abstract setup and ask the following question: “Is the

choice function Nash-rationalizable with a certain game, specifically, zero-sum games?”.

Zero-sum games have been studied since game theoretic research began. They are still

considered important since they model a pure conflict of interest and admit a large variety

of applications (for example, the resource division problem). Thus, in addition to the

behavioral conditions implied by Nash-rationalizability, we may need other conditions to

ensure that the joint choice function is in fact rationalized by a zero-sum game. As an

introductory example, Figure 1 shows how Nash-rationalizable choice behavior may not be

able to be rationalized by a zero-sum game.1
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Figure 1: Nash-rationalizable but not with zero-sum games

In this example, player 1 can conceivably choose either U or D and player 2 may choose

L or R. However, following classical choice theory, we observe how players choose when

choice sets are restricted. Figure 1 shows all the possible games from which two players

may choose their joint actions. For each game, ∗ is the action profile chosen by two players.

We can verify that the joint choice behavior exhibited in Figure 1 is consistent with Nash

equilibrium behavior of a coordination game in which coordinating to (U,L) or (D,R) gives

a higher payoff to both players.

However, this choice function cannot be Nash equilibrium behavior by any zero-sum

game. Assuming that the choices are Nash-equilibria of a zero-sum game, we have that

1This example is originally from Sprumont (2000). In his paper, the example was provided to show how
choice behavior appears to be Nash-rationalizable.
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(U,L) is chosen from {(U,L), (D,L)} and (D,R) is chosen from {(D,L), (D,R)}. These im-

ply that for player 1, (U,L) is strictly preferred to (D,L); for player 2, (D,R) is strictly pre-

ferred to (D,L), which implies player 1 strictly prefers (D,L) to (D,R). On the other hand,

since (D,R) is chosen from {(D,R), (U,R)} and (U,L) is chosen from {(U,L), (U,R)}, for

player 1, (D,R) is strictly preferred to (U,R); for player 2, (U,L)is strictly preferred to

(U,R), which implies player 1 strictly prefers (U,R) to (U,L). As a result, these cyclic

preference orders imply that all possible joint actions are indeed indifferent for player 1

(and thus player 2 by the fact that the game is zero-sum). Therefore, we would expect to

see all strategy profiles chosen.

This example shows that once we have two choices on the diagonals in a table of joint

actions, in order for the joint choice function to be Nash equilibrium behavior with a zero-

sum game, the other pairs of actions also should be chosen. When a choice behavior has the

property that any pair of actions chosen, one for each player, is also jointly chosen, we say

that the choice behavior is interchangeable. Our main theorem shows that this interchange-

ability of joint choice behavior is indeed the only additional condition that distinguishes

the testable implications of zero-sum games from those of general non-cooperative games.

Since Samuelson introduced his analysis of revealed preference (Samuelson, 1938), there

have been a considerable number of research studies on the testable implications of indi-

vidual decision making. However, compared to the history and popularity of game theory

and the research devoted to refining solution concepts, the falsifiability of game theoretic

models has received scant attention. More recently, there have been several studies on the

testable implications of collective decision-making such as household behavior (Chiappori,

1988) and general equilibrium model (Brown and Matzkin, 1996).

In game theoretic setup, while Sprumont (2000) deals with simultaneous joint decision-

making, and therefore normal form games, Ray and Zhou (2001) consider the case in
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which all observed joint choices involve sequential movement by players. They derive

conditions the choice behavior needs to satisfy in order to coincide with subgame perfect

Nash equilibria under complete information. Subsequent work by Ray and Snyder (2003)

has consolidated these two independent rationalizability concepts into one condition, which

they call subgame-perfect consistency. For further references, we refer to Carvajal, Ray,

and Snyder (2004).

The following section begins with a brief summary of Sprumont (2000) and states the

additional condition for Nash-rationalization with zero-sum games. Section 3 discusses

possible difficulties in extensions of the main theorem and Appendix A is devoted to the

proof of the main theorem.

2 Model and main theorem

There are two players, 1 and 2. Let A1 and A2 be finite sets of actions that player 1

and 2 may conceivably choose in a game. A := A1 × A2 is the set of all conceivably

possible joint actions. Although each player has independent preference over joint actions,

a certain action profile is chosen by both players. The game theoretic model captures this

interdependent choice environment.

Following the classical revealed preference approach, suppose we observe choices when

two players play a game B = B1 × B2 where B1 ⊂ A1 and B2 ⊂ A2 are the sets of all

available actions for player 1 and 2. In this model, all choices that the players make in

each game can be summarized as a choice function.

Definition 1 Let A = {B = B1 × B2|∅ 6= B ⊂ A} be the set of all non-empty Cartesian-

product sets included in A. A joint choice function f assigns to each B ∈ A a nonempty

set f(B) ⊂ B.
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In the case where at most one player has more than one available action in B, we say B

is in a line. Depending on the player, the line is either a column or a row - the former when

player 1 has choices, the latter when player 2 has choices. In addition, for any B
′′

⊂ B

and B
′′

∈ A , we call B
′′

a subgame of B. For any B,B
′

∈ A , define B ∨ B
′

as the set of

all possible pairs of actions from Bi, B
′

i , (i = 1, 2). That is,

B ∨ B
′

:=
∏

i=1,2

(Bi ∪ B
′

i)

As in Sprumont (2000), we assume that all players make choices simultaneously and the

choice function is possibly multi-valued. In individual choice theory, a choice function from

a set of alternatives is called rationalizable if there exists a binary relation, R, such that the

choice agrees with the maximal set in R. The following definitions are the counterparts of

rationalizability in game theory. Compared to abstract individual choice theory, which is

based on a set of alternatives subject to a single binary relation, we have a set of alternative

strategy profiles and two binary relations. We assume that the relations (say �) have the

following properties, and are termed weak orders.

i. Complete: For all joint choices a, b ∈ A, a � b or b � a.

ii. Transitive: For all a, b, c ∈ A for which a � b and b � c, it follows that a � c.

Definition 2 A joint choice function f is Nash-rationalizable if there are two weak

orders �1,�2 on A such that, for each B ∈ A , f(B) coincides with the set of all Nash

equilibria of the game (B,�1,�2).

Sprumont (2000) introduces the following two conditions for Nash-rationalizability.

These conditions are extended versions of Chernoff, expansion, and Sen’s β in individual

choice theory. When the feasible actions are restricted to lines, “Persistence under Expan-

5



sion” is exactly the same as expansion and “Persistence under Contraction” is exactly the

same as Chernoff and Sen’s β.

Definition 3 A joint choice function over A is

• Persistent under Expansion (PE): For all B,B
′

∈ A , f(B) ∩ f(B
′

) ⊂ f(B ∨ B
′

).

• Persistent under Contraction (PC):

(PC1) : For all B,B
′

∈ A with B
′

⊂ B, f(B) ∩ B
′

⊂ f(B
′

).

(PC2) : Moreover, if B is in a line, B′ ⊂ B and f(B)∩B
′

6= ∅ implies f(B
′

) ⊂ f(B).

With these two conditions, Sprumont (2000) establishes the following theorem.

Theorem 4 A joint choice function f is Nash-rationalizable if and only if it satisfies (PE)

and (PC).2

From this model of Nash-rationalizability, we restrict the set of available rationalizing

games from the set of all non-cooperative games to include only zero-sum games. Under

the conditions of zero-sum games, the preferences of two players conflict in the opposite

direction. Therefore, while a general non-cooperative game consists of two weak orders, we

can describe zero-sum games with a single weak order.

Definition 5 Let � be a weak order over A. The game defined by (A,�,�) is called a

two-person zero-sum game, where � is the inverse relation of �.3 We say that a joint

choice function f is Nash-rationalizable with a zero-sum game if there is a weak

2In Sprumont (2000), this theorem holds for any n-agent joint choice.
3Let � be a binary relation over A. Inverse relation � is defined as,

For all a, b ∈ A for which a � b, b � a.

Later, we will use the fact that the inverse relation of a weak order is also a weak order. The proof is
straightforward by definition.
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order � on A such that for each B ∈ A , f(B) coincides with the set of all Nash equilibria

of the game (B,�,�).

As demonstrated in Example 1, not all Nash-rationalizable joint choice functions are

Nash-rationalizable with zero-sum games. In the example, we need at least one additional

condition which fills the gap in the product space of two distinct choices in the diagonal of

the game table. This condition requires that the joint choice function is interchangeable.

Definition 6 (Interchangeable choice function) A joint choice function f over A is

interchangeable if for all B ∈ A and all b∗, b
′

∗
in f(B), {b∗} ∨ {b

′

∗
} ⊂ f(B).

Provided that agents play a zero-sum game and observed joint actions are the Nash-

equilibria of the corresponding subgame, the choice function is interchangeable. It is well-

known that any pair of equilibrium strategies of a zero-sum game, one for each player, is an

equilibrium strategy profile (see Luce and Raiffa (1957)). Our contribution is to show that

interchangeable choice behavior is indeed the only additional condition which distinguishes

zero-sum games from general non-cooperative games. The following theorem summarizes

this result.

Theorem 7 A joint choice function defined on a set of two-agent actions is Nash-rationalizble

with a zero-sum game if and only if it satisfies (PE), (PC), and interchangeability.

Proof : See Appendix A.

3 Discussion

Sprumont only applies (PC2) for each line. Its only function is to guarantee transitivity.

From this observation, Sprumont introduces “quasi Nash-rationalizability” where a choice

function agrees with the set of Nash-equilibria of (B, (�1,�2)) for all B ∈ A, in which
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(�i)i=1,2 are P-acyclic binary relations on A (possibly non-transitive).4 He proves that

a joint choice function is quasi Nash-rationalizable if and only if it satisfies (PE), (PC1).

However, the following example shows that (PE), (PC1), and interchangeability are not

enough to induce quasi Nash-rationalizability with zero-sum games.

Example 8 5

Figure 2 describes a choice function f over all binary choices in A. The left figure is

for adjacent actions in the table and the right figure is for other binary choices. For each

column, a solid arrow implies that only one action is chosen against the other; a dashed line

implies that both are chosen. For example, {b} = f({b, a6}) and {a2, c} = f({a2, c}). For

each row, the arrow describes the choice inversely: e.g. {a4} = f({a3, a4}) and {b, a4} =

f({b, a4}). Assuming that f satisfies (PE) and (PC1), we can verify the choice values for

each 2 × 2 subgames.6 For other subgames,

• {a2} = f(column 1 and 2), {a4} = f(column 2 and 3), and {b, a4} = f(column 1 and

3).

• {d, a4} = f(row 1 and 2), {a4} = f(row 2 and 3), and {c} = f(row 1 and 3).

• {a4} = f(A).

This choice function satisfies (PE), (PC1) and interchangeability. If we assume that the

choice function is Nash-rationalizable with a zero-sum game, (A,�,�), the choice function

4A binary relation � on A is P-acyclic if and only if,

For all a, b, c ∈ A for which a ≻ b and b ≻ c, ¬(c ≻ a).

5There is no simpler example with length less than 6. Note that we do not need (PC2) to rule out a
PR-cycle with length 4; P-cycle is a special case of PR-cycle. If we have P-cycle with length of 5, we can
reduce the cycle and generate a PR-cycle with length of 4. But again, this is ruled out by (PE), (PC1) and
interchangeability.

6If we illustrate them, {a2} = f({a1, a2, b, a3}), {d, a4} = f({a2, d, a3, a4}), {a3} = f({b, a3, a6, c}),
{a4} = f({a3, a4, c, a5}), {a2, c} = f({a1, a2, a6, c}), {c, a5} = f({a2, d, c, a5}), {a1, d, b, a4} =
f({a1, d, b, a4}), and {b, a4} = f({b, a4, a6, a5}).
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a1         a2                 d

 b      a3                 a4

a6      c           a5

a1         a2                 d

 b                       a4

a6      c           a5

Figure 2: Description of binary choice of f

should agree with � over all binary choices. However, � have a P-cycle, a1 ≻ a2 ≻ · · · ≻

a6 ≻ a1. Thereby the choice function can not be Nash-rationalizable with any P-acyclic

relation. �

Note that (PE) and (PC1) guarantees that individual choices are P-acyalic. In a gen-

eral non-cooperative game, this is enough to guarantee the existence of P-acyclic relations

(�i)i∈1,2 which rationalize the choice function. However, if we assume the game is zero-

sum, binary choices of one agent directly imply the relation of the other agent. This effect

induces a possible P-cycle across agents.

It is also restrictive to require observations for all possible subgames when we apply

these testable implications. A natural relaxation is to assume that a choice function is de-

fined on A
′

⊂ A. However, Sprumont comments on the difficulties in Nash-rationalizability

under incomplete observations. Without conditions for rationalizability by general non-

cooperative games, it looks even harder to find conditions for rationalizability with zero-

sum games.

In classical choice theory, the congruence condition has been studied for incomplete

observations (see Richter (1971)). In particular, congruency is defined as the following.

Definition 9 For B ⊂ 2X and a choice function c : B −→ 2X\∅ such that f(B) ⊂ B,
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define R
′

as,

For all x, y ∈ X, xR
′

y if ∃B ∈ B such that {x, y} ⊂ B and x ∈ c(B).

If R
′

is consistent, then the choice function is called congruent.7

For individual choice behavior, Richter proves that a choice function is rationalizable

by a weak order if and only if it is congruent. However, the following example shows that

a naive extension of the congruence condition does not solve the incomplete observation

problem in joint behavior.

Example 10 (Individually congruent but not Nash-ratioinalizable) The conceiv-

able game is 2×3 where agent 1 can choose in {U,D} and agent 2 can choose in {L,M,R}.

Three figures show the only three observed games and the choices from them.

*

*

*

L  M M  R L  R

U

D

U

D

U

D

Figure 3: Individually congruent but not Nash-rationalizable

Assuming that the choice function satisfies (PC), we get {(U,L)} = f({(U,L), (U,M)})

and {(U,L)} = f({(U,L), (D,L)}) from the first subgame. Applying (PC) to other games,

we can verify all R
′

relations in definition 9 for each individual and see the choice functions

are congruent. However, assuming that these choices are Nash-rationalizable with (A,�1

,�2), we can derive (U,R) �2 (U,M) and (U,R) �1 (D,R) from the first and third game.

This contradicts the choice from the second game. �

This study still leaves out several issues arising from the characteristics of zero-sum

games. The first thing to note is that the proof relies on the existence of choice for all

7For the definition of consistency, see Definition 11.
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B ∈ A. Considering that we verify the choice is Nash-rationalizable, this implies that all

subgames are required to have a pure strategy Nash equilibrium. However, to the best of our

knowledge there are no theoretical conditions guaranteeing the existence of pure strategy

Nash equilibrium in a finite zero-sum game. Considering the absence of conditions for pure

strategy Nash equilibrium, an obvious direction of research would investigate either mixed

strategies or correlated strategies. However, necessary and sufficient conditions for mixed

or correlated strategy rationalizability are also unknown.

A Proof of the main theorem

The necessity of (PE) and (PC) are obvious from the definition of Nash equilibrium. Fur-

ther, the necessity of interchangeability of choice functions are referred to in Luce and

Raiffa (1957) at p.66. In this paper, only the sufficiency of these three conditions is proved

by constructing a preference � over A with which for all B ∈ A , f(B) coincides with the

set of all Nash-equilibria of (B,�,�).

As in example 8, define two relations �∗ and �∗∗ as follows. For any a, b ∈ A,

a �∗ b if and only if a2 = b2 and a ∈ f({a1, b1} × {a2}),

a �∗∗ b if and only if a1 = b1 and b ∈ f({a1} × {a2, b2})

Note that �∗ and �∗∗ are disjoint. Finally, let � be the union of �∗ and �∗∗.8 In each

line, (PC) is equivalent to Chernoff and Sen’s β, and �∗ and �∗∗ are defined as analogous

8In individual choice theory, given a finite alternative set X = {x, y, . . . } and a choice function g, Sen
(1971) defines base-relation(R∗) as

xR∗y if and only if x ∈ g({x, y})

If we arrange player 1’s conceivable actions in a column and player 2’s actions in a row, thereby constructing
a table of joint actions, �∗ represents the base-relation in each column and �∗∗ represents the base relation
in each row in the table, except �∗∗ is defined inversely as compared to the convention.
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with the base-relation. In such case, Sen (1971) showed that �∗ is a weak order in each

column, and �∗∗ is an inverse relation of a weak order in each row; thereby, � is a weak

order in both columns and rows. However, � is still incomplete across the lines. Before

we proceed with the construction of the weak order over A, we need some preliminary

definitions.

Definition 11 (Consistent relation) Let R be a relation over X = {x1, x2, . . . , xl, . . . }

and P be the strict counterpart of R. A sequence x1Rx2R · · ·RxlPx1 is called a PR-cycle

(or a cycle). If a relation does not have any cycle, we say that it is consistent.

Definition 12 (Extension) Given any arbitrary binary relation R on X, if R ⊂ R
′

is

such that

xRy implies xR
′

y

xPy implies xP
′

y

then R
′

is called an extension of R.

In the following, we show that � is consistent, and any weak order extension of �

Nash-rationalizes the joint choice function with a zero-sum game.

Lemma 13 � is consistent.

Proof of Lemma 13 Suppose by means of contradiction that there exists {a1, · · · , aN} ⊂

A such that a1 � a2 � · · · � aN ≻ a1. Since � is the union of two disjoint sets, �∗ and

�∗∗, depending on whether {ai, aj} is in a column or a row, � is either �∗ or �∗∗.

Without loss of generality, we can restrict attention to cycles of even length, of length

at least 4, whereby the links in the cycle alternate between �∗∗ and �∗. In order to see that

we only need to consider cycles that alternate, note that any cycle containing consecutive
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�∗ or �∗∗ can be reduced by means of transitivity to a shorter cycle without consecutive

relations. It is also straightforward to check that there are no cycles of length 2, such as

a1 �∗ a2 ≻∗∗ a1. By definition of �∗, a1
2 = a2

2 and by definition of �∗∗, a1
1 = a2

1, which

together imply that a1 = a2. However, then we have a1 ≻∗∗ a1, a contradiction. Finally,

we can rule out cycles that are of odd length, since we can shorten any cycle by transitivity

to a cycle of even length. For instance, the cycle a �∗∗ b �∗ c �∗∗ d �∗ e ≻∗∗ a of length 5

can be reduced to the cycle b �∗ c �∗∗ d �∗ e ≻∗∗ b of length 4.

We demonstrate the case where the cycle begins with �∗∗, however, the case where the

cycle begins with �∗ is analogous. We show by induction that there does not exist a cycle

of any length.

(i) (ii) (iii)

a b

cd

a b*

c

a

cd*

Figure 4: A cycle with length of 4

First, we show that there is no cycle with length of 4. Suppose a �∗∗ b �∗ c �∗∗ d ≻∗ a.

By definition, we have a1 = b1, b2 = c2, c1 = d1 and d2 = a2. Then {a, b, c, d} makes a

game, depicted in Figure 4. In part (i) of the figure, each dashed arrow corresponds to

either �∗ or �∗∗ and the solid arrow corresponds to d ≻∗ a. The tail of each arrow is the

element from the left-hand side of the relation.

Parts (ii) and (iii) of the Figure 4 illustrate the choice function generating �∗ and �∗∗ for

each subgame. Note that b ∈ f({a, b})∩f({b, c}), and d ∈ f({a, d})∩f({c, d}).9 Then (PE)

implies that b ∈ f({a, b, c, d}) and d ∈ f({a, b, c, d}). Since f is interchangeable, and since

a1 = b1 and a2 = d2, a = (b1, d2) must also be chosen, so that a ∈ f({a, b, c, d}). Likewise,

9Note that �∗∗ is defined inversely.
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c = (d1, b2) implies c ∈ f({a, b, c, d}). Finally, (PC) then implies that a ∈ f({a, d}), which

contradicts d ≻∗ a. So, there can not be any cycle of length 4.

Now, we make the induction hypothesis that there is no cycle of length 2(n− 1) where

n ≥ 3. Given this hypothesis, we show that there is no cycle of length 2n.

By reordering the list of individual actions for player 1 and 2, from a cycle a1 � a2 �

· · · a2n ≻ a1 , we can generate the table of joint actions in Figure 3. Here, the dashed

arrows and the solid arrow represent the links in the cycle as in Figure 2.

a1

e

        

               a2n-4         c1

           d        a2n-3      a2n-2

a2n          ...            b2   b1      a2n-1

.

.

.

.
.

.

Figure 5: A cycle of length of 2n (n ≥ 3)

Proof by induction argument requires the steps described below here. Steps 1 to 3 give

relations over a subset of B (Figure 10), and step 4 shows another subsets of relations over

B (Figure 12-(ii)). Step 5 induces the contradiction of these relations over two subsets.

Step 1: Consider the subgame {a2n−3, a2n−2, a2n−1, b1}. In addition to the known rela-

tions from the cycle, we can verify f({a2n−3, b1}) and f({b1, a2n−1)}. The four cases in Fig-

ure 6 below contain all possible cases of f({a2n−3, b1}) and f({b1, a2n−1)}. In these two sub-

games, it must not be the case that either a2n−3 ∈ f({a2n−3, b1}) and a2n−1 ∈ f({b1, a2n−1}

(fig (i)), or b1 ∈ f({a2n−3, b1}) and b1 ∈ f({b1, a2n−1}) (fig (ii)).
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(i.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(ii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(iv.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

Figure 6: A cycle with length 2n

In case (i), a2n−4 �∗ b1 and b1 �∗∗ a2n by transitivity of �∗ in the left column,

and by transitivity of �∗∗ in the bottom row. These two relations induce the cycle

a1 � · · · � a2n−4 � b1 � a2n ≻ a1 which is length 2(n − 1). In case (ii), b1 ∈

f({a2n−3, b1}) ∩ f({b1, a2n−1}) and a2n−2 ∈ f({a2n−3, a2n−2}) ∩ f({a2n−2, a2n−1}). (PE)

induces a2n−2 and b1 are in f({a2n−3, a2n−2, a2n−1, b1}), and indeed all four joint actions

are in f({a2n−3, a2n−2, a2n−1, b1}) provided that f is interchangeable. Therefore, we have

an indifference relation ∼ in {a2n−3, b1} and {b1, a2n−1}, which gives a special case of (i).

Excluding case (i) and (ii), either (iii) or (iv) is true. We will prove that the induction

step is true in case (iii) and omit the case of (iv). The proof that the induction argument

is true under case (iv) is omitted here as it can be shown with exactly the same approach

as that taken with case (iii).

Step 2: Figure 7 contains every possible case of f({a2n−4, c}) and f({c, a2n−2}). Using

the same argument that used for the case (i), (ii) of f({a2n−3, b1}) and f({b1, a2n−1}),

we can rule out the cases of (i) and (ii). In addition, case (iii), a2n−4 = f({a2n−4, c}) and

c = f({c, a2n−2}), is not possible, either. This can be shown first by observing b1 ≻∗ a2n−4.
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(i.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(ii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(iv.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

Figure 7: More relations from f

If it is not the case, completeness of �∗ in the left column gives a2n−4 �∗ b1, which,

combined with b1 �∗∗ a2n by transitivity of �∗∗ in the bottom row, induces the cycle

a1 �∗∗ · · · �∗∗ a2n−4 �∗ b1 �∗∗ a2n ≻∗ a1 whose length is 2(n − 1).

Once (iii) and b1 ≻∗ a2n−4 are obtained (see Figure 8), consider the set of joint actions

{a2n−4, c, b1, a2n−1}. Any choice from this game violates the (PC) in one subgame of

{a2n−4, c, b1, a2n−1}. Suppose c ∈ f({a2n−4, c, b1, a2n−1}), then c /∈ f({a2n−4, c}) violates

(PC), and likewise any joint action in {a2n−4, c, b1, a2n−1} cannot be a choice. Thus the

case (iv), c = f({a2n−4, c}) and a2n−2 = f({c, a2n−2}), should be true.

Step 3: Considering f({a2n−5, d}) and f({d, a2n−3}), we can rule out the cases of ei-

ther a2n−5 ∈ f({a2n−5, d}) and a2n−3 ∈ f({d, a2n−3}), or d ∈ f({a2n−5, d}) and d ∈

f({d, a2n−3}) by the same argument used for f({a2n−3, b1}) & f({b1, a2n−1}) and f({a2n−4, c})

& f({c, a2n−2}) in the previous steps. Accordingly, we only have cases of either a2n−5 =

f({a2n−5, d}) and d = f({d, a2n−3}), or d = f({a2n−5, d}) and a2n−3 = f({d, a2n−3}), case
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(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c1

Figure 8: Ruling out the case (iii)

(i) or case (ii) in Figure 9, respectively. However, case (i) is ruled out, because once we

have a2n−5 ≻∗ d, it must be a2n−2 ≻∗∗ d. If not, d �∗∗ a2n−2, then,

a2n-5       a2n-4 c1

  d       a2n-3      a2n-2

  b2           b1            a2n-1 

#

a2n-5       a2n-4 c1

  d       a2n-3      a2n-2

  b2           b1            a2n-1 

(i.) (ii.)

Figure 9: Verifying more relations.

1. If the cycle is length 6 (a2n−5 is a1 and there is no # in the fig(i)), b2 is equal to

a2n. Thus we have a2n−1 �∗∗ b2 and b2 ≻∗ d by transitivity of �∗. As a result,

d �∗∗ a2n−2 makes a cycle with length 4, d �∗∗ a2n−2 �∗ a2n−1 �∗∗ b2 ≻∗ d, which

contradicts the induction hypothesis.

2. If the cycle is length 8 or more (there is a2n−6 , ‘#’ in the fig (i), which is not a1),

a2n−6 �∗ d �∗∗ a2n−2 by transitivity of �∗ and �∗∗ in the left column and the middle

row. These relations shorten the cycle, which contradicts the induction hypothesis.
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Therefore, in case (i), a2n−2 ≻∗∗ d must be true. However, regardless of what is in

f({a2n−5, d, c, a2n−2}), it violates (PC). For instance, if d ∈ f({a2n−5, d, c, a2n−2}) then it

must be d ∈ f({a2n−5, d}), which violates a2n−5 ≻∗ d. Consequently, (ii) in figure 9 must

be the case.

By applying steps 2 and 3 sequentially, we can verify more relations. Figure 10 summa-

rizes the result of this process. In the following, step 4 is only for the cycle whose length is

greater than or equal to 8. For a cycle with length of 6, we already have all the relations

that we need to verify in step 4.

a1

e

        

               a2n-4         c1

           d        a2n-3      a2n-2

a2n          ...            b2   b1      a2n-1

.

.

.

.
.

.

Figure 10: Verified relations by step 2 and 3.

Step 4: Denote the joint action (a2n−1
1 , a2(n−k)−1) as bk, the joint action (a

2(n−k−1)
1 , a

2(n−k)
2 )

as ck, where k = 1, 2, . . . , n−2. Figure 10 shows how bi and ci, (1 ≤ i ≤ n−2), are located.

Let τ be a function from {b1, b2, . . . , bn−2} to B such that, τ(bi) = (a
2n−(2i+1)
1 , bi

2). Figures

10,11, and 12 show how the function values are located in the game tables. In this step,

we show the following claim:

Claim 14 For any bi (1 ≤ i ≤ n − 2), bi ≻ τ(bi) and bi ≻ a2n−1
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Proof : We prove this claim by induction. Note that we already assumed that this is true

for b1 in step 2.

Induction 1: The claim holds for b2, that is b2 ≻∗ τ(b2) (or a2n−5) and b2 ≻∗∗ a2n−1.

(i.)

(ii.) (iii.)

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

Figure 11: Verifying more relations involving b2.

Proof : Considering the subgames, {τ(b2), b2} and {b2, a2n−1} (see Figure 11), it must

not be the case that τ(b2) ∈ f({τ(b2), b2}) and a2n−1 ∈ f({b2, a2n−5}) (case (i)).

Otherwise, it shortens the cycle with a2n−5 = τ(b2) �∗ b2 �∗∗ a2n (transitivity in

the bottom row is applied.) Therefore, by completeness in each line, we should have

either a2n−1 ≻∗∗ b2 or b2 ≻∗ τ(b2). In the former case, in order not to have a

cycle of length 6, which includes {τ(b2), a2n−4, a2n−3, a2n−2, a2n−1, b2}, f must give

τ(b2) ≻∗ b2 (fig (ii)) and in the latter case, in order not to have a cycle with length 6,

f must give b2 ≻∗∗ a2n−1 (fig (iii)). However, case (ii) is ruled out by considering the

subgame, {τ(b2), c1, b2, a2n−1}. To show this, observe that a2n−1 ≻∗ c1. Otherwise,

τ(b2) �∗∗ c1 �∗ a2n−1 shorten the cycle. If the case (ii) is true, then any choice from
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{τ(b2), c1, b2, a2n−1} violates (PC). For example, if τ(b2) ∈ f({τ(b2), c1, b2, a2n−1}),

then it must be true that τ(b2) ∈ f({τ(b2), c1}), which contradicts to τ(b2) ≻∗∗ c1

(Note again that �∗∗ is defined inversely). Therefore, (iii) must be the case in Figure

11.

Induction 2: If the claim is true for bm−2, it is also true for bm (3 ≤ m ≤ n − 2).

Proof : With the same approach as induction 1, f should not give τ(bm) �∗ bm and

bm �∗∗ a2n−1, otherwise we have a shorter cycle including τ(bm) �∗ bm �∗∗ a2n.

Thus, it must be either a2n−1 ≻∗∗ bm or bm ≻∗ τ(bm). In the former case, not to have

a cycle, bm �∗ τ(bm) �∗∗ · · · �∗ a2n−1 ≻∗∗ bm which is length 2m + 2 ≤ 2(n − 1), it

must be true that τ(bm) ≻∗ bm(case (i))10, and in the latter case, not to have the cycle,

τ(bm) �∗∗ · · · �∗ a2n−1 �∗ bm ≻∗ τ(bm) which is length 2m+2 ≤ 2(n−1), it must be

true that bm ≻∗∗ a2n−1(case (ii)). However, case (i) can be ruled out. First, observe

that bm−2 ≻∗ cm−1 must be true. Otherwise τ(bm) �∗∗ cm−1 �∗ bm−2 �∗∗ a2n

induces a shorter cycle. In addition, transitivity of �∗∗ in the bottom row gives

bm−2 ≻∗∗ bm. Then, in the subgame, {τ(bm), bm, bm−2, cm−1}, any choice violates

(PC). Therefore, (ii) must be the case in f({τ(bm, bm}) and f({bm, a2n−1}).

By induction, bi ≻ τ(bi) and bi ≻ a2n−1 for i = 1, . . . , n − 2, so claim 1 holds.

Step 5: Results from steps 2 and 3 and results from step 4 contradict each other.

10Although we explicitly write the proof only for the case of cycle begins with �∗∗, every single step
so far could have been reproduced in cases where cycles begin with ≻∗, analogously. Here, we used the
induction hypothesis, ‘there is no cycle of length 2(n− 1)’, from the counterpart proof of cycles begin with
�∗ and have a strong relation as ≻∗∗

20



τ(b2)     cm-1

    ...

 bm   bm-1     bm-2               a2n-1

(i.)

τ(b2)     cm-1

    ...

 bm   bm-1     bm-2               a2n-1

(ii.)

Figure 12: Verifying relations involving bi

  a1

  a2n      bn-2  ...       a2n-1

  e   τ(bn-2)    a4

.

.

.

.
.
.

Figure 13: Inducing a contradiction

Proof : If we denote the joint action (τ(bn−2)1, a
1
2) as e (see Figure 13), then step 2 and

3 gives e ≻∗ a1 and e ≻∗∗ τ(bn−2). We showed in step 4 that bn−2 ≻∗ τ(bn−2) and

bn−2 ≻∗∗ a2n−1. Moreover, it must be true that e ≻∗ a2n, otherwise, a2n �∗ e ≻∗∗ a4

shortens the cycle. On the other hand, bn−2 ≻∗∗ a2n, by transitivity of �∗∗ in the bottom

row. Lastly, we can observe that any choice from the subgame, {e, τ(bn−2), a2n, bn−2},

violates (PC), and this contradiction completes the proof of step 5, thereby completing the

proof of Lemma 13.

Proof of main theorem
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Claim 15 For all B ∈ A , f(B) coincides with the set of all Nash-equilibria of the game

(B,�,�).

Proof : Take any B = B1 × B2 ∈ A and let NE(B) be the set of all Nash-equilibria of the

game (B,�,�). First, to show f(B) ⊂ NE(B), take any b∗ = (b∗1, b
∗

2) ∈ f(B). Since f

satisfies (PC), b∗ ∈ f(B
′

) for all B
′

∈ A and B
′

⊂ B. Therefore, for any {b∗, (b1, b
∗

2)} ⊂ B,

b∗ ∈ f({b∗, (b1, b
∗

2)}). By the definition of �∗, we have b∗ �∗ (b1, b
∗

2), which is equal to

b∗ � (b1, b
∗

2). Similarly, for any {b∗, (b∗1, b2)} ⊂ B, b∗ ∈ f({b∗, (b∗1, b2)}). The definition of

�∗∗ gives (b∗1, b2) �
∗∗ b∗, which is equal to (b∗1, b2) � b∗, or b∗ � (b∗1, b2). Since b∗ � (b1, b

∗

2)

and b∗ � (b∗1, b2), for all (b1, b
∗

2) ∈ B and (b∗1, b2) ∈ B, b∗ is a Nash-equilibrium of the game

(B,�,�).

Conversely, if b∗ ∈ NE(B), for any (b1, b
∗

2) ∈ B, b∗ � (b1, b
∗

2). Since, only �∗ and

not �∗∗ is defined in columns, we have b∗ �∗ (b1, b
∗

2) and the definition of �∗ gives b∗ ∈

f({b∗, (b1, b
∗

2)}). Moreover, (PE) implies b∗ ∈ f(B1 × {b∗2}) (∗). And b∗ ∈ NE(B) implies

b∗ � (b∗1, b2) for all (b∗1, b2) ∈ B (or (b∗1, b2) � b∗). Since, only �∗∗ not �∗ is defined in rows,

we have (b∗1, b2) �
∗∗ b∗. The definition of �∗∗ gives b∗ ∈ f({b∗, (b∗1, b2)}) and (PE) induces

b∗ ∈ f({b∗1} × B2) (∗∗). Lastly, (∗), (∗∗), and (PE) imply that b∗ ∈ f(B).

We have shown that � is consistent and f(B) coincides with NE(B) for all B ∈ A .

Suzumura (1976) shows that a consistent relation has a weak order extension. Observing

that the extension generates additional relations only between the joint choices which are

not in the same line, this extension does not affect the result of claim 15, so claim 15 is still

valid with the weak order extension of �. This completes the proof of the main theorem.
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