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Abstract

We analyze a situation where players in advance prepare their ac-

tions in a game. After the initial preparation, they have some oppor-

tunities to revise their actions, which arrive stochastically. Prepared

actions are assumed to be mutually observable. We show that players

can achieve a certain level of cooperation in such a class of games.
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1 Introduction

It is often the case that agents must prepare their strategies in advance

before they interact. For example, consider researchers who are competing

to win research grants. Their strategies correspond to their proposals,

which are to be submitted by a prespecified deadline. In such a situation,

researchers typically prepare their proposal in advance, and proposals are

usually subject to some revisions before submission. Since they have other

obligations, such as teaching, committee work and so on, they do not always

have an opportunity to revise their proposals. Rather, opportunities for

revision may be arrive stochastically over time. Researchers may also have

some information about what kind of proposals are being prepared by their

rivals. Based on such information, researchers revise their proposals when

they have time (i.e., when a revision opportunity arrives), and they submit

what they have when the deadline comes.

In the present paper, we analyze such a situation, where a "component

game" is played only once, and players must in advance prepare their ac-

tions. They have some opportunities to revise their prepared actions, and

the opportunities for revision arrive stochastically. Prepared actions are

assumed to be mutually observable. We show that, under some conditions,

players can achieve a certain level of cooperation in such a class of games,

which we refer to as Revision Games.

The basic logic to sustain cooperation in our model is closely related to

the theory of finitely repeated games. The simple class of revision games,

where the component game is played (once and for all) with a constant

positive probability in each period, is actually identical to infinitely repeated

games. We make this point by a simple example in the next section.

In the main part of our paper (Section 3 -), we consider revision games

with a fixed deadline. A "component game" is played at time 0, but players

must prepare some actions at time −T . Between −T and the deadline 0,
opportunities to revise their actions arrive via a Poisson process. Prepared

actions at each moment of time is observable. We show that, when the

component game has continuous actions and the payoff function "smooth",

a certain level of cooperation is sustained. In particular, we show that

the best symmetric "trigger strategy" equilibrium can be characterized by

a simple differential equation. Furthermore, the expected payoff associated

with such an equilibrium is independent of the Poisson arrival rate, if the

time horizon (T ) is sufficiently long.

Our framework can be applied to many standard games in the economics

literature: We provide analyses on prisoner’s dilemma, Cournot oligopoly. It
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will be shown that revision games sometimes manage to achieve quite high

degree of cooperation or collusion. For example, in the Cournot duopoly

game with linear inverse demand function and a constant marginal cost,

99.9% of the collusive payoff can be achieved in a subgame perfect equilib-

rium that we construct.

There is a body of literature which is related to our model. Pitchford

and Snyder (2004) considered a hold-up game, where the seller makes an

investment k, and the buyer pays p. The payoffs are −k for the seller and
u(k) − p for the buyer. In the one-shot game where k and p are made

simultaneously, the Nash equilibrium is inefficient with k = 0 and p = 0.

They considered the following dynamic process of preparing actions in the

hold-up game (i.e., making investments and payments). At each moment

of time t = 0, 1, 2, ... the seller invests ∆kt and then the buyer pays ∆pt. At

the end of each period, there is a fixed probability θ to terminate the process.

If the process is terminated at time T , the component game (the hold-up

game) is played with the cumulative investment
PT
t=0∆kt and paymentPT

t=0∆pt. They show that, as θ → 0, the first best level of investment

is achieved by a subgame perfect equilibrium.1 This is closely related to

our revision games I. An important difference is that prepared action is

irreversible (cumulative investment and payment can only increase) in their

model, but actions can be changes in any directions in our model. If their

model had increasing probability of termination θt → 1 as t→∞ (and if the

actions were reversible), it would be similar in spirit to our revision games II.

Our revision games II are also similar to Bernheim and Dasgupta (1995),

who considered infinitely repeated games with decreasing discount factor

(δt → 0 as t → ∞). They show that if (i) δt tends to 0 sufficiently slowly

and (ii) the action space is continuous and payoff function is smooth, then

the efficient outcome can be sustained by a subgame perfect equilibrium.

Our paper is also closely related to Ambrus and Lu (2008), who examined

multilateral bargaining played in continuous time t ∈ [−T, 0]. Each player
i = 1, ..., N receives opportunities to make an offer, which arrive by a Poisson

process (independent across players). If an agreement is reached at any

time, the game ends then. If no offer is accepted until the deadline 0,

players receive zero payoff. They showed that there is a unique subgame

perfect equilibrium, and the share of the surplus a player can expect is

proportional to her arrival rate. Our model is different in that players

always have a possibility to revise their action in the entire period [−T, 0]
1Admatti and Perry (1991) cosidered a related dynamic model with the joint project

game, in which the completion of a joint project requies a fixed sum of investment.
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and, the actions are implemented at the deadline 0. Another difference lies

in the component games. Unlike their model, we obtain multiple equilibria,

just as in repeated games.

The plan of the paper is as follows. The next section presents a sim-

ple class of revision games to help the reader to build up some intuition.

The main model is presented in Section 3. The results on general setting

with one-dimensitonal continuous strategies is given in Section 4. Section 5

provides a number of applications.

2 Revision Games I - with Stationarity

The purpose of our paper is to analyze a class of games where (i) a compo-

nent game is played only once, (ii) players must prepare for their actions in

advance, (iii) prepared actions are observable, and (iv) opportunity of revis-

ing their actions arrive stochastically. We refer those games as Revision

Games. In this section, we start with a simple case, where the problem

is stationary in the sense that in each period t = 0, 1, 2, ... there is a fixed,

positive probability p that a game is played (Revision Games I). This class

will turn out to be isomorphic to a familiar class of games, and it helps to

build some intuition on how revision games in general work. The point we

make is a simple one, so we just present an example of Revision Game I.

Suppose a rural village faces an attack of bandits. In each period t =

0, 1, 2, ... the bandits attack the village with probability p ∈ (0, 1) around
midnight. They only attack once. There are two villagers, i = 1, 2, and

they must prepare to defend the village (to show up at the village gate

around midnight) or not (to hide away). Hence in each period they observe

each other’s prepared actions. The acts of preparation themselves (showing

up and hiding away) have negligible effects on the villagers’ payoffs. When

the bandits attack, however, their prepared actions have huge impacts to

their payoffs;

Defend Hide

Defend 2, 2 -1, 3

Hide 3, -1 0, 0

This is a Prisoner’s Dilemma game. Now consider player i’s expected payoff.

We denote player i’s payoff by πi(t), when the bandit attack occurs at time

t. We also assume that players have a common discount factor δ ∈ (0, 1).
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Player i’s expected payoff is

pπi(0) + δ(1− p)pπi(1) + δ2(1− p)2pπi(2) + · · ·

= p

∞X
t=0

δ
t
πi(t),

where δ ≡ δ(1 − p). Hence, revision games I are isomorphic to infinitely

repeated games, and cooperation can be sustained as a subgame perfect equi-

librium. Even though the component game is played only once, when (i)

players prepare their action in advance, (ii) prepared actions are observable,

and (iii) opportunity of revising their actions arrive stochastically, then play-

ers manage to cooperate. The mechanism to sustain cooperation works, for

example, as follows. As long as the villegers have been showing up at the

gate, they continue to do so (to prepare to defend the village). If anyone

hides away, however, they stop to prepare to defend. The next section deals

with our main model, where there is a fixed deadline to prepare action in

the component game. We will show that some cooperation can be sustained

in such games (Revision Games II), and the basic mechanism is essentially

the same as in this bandits story.

3 Revision Games II - with a Fixed Deadline

Consider a normal form game with players i = 1, ..., N . Player i’s strategy

and payoff are denoted by ai ∈ Ai and πi(a1, ..., aN). This game is played at
time 0, but players have to prepare their strategies in this game in advance,

and they also have some (stochastic) opportunities to revise their prepared

strategies. Hence, technically the game under consideration is a dynamic

game with preparation and revisions of strategies, where the normal form

game π is played at the end of the dynamic game (time 0). Specifically, the

timing of the game is as follows: At period −T < 0, each player i chooses
an action from Ai. In time interval [−T, 0], revision opportunities arrive
at each player with Poisson arrival rate λ. We consider the following two

cases: (i) the synchronous case, where revision opportunities are common

to all players (i.e., players revise their actions simultaneously) and (ii) the

asynchronous case, where the arrival of revision opportunities is independent

across players. There is no cost of revision. At period 0, the payoffs π(a0) =
(π1(a

0
1), . . . ,πN(a

0
N )) materialize, where a

0
i is i’s latest revised action. To

distinguish the entire dynamic game and its component π, the former is

referred to as a revision game and π is referred to as the component game.
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We consider subgame perfect equilibria of the revision game. When

the component game has a pure strategy Nash equilibrium, one obvious

subgame perfect equilibrium is the game in which players choose a static

Nash action at time −T , and they don’t revise their actions until time 0.
In what follows, we show that, under some conditions, revision games have

other subgame perfect equilibria, where players are better off than in the

static Nash equilibrium.

4 One-dimensional Continuous Strategies

In this section, we consider a case with two players with one-dimensional

continuous strategies. This case subsumes, for example, public goods pro-

vision games, Cournot, and so forth. These applications are discussed in

Section 5. We assume two players, but this is just to simplify the exposi-

tion: The results below easily extend to the case of N -player.

We analyze a general two-person symmetric component game with action

xi ∈ Xi and payoff function πi. Two players are denoted i = 1, 2, and a

player’s action space is an interval in R: Xi = [xi, xi], [xi,∞), (−∞, xi],
or (−∞,∞). Symmetry means X1 = X2 and π1(x, x

0) = π2(x
0, x) for all

x, x0. We assume that the component game has a symmetric pure strategy
Nash equilibrium xN , whose payoff is πN . We first consider the case where

revision opportunities arrive simultaneously to all players (the synchronous

case). Here we confine our attention to symmetric equilibrium x1(t) =

x2(t) = x(t) that uses "the trigger strategy". The action path x(t) means

that, when a revision opportunity arrives at time −t, players are supposed to
choose action x(t). If any player deviates and does not choose the prescribed

action x(t), then in the future players revert to the Nash equilibrium of the

component game, wherever a revision opportunity arrives. This is what we

mean by the trigger strategy in revision games. Below we identify the best

symmetric equilibrium in the class of "trigger strategy equilibria". Define

π(x) ≡ π1(x, x) andbπ(x) ≡ π1(BR(x), x),

where BR(x) is the best reply to the opponent’s action x. Let x∗ =
argmaxx π1(x, x) denote the best symmetric action in the component game

and let π∗ = π1(x
∗, x∗) (the best symmetric payoff). We assume that the

following properties are satisfied.
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(A0) Pure strategy symmetric Nash equilibrium (xN , xN ) exists, and it

is different from the best symmetric action profile (x∗, x∗).
(A1) The symmetric payoff π1(x1, x2) is twice continuously differentiable.

(A2) There is a unique best reply BR(x) for all x.

(A3) At the best reply, the first and second order conditions are satisfied:

∂π1(BR(x), x)

∂x1
= 0,

∂2π1(BR(x), x)

∂2x1
< 0

(A4) BR0(xN) 6= 1, or equivalently (by the implicit function theorem2),

−∂
2π1(x

N , xN)

∂2x1
6= ∂2π1(x

N , xN)

∂x1∂x2.

(A5) π(x) is single peaked: π0(x) > 0 if x < x∗ and π0(x) < 0 if x∗ < x.
(A6) The gain from deviation

d(x) ≡ π1(BR(x), x)− π1(x, x) = bπ(x)− π(x)

has the single bottom at the Nash action: d0(x) < 0 if x < xN and d0(x) > 0
if xN < x.

Those condition hold, for example, Cournot duopoly with linear demand

and constant marginal cost. The next theorem gives a characterization of

the best symmetric trigger strategy equilibrium.

Theorem 1 Under (A0)-(A6), there is a solution x0(t) to differential equa-

tion

λ(bπ(x)− πN) = d0(x)
·
x (1)

with initial condition x(0) = xN , such that x0(t0) = x∗ for some finite
time t0. Furthermore, x0(·) is monotone on [0, t0]. When T < t0, the best

symmetric trigger strategy equilibrium is given by x0(t) for t ∈ [0, T ]. When
t0 ≤ T , it is given by

x(t) =

½
x0(t) for t ∈ [0, t0]
x∗ for t ∈ [t0, T ] .

2The implicit function theorem, applied to the first order condition
∂π1(BR(x),x)

∂x1
= 0,

shows BR0 = − ∂2π1
∂x1∂x2

/∂
2π1

∂2x1
.
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The theorem shows that the best symmetric trigger strategy equilibrium is

basically given by a solution to the differential equation (1), which starts

with the Nash equilibrium action xN and monotonically approaches the best

symmetric action x∗. If there is enough time to reach x∗, after reaching
x∗, the action path stays there. Note that we measure time in the inverse

order so that x(t) is the prescribed action at time −t. The above strategy
means (given the horizon is long enough: t0 ≤ T ) the following pattern of
actions in the revision game. Players start with the best action x∗, and
even if a revision opportunity arrives, they do not revise their actions until

time −t0 is reached. After that, if a revision opportunity arrives, they

choose an action x0(t), which is closer to the Nash action. The closer is

the revision opportunity to the end of the game, the closer is the revised

action x0(t) to the Nash equilibrium. At the end of the game, the actions

chosen at the last revision opportunity are implemented. Hence the best

symmetric trigger strategy equilibrium induces a probability distribution of

actions over (i) the best action, (ii) the Nash action, and (iii) any actions in

between. The nature of this equilibrium distribution will be examined in

the following propositions (Propositions 1 and 2).

Proof. The equilibrium payoff at time −t is

VC(t) ≡ π(x(t))e−λt +
Z t

0

π(x(s))λe−λsds.

The first term represents the payoff when there is no opportunity of revision

in the future. This happens with probability e−λt, and the current action
x(t) will be implemented at the end of the game. Similarly, with probability

density λ a revision opportunity arrives at time s, and with probability e−λs

this is the last revision opportunity. If that happens, action x(s) will be

implemented and the realized payoff is equal to π(x(s)). In contrast, the

optimal deviation payoff is

VD(t) ≡ bπ(x(t))e−λt + πN(1− e−λt),

where the second term shows that whenever at least one revision opportunity

arrives in the future (which happens with probability (1 − e−λt)), players
revert to the Nash equilibrium and the Nash payoff πN realizes at the end

of the game. The incentive constraint is VC(t) ≥ VD(t) for all t. Given the
future action path x(s), s ∈ (t, 0], the optimal current action x(t) is given
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by

max
x(t)

VC(t)

s.t. VC(t) ≥ VD(t), (2)

or equivalently

max
x(t)

π(x(t))

s.t.

Z t

0

π(x(s))λe−λsds− πN (1− e−λt) ≥ d(x(t))e−λt.

Note that the left hand side of the constraint (a constant in this optimization

problem) is the loss of future profit when a player deviates, while the right

hand side represents the gain from deviation. Consider the case xN <

x∗ (symmetric arguments apply to the other case). Since the Nash action
satisfies the incentive constraint, the maximized value is no less than πN ,

and it cannot exceed π∗ (the maximal possible symmetric payoff). By

(A5), for any π ∈ (πN ,π∗), there are at most two x0 and x” such that
π = π(x0) = π(x”), where xN < x0 < x∗ < x”. By (A6), x0 has a smaller
gain from deviation (d(x0) < d(x”)). Hence we can always find a solution

to the above optimization in [xN , x∗]. Also note that, by (A5) and (A6),

both π(x) and d(x) are increasing in this region. Hence, the solution to

the above optimization problem is either (i) x(t) = xN , (ii) x(t) = x∗,
or (iii) x(t) < x∗ and the constraint is binding. This means that, the

best symmetric trigger strategy is characterized by the binding incentive

constraint VC(t) = VD(t) (until optimal action x
∗ is reached). Trivially,

only the Nash action can be sustained at t = 0, and we have the boundary

condition VC(0) = VD(0)(= πN). Then, condition V 0C(t) = V 0D(t) ensures
that the incentive constraint is always binding, i.e., VC(t) = VD(t) for all t.

We have

V 0C = −λπe−λt + π0
·
xe−λt + λπe−λt = π0

·
xe−λt, and

V 0D = −λbπe−λt + bπ0 ·xe−λt + λπNe−λt,

and V 0C(t) = V
0
D(t) reduces to

λ(bπ − πN ) = d0
·
x, (3)

where we used bπ0−π0 = d0. The initial condition of this differential equation
is x(0) = xN . This differential equation always has a trivial solution x(t) ≡
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xN . Assumptions (A1)-(A6) ensure that it has another solution x0, where

the fully cooperative action x∗ is achieved for some t0 <∞.
Let us continue to confine our attention to the case xN < x∗. By (A6),

d0(x) 6= 0 for x 6= xN , so that we can rewrite the differential equation (3)

for x 6= xN as

·
x = λ

bπ − πN

d0
. (4)

When xN < x∗, the right hand side is strictly positive for all x ∈ (xN , x∗].
This follows from, for for all x ∈ (xN , x∗], bπ(x)− πN ≥ π(x)− πN > 0 (the

weak inequality holds by definition and the strict inequality follows from

(A5)) and d0(x) > 0 ((A6)).
Hence, if we show that

·
x > 0 is also satisfied at the initial point x(0) =

xN , then we find strictly increasing path from x(0) = xN to reach the

optimal action x∗, and the proof is basically completed. We elaborate on

this point in what follows.

At the initial point x(0) = xN , the right hand side of differential equation

(4) is not well-defined, because d0(xN ) = 0. The reason is as follows. First,
note that

d0(x) = (π1(BR(x), x)− π1(x, x))
0

=
∂π1(BR(x), x)

∂x2
− ∂π1(x, x)

∂x1
− ∂π1(x, x)

∂x2
,

where we used (A3) to eliminate
∂π1(BR(x),x)

∂x1
BR0(x) = 0 (the envelope the-

orem). Firstly, at the Nash action xN , again by (A3) the first order con-

dition is satisfied and
∂π1(x

N ,xN )
∂x1

= 0. Secondly, we have
∂π1(BR(x

N ),xN )
∂x2

=

∂π1(x
N ,xN )

∂x2
and we obtained d0(xN ) = 0. In summary, basically because the

first order condition is satisfied at the Nash action ((A3)) , we have

d0(xN ) = 0

and the right hand side of the second differential equation (4) is not well-

defined at the initial point x(0) = xN . To show the non-trivial solution to

our original differential equation (3) exists, we set

·
x(0) = lim

x→xN
λ
bπ(x)− πN

d0(x)

and show that the right hand side of this equation exists and strictly posi-

tive.
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Since both the numerator and denominator of λ
π(x)−πN (x)

d0(x) tend to zero

as x→ xN , we use de l’Hospital theorem

lim
x→xN

λ
bπ(x)− πN

d0(x)
= lim
x→xN

λ
(bπ(x)− πN)0

d
00
(x)

=
∂π1(x

N , xN )

∂x2

Á ³
−∂2π1(x

N ,xN )

∂2x1
− ∂2π1(x

N ,xN )
∂x1∂x2

´2
−∂2π1(xN ,xN )

∂2x1

. (5)

The last equality follows from direct computation and some rearrangements,

and the details are found in Appendix A.1. We now show that the value of

this expression (5) is strictly positive. First, by (A5), we have π0(xN ) > 0
(recall that we are in the case xN < x∗). Since the first order condition is
satisfied at the Nash action xN ((A3)), we have π0(xN ) = ∂π1(x

N ,xN )
∂x2

. There-

fore, the numerator of (5) is strictly positive. On the other hand, the second

order condition in (A3) shows that −∂2π1(x
N ,xN )

∂2x1
> 0. Furthermore, (A4)

shows that
³
−∂2π1(x

N ,xN )

∂2x1
− ∂2π1(x

N ,xN )
∂x1∂x2

´2
> 0. Hence the denominator of

(5)) is also strictly positive.

In summary, we have obtained a differential equation

·
x = f(x) > 0 for x ∈ [xN , x∗],

where f(x) is a continuous function λ
π(x)−πN
d0(x) for x ∈ (xN , x∗] and f(xN ) =

limx↓xN f(x). Since f is strictly positive and continuous on [xN , x∗], it has

the minimum value f> 0. The fact
·
x ≥ f> 0 shows that there is a strictly

increasing solution x0(t) with initial condition x(0) = xN , and in a finite

time it reaches the optimal symmetric action x∗. This solution satisfies the
original differential equation (3) and therefore the binding incentive con-

straint VC(t) = VD(t). Hence we conclude that the strategy to "follow

x0(t) until the best symmetric action x∗ is reached" satisfies the optimal-
ity condition (2) for the best symmetric trigger strategy equilibrium. This

completes the proof.

One might expect that the outcome of the component game, and hence

the payoffs, depend on the arrival rate λ. The next theorem shows that this

is not the case:

Proposition 1 (Arrival Rate Invariance) Under the best symmetric

trigger strategy equilibrium, the probability distribution of action profile in
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period 0 is independent of the Poisson arrival rate λ, provided that the time

horizon T is long enough. Specifically, Let t0(λ) be the (first) time to reach

optimal symmetric action, stated in Theorem 1. Then, as long as t0(λ)

≤ T , the probability distribution of action profile at period 0 is independent
of the Poisson arrival rate λ.

Proof. Let us denote revision game with Poisson arrival rate λ and

time horizon T by R(λ, T ). Now choose a new unit of measurement of time

and represent this game with respect to new time s = λt, where t is the

original variable to represent time. Since the probability that k revision

opportunities arrive within time ∆t is given by Poisson distribution

1

k!
(λ∆t)ke−λ∆t =

1

k!
(∆s)ke−∆s,

under the new unit of measurement of time the Poisson arrival rate is 1.

Hence, the new representation of R(λ, T ), with the new unit of measure-

ment of time s = λt, is identical to R(1,λT ). Let us denote the best

symmetric trigger strategy equilibrium in R(λ, T ) by x(t). Since R(1,λT )

is identical to R(λ, T ) represented by a new time variable s = λt, x(t) must

be mapped, by s = λt, to the best symmetric trigger strategy equilibrium

y(·) in R(1,λT ). That is, y(t) = x( t
λ
). Since x and y represent the same

strategy (with different units of measurement of time), they must induce

the same probability distribution over the action profiles in the component

game.

Now suppose x(t) reaches the optimal symmetric action x∗ at time t0(λ)
≤ T . Then, the first time y(t) (= x( t

λ
)) reaches x∗is t0(1) = λt0(λ) < λT .

Since players never revise their actions (they stick to x∗) in [t0(1),λT ] under
y(t) in revision game R(1,λT ), the probability distribution of action profile

induced by y (and hence x) is identical to the one that is induced by the best

symmetric trigger strategy equilibrium in R(1, t0(1)), which is independent

of the Poisson arrival rate λ.

Proposition 1 shows the following feature of revision games: The frame-

work of revision games gives us a unique prediction that does not depend

on the detailed specification of the dynamics, λ. In particular, even if λ

is sufficiently high (so that there are many chances to revise actions right

before the component game), the expected outcome in the component game

is the same as in the case of low λ.

The proof also shows that, when there is enough time for the best sym-

metric trigger strategy equilibrium to reach the best symmetric action x∗,
the probability distribution of action profile in the component game (which
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is independent of arrival rate λ) can be calculated as follows. It is equal

to the distribution induced by the best symmetric trigger strategy equilib-

rium in R(1, t0(1)) (revision game with arrival rate λ = 1, where there is

just enough time to reach the best symmetric action x∗). First, we find the
action path x(t), which is a non-trivial solution (x(t) not identical to xN )

to the differential equation

bπ(x)− πN = d0(x)
·
x.

We explain the procedure to compute the action profile distribution when

x∗ < xN (the other case is similar). In this case x(t) is decreasing, starting
with x(0) = xN and reaches x∗ at a finite time t0(1) (x(t0(1)) = x∗). The
cumulative distribution function of symmetric action x in the component

game, denoted by F (x), can be computed as follows.

First, note that the support of the distribution is [x∗, xN ]. Action x∗

realizes if and only if the initial action x∗ at time t0(1) is never revised
(recall that we are measuring time in the inverse order, so that t0(1) is the

beginning of the game and t = 0 is the end). This happens with probability

e−t
0(1). Hence

F (x) =

½
0 if x < x∗

e−t
0(1) if x = x∗

.

For x ∈ (x∗, xN ], F (x) − F (x∗) = R
{t|x(t)≤x} e

−tdt =
R t0(1)
tx

e−tdt = e−tx −
e−t

0(1), where x(tx) = x. The first equality follows from the fact that the

density of action x(t) ≤ x is the product of
• 1 (the density of revision at time t) and
• e−t (the probability that the revised action at time t, x(t), will never
be revised again).

Let us summarize our arguments. To simplify notation, we denote t0(1),

the first time the action path reaches x∗, by tx∗ .

Proposition 2 Suppose that (i) the best symmetric trigger strategy equi-

librium is played and (ii) time horizon is long enough so that the efficient

action x∗ is chosen at the beginning of the revision game. When x∗ < xN ,
the cumulative distribution function of the symmetric action in the compo-

nent game is given by

F (x) =

⎧⎨⎩
0 if x < x∗

e−tx if x∗ ≤ x ≤ xN
1 if xN < x

,

13



where tx is the time for the best symmetric trigger strategy action path to

reach x ∈ [x∗, xN ], when the arrival rate is λ = 1. When xN < x∗, 1−F (x)
is equal to the right hand side of the above equality.

5 Applications

In this section, we use the general framework given in the previous section

to analyze a widely studied class of games. We study prisoner’s dilemma

with continuous actions, Cournot oligopolies, and Bertrand competition

with product differentiation. Other possible applications are discussed in

the last subsection.

5.1 Continuous Prisoner’s Dilemma

Let the payoff function be π1(x1, x2) = ax2 − xb1 and π2(x1, x2) = ax1 − xb2,
where a > 0 and b > 1. The action space is xi ∈ [0,∞). This game

represents the following situation. Two players i = 1, 2 exchange goods

they produce. That is, player 1 produces one unit of good and give it to

player 2 (and vice versa). The quality of the good player i produces is equal

to xi, and the cost to provide a good with quality xi is a convex function x
b
i .

Alterenatively, one can interpret xi as the quantity of goods i provides and

assume that xbi is the cost to produce xi units of goods. Note that xi = 0

is the dominant strategy, while the best symmetric action x∗ =
¡
a
b

¢ 1
b−1 is

strictly positive. Hence this can be regarded as a version of the prisoner’s

dilemma game with continuous actions. It is easy to check that this game

satisfies our assumptions (A0)-(A6).

By using the formula obtained in Theorem 1, we can easily obtain the

following:

Proposition 3 Under the best symmetric trigger strategy equilibrium, ac-

tion path is given by x(t) =
¡
a
b

¢ 1
b−1 for t ≥ 1

(b−1)λ and x(t) =
³
a(b−1)λt

b

´ 1
b−1

for t < 1
(b−1)λ . Furthermore, this is the best symmetric equilibrium.

Proof. The differential equation in Theorem 1, λ(bπ(x)− πN) = d0(x)
·
x,

reduces to

λax = bxb−1
·
x,

14



which has a non-trivial solution x(t) =
³
a(b−1)λt

b

´ 1
b−1
, and the efficient action

is x∗ =
¡
a
b

¢ 1
b−1 . The first part of the proposition directly follows from

Theorem 1. The optimality of this equilibrium follows from the fact that

the punishment in the trigger strategy, reversion to Nash action (0, 0), is the

strongest possible punishment, where players receive their minimax payoff.

To understand the proposition, we state the two corollaries below:

Corollary 1 If a = 1 and b = 2, the symmetric efficient equilibrium is

c(t) = 1
2
for t ≥ 1

λ
and c(t) = λ

2
t for t < 1

λ
.

Thus, with quadratic cost, the efficient equilibrium path is linear. Now,

recall that π∗ is the perfectly collusive payoff.

Corollary 2 The expected payoff associated with the best symmetric trigger

strategy tends to π∗ as b→∞.
Thus, as the convexity of the cost rises, it becomes easier to achieve

collusive outcomes. The reasoning here is that as b goes to infinity, the

time when the full cooperation starts to collapse, 1
(b−1)λ , becomes closer and

closer to the deadline. Denote x(t) = kt
1
b−1 , with k =

³
a(b−1)λ

b

´ 1
b−1
. Notice

that when b is very large, k approaches 1, while the derivative of t
1
b−1 with

respect to t near t = 0 becomes larger and larger. This is why large b implies

that the players stick to the best symmetric action until a time shortly before

the deadline. The proof of Corollary 2 is relegated to Appendix A.2.

5.2 Asynchronous Revision in the Continuous Prisoner’s Dilemma

In the previous section, we considered a situation where opportunity of re-

vision arrives at the same time for both players. Here we consider the case

where revision opportunities are independent across players. The specifica-

tion of the model is the same as before, except that we let λi, i = 1, 2, be

each player’s arrival rate. We assume that player i observes when revision

opportunities arrived to player j, so that i can see if j has actually followed

the equilibrium action path xj(t).

One can show the following:

Proposition 4 The symmetric efficient equilibrium in Proposition 3 also

constitute the symmetric efficient equilibrium in the case of independent re-

visions with equal arrival rates λi = λj = λ.

15



Proof. Consider the following simple trigger strategy defined by action

plan xi(t), t ∈ [0, T ], i = 1, 2. Players stick to this action plan as long as

they have done so, and otherwise they switch to xi = 0.

We will show that we can find i’s equilibrium revision plan x(t), which

depends only on time, because of the separability of the payoff function.

When a revision opportunity arrives at time −t to player i, the expected
payoff to player i is given by the following formula, if both players follow the

trigger strategies (xj(s) denotes the opponent’s fixed action chosen before

time −t (s > t)).

W i
C(t) =

Z t

0

axj(τ)λje
−λjτdτ−

Z t

0

xi(τ)
bλie

−λiτdτ+[axj(s)e−λj t−xi(t)be−λiτ ]

When i deviates at time−t, the optimal deviation is to take the dominant
action in the stage game (xi = 0) forever. Then the opponent j retaliates

by switching to 0. Hence, the optimal deviation payoff at time −t is given
by

W i
D(t) = acj(s)e

−λjt

Those payoffs are similar to the ones when revision opportunities are per-

fectly synchronized with arrival rate λ. In the synchronized case, the equi-

librium continuation payoff is

V Ci (t) =

Z t

0

(axj(τ)− xi(τ)b)λe−λτdτ + [axj(s)− xi(t)b]e−λτ

while the optimal defection payoff is

V Di (t) = axj(s)e
−λt.

The trigger strategies in the case of asynchronous revision constitute a sub-

game perfect equilibrium if the following incentive constraints are satisfied:

WC
i (t)−WD

i (t) ≥ 0 for all t ∈ [T, 0], i = 1, 2.

One can immediately see, when λi = λj = λ, we have WC
i (t) −WD

i (t) =

V Ci (t) − V Di (t), and therefore the two models have identical incentive con-
straints.

This shows that the same incentive constraints hold in both games, hence

the same symmetric efficient equilibrium arises. We note that this result

crucially depends on the assumption that the payoff function is additively

separable with respect to each player’s action. In general, i’s revision plan
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depends not only on time to revise but also on the fixed action of the op-

ponent at the time of revision (hence a revision plan is represented by a

function xi(t, xj), where xj is the fixed action of the opponent at revision

time −t). As our payoff is separable across players’ actions (no cross effects
between xi and xj , as we have πi(xi, xj) = axj − xbi), we can effectively
ignore the dependence of action path with respect to the opponent’s action.

One can easily extend this result to the case of any revision games with

additively separable payoff functions.

5.3 Cournot Duopoly

In this subsection, we consider Cournot duopoly with synchronized revisions:

The payoff for agent i is πi = (a− b(qi + qj)− c) qi, where qi denotes agent
i’s final announced quantity. Implicit in this payoff function is the Cournot

game in which a− bQ is the inverse demand function and c is the (constant)
marginal cost, where Q denotes the total quantity. We suppose a, b > 0.

Proposition 5 Under the best symmetric trigger strategy equilibrium, the

action path is qi = qj =
a−c
4b
if t ≥ t̂, and qi = qj = a−c

3b
· r(t) if t < t̂, where

we let t̂ = 9
2λ
ln
¡
12167
12096

¢
and r(t) solves

(r(t)+5)3

r(t)+1
= 108e

2
9
λt.

The proof is relegated to Appendix A.3.

Note that r(t) is the ratio of the equilibrium quantity to the static equi-

librium quantity a−c
3b
.

We note that this model is more complicated than the continuous pris-

oner’s dilemma. This is because now the payoff function is not additively

separable. Hence, player 1’s best response in a component game does de-

pend on player 2’s action. This was not the case in the continuous prisoner’s

dilemma: x1 = 0 is always the best response in the componet game.

We also note that the Cournot revision game with asynchronous revisions

would be much more difficult to analyze, as it is not necessarily an optimal

deviation to play the best response against the opponent’s current quantity.

Next, we consider the welfare implication of the revision game in Cournot

oligopolies. It turns out that surprisingly high degree of collusion can be

achieved in the Cournot revision game. Note that our Cournot game has

linear demand P = a− bQ and constant marginal cost c, but the following

statements are independent of parameters a, b, and c.

Proposition 6 Under the best symmetric trigger strategy equilibrium, the

expected profit π in the Cournot revision game is more than 99.9% of the

fully collusive payoff π∗.
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The proof is relegated to Appendix A.4. Another way of evaluating the

collusive power of the Cournot revision game is to examine the improvement

of payoff relative to the static Nash equilibrium. Relative to static Nash

equilibrium, π∗−πN is the maximum possible payoff improvement, and the

next corollary shows that a substantial fraction of the potential improvement

π∗ − πN is achieved in the Cournot revision game.

Corollary 3 Let π be the expected payoff associated with the best symmet-

ric trigger strategy equilibrium in the Cournot revision game. π − πN ≥
0.9925(π∗ − πN).

The proof is relegated to Appendix A.5.

5.4 Other applications

Beyond the applications that we provided thus far, there are other places to

which our framework can be applied: we can apply our setting to the analysis

of bargaining game, chicken game, coordination game, and so forth.3
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A Appendix

A.1 Calculation in the proof of Theorem 1

By the first order condition ((A3)), (bπ(x) − πN )0 = ∂π1(BR(x),x)
∂x2

, and at

x = xN , this is equal to
∂π1(x

N ,xN )
∂x2

. On the other hand, the denominator is

d
00
(x) =

µ
∂π1(BR(x), x)

∂x2
− ∂π1(x, x)

∂x1
− ∂π1(x, x)

∂x2

¶0
=

∂2π1(BR(x), x)

∂x1∂x2
BR0(x) +

∂2π1(BR(x), x)

∂2x2

−∂
2π1(x, x)

∂2x1
− 2∂

2π1(x, x)

∂x1∂x2
− ∂2π1(x, x)

∂2x2
.

We evaluate this expression at xN , by noting (i)
∂2π1(BR(x

N ),xN )

∂2x2
=

∂2π1(x
N ,xN )

∂2x2

and (ii) the implicit function theorem BR0 = − ∂2π1
∂x1∂x2

/∂
2π1

∂2x1
;

d
00
(xN) = −∂

2π1(x
N , xN)

∂2x1
+

∂2π1(x
N , xN)

∂x1∂x2
(BR0(xN )− 2)

=

³
−∂2π1(x

N ,xN )

∂2x1
− ∂2π1(x

N ,xN )
∂x1∂x2

´2
−∂2π1(xN ,xN )

∂2x1

.

A.2 Proof of Corollary 2

Proof. The expected payoff can be written as:Z 1
(b−1)λ

0

π(x(t))λe−λtdt+ π∗e−λ·
1

(b−1)λ .

The ratio of the second term to the fully collusive payoff π∗ is:

e
−λ· 1

(b−1)λ=

µ
1

e

¶ 1
b−1
.

Note that this approximates zero as b→ 1 while it approximates 1 as b→∞.
Hence, when b is sufficiently large, the collusive payoff can be approximated.
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A.3 Proof of Proposition 5

Proof. First, we calculate the static Nash equilibrium. This can be obtained

by taking derivative of πi with respect to qi, setting it equal to zero, and

then substituting qj = qi, by symmetry:

∂ [(a− b(qi + qj)− c) qi]
∂qi

= a− b(2qi + qj)− c = 0.

Substituting qj = qi, we have

qi = qj =
a− c
3b

.

Next, consider the collusive optimal strategy. The total profit, Q, is

maximized at Q∗ such that:

∂ [(a− bQ∗ − c)Q∗]
∂Q

= a− 2bQ∗ − c = 0.

Substituting qi = qj = Q
∗/2, we have:

qi = qj =
a− c
4b

Note that this amount is less than that of the equilibrium quantity: The

ratio is 3/4 (we will make use of this ratio later).

Now, consider the symmetric grim-trigger strategy q(t) that depends

only on time. In particular, it doesn’t depend on the history. We suppose

that once a player observes a deviation by the opponent or by himself, then

he sticks to the static Nash equilibrium. Supposing that the opponent follows

this strategy, the expected payoff from cooperation at period −t is:

Ci(t) = (a− 2bq(t)− c) q(t)e−λt +
Z t

0

(a− 2bq(τ)− c) q(τ)λe−λτdτ .

On the other hand, the expected payoff from deviation is maximized by

deviating to the best response to the current quantity of the opponent,

which is a−c
2b
− q(t)

2
by the first order condition. The expected payoff from

deviation is then:

Di(t) =

µ
a− b

µ
a− c
2b

+
q(t)

2

¶
− c
¶µ

a− c
2b
− q(t)

2

¶
e−λt +

µ
a− 2ba− c

3b
− c
¶
a− c
3b

(1− e−λt)

= b

µ
a− c
2b
− q(t)

2

¶2
e−λt + b

µ
a− c
3b

¶2
(1− e−λt).
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Note that Ci(0) = Di(0) if q(0) =
a−c
3b
, which is the equilibrium quantity

in the static Cournot game. Now, the sufficient condition for the cooperation

to be sustained is C 0i(t) ≥ D0i(t) for all t. Taking derivatives, we have:

C 0i(t) = −λ (a− 2bq(t)− c) q(t)e−λt+
¡
(a− c)q0(t)− 4bq(t)q0(t)¢ e−λt+(a− 2bq(t)− c) q(t)λe−λt,

and

D0i(t) = −λb
µ
a− c
2b
− q(t)

2

¶2
e−λt − b

µ
a− c
2b
− q(t)

2

¶
q0(t)e−λt + λb

µ
a− c
3b

¶2
e−λt.

Hence,

C 0i(t) ≥ D0i(t)
⇐⇒ −λ (a− 2bq(t)− c) q(t)e−λt + ¡(a− c)q0(t)− 4bq(t)q0(t)¢ e−λt + (a− 2bq(t)− c) q(t)λe−λt
≥ −λb

µ
a− c
2b
− q(t)

2

¶2
e−λt − b

µ
a− c
2b
− q(t)

2

¶
q0(t)e−λt + λb

µ
a− c
3b

¶2
e−λt

⇐⇒ (a− c)q0(t)− 4bq(t)q0(t)

≥ −λb
µ
a− c
2b
− q(t)

2

¶2
− b

µ
a− c
2b
− q(t)

2

¶
q0(t) + λb

µ
a− c
3b

¶2
⇐⇒

µ
3(a− c)
2

− 9
2
bq(t)

¶
q0(t) ≥ −λb

µ
a− c
2b

+
q(t)

2

¶2
+ λb

µ
a− c
3b

¶2
⇐⇒

µ
3(a− c)
2

− 9
2
bq(t)

¶
q0(t) ≥ λb

Ãµ
a− c
3b

¶2
−
µ
a− c
2b

+
q(t)

2

¶2!

⇐⇒
µ
q(t)− (a− c)

3b

¶
q0(t) ≤ λ

9

µ
q(t) + 5

a− c
3b

¶µ
q(t) +

a− c
3b

¶
⇐⇒ ∂r(t)

∂t
≤ λ

9

(r(t) + 5) (r(t) + 1)

r(t)− 1 ,

where we let r(t) = 3b
a−cq(t). Note that r(t) is the ratio of the quantity to

the static equilibrium quantity.

With the initial condition r(0) = 3b
a−cq(0) =

3b
a−c · a−c3b = 1, we have:

1

2
(3 ln(r(t) + 5)− ln(r(t) + 1)) = λ

9
t+ ln(2) +

3

2
ln(3),

which implies:

(r(t) + 5)3

r(t) + 1
= e

2
9
λt+2 ln(2)+3 ln(3) = 108e

2
9
λt. (6)
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The right hand side of the equation (6) is increasing in t. The derivative

of the left hand side with respect to r is
2(r+5)2(r−1)

(r+1)2
, which is nonpositive

if and only if r is smaller than 1. Hence it must be the case either that r

is monotonically decreasing, or that r is monotonically increasing. We are

interested in the case where r is decreasing with respect to t. Now, to solve

for the optimal path, substitute r with the ratio of collusive quantity to the

equilibrium quantity: ¡
3
4
+ 5
¢3

3
4
+ 1

= 108e
2
9
λt,

which is equivalent to:

t =
9

2λ
ln

µ
12167

12096

¶
:= t̂.

A.4 Proof of Proposition 6

Proof. We will solve for the value of:R t̂
0
(a− c− 2bq(t))q(t)λe−λtdt+ e−λt̂π∗

π∗
:= R. (7)

Recall that: a−Q(t) is the inverse demand function; Q(t) is the sum of out-
puts; q(t) is the individual output (hence Q(t) = 2q(t)); c is the (constant)

marginal cost; λ is the arrival rate of the Poisson process; −t̂ is the date
when players start departing from the fully collusive actions; and π∗ is the
fully collusive profit.

From the proof of Proposition 5, it is immediate that

e−λt̂ =
µ
12167

12096

¶− 9
2

. (8)

Equation (7), (8), and π∗ = (a− c− 2bq(t̂))q(t̂) implies:

R =

Z t̂

0

(a− c− 2bq(t))
(a− c− 2bq(t̂))

q(t)

q(t̂)
λe−λtdt+

µ
12167

12096

¶−9
2

. (9)

Recalling that r(t) =
q(t)

q(t̂)
, we have:

R =
a− c

a− c− 2bq(t̂)

Z t̂

0

r(t)λe−λtdt− 2bq(t̂)

a− c− 2bq(t̂)

Z t̂

0

r(t)2λe−λtdt+
µ
12167

12096

¶−9
2

.

(10)
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Note that q(t̂) = a−c
4b
. This implies:

R = 2

Z t̂

0

rλe−λtdt−
Z t̂

0

r2λe−λtdt+
µ
12167

12096

¶− 9
2

. (11)

(For notational simplicity suppress the dependence of r on t.) Now, in the

proof of Proposition 5, we have shown that

(r + 5)3

r + 1
= 108e

2
9
λt. (12)

Equation (12) implies:

e−λt =
µ
(r + 5)3

108(r + 1)

¶− 9
2

. (13)

Equation (12) also implies:

t =
9

2λ
(3 ln(r + 5)− ln(r + 1)− ln(108)) ,

which implies:
dt

dr
=
9

2λ

µ
3

r + 5
− 1

r + 1

¶
. (14)

Note that

r(0) = 1 and r(t̂) =
3

4
. (15)

Substituting Equations (13), (14), and (15) into Equation (11), we obtain:

R = 2

Z 3
4

1

rλ

µ
(r + 5)3

108(r + 1)

¶− 9
2 9

2λ

µ
3

r + 5
− 1

r + 1

¶
dr

−
Z 3

4

1

r2λ

µ
(r + 5)3

108(r + 1)

¶− 9
2 9

2λ

µ
3

r + 5
− 1

r + 1

¶
dr +

µ
12167

12096

¶−9
2

= 2

Z 3
4

1

r

µ
(r + 5)3

108(r + 1)

¶− 9
2 9

2

µ
3

r + 5
− 1

r + 1

¶
dr

−
Z 3

4

1

r2
µ
(r + 5)3

108(r + 1)

¶− 9
2 9

2

µ
3

r + 5
− 1

r + 1

¶
dr +

µ
12167

12096

¶−9
2

.

Note that each of the followings holds:Z µ
(r + 5)3

r + 1

¶− 9
2 r

r + 5
dr =
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(1+r)6


(5+r)3

1+r
(−161936615+453422522r+110940424r2+19300442r3+2401420r4+209930r5+12292r6+434r7+7r8)

11473347600(5+r)15
,

Z µ
(r + 5)3

r + 1

¶− 9
2 r

r + 1
dr =

(1+r)3(−16767869+33535738r+9417508r2+1837666r3+252520r4+24106r5+1528r6+58r7+x8)
764889840(5+r)8r(

(5+r)3

1+x
)3/2

,

Z µ
(r + 5)3

r + 1

¶− 9
2 r2

r + 5
dr =

(1+r)6


(5+r)3

1+r
(9905395−27735106r+63394528r2+11028824r3+1372240r4+119960r5+7024r6+248r7+4r8)

2007835830(5+r)15
,

Z µ
(r + 5)3

r + 1

¶− 9
2 r2

r + 1
dr =

((1+r)3(2354377−4708754r+9417508r2+1837666r3+252520r4+24106r5+1528r6+58r7+r8)
267711444(5+r)8(

(5+r)3

1+r
)3/2

.

The above equations imply that we can calculate the value ofR explicitly.

Combining, the value of R can be shown to be equal to:

3673320192
√
3

Ã
151027921669891

√
161

96383073058941656687022180
− 5374729

√
3

409745772031115520

!

−7346640384
√
3

Ã
− 84420743476307

√
161

321276910196472188956740600
− 10499

97558517150265600
√
3

!

+
513781372230303744

√
21

21914624432020321 23
3
2

.

Numerically, this is approximately equal to 0.99917208940755.

A.5 Proof of Corollary 3

Proof. We consider the following value:

π − πN

π∗ − πN
:= R0,
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where π denotes the equilibrium expected profit and πN is a static Nash

equilibrium profit. Note that R0 is equal to:

R− πN

π∗

1− πN

π∗

Note that

π∗ = (a− c− 2ba− c
4b

)
a− c
4b

and πN = (a− c− 2ba− c
3b

)
a− c
3b

,

so

π∗ =
(a− c)2
8b

and πN =
(a− c)2
9b

.

Thus
πN

π∗
=
8

9
,

so that

R0 =
R− 8

9

1− 8
9

= 9R− 8.

This is equal to:
6482319963060440054094336

√
3
√
23
√
161−870886995513457331589631973√23+859657206625475724155289600√21
93705765473971055112382675

√
23

.

Numerically, this is approximately 0.99254880466798.
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