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1 Introduction

The origins of backward induction are murky. Zermelo (1913, 2001) analyzed

winning in chess, but his method of analysis was based on a different princi-

ple (Schwalbe and Walker 2001). Reasoning based on backward induction was

implicit in the Stackelberg’s (1934) construction of his alternative to Cournot

equilibrium. As a general procedure for solving two-person zero-sum games

of perfect information, backward induction appeared in the von Neumann and

Morgenstern’s founding book (1944: 117). It was used to prove a precursor of

Kuhn’s Theorem for chess and similar games. The von Neumann’s exceedingly

complex formulation was later clarified and elevated to the high theoretical sta-

tus by Kuhn’s work (1953, especially Corollary 1), Schelling’s (1960) ideas of

incredible threats and Selten’s (1965) introduction of subgame perfection. It

suffered drawbacks when the chain-store paradox, centipede and other games

questioned its universal appeal (Selten 1978; Rosenthal 1981). Its profile was fur-

ther lowered with new refinements. Perfect equilibrium (Selten 1975), sequential

equilibrium (Kreps and Wilson 1982) or procedures such as forward induction

(Kohlberg and Mertens 1986) offered solutions oftentimes better comforting our

intuition. The arguments against backward induction began to multiply and

sealed the doubts about its universal validity (Basu 1988, 1990; Bonanno 1988;

Binmore 1987, 1988; Reny 1986; Fudenberg, Kreps and Levine 1988; Bicchieri

1989; Pettit and Sugden 1989).

The present paper does not intend to redeem backward induction. Its goal is

to extend the procedure to as many games as possible and investigate its relation

to subgame perfection. In its standard formulation, backward induction applies

only to finite games of perfect information. There, every backward induction

equilibrium (BIE), i.e., a strategy profile that survives backward pruning, is

also a subgame perfect equilibrium (SPE), and all SPEs result from backward

pruning. Yet, game theorists consider it common knowledge that other games
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can be solved backwards as well, and they routinely apply the procedure to

such games. Backward reasoning is implicit in refining Stackelberg equilib-

rium from other Nash equilibria (NE). Schelling analyzed backward the NE in

the iterated Prisoner’s Dilemma as early as in 1950s (personal communication,

3/7/2008). Fine textbooks such as Fudenberg and Tirole (1991:72) and Myerson

(1991:192) make explicit claims (but without proofs!) that backward induction

can be applied to a wider class of games. Backward reasoning can be found

in many extensive-form models (parametrized families of extensive-form games)

employed by political economy. It is present in the popular argument that voters

must “vote sincerely” in the last stage of a majority voting game with a binary

agenda.

What results from this alleged abuse? Fudenberg and Tirole (1991: 94)

declare “This is the logic of subgame perfection: Replace any “proper subgame”

of the tree with one of its Nash-equilibrium payoffs, and perform backward

induction on the reduced tree.” With caveats, their prescription captures the

essence of the algorithm that is presented below. However, if one wanted to

find a formal justification of this algorithm in the literature, one couldn’t. Such

a justification is necessary since, in fact, the definitions of SPE and strategies

that survive backward induction are based on different principles and defined

differently.

Let’s examine this petite difference. SPE is a strategy profile that is NE in all

subgames. Its intuitive justification focuses on subgames, i.e., parts of a larger

game that constitute smaller games. It demands that the players’ interaction

structure is “rational” in all subgames, i.e., that they result in a NE. In backward

induction, a different set of games is considered. The procedure starts at the

end of a game and moves backward according to an imagined timeline. Similarly

to SPE, the first game (or a set of games) are subgames but at some point a

new game appears that is not a subgame of the original game and that has no

counterpart in the definition of a SPE. Such a game (and possibly other games
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that follow) is created by substituting a subgame (or subgames) with a NE

payoff vector in those subgames.

To make the distinction between SPE and BIE crystal-clear, let’s consider a

simple game in Figure 1. SPE requires that Bob and Alice play NE strategies

in both the original game G and its subgame H. BIE requires that the players

play NE strategies in G’s subgame H and also the “upgame” J. The upgame is

not a subgame of G: it was created by pruning H and assigning the NE payoff

to the root of H.

Backward induction seems as such an intuitive procedure for finding SPEs

that one can easily ignore the subtle difference in definitions, especially when one

begins to struggle with the painful chore of defining BIE formally. Nevertheless,

one cannot say a priori that the sets of strategy profiles defined in both cases

are identical. In fact, and quite surprisingly, BIE and SPE may differ for mixed

strategies in a game of imperfect recall.

Despite the lack of firm foundation, it seems that backward induction ac-

quired in the discipline the status of a “folk algorithm.” Game theorists use it

but nobody examined its validity. It clearly works — in the sense of producing

SPEs — but we do not know exactly for what games it works and what exactly it
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produces. The formal link between the folk algorithm and subgame perfection

is missing.

I investigate the “folk puzzle of backward induction” axiomatically. The

axiomatic framework that I introduce below encompasses more games than those

of von Neumann and Morgenstern (1944) and Kuhn (1953). Namely, action sets

may have any cardinality and the length of a game may be infinite. Despite its

slightly higher complexity, the new framework allows for constructive analysis.

It turns out that, after suitable modification, backward induction indeed

applies to practically all interesting games and a large class of strategies. Nev-

ertheless, the Fudenberg-Tirole’s prescription has to be modified in a number of

subtle ways. First, backward pruning can be applied not only to pure strategies

but also to a large class of behavioral and mixed strategies. Second, as it was

already mentioned, there are games for which backward induction brings differ-

ent solutions than subgame perfection. This may happen for mixed strategies

in a game of imperfect recall. Third, we must replace every subgame with a

SPE and not NE payoff vector. (Obviously, when a subgame has no other sub-

games than itself, SPE and NE coincide.) Finally, we can replace entire subsets

of subgames simultaneously, not only single subgames. Such simultaneous re-

placement is essential for solving games that are not finite. Remarkably, and in

agreement with the case of finite games of perfect information, the conclusion

is that for pure strategies and a large class of behavioral strategies the sets of

BIE and SPE coincide for all games. This is the main result. It legitimizes

informal methods of backward pruning of a game and concatenating resulting

partial strategy profiles used by game theorists to solve games .

The generalized algorithm uses the agenda (the tree consisting of the roots

of all subgames) instead of the game tree. For games of perfect information, the

agenda coincides to the game tree with terminal nodes subtracted. A step in

such an algorithm can be informally compared to the classic backward induction

as follows:
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(1) Prune any subset of disjoint subgames instead of a single decision node

whose all followers are terminal nodes;

(2) Substitute all selected subgames with the SPE payoffs instead of the

payoffs for best moves;

(3) Concatenate all partial strategy profiles obtained in the previous step; if

at any point you will get an empty set, there is no SPE in the game.

The procedure can be applied to pure strategies in all games, to a large

family of behavioral strategies in all games, or a large family of mixed strategies

in games of perfect recall. Finding all SPEs requires following certain rules

of concatenating and discarding partial strategy profiles that are described in

Section 5.

The next section introduces axiomatically sequential games with potentially

large sets of actions and infinite numbers of moves. While a more accurate name

would be “potentially infinite” games, I call such games “infinite” for simplicity

of terminology. Then, basic facts linking payoffs to strategies in infinite games

are established. Section 3 investigates the decomposition of games into sub-

games and upgames for pure and behavioral strategies with finite support and

crossing. Section 4 explains informally that while mixed strategies cannot be

decomposed in a similar fashion, backward induction can be modified to incor-

porate them as well. Section 5 includes the main result that is a corollary of

the results from Section 3. The generalized backward induction is described

formally and certain applications are discussed. Section 6 concludes with open

questions and speculates on further lines of research.

2 Preliminaries

Sequential (extensive form) games were introduced with a set-theoretic axioma-

tization by von Neumann and Morgenstern (1944: 73-76). They were conceived

and presented in the spirit of early 20th century rigorous decoupling of syntax
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and semantics, as embodied in the works of Hilbert, Tarski and later the Bour-

baki team. In order to prevent a reader from forming any geometric or other

intuition, von Neumann announced proudly that “We have even avoided giving

names to the mathematical concepts [...] in order to establish no correlation

with any meaning which the verbal associations of names may suggest” (1944:

74). Then, he dismissed his own idea of a game tree since “even relatively simple

games lead to complicated and confusing diagrams, and so the usual advantages

of graphical representation do not obtain.” (1944: 77) Despite von Neumann’s

efforts to turn a sequential game into a highly abstract and incomprehensible

for a non-mathematician object, Kuhn’s (1953) formulation made games easier

on our intuition. He simplified von Neumann’s formalism and built the axioms

into definitions and assumptions about the tree, players and information. Kuhn

also generalized the von Neumann’s unnecessarily narrow definition.

The axiomatic setup of this paper goes beyond finite games in an attempt

to cover axiomatically most, if not all, games of interest to the discipline. Such

games are called for simplicity of terminology infinite games. The framework

attempts to maintain the compatibility with the pragmatic Kuhn’s exposition,

and also draws from fine modern presentations of Myerson (1991) and Selten

(1975). The axioms are divided into two subsets. The axioms for an infinite tree

are listed explicitly; the game axioms are combined with the description of game

components and specify how various objects are attached to the tree. In order

to establish some intuitive associations, the axioms received in parentheses their

names that succinctly describe their content.

The opening paragraphs include a laborious re-establishment of basic and

intuitive notions and results.

Rooted tree: Let (T,Υ, τ) be such that T a set of at least two points, Υ is a

binary relation over T , and τ ∈ T. For y ∈ T, y 6= τ , a path to y of length k is

any finite set ey = {xi}ki=1 ⊂ T such that x1 = τ , xk = y and for all i = 1, ...k−1
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(xi, xi+1) ∈ Υ. For y = τ ,the path to τ is {τ}.
Υ is called a rooted tree Υ with its root τ and the set of nodes T if the

following axioms AT1-AT4 are satisfied:

AT1 (domain) For every x ∈ T, there is y ∈ T such that (x, y) ∈ Υ;
AT2 (partial anti-reflexivity): For every x ∈ T, (x, x) ∈ Υ iff x = τ ;

AT3 (symmetry): For all x, y ∈ T (x, y) ∈ Υ iff (y, x) ∈ Υ;
AT4 (unique path): For every x ∈ T , there is exactly one path ex to x.

AT1-AT3 play a technical role in conceptualizing the tree and allow to re-

construct from Υ the root and the set of nodes. AT4 introduces the defining

property of a tree.

The following definitions and related notation are used hereafter (the defin-

itions are slightly redundant in order to maintain the compatibility with other

formalisms):

1. Binary relations between two different nodes x, y:

predecessor: y ∈ PR(x) precedes x or is in the path to x iff ey ⊂ ex;

successor: y ∈ SU(x) follows x iff ex ⊂ ey;

immediate predecessor: y = IP (x) immediately precedes x iff ex − ey = {x}
(by AT1-4 that for every x 6= τ there is exactly one immediate predecessor);

immediate successor: y ∈ IS(x) immediately follows x iff ey − ex = {y};
immediate predecessor in Ti ⊂ T : For x, y ∈ Ti, y immediately precedes x in

Ti iff y precedes x and (ex− ey)∩Ti = {x}; we write y = IPi(x) (by AT1-4, for

every x 6= τ there is at most one immediate predecessor);

2. Single nodes and subsets of nodes:

endnode: a node that is not followed by any other node;

the set of all endnodes: TE ;

decision node: a node that is not an endnode;

the set of all decision nodes: TD = T − TE ;
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branch: any node except for the root τ ;1

alternative (originating) at a node x: any immediate successor of x;

terminal path: a path to an endnode or an infinite path;

3. Set of subsets of nodes:

Tt : the set of all terminal paths.

Game: An n-player sequential game is a septupleG =< Υ, N0, {Ti}i∈N0 , I, A, h, P >

that includes a rooted game tree Υ and the following objects: players with their

assigned decision nodes and probability distributions for random moves, the

pattern of information, the identification of moves and the probability distrib-

utions over random (or pseudorandom) moves, and the payoff functions. The

conditions imposed on the components of G and certain useful derived concepts

are defined below.

1. Game tree: Υ is a rooted tree with the set of nodes T , set of decision

nodes TD, set of endnodes TE , and the root τ ;

2. Players: For a positive integer n, N0 = {0, 1, ..., n} consists of players
N = {1, ..., n} and a random or pseudorandom mechanism labeled with 0;

3. Player partition: {Ti}i∈N0 is a partition of TD into (possibly empty)

subsets Ti and a (possibly empty) subset T0 for the random mechanism. The

following assumptions are made about T0:

(i) no path includes an infinite number of nodes from T0;

(ii) for every x ∈ T0, the number of alternatives at x is finite and equal at

least two.

4. Information: I = ∪ni=0Ii is such that every Ii = {Iki }k∈Ki
is a refinement

of i’s set Ti. We assume that:

(i) all elements of I0 are singletons;

1 In a standard definition, a branch is any element (x, y) ∈ Υ. For simplicity of forthcoming

notation, it is identified here with the node in the pair that is farther from the root.
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(ii) for all i ∈ N , every element of Ii includes only nodes with equal numbers

of alternatives and does not include two nodes that are in the same path.

For every i ∈ N0, a set Iki ∈ Ii is called i’s information set. An alternative

y originates at an information set Iki if y originates at a node x ∈ Iki .

5. Moves (actions): A = {Ak
i }i∈N,k∈Ki

is a collection of partitions, one

for every information set Iki of every player i, of all alternatives originating

at Iki such that for any node x ∈ Iki , every member of A
k
i includes exactly

one alternative that originates at x. Elements a ∈ Ak
i are called the moves ( or

actions) of i at Iki . For any I
k
0 , the moves at I

k
0 are singletons including branches

originating at Ik0 . Since by definition every branch y belongs to precisely one

move, for y ∈ T − {τ} the move a s.t. y ∈ a is denoted by Ak
i (y);

6. Random moves: h is a function that assigns to every information set

of the random mechanism Ik0 = {x} a probability distribution {hkθ} over the
alternatives at x with all probabilities being positive . If T0 = ∅, h is not

defined;

7. Payoffs (associated with terminal paths): The payoff function P =

(P1, ..., Pn) : N × Tt → R assigns to every terminal path e ∈ Tt a payoff vector

at e equal to P (e) = (P1(e), ..., Pn(e)). The component Pi(e) is called the payoff

of player i at e. Function Pi is called the payoff function of player i.

The most extensively studied subset of games defined above are finite games.

Finite game: G is finite if the set of its nodes T is finite.

Subgame: For any game G =< Υ, N0, {Ti}i∈N0 , I, A, h, P >, a subgame of

G is any game G0 =< Υ0,N0, {T 0i}i∈N0 , I 0, A0, h0, P 0 > such that

(i) Υ0 is a subtree of Υ, i.e., for some τ 0 ∈ T , T 0 = T ∩ {x ∈ T : x = τ 0 or

x ∈ SU(τ 0)} and Υ0 = (Υ ∩ [T 0 × T 0]) ∪ {(τ 0, τ 0)};
(ii) if x1, x2 ∈ Iki for some I

k
i inG, then either {x1, x2} ⊂ T 0 or {x1, x2}∩T 0 =

∅;

(iii)N 0 = N and {T 0i}i∈N0 , I 0, A0, h0, P 0 are restrictions of {Ti}i∈N0 , I, A, h, P

to T 0, respectively.
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The demonstration that restrictions in (iii) define a game is straightforward.

It is also clear that the relation of “being a subgame” is transitive.

Infinite games include a vast majority of interesting sequential games ana-

lyzed in the literature. The assumed constraints demand that the numbers of

players, random information sets at every path, and random moves at every

random information set are finite. Both infinite paths and infinite numbers of

moves at players’ information sets are allowed.

A player i may be a dummy in a game, i.e., Ti may be empty. Such definition

allows to treat subgames as games. Since |T | ≥ 2, the root of Υ is a decision
node and there must be at least one player or random mechanism in the game.

Without loss of generality, one can safely assume that there are no dummies in

the initial game G for which all results are formulated.

The concepts that follow are derived from the model’s primitives. Strategies

are defined in order to optimize the introduction of fundamental for this paper

ideas of strategy concatenation and decomposition. The adjective “behavioral”

is optional since behavioral strategies are our departure point for defining other

types of strategies.

Behavioral actions: A behavioral action of finite support (in short, a behav-

ioral action) αki of player i at his information set I
k
i is a discrete probability

distribution over Ak
i .

Strategies (rough behavioral): A rough behavioral strategy βi of player i is any

(possibly empty) set of i0s behavioral actions that includes exactly one action
per information set of i. A partial rough behavioral strategy ωi is any subset of

a rough strategy. A partial rough strategy that includes exactly those actions

in βi that are defined for information sets of i in a subgame H of G, is denoted

as βHi and is called βi reduced to H.

For any rough strategy βi, let’s denote the probability assigned by βi at

Iki to a move ai by βi(I
k
i )(ai). A path e is called relevant for βi if βi chooses

every alternative in e that originates at some information set of i with a positive
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probability, i.e., if for every node y ∈ e such that y ∈ IS(x) for some x ∈ Ti,

βi(I
k
i )(A

k
i (y)) > 0. Finally, a path e crosses Iki if e ∩ Iki 6= ∅.

Finite crossing in subgames: For every i ∈ N , every subgame H of G, a

rough strategy βi, and every path eH in H that is relevant for βi reduced to

H, βHi , e
H crosses only a finite number of information sets from Ii such that

βi(I
k
i ) is non-degenerate.

Behavioral strategy: For any i ∈ N , a behavioral strategy of i, or simply

a strategy of i, is any rough strategy of i that it satisfies finite crossing in

subgames.

Comment: Finite support and finite crossing guarantee that, in all sub-

games, the payoffs (as they will be defined later) for behavioral strategies can

be derived from a discrete probability distribution with finite support. The

class of strategies that satisfy these conditions is pretty large since it includes

all behavioral strategies in a finite game and all pure strategies in any game.

Relaxing these conditions would introduce complications of measure-theoretic

nature along lines examined by Aumann (1953). Certainly, a more general

treatment of behavioral strategies would simply consider all rough strategies

but whether the results would survive is at this moment unknown.

All behavioral strategies of i form i’s behavioral strategy space Bi. Elements

of B = ×n
i=1Bi, behavioral strategy profiles, are denoted by β.

I use a set-theoretic interpretation of strategies that will greatly simplify the

definitions of strategy decomposition and concatenation, as well as the treatment

of partial strategy profiles. There is a simple isomorphism between strategies

or strategy profiles defined in a set theoretic and standard way. Thus, every

strategy profile β is interpreted as a union of players’ strategies (which are

obviously disjoint); the Cartesian product ×n
i=1Bi is interpreted as taking all

possible unions of individual strategies, one per player; the notation for a strat-

egy profile (βi)
n
i=1 represents an alternative notation for ∪ni=1βi. An example

of notational difficulty that is avoided is the interpretation of ×n
i=1Bi when at
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least one strategy set is empty. Another example is provided by the definition

that comes next.

A strategy profile β with the strategy of player i removed, i.e., β−βi, is
denoted by β−i ∈ ×N−{i}Bi; (β−i, γi) denotes β with βi substituted with γi,

i.e., β−βi ∪ γi.
When such a distinction is necessary, the payoff functions, strategies, strat-

egy profiles, etc. in games or subgames G and H will be given identifying

superscripts PG, PH , etc.

The most important step towards building the framework for infinite games

is expressing payoffs in terms of strategies.

Recall that the probability assigned by βi at I
k
i to a move ai was denoted

by βi(I
k
i )(ai). For any x, y ∈ T , such that x ∈ IS(y), y ∈ Iki , and x ∈ ai, the

probability of the move to x is defined as pmβ (x) = βi(I
k
i )(ai). By convention,

pmβ (τ) = 1 for all β. A path e is included in β if pmβ (x) > 0 for all x ∈ e and is

denoted e ⊂ β. The set of all terminal paths included in β is denoted by Tβ .

The probability of playing e under β, pβ(e), is defined as:

pβ(e) =
Q

x∈e p
m
β (x)

Thus, pβ(e) is the product of the probabilities assigned by β to all alter-

natives in e.2 . The probability of reaching a node y, pβ(y) is defined as the

probability of playing ey under β:

pβ(y) = pβ(ey) =
Q

x∈ey p
m
β (x).

The assumptions of finite support and finite crossing are used below to es-

tablish the fundamental fact that pβ defines a probability distribution over a

finite subset of all terminal paths:

2By definition of the game and behavioral strategy, for a path of infinite length, only a

finite number of alternatives may be assigned probabilities different than zero or one. The

multiplication over an infinite series of numbers is assumed to be commutative and associative,

with an infinite product that has at least one zero equal to zero and an infinite product of

ones equal to one.
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Lemma 1 For every game G, every subgame H of G, and behavioral strategy

profile β:

(a) The set of all terminal paths in H included in βH , TβH , is nonempty

and finite;

(b) For every eH ∈ TH
t , p

H
β (e

H) > 0 iff eH ∈ TβH ;

(c) Σe∈TβH pβH (e) = 1.

Proof. Lemma 1 will be proved for game G. The assumptions of finite

support and crossing apply to subgames as well as they apply to G, which

allows to repeat all steps for every subgame of G.

Ad. (a): The construction of a terminal path e ∈ Tβ is by induction. Both

when τ ∈ T0 and when τ ∈ Ti for i = 1, ..., n, there is a node v ∈ SU(τ) such

that pmβ (v) > 0. Let’s choose v as the second (after τ) node of the path.

Let’s assume now that a path e of length l reached a node x. If x ∈ TE ,

e is the desired path. If x ∈ TD, let Iki be such that x ∈ Iki . Both when

Iki ⊂ T0 and when Iki ⊂ Ti for i = 1, ..., n, there is a node y ∈ SU(x) such

that pmβ (y) > 0. Path ey ⊂ β and its length is l + 1. The construction either

ends at some endnode or proceeds indefinitely, producing some infinite path. In

both cases, the resulting path e is terminal. By the definition of the game and

the assumption of finite crossing, only a finite number of factors in the productQ
z∈e p

m
β (z) is in the interval (0, 1); by construction, the remaining factors are

equal to 1. Thus, pβ(e) > 0 and e ∈ Tβ .

The finiteness of Tβ is established by induction over the number of non-

degenerate information sets that are crossed by a path. By definitions of game

and behavioral strategy, such a number is finite for every path and every prob-

ability distribution at such a set is finite.

Let’s assume that Tβ is infinite. An infinite path will be constructed such

that it crosses an infinite number of information sets with non-degenerate prob-

ability distributions. If such a distribution at the information set {τ} is non-
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degenerate, the construction starts with τ . Otherwise, let y be the first SU(τ)

such that for Iki , y ∈ Iki , either i = 0 or β(I
k
i )(y) is non-degenerate. Thus, for

at least one x ∈ T , such that x ∈ SU(y) and such that px = pmx > 0, there

is an infinite number of paths in Tβ that include x . Let’s assume now that

a path ez ⊂ Tβ that crosses l non-degenerate information sets was found such

that |{e ⊂ Tβ s.t. z ∈ e}| = ∞. Either the probability distribution at z is
non-degenerate, in which case let w = z, or we can find w, the first SU(z) with

such a property. We can choose v ∈ SU(w) such that pv > 0, |{e ⊂ Tβ s.t.

v ∈ e}| =∞ and pβ(v) = pβ(ev) > 0. The path ev crosses l + 1 non-degenerate

information sets. The path ∪ev crosses an infinite number of non-degenerate
information sets, which is a contradiction.

Ad. (b): If e /∈ Tβ, then by definition of Tβ , for some x ∈ e pβ(x) = 0, which

implies pβ(e) = 0.

If e ∈ Tβ , then, by definition of game and behavioral strategy, only for a

finite number x ∈ e it may happen that 0 < pβ(x) < 1; for all other y ∈ e,

pβ(y) = 1. This implies pβ(e) > 0.

Ad. (c) (outline): Since by (a) Tβ is finite and non-empty, the argument

goes by induction over the sum of probabilities assigned to all paths of the same

length.

Lemma 1 allows to define payoffs for behavioral strategies.

Payoffs (for behavioral strategy profiles): For every behavioral strategy pro-

file β ∈ B, Pi(β) = Σe∈TβPi(e)× pβ(e) for i = 1, ..., n.

Since no confusion is anticipated, in the spirit of conserving letters, the

original letter P that denotes payoffs assigned to terminal paths is recycled

here.

Finally, pure strategies are defined as a special case of behavioral strategies.

Pure strategies: βi such that βi(I
k
i ) is always degenerate is called a pure

strategy and denoted by πi. For pure strategies, letter π is used in place of β

and Π in place of B.
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Decomposition of strategies: The definitions offered below introduce certain

partial strategies or strategy profiles G and β:

βH is β reduced to H if βH = ∪ni=1βHi ;
β−Hi is a complement of βi with respect to H if β−Hi = βi − βHi ;

β−H = ∪ni=1β−Hi is a complement of β with respect to H;

B−Hi is the set of all β−Hi for all βi ∈ Bi;

B−H = ×n
i=1B

−H
i .

Let δHi : Bi → BH
i × B−Hi denote the decomposition function for player i

that assigns to βi its reduced strategy β
H
i and its complement β−Hi . The de-

composition function δH : B → BH ×B−H is defined as (δHi )ni=1. The following

simple but useful result holds for every game G and its subgame H:

Lemma 2 (a) for every i, δHi is 1-1 and onto;

(b) δH is 1-1 and onto.

Proof. Ad (a) (outline): The proof follows directly from the following

premises: (i) every βi can be uniquely partitioned into two partial strategies

defined for H and all information sets in G but not in H, with two different

strategies producing different partitions; (ii) every pair of partial strategies may

result from such a partition; (iii) the union of such partial strategies produces

the initial strategy βi.

Ad (b): it is a simple consequence of (a).

Lemma 2 allows to define the function of concatenation of strategies that is

an inverse of decomposition: For every subgameH ofG, and every pair of partial

strategy profiles βH ∈ BH and β−H ∈ B−H , σH(βH ,β−H) = βH ∪ β−H =

δH(β). Moreover, σH = (σHi )
n
i=1, where every σHi is an inverse of a respective

δHi . It is clear that both σH and all its all components σHi are 1-1 and onto.

The final two definitions of this section introduce two familiar equilibrium

concepts due to Nash (1951) and Selten (1965). For any game G and a strategy

profile β ∈ B, the equilibrium conditions for β are stated as follows:
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Nash equilibrium (NE): For every i ∈ N , βi ∈ ArgMaxti∈BiPi(β−i, ti);

Subgame perfect equilibrium (SPE): For every subgame H of G, βH is a NE

in H.

Analogous definitions hold when all considered strategies are pure.

3 Decomposition of pure and behavioral strate-

gies

Throughout this section, G is any game, H any subgame of G, τ the root of G,

and φ the root of H.

The letters si, s, Si, S, etc. are used to denote strategies, strategy profiles,

strategy spaces, joint strategy spaces, etc. that are simultaneously either pure or

behavioral, in order to simultaneously process both cases. Lemma 2 guarantees

that the operations δ and σ are well-defined and bring unique outcomes within

the same family of strategies. Moreover, the definition of finite support of every

strategy guarantees that the outcomes of δ and σ have finite support.

Note that, with a few additional definitions, all results of this paper can

be strengthened to any type of strategies that are closed under concatenation

and decomposition. Pure and behavioral strategies clearly have this property.

Further potentially interesting strategies could include stationary strategies.

Profiles s or sG denote any strategy profiles in G and sH , s−H (or sG−H)

their decomposition with respect to H.

The sets Ts(G−H) and Ts(H) denote all terminal paths from Ts that do not

include the root of H, φ, or include φ, respectively:

Ts(G−H) = {e ∈ Ts s. t. φ /∈ e};
Ts(H) = {e ∈ Ts s. t. φ ∈ e}.
Lemma 3 says that the payoff in any game G from any profile s is the sum

of the payoffs from all terminal paths that do not include φ and the payoff of s
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reduced to H multiplied by the probability of reaching φ.

Lemma 3 PG(s) = psG(φ)P
H(sH) +Σe∈Ts(G−H)

psG(e)P
G(e).

Proof. A terminal path in s either includes φ or does not include it. By

Lemma 1, the total number of paths in s is finite, hence PG(s) can be represented

as the sum of payoffs

PG(s) = Σe∈Ts(H)
psG(e)P

G(e) +Σe∈Ts(G−H)
psG(e)P

G(e) (1)

We need to show that the first term in equation 1 is equal to the first term

in the right-hand side of the equation in the lemma. If psG(φ) = 0, then we

have from the definition of psG(e) :

psG(e) = 0 for all e ∈ Ts(H)

Since the summation is over a finite set, this means that

Σe∈Ts(H)
psG(e)P

G(e) = 0 = psG(φ)P
H(sH) = 0.

Let’s assume now that psG(φ) > 0.

First, notice that

(i) every terminal path e ∈ Ts(H) defines a terminal path of sH in H, and

that all terminal paths of sH in H can be obtained this way.

Moreover, for every e ∈ Ts(H) and the corresponding eH ∈ TH
sH , we have:

(ii) PG(e) = PH(eH) and

(iii) psG(e) =
Q

y∈e p
m
s (y) =

Q
y∈eH pms (y)

Q
y∈e,y/∈eH pms (y) =

=
Q

y∈eH pmsH (y)× psG(φ) = psG(φ)× psH (e
H)

We can use (i)-(iii) to make suitable substitutions:

Σe∈Ts(H)
psG(e)P

G(e) = ΣeH∈TH
sH
psG(φ)× psH (e

H)× PH(eH) =

= psG(φ)P
H(sH).

Upgame: For any sequential game G =< Υ,N0, {Ti}i∈N0 , I,A, h, P >, a

game G0 =<,Υ0, N00, {T 0i}i∈N0 , I 0, A0, h0, P 0 > is an upgame of G (with respect

to a subgame H of G) if (a) Υ0 is a subtree of Υ such that φ, the root of H in

G, and all nodes that follow φ are substituted with a terminal node φ in G0 and
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a payoff vector PF (φ) that is of the same dimension as payoffs in G. (b) The

players are unchanged and {T 0i}i∈N0 , I 0, A0, h0, P 0 are restrictions of f, I, A, h, P

to Υ0, respectively (with φ excluded from restriction). The demonstration that

such restrictions define a game is straightforward. It is clear that, in a similar

fashion, we can substitute any set of disjoint subgames of G. Every game

resulting from such an operation will be called an upgame.

Prune: If F is an upgame of G such that for every root φ of a subgame H,

PF (φ) is a SPE payoff vector in H, F is called a prune of G. If H is a subgame

with no proper subgames, F is called a close prune.

An upgame is obtained when we substitute a subgame, or a set of subgames,

with an arbitrary payoff vector. It becomes a prune when the payoff vector

results from a SPE in the removed subgames. A close prune is when the removed

subgame is the smallest possible, i.e., it has no proper subgames. It is useful

to notice a few simple facts. While upgames exist for every game and its every

subgame, if a subgame has no SPE, then no prune exists for such a subgame

and no SPE exists for the game. Also, a game with a subgame with multiple

SPEs resulting in different payoff vectors has multiple prunes. Finally, for close

pruning, the condition of SPE in the definition of a prune is equivalent to NE.

By definition of an upgame F corresponding to a subgame H, any comple-

ment strategy s−H is also a strategy in F and vice versa.

Let F be any upgame of G, let H be the removed subgame with its root φ,

s any strategy profile in G, and let eφ denote the terminal path in F that ends

with φ.

Lemma 4 PG(s) = PF (s−H) + psG(φ)[P
H(sH)− PF (eφ)].

Proof. By Lemma 3, it is sufficient to show that

PF (s−H)− psG(φ)P
F (eφ) = Σe∈Ts(G−H)

psG(e)P
G(e) (2)

This follows from the fact that s−H is identical with s for all information
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sets outside of H, and that all terminal paths in F, except for eφ, have the same

probabilities and payoffs assigned as in G. For eφ, only the probabilities of

reaching φ are equal, i.e., psF (φ) = psG(φ). Thus, the left-hand side of equation

2 can be rewritten as follows:

Σe∈TF psF (e)P
F (e)−psG(φ)PF (eφ) = [Σe∈Ts(G−H)

psG(e)P
G(e)+psG(φ)P

F (eφ)]−
psG(φ)P

F (eφ) = Σe∈Ts(G−H)
psG(e)P

G(e)

The next result characterizes the critical aspect of pruning a game. Since

concatenation and reduction of strategies will be applied to subgames of sub-

games, we need additional notation:

sHJ is a strategy profile s reduced to a subgameH, and then further reduced

to J , a subgame of H;

sH−J is a complement of sJ in H.

A similar notation is applied to individual strategies and payoff profiles.

For any game G and any of its subgames H, and any behavioral strategy

profile sG in G, let F be the upgame of G obtained by substituting H with

PH(sH).

Theorem 1 (decomposition) For any game G, any subgame H, and any behav-

ioral strategy profile sG in G, let F be the upgame of G obtained by substituting

H with PH(sH). The following conditions are equivalent:

(a) sG is a SPE for G;

(b) sH is a SPE for H and s−H is a SPE for F .

Proof. If H = G, the proof is immediate. Thus, we can assume that H is

a proper subgame of G.

(a)→ (b): decomposing a SPE strategy profile must result in a pair of SPE

strategy profiles.

Since H is a subgame of G and sG is SPE in G, sH must be a SPE for H.

We need to prove that sF is a SPE for F . Let’s assume that this is not the case
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and that we can find J , a subgame of F , such that sJ is not a Nash equilibrium.

Two cases are possible:

Case 1: J does not include φ. In such a case, J is disjoint with H. Thus, J

is also a subgame of G and sJ is identical with sFJ . However, (a) implies that

sJ is a Nash equilibrium, which also must be the case for sFJ .

Case 2: J includes φ. Similarly to case 1, we can identify sJ with sFJ . Let’s

assume that there is a player i whose strategy tJi gives him a higher payoff than

Pi(s
J), i.e.,

P J
i (s

J
−i, t

J
i ) > PJ

i (s
J) (3)

We will construct K, a subgame of G, such that player i can change his

strategy in the SPE sG and receive a higher payoff. The subgame K is simply

J with the node φ developed into H.

Let K be defined as J with φ substituted with subgame H. By construction,

K is a subgame of G and sK is a Nash equilibrium in K. Let’s define a new

strategy tKi of player i in subgame K as (sK−J , tJi ) = σ(sK−J , tJi ). We will now

apply Lemma 4 to K, J , strategy profiles (sK−J , tJi ) and sK , and to player i:

PK
i (s

K−J , tJi ) = PK−J
i (sK−J) + psK (φ)[P

J
i (s

J
−i, t

J
i )− PK−J

i (eφ)] (4)

and

PK
i (s

K) = PK−J
i (sK−J) + psK (φ)[P

J
i (s

J)− PK−J
i (eφ)] (5)

where eφ is a path to φ in K. Subtracting the respective sides of equation 5

from equation 4, we have:

PK
i (s

K−J , tJi )− PK
i (s

K) =

= PK−J
i (sK−J)+psK (φ)[P J

i (s
J
−i, t

J
i )−PK−J

i (eφ)]−PK−J
i (sK−J)+psK (φ)[PJ

i (s
J)−

PK−J
i (eφ)] =
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= psK (φ)P
J
i (s

J
−i, t

J
i )− psK (φ)P

J
i (s

J) =

= psK (φ)[P
J
i (s

J
−i, t

J
i )− P J

i (s
J)] >

> 0.

This inequality means that s restricted to subgame K is not a Nash equilib-

rium and contradicts our assumption (a).

(b) → (a): every strategy profile resulting from the concatenation of SPE

strategy profiles is SPE.

Let sH be SPE in H, the subgame of G, sF be SPE in F , the prune of G

resulting from pruning H, and s be the concatenated strategy profile (sH ,sF ).

We need to show that s is SPE.

Let’s assume that this is not the case. Thus, we can find a subgame K of G

such that sK is not a Nash equilibrium. This implies that some player i could

improve his payoff in K against sK−i by playing some strategy t
K
i , i.e.,

PK
i (s

K
−i, t

K
i ) > PK

i (s
K) (6)

Three cases are possible.

Case 1: K is also a subgame of F that does not include φ. By subgame

perfection of F and contrary to 6, sK must be a Nash equilibrium.

Case 2: K is also a subgame of H. By subgame perfection of H and contrary

to 6, sK must be a Nash equilibrium.

Case 3: K includes the node φ and at least one more node from F . In such

a case, K must include all nodes that follow φ and H must be a subgame of K.

Let J be the upgame resulting from substituting H in K with PH(sH).

We will construct a pair of strategy profiles inH and in J that will contradict

our assumption that sH and sF are SPE.

Let (sH−i, t
H
i ), (s

J
−i, t

J
i ) = ρK(sK−i, t

K
i ), i.e., let these profiles be the result

of decomposition of profile (sK−i, t
K
i ) in K with respect to its subgame H. By

Lemma 4 applied to game K, its subgame H, profiles s and (sK−i, t
K
i ), and player
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i, and noting that we can substitute indices −H with J , we have:

PK
i (s) = PJ

i (s
J) + psK (φ)[P

H
i (s

H)− P J
i (eφ)]

PK
i (s

K
−i, t

K
i ) = P J

i (s
J
−i, t

J
i ) + psK (φ)[P

H
i (s

H
−i, t

H
i )− PJ

i (eφ)]

where eφ is the path to φ in K.

The assumption 6 implies that

PJ
i (s

J
−i, t

J
i ) + psK (φ)[P

H
i (s

H
−i, t

H
i ) − PJ

i (eφ)] > P J
i (s

J) + psK (φ)[P
H
i (s

H) −
P J
i (eφ)]

and, after simplification, that PJ
i (s

J
−i, t

J
i ) + psK (φ)P

H
i (s

H
−i, t

H
i ) > P J

i (s
J) +

psK (φ)P
H
i (s

H)

This inequality means that at least one of the following inequalities must

hold:

P J
i (s

J
−i, t

J
i ) > PJ

i (s
J) (7)

PH
i (s

H
−i, t

H
i ) > PH

i (s
H (8)

However, inequality 7 cannot hold due to the fact that sF is SPE, J is a

subgame of F,and sJ is a reduction of sF to J . The inequality 8 cannot hold

due to the fact that sH is SPE in H.

The Decomposition Theorem says that every SPE can be obtained by a con-

catenation of two SPE subgame-upgame profiles, and that every concatenation

of two SPE profiles produces a SPE. The next result extends this finding to a

simultaneous pruning of certain subsets of subgames.

Agenda: Consider the graph ΥA that includes the roots of all subgames of

G, has the same root as G, and whose branches are defined as follows: for all

φ, ψ ∈ TD, (φ,ψ) is a branch in ΥA if φ and ψ are roots of some subgames of G,

ψ follows φ in G, and there is no root of another subgame χ such that χ follows

φ and ψ follows χ. It is straightforward that such a graph is a game tree. By

an obvious association with voting models, it is called the agenda of Υ, and the
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set of all nodes in the agenda is denoted with TA.

Subgame level: For a subgame H of game G with a root φ, the level of H is

the total number of nodes that are in the path to φ in the agenda of G (including

both τ and φ). Alternatively, the level of H is the number of different subgames

(including G and H) of which H is a subgame. It is straightforward that the

level of any subgame is a positive integer.

Lemma 5 For any game G, any positive integer k, and any two different sub-

games H, J of G of level k, the sets of nodes of H and J are disjoint.

Proof. Let’s assume first that neither the root φ of H follows ψ, the root

of J , nor ψ follows φ. If there is a third node χ that belongs to both subgames,

then by definition of subgame both φ and ψ must be in the path to χ. Since

neither φ is in the path to ψ nor ψ in the path to φ, we could find at least two

different paths to χ: one through φ and one through ψ, what is inconsistent

with the definition of tree.

Let’s assume now that φ follows ψ or vice versa. But this would imply that

the path to φ in the subgame subtree is longer than to ψ (or vice versa), and

the subgames cannot be at the same level.

Now, the procedure used for obtaining an upgame can be applied to simul-

taneous pruning of different subgames of the same level.

Lemma 5 implies, after simple calculations, that we can substitute any set

of subgames of the same level with payoffs of the appropriate dimension, and

obtain an upgame of F . Let {Hθ}θ∈Θ be a set of subgames of the same level.
PHθ(sHθ) is the payoff from s in Hθ;

{Hθ}θ∈Θ-upgame of G is an upgame of G resulting from substituting sub-

games {Hθ}θ∈Θ with payoff vectors in G;

(s, {Hθ}θ∈Θ)-upgame of G is an upgame of G resulting from substituting

subgames {Hθ}θ∈Θ with respective payoffs from {PHθ(sHθ)}θ∈Θ.
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For any game G, any positive integer k, any subset of subgames {Hθ}θ∈Θ of
G of level k, and any profile s in G, let F be the (s,{Hθ}θ∈Θ)-upgame of G.

Theorem 2 (simultaneous decomposition) The following conditions are equiv-

alent:

(a) s is a SPE for G;

(b) sF is a SPE for F and for every Hθ ∈ {Hθ}θ∈Θ, sHθ is a SPE for Hθ.

Proof (outline). When {Hθ}θ∈Θ is finite, the proof in both directions
follows from the Decomposition Theorem by an inductive argument over the

number of removed subgames.

Let’s assume that {Hθ}θ∈Θ is infinite. By the assumption of a finite support
of involved strategies, this case can be reduced to the finite case as follows:

To complete the proof for (b)→ (a), it is sufficient to notice that, by Lemma

1, both s and any alternative profile (s−i, ti), include a finite number of ter-

minal paths. Thus, only a finite number of subgames from {Hθ}θ∈Θ have a
nonempty intersection with at least one terminal path that is included either

in s or (s−i, ti). Thus, if any change of strategy for a player i in a subgame J

of G could bring i a higher payoff, this could be done for pruning only a finite

number of subgames. The application of this observation allows to reduce the

infinite case to the case of a finite decomposition.

(a)→ (b) can be reduced to a finite case in a similar way as (b)→ (a).

4 Decomposition of mixed strategies (informal

discussion)

The present section contains an informal discussion of how the results for be-

havioral strategies can be applied to mixed strategies. A formal treatment of

the subject is complex enough to deserve a separate paper.
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While it is easy to show that a mixed strategy profile defines a unique pair

of mixed strategy profiles in a subgame and an upgame, different profiles may

produce identical pairs of partial profiles. In other words, the decomposition of

mixed profiles is not necessarily 1-1, as demonstrated by the following simple

example:

Alice

Bob

L                  R

a              b                 c               d

1, 1                0, 0     0, 0                 1, 1
Figure 2: Pure Coordination with perfect information

Bob has four pure strategies: ac, ad, bc, and bd. Every mixed strategy

can be represented as a vector of four numbers that represent a probability

distribution over ac, ad, bc, and bd, respectively (in fact, one could use just

three numbers but parsimony is not the objective in this example). Consider a

family of Bob’s mixed strategies that are parametrized by a number r ∈ [0, 12 ]:
µr = (r, (

1
2−r), ( 12−r), r). Different values of r define different mixed strategies.

Thus, we have a continuum of mixed strategies. It is easy to see that all those

strategies decompose into the same pair of partial strategies in subgames (12 ,
1
2),

i.e., such that in every information set, any of Bob’s two moves is played with

probability 1
2 . Assuming any one-to-one definition of concatenation for mixed

strategies, we can concatenate this pair into exactly one mixed strategy.

It is pretty clear that the problem is present in all sufficiently complex games,

i.e., in games such that at least one player has at least two information sets that
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include at least two actions each. It may also appear for equilibrium strategies.

Since concatenation may fail to produce certain mixed profiles, the nice

algorithmic flavour of backward induction is lost. However, in games of perfect

recall, any mixed strategy is equivalent with respect to payoffs that it generates

to some behavioral strategy (this is the essence of Kuhn’s (1953) Theorem 4).

One can speculate that whenever in a game every mixed strategy is payoff

equivalent to some behavioral strategy in all subgames of this game, one can

check whether such a mixed strategy is SPE by examining the corresponding

behavioral strategy. A further conjecture would be that the condition of perfect

recall is sufficient to guarantee payoff equivalence in all games. Thus, backward

induction could be extended in the following way: a mixed strategy profile is

BIE if the corresponding behavioral profile is BIE.

When recall is imperfect, a player could have a mixed strategy that generates

a payoff higher than any of his behavioral strategies (see Kuhn 1953:63-65 for a

discussion of an example). Consequently, in the presence of imperfect recall, a

mixed profile obtained from the concatenation of SPE partial behavioral profiles

is not necessarily SPE within the realm of all mixed strategies.

5 Backward induction for pure, behavioral, and

mixed strategies

Theorem 2 allows to define a general procedure of backward induction for any

game and pure or behavioral strategies of finite support and finite crossing.

Let’s fix the game G.

Pruning sequence: The sequence of pruning {Θj}lj=1 is a partition of TA, the
set of agenda nodes, where n is a positive integer, such that for all j = 1, ..., l,

if χ ∈ Θk follows ψ ∈ Θm, then k ≤ m.

The pruning sequence denotes the order of removing subgames, with Θj
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denoting the roots of subgames removed in step j. The condition imposed

on {Θj}lj=1 asserts that a subgame H of a subgame J is removed before, or

simultaneously with, J . In words, in every step we remove a set of complete

subgames.

As an illustration, consider Pure Coordination with perfect information from

Figure 2. The agenda includes three nodes: A1, B1 and B2 (the letter represents

the player and the number denotes the player’s information set, from left to

right). There are 6 possible pruning sequences (parentheses are omitted for

singleton sets): B1, B2, A1; B2, B1, A1; {B1, B2}, A1; B1, {B2, A1}; B2, {B1,

A1}; {B1, B2, A1}. According to the first two sequences, single subgames are

pruned; according to the next sequences, both proper subgames are pruned; in

the next two sequences, one proper subgame is pruned first and then the entire

game is pruned; finally, the entire game is pruned in one step. The condition

imposed on the pruning sequence guarantees that A1 is pruned in the last step,

possibly with other nodes.

Consider a pruning sequence {Θj}lj=1 and any set of games {Gj}lj=1 such
that G1 = G and, for l > 1 and for j = 1, ..., n − 1, Gj+1 is some upgame of

Gj resulting from the substitution of the subgames {Hθ}θ∈Θj with some payoff
vectors. {Gj}lj=1 is called a pruning set for G according to {Θj}lj=1. For a
strategy profile s ∈ S, {Gj}lj=1 is a specific pruning set defined recursively as
follows: G1 = G and, for l > 1 and for j = 1, ..., n− 1, Gj+1 is a (s,{Hθ}θ∈Θj )-
upgame of Gj , where {Hθ}θ∈Θj are subgames of Gj with roots in Θj . In words,

the procedure begins with the entire game. In every step of pruning, a new

tentative game Gj+1 is created by substituting a subset of subgames from the

previous tentative game Gj selected according to {Θj}lj=1 with some payoff
vectors. When pruning is conducted according to a specific profile s, the payoffs

in Gj+1 are generated by strategy profile s working in the removed subgames

in Gj .

A backward induction equilibrium preserves subgame perfection for at least
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one sequence of pruning:

Backward induction equilibrium: A strategy profile s is a backward induction

equilibrium (BIE) according to a pruning sequence {Θj}lj=1 if either (a) l = 1
and s is SPE for G or (b) l > 1 and (a) the reduction of s to Gl is SPE and (b)

for all j = 1, ..., l− 1, the reduction of s to every Hθ ∈ {Hθ}θ∈Θj is SPE. It is a
BIE if it is BIE according to at least one pruning sequence.

In words, a strategy profile s is BIE if we can prune a game using s in such

a way that at every stage s is SPE in removed subgames and s is also SPE in

the final game resulting from pruning. As we will soon see, the exact sequence

of pruning does not matter for the property of being BIE.

For a fixed game G and a set of strategy profiles (behavioral or pure) S, let’s

denote the subset of all BIE’s with SBIE and the subset of all SPE’s by SSPE .

Let’s examine the relationship between SBIE and SSPE :

By our definition of BIE as resulting from any sequence of pruning, if s is

SPE, then assuming l = 1 implies that it is also BIE.

Conversely, if s is a BIE, then we can find a pruning sequence {Θj}lj=1 that
satisfies the conditions from the definition of BIE. Excluding the trivial case of

l = 1, Theorem 2 applied l − 1 times guarantees that s is SPE. The argument
goes as follows: First, by definition of BIE, s reduced to Gl must be SPE and,

second, by Theorem 2, if s reduced to Gj+1 and {Hθ}θ∈Θj is in all cases SPE,
then s reduced to Gj must be SPE. Those facts imply by induction that s

reduced to G1 (i.e., s itself) is SPE.

The relationship between subgame perfection and backward induction can

now be stated formally. It is straightforward:

Corollary 1 For any game G, BSPE = BBIE and ΠSPE = ΠBIE .

In fact, the Corollary remains valid not only behavioral or pure strategies

but for all families of sets of behavioral strategies closed under concatenation

and decomposition. A simple consequence of the Corollary (in combination
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with Theorem 2) is that if s is BIE with one pruning sequence, then it must

be BIE with any pruning sequence. The reasoning is simple: If s is BIE under

one sequence, then it is SPE by Corollary 1, then it is (by Theorem 2 applied

consecutively) SPE in all upgames and pruned subgames according to the second

sequence.

Proposition 1 For any game G, any strategy profile s, and any two sequences

of pruning {Θj}lj=1 and {Ωj}mj=1, s is BIE according to {Θj}lj=1 iff s is BIE
according to {Ωj}mj=1.

All sequences of pruning return precisely the same strategy profiles. The only

differentiating factor is the convenience of using one sequence over another. The

following algorithm describes finding all SPE’s with a given non-trivial (i.e., for

l > 2) pruning sequence:

1. Sequence of pruning: Set a pruning sequence {Θj}lj=1. Denote all partial
strategy profiles obtained in step j with SSPEj . Thus, SSPE = SSPEl . Set

the initial set of partial strategy profiles SSPE1 defined as the set of all partial

strategy profiles in G that are SPE for all subgames of G with roots from Θ1;

2. Concatenation: For step j, 1 ≤ j ≤ l, the procedure generated SSPEj .

If j = l, stop. Otherwise,

If SSPEj = ∅, then set SSPE = ∅.

If SSPEj 6= ∅, then for every sκj ∈ SSPEj perform the following procedure.

Let’s denote the upgame corresponding to sκj by Gj and the corresponding

subgames with {Hθ}θ∈Θj .
For every sθj , a partial strategy profile for all subgames {Hθ}θ∈Θj exactly

one must hold:

(i) sθj is a SPE for all {Hθ}θ∈Θj . In such a case, include sκj ∪sθj in SSPEj+1 ;

(ii) sθj is not a SPE for at least one of {Hθ}θ∈Θj . In such a case, discard
sκj ∪s∗θ.
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Below, a few special (partially overlapping) cases and applications of Corol-

lary 1 are discussed. Before starting the discussion, a rather obvious limitation

of the generalized backward induction procedure should be acknowledged. If

a game has no proper subgames (the game’s agenda is a singleton), then the

method offers no computational or other benefits since the only pruning se-

quence is the trivial one. In general, the usefulness of the method depends on

the structure of the agenda.

1. Pure strategies in finite games of perfect information.

In this simplest classic case, the agenda is identical with the game tree

minus the endnodes. The game tree is pruned one subgame at a time and every

subgame includes only a singleton decision node. Looking for a NE or SPE in

every such a subgame is equivalent to finding the best move (or the best moves)

of a player. The existence of a BIE for finite games is the thesis of Kuhn’s

Corollary 1 (Kuhn, 1953: 61). If payoffs at some stage are identical, one may

obtain many SPEs.

2. Pure strategies in general games of perfect information.

Among well-known examples of non-finite games of perfect information there

are games of fair division (Steinhaus 1948, Brams and Taylor 1996) or Romer-

Rosenthal (1978) agenda setter model. The algorithm for such games closely

resembles simple backward induction.

Close pruning is a particularly simple version of backward induction. Below,

it is applied to the following Romer-Rosenthal’s agenda setter model.

Example 1 Romer-Rosenthal agenda setter model.

Two players, the Agenda setter A and the Legislator L, have Euclidean

preferences in the issue space [0,3] and the ideal points a = 0 and l = 2,

respectively. The status quo is q = 3. First, A proposes a policy x ∈ [0, 3).
Next, L chooses the final law from {x, q}.
The agenda-setter story defines a unique game G such that the pure strategy

31



spaces and payoffs can be represented as follows:

ΠA = [0, 3); ΠL = {X : X ⊂ [0, 3)}

PA =

⎧⎨⎩ −x−3
if x ∈ X

if x /∈ X
; PL =

⎧⎨⎩ −|x− 2|−1
if x ∈ X

if x /∈ X

Set X represents all policy points that L would accept.

There are two levels in the game that correspond to the periods. We are

interested in pure strategies only. The adopted sequence of pruning removes all

subgames of the same level at a time.

Step 1: At level two, there is a continuum of subgames that are parametrized

by the issue space [0, 3). The subgame at x offers two options to L: when x is

proposed, to accept it or to reject it (which implies the acceptance of q). The

best actions for L for a subgame following x can be described as follows:

If x < 1, reject x;

If x > 1, accept x;

If x = 1, reject or accept x.

Applying simultaneous pruning to level 2 brings our first set of partial SPEs

that includes two partial SPE profiles which are two strategies of L:

SSPE1 = {X1,X2}, where X1 = [1, 3) and X2 = (1, 3), i.e., “accept every

offer not smaller than 1”, and “accept every offer greater than 1.”

The two partial strategy profiles produce two upgames G1 and G2 with the

unique active player A and his strategy space [0,3), where his payoffs are defined

as follows:

G1 : PL(x) =

⎧⎨⎩ −3−x
if x < 1

if x ≥ 1

G2 : PL(x) =

⎧⎨⎩ −3−x
if x ≤ 1
if x > 1

Step 2: We have to consider all partial strategy profiles from SSPE1 that

were obtained in Step 1, i.e., X1 and X2.

Case 1 (X1): The unique best action in G1 is 1. The partial strategy profile
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in the removed subgames corresponding to G1 is X1. When this profile is

concatenated with L’s choice, the resulting SPE in the entire game is (1, [1, 3));

Case 2 (X2): There is no best action for G2. The corresponding strategy

profile in the removed subgames X2 is discarded.

Solution: There is a unique SPE in G equal to (1, [1, 3)).

3. Behavioral and pure strategies in finite games.

In all finite games, we can prune subgames one close prune at a time and

look for Nash equilibria in behavioral or pure strategies in a fashion very similar

to looking for pure strategy equilibria in finite games of perfect information. An

especially interesting case is a when the game is finitely repeated.

Let’s assume first that a game G has precisely one equilibrium in either pure

or behavioral strategies. Let Gk be G repeated k times, k ≥ 2. It is straight-
forward that, when close pruning is applied, there is precisely one possible SPE

in every removed subgame of Gk, i.e., the one corresponding to the SPE in G.

When all subgames of the same level are pruned, the resulting game is Gk−1 plus

a payoff adjustment for all players equal to the equilibrium payoff in G. This

reasoning implies the following result (s denotes again either pure or behavioral

strategy):

Corollary 2 For any finite game G that has a unique SPE s and for any integer

k ≥ 2, Gk has exactly one SPE that is equal to the repeated concatenation of s.

A simple consequence of Corollary 2 are well-known facts that the finitely

repeated games such as the Prisoner’s Dilemma or Matching Pennies have pre-

cisely one SPE.

When the underlying one-shot game has many equilibria, the task of calcu-

lating the total number of equilibria in a finitely repeated game may become

quite complex since different equilibria may contribute backward different pay-

offs vectors. Nevertheless, our procedure simplifies the calculations greatly.

Example 2 Twice repeated Pure Coordination.
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In one-shot Pure Coordination, two players simultaneously choose one of

their two strategies (denoted with the same labels for both players, i.e., L and

R). If their choices coincide, they get the payoff of one each. Otherwise, they

both receive zero (the game is the one from Figure 2 with simultaneous moves

assumed).

There are two levels in the twice-repeated Pure Coordination. Our sequence

of pruning again coincides with the levels.

Step 1: There are four subgames at level two with three NE in each subgame.

This produces 81 NE strategy profiles; sixteen of them are in pure strategies.

The partial strategy profile in every subgame can be parametrized in the fol-

lowing simple way: LL and RR denote the NE in which the players coordinate

on (L,L) or (R,R), respectively, and 1
2
1
2 denotes the remaining NE in com-

pletely mixed strategies. For instance, the label LLLLRR 1
2
1
2 would denote the

following partial strategy profile: both players play L in the first and second

subgame, they both play R in the third subgame, and they both play 1
2 in the

fourth subgame. Thus, the sets of partial SPEs in pure and behavioral strategies

are defined as follows, respectively:

ΠSPE1 = {yzvw such that y, z, v, w ∈ {LL,RR}};
BSPE
1 = {yzvw such that y, z, v, w ∈ {LL,RR, 12 12}}.
Step 2: At this point, it makes sense to separate the cases of pure and

behavioral strategies.

Pure strategies: The characterization of all SPE in pure strategies is easy.

Every partial profile from ΠSPE1 obtained in Step 1 adds exactly 1 to the payoff

in the upgame, or the first iteration of the game. Thus, there are two SPEs in

the upgame, LL and RR, per every partial strategy profile obtained in Step 1.

Consequently, the total number of SPEs in pure strategies is 32 and the set of

SPE in pure profiles can be defined as follows:

ΠSPE = {xyzvw such that x, y, z, v, w ∈ {LL,RR}}.
Behavioral strategies: counting the total number of SPEs is also easy because
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all prunes resulting from removing subgames have similar structures and each

of them has exactly three NEs. In every prune, players receive the payoffs of 112

or 2 for coordinating their strategies and 0 or 12 for discoordination. Thus, every

prune is either Pure Coordination or a variant of Asymmetric Coordination. In

all cases, there are exactly two NE in pure strategies and one NE in completely

mixed strategies. Thus, every one of 81 partial strategy profiles from Step 1 can

be preceded by three NE in the upgame. The total number of SPE in behavioral

strategies is 243.

While listing all pure strategy SPEs was trivial, enumerating all behavioral

SPEs is more laborious but still manageable. The task can be simplified by

dividing all 81 partial strategies from BSPE
1 into equivalence classes. Let’s

group them in the following way:

Sixteen partial strategies xyzv where x, y, z, v ∈ {LL,RR};
Four partial strategies x12

1
2
1
2
1
2y where x, y ∈ {LL,RR};

Four partial strategies 1
2
1
2xy

1
2
1
2 where x, y ∈ {LL,RR};

One partial strategy 1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2 .

In all 25 cases, there are three identical NEs in the upgame: LL,RR, and

1
2
1
2 . I leave to the reader the fascinating chore of calculating the remaining

NEs. A hint: the following sets of partial strategy profiles will have identical or

symmetric NE in the upgame:

Sixteen cases xyw 1
2
1
2 or

1
2
1
2xyw where x, y, w ∈ {LL,RR};

Sixteen cases x12
1
2yw or xy

1
2
1
2w where x, y, w ∈ {LL,RR};

Four cases x12
1
2
1
2
1
2
1
2
1
2 or

1
2
1
2
1
2
1
2
1
2
1
2x where x ∈ {LL,RR};

Four cases 12
1
2x

1
2
1
2
1
2
1
2 or

1
2
1
2
1
2
1
2x

1
2
1
2 where x ∈ {LL,RR};

Sixteen cases xy 12
1
2
1
2
1
2 or x12

1
2y

1
2
1
2 or

1
2
1
2
1
2
1
2xy or

1
2
1
2x

1
2
1
2y where x, y ∈

{LL,RR}.
A note on mixed strategies: Characterizing mixed strategy SPE is most labo-

rious since an infinite number of mixed strategies may share the same subgame

behavioral representation. Section 4 offers the following informal suggestion for
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finding all mixed strategy equilibria: for every SPE in behavioral strategies β,

calculate all mixed strategy profiles µ that are payoff-equivalent to β in all sub-

games. As an example, consider a mixed strategy of player 1 µp that is equal,

for any p ∈ [0, 12 ] to:
µp = (pLLRRL, pLLLLL, (1− p)LLLRL, (1− p)LLRLL)

Strategy µp plays the pure strategies LLRRL and LLLLL with probability p

and the pure strategies LLLRL and LLRLL with probability 1− p. Strategies

µp are payoff equivalent in all subgames for all p ∈ [0, 12 ], and their shared
behavioral representation is β = LL1

2
1
2L. In words, every mixed strategy µp

plays L initially and in all subgames that follow coordination; it plays 1
2 in all

subgames that follow discoordination.

It is easy to show that every mixed strategy that is payoff equivalent in all

subgames to β must be one of the µps. Thus, for the unique SPE in behavioral

strategies that involves β, (LL1
2
1
2L;LL

1
2
1
2L), we obtain the corresponding two-

parameter family of strategy profiles that are payoff-equivalent in subgames

Mp,r = {(µ1,p µ2,r) s. t. µ1,p and µ2,r satisfy our Condition for µp for p ∈ [0, 12 ]
and r ∈ [0, 12 ], respectively}. The familyMp,r completely characterizes all mixed

strategy profiles that pairwisely satisfy the requirement of payoff-equivalence in

all subgames to a behavioral strategy profile ββ.

4. Parametrized families of games.

A variant of the procedure may be applied when the parametrization of a

family of games is sufficiently regular. In Example 1, one can set any status quo

q and any ideal points l and a. The most interesting case is when a < l < q and

l − a > q − l (or when both inequalities are reversed). Finding the unique SPE

for the family of games parametrized with a, q and l is almost as simple as in

Example 1.
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6 Conclusion

An obvious open question is whether the results for behavioral strategies of

finite support and crossing can be generalized to all “rough” behavioral strate-

gies. Attacking this question would demand leaving the comfortable world of

finite probability distributions and using measure theory in the spirit of Au-

mann’s (1953) pioneering contribution. The framework presented in this paper

goes around measure-theoretic difficulties with suitable constraints imposed on

a subset of behavioral strategies. But even with those constraints suspended, I

couldn’t find an example that would violate the equivalence of BIE and SPE.

Thus, a natural conjecture is that it holds universally.

Two more general problems deserve a comment.

First, a general axiomatic framework applied in the present paper encom-

passes more games than the axiomatic approaches of von Neumann and Kuhn.

When game theory was born, considering finite games only seemed natural, and

non-finite games appeared in the literature infrequently. Today we routinely

go beyond the limitations of finite games either with a continuum of strategies

that represent quantity, price or position in the issue space, or with infinite

repetition of a game. I believe that contemporary game theory deserves sound

axiomatic foundations that would include infinite games, and that would lead

towards a more unified and complete discipline. Concepts that were axiomat-

ically analyzed for finite games, such as Kreps and Wilson’s (1982) sequential

equilibrium, seem to be obvious targets for axiomatic investigation. The present

paper demonstrates that a general framework of infinite games is manageable

enough to allow us to obtain interesting new results or extensions of well-known

ones.

Second, another line of inquiry would ask whether backward induction can

be modified to go beyond subgame perfection. An immediate ad-hoc modifica-

tion would consider only those SPE’s that exclude partial equilibria with weakly
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dominated strategies. Perhaps, after a suitable modification of the main prin-

ciple, backward induction-like reasoning could also produce solutions such as

perfect equilibrium, sequential equilibrium, or other refinements. Proving that

this is not the case would be an interesting finding as well.

Further refinements of backward induction could produce computational

benefits similar to those obtained for subgame perfection. Backward solving

is equivalent to hierarchical concatenation of solutions. Thus, solving a game

with backward reasoning is equivalent to collecting together those indepen-

dent solutions and connects the global solution with stage-wise decision-making.

Moreover, for games with proper subgames, applying backward induction could

simplify finding solutions and obtaining results the same way it does so for SPE.
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