Dynamics and Equilibrium

Sergiu Hart

Presidential Address, GAMES 2008 (July 2008)

Revised and Expanded (February 2009)

DYNAMICS AND EQUILIBRIUM

Sergiu Hart

Center for the Study of Rationality
Dept of Economics Dept of Mathematics
The Hebrew University of Jerusalem

hart@huji.ac.il http://www.ma.huji.ac.il/hart

Papers

Papers

- Hart and Mas-Colell, Econometrica 2000
- Hart and Mas-Colell, J Econ Theory 2001
- Hart and Mas-Colell, Amer Econ Rev 2003
- Hart, Econometrica 2005
- Hart and Mas-Colell, Games Econ Behav 2006
- Hart and Mansour, Games Econ Behav 2009?
- Hart, Center for Rationality DP 2008

Papers

- Hart and Mas-Colell, Econometrica 2000
- Hart and Mas-Colell, J Econ Theory 2001
- Hart and Mas-Colell, Amer Econ Rev 2003
- Hart, Econometrica 2005
- Hart and Mas-Colell, Games Econ Behav 2006
- Hart and Mansour, Games Econ Behav 2009?
- Hart, Center for Rationality DP 2008

http://www.ma.huji.ac.il/hart

John Nash, Ph.D. Dissertation, Princeton 1950

EQUILIBRIUM POINT:

John Nash, Ph.D. Dissertation, Princeton 1950

EQUILIBRIUM POINT:

"Each player's strategy is optimal against those of the others."

John Nash, Ph.D. Dissertation, Princeton 1950

FACT

FACT

FACT

There are no general, natural dynamics leading to Nash equilibrium

"general"

FACT

There are no general, natural dynamics leading to Nash equilibrium

"general": in all games

FACT

There are no general, natural dynamics leading to Nash equilibrium

"general": in all games rather than: in specific classes of games

FACT

- "general": in all games rather than: in specific classes of games:
 - two-person zero-sum games
 - two-person potential games
 - supermodular games
 - **.** . . .

FACT

FACT

There are no general, natural dynamics leading to Nash equilibrium

"leading to Nash equilibrium"

FACT

There are no general, natural dynamics leading to Nash equilibrium

"leading to Nash equilibrium": at a Nash equilibrium (or close to it) from some time on

FACT

FACT

There are no general, natural dynamics leading to Nash equilibrium

"natural"

FACT

There are no general, natural dynamics leading to Nash equilibrium

"natural":

FACT

- "natural":
 - adaptive (reacting, improving, ...)

FACT

- "natural":
 - adaptive (reacting, improving, ...)
 - simple and efficient

FACT

- "natural":
 - adaptive (reacting, improving, ...)
 - simple and efficient:
 - computation (performed at each step)

FACT

- "natural":
 - adaptive (reacting, improving, ...)
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)

FACT

- "natural":
 - adaptive (reacting, improving, ...)
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)
 - information (of each player)

FACT

There are no general, natural dynamics leading to Nash equilibrium

- "natural":
 - adaptive (reacting, improving, ...)
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)
 - information (of each player)

bounded rationality

Dynamics that are **NOT** "natural":

 exhaustive search (deterministic or stochastic)

- exhaustive search (deterministic or stochastic)
- using a mediator

- exhaustive search (deterministic or stochastic)
- using a mediator
- broadcasting the private information and then performing joint computation

- exhaustive search (deterministic or stochastic)
- using a mediator
- broadcasting the private information and then performing joint computation
- fully rational learning
 (prior beliefs on the strategies of the opponents, Bayesian updating, optimization)

FACT

- "natural":
 - adaptive
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)
 - information (of each player)

FACT

- "natural":
 - adaptive
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)
 - information (of each player)

FACT

- "natural":
 - adaptive
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)
 - information (of each player)

Each player knows only his own payoff (utility) function

Each player knows only his own payoff (utility) function

(does *not* know the payoff functions of the other players)

UNCOUPLED DYNAMICS:

Each player knows only his own payoff (utility) function

(does *not* know the payoff functions of the other players)

Hart and Mas-Colell, AER 2003

UNCOUPLED DYNAMICS:

Each player knows only his own payoff (utility) function

(does *not* know the payoff functions of the other players)

(privacy-preserving, decentralized, distributed ...)

Hart and Mas-Colell, AER 2003

Games

N-person game in strategic (normal) form:

Players

$$i=1,2,...,N$$

Games

N-person game in strategic (normal) form:

Players

$$i=1,2,...,N$$

For each player i: Actions

$$oldsymbol{a^i}$$
 in $oldsymbol{A^i}$

Games

N-person game in strategic (normal) form:

Players

$$i=1,2,...,N$$

For each player i: Actions

$$a^i$$
 in A^i

For each player i: Payoffs (utilities)

$$\mathbf{u}^{i}(a) \equiv \mathbf{u}^{i}(a^{1}, a^{2}, ..., a^{N})$$

Time

$$t = 1, 2, ...$$

Time

$$t = 1, 2, ...$$

ullet At period t each player i chooses an action a_t^i in A^i

Time

$$t = 1, 2, ...$$

At period t each player i chooses an action

$$oldsymbol{a_t^i}$$
 in A^i

according to a probability distribution

$$oldsymbol{\sigma_t^i}$$
 in $\Delta(A^i)$

Fix the set of players 1, 2, ..., N and their action spaces $A^1, A^2, ..., A^N$

Fix the set of players 1, 2, ..., N and their action spaces $A^1, A^2, ..., A^N$

A general dynamic:

Fix the set of players 1, 2, ..., N and their action spaces $A^1, A^2, ..., A^N$

A general dynamic:

$$\sigma_t^i \equiv \sigma_t^i$$
 (HISTORY; GAME)

Fix the set of players 1, 2, ..., N and their action spaces $A^1, A^2, ..., A^N$

A general dynamic:

$$egin{aligned} \sigma_t^i &\equiv \sigma_t^i \ (ext{ HISTORY} \; ; \; ext{GAME} \) \ &\equiv \sigma_t^i \ (ext{ HISTORY} \; ; \; u^1,...,u^i,...,u^N \) \end{aligned}$$

Fix the set of players 1, 2, ..., N and their action spaces $A^1, A^2, ..., A^N$

A general dynamic:

$$egin{aligned} \sigma_t^i &\equiv \sigma_t^i \, (\, ext{HISTORY} \, ; \, \, ext{GAME} \,) \ &\equiv \sigma_t^i \, (\, ext{HISTORY} \, ; \, \, u^1, ..., u^i, ..., u^N \, \,) \end{aligned}$$

An UNCOUPLED dynamic:

Fix the set of players 1, 2, ..., N and their action spaces $A^1, A^2, ..., A^N$

A general dynamic:

$$egin{aligned} \sigma_t^i &\equiv \sigma_t^i ext{ (HISTORY; GAME)} \ &\equiv \sigma_t^i ext{ (HISTORY; } oldsymbol{u}^1,...,oldsymbol{u}^i,...,oldsymbol{u}^N ext{)} \end{aligned}$$

An UNCOUPLED dynamic:

$$\sigma_t^i \equiv \sigma_t^i \, (\, {\sf HISTORY} \, ; \, {\color{red} u^i} \,)$$

Simplest uncoupled dynamics

Simplest uncoupled dynamics:

$$\sigma_t^i \equiv f^i(a_{t-1};u^i)$$

where $a_{t-1}=(a_{t-1}^1,a_{t-1}^2,...,a_{t-1}^N)\in A$ are the actions of all the players in the previous period

Simplest uncoupled dynamics:

$$\sigma_t^i \equiv f^i(a_{t-1};u^i)$$

where $a_{t-1}=(a_{t-1}^1,a_{t-1}^2,...,a_{t-1}^N)\in A$ are the actions of all the players in the previous period

Only last period matters ("1-recall")

Simplest uncoupled dynamics:

$$\sigma_t^i \equiv f^i(a_{t-1};u^i)$$

where $a_{t-1}=(a_{t-1}^1,a_{t-1}^2,...,a_{t-1}^N)\in A$ are the actions of all the players in the previous period

- Only last period matters ("1-recall")
- Time t does not matter ("stationary")

Impossibility

Impossibility

Theorem. There are **NO** uncoupled dynamics with 1-recall

$$\sigma_t^i \equiv f^i(a_{t-1};u^i)$$

that yield almost sure convergence of play to pure Nash equilibria of the stage game in all games where such equilibria exist.

Impossibility

Theorem. There are **NO** uncoupled dynamics with 1-recall

$$\sigma_t^i \equiv f^i(a_{t-1};u^i)$$

that yield almost sure convergence of play to pure Nash equilibria of the stage game in all games where such equilibria exist.

Consider the following two-person game, which has a unique pure Nash equilibrium

	C1	C2	C3
R1	1,0	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

Consider the following two-person game, which has a unique pure Nash equilibrium (R3,C3)

	C1	C2	C3
R1	1,0	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

Consider the following two-person game, which has a unique pure Nash equilibrium (R3,C3)

	C1	C2	C3
R1	1,0	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

Assume *by way of contradiction* that we are given an uncoupled, 1-recall, stationary dynamic that yields almost sure convergence to pure Nash equilibria when these exist

• Suppose the play at time t-1 is (R1,C1)

	C1	C2	C3
R1	1,0	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

- Suppose the play at time t-1 is (R1,C1)
- ROWENA is best replying at (R1,C1)

	C1	C2	C3
R1	1,0	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

- Suppose the play at time t-1 is (R1,C1)
- ROWENA is best replying at (R1,C1)
- ightharpoonup Rowena will play R1 also at t

	C1	C2	C3
R1	1,0	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

- Suppose the play at time t-1 is (R1,C1)
- ROWENA is best replying at (R1,C1)
- \Rightarrow ROWENA will play R1 also at t Proof:
 - Change the payoff function of COLIN so that (R1,C1) is the unique pure Nash eq.

	C1	C2	C3
R1	1,0	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

- Suppose the play at time t-1 is (R1,C1)
- ROWENA is best replying at (R1,C1)
- \Rightarrow ROWENA will play R1 also at t Proof:
 - Change the payoff function of COLIN so that (R1,C1) is the unique pure Nash eq.

	C1	C2	C3
R1	1,1	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,0

- Suppose the play at time t-1 is (R1,C1)
- ROWENA is best replying at (R1,C1)
- \Rightarrow ROWENA will play R1 also at t Proof:
 - Change the payoff function of COLIN so that (R1,C1) is the unique pure Nash eq.
 - In the new game, ROWENA must play R1 after (R1,C1) (by 1-recall, stationarity, and a.s. convergence to the pure Nash eq.)

- Suppose the play at time t-1 is (R1,C1)
- ROWENA is best replying at (R1,C1)
- \Rightarrow ROWENA will play R1 also at t Proof:
 - Change the payoff function of COLIN so that (R1,C1) is the unique pure Nash eq.
 - In the new game, ROWENA must play R1 after (R1,C1) (by 1-recall, stationarity, and a.s. convergence to the pure Nash eq.)
 - By uncoupledness, the same holds in the original game

- Suppose the play at time t-1 is (R1,C1)
- ROWENA is best replying at (R1,C1)
- ightharpoonup Rowena will play R1 also at t

- ullet Rowena is best replying at t-1
- ightharpoonup Rowena will play the same action at t

Similarly for COLIN:

Similarly for COLIN:

	C1	C2	C3
R1	1,0 ↔	0,1	1,0
R2	0,1	1,0	1,0
R3	0,1	0,1	1,1

Similarly for COLIN:

	C1	C2	C3
R1	1,0 ↔	0,1 🙏	1,0 ↔
R2	0,1 🙏	1,0 ↔	1,0 ↔
R3	0,1	0,1 🙏	1,1

Similarly for COLIN:

A player who is best replying cannot switch

	C1	C2	C3
R1	1,0 ↔	0,1 🙏	1,0 ↔
R2	0,1 🙏	1,0 ↔	1,0 ↔
R3	0,1 🙏	0,1 🚺	1,1

⇒ (R3,C3) cannot be reached

Similarly for COLIN:

	C1	C2	C3
R1	1,0 ↔	0,1 🙏	1,0 ↔
R2	0,1 🙏	1,0 ↔	1,0 ↔
R3	0,1	0,1 🙏	1,1

Theorem. THERE EXIST uncoupled dynamics with 2-RECALL

$$\sigma_t^i \equiv f^i(a_{t-2},a_{t-1};u^i)$$

that yield almost sure convergence of play to pure Nash equilibria of the stage game in every game where such equilibria exist.

Define the strategy of each player i as follows:

Define the strategy of each player *i* as follows:

IF.

- Everyone played the same in the previous two periods: $a_{t-2} = a_{t-1} = a$; and
- ullet Player i best replied: $a^i \in \mathrm{BR}^i(a^{-i};u^i)$

THEN: At t player i plays a^i again: $a^i_t = a^i$

Define the strategy of each player *i* as follows:

IF.

- Everyone played the same in the previous two periods: $a_{t-2} = a_{t-1} = a$; and
- ullet Player i best replied: $a^i \in \mathrm{BR}^i(a^{-i};u^i)$

THEN: At t player i plays a^i again: $a^i_t = a^i$

ELSE: At t player i randomizes uniformly over A^i

"Good":

"Good":

simple

"Good":

simple

"Bad":

"Good":

simple

"Bad":

exhaustive search

"Good":

simple

"Bad":

- exhaustive search
- all players must use it

"Good":

simple

"Bad":

- exhaustive search
- all players must use it
- takes a long time

FACT

- "natural":
 - adaptive
 - simple and efficient:
 - computation
 - time
 - information

FACT

- "natural":
 - adaptive
 - simple and efficient:
 - computation
 - time
 - information: uncoupledness √

FACT

- "natural":
 - adaptive
 - simple and efficient:
 - **computation**: finite recall √
 - time
 - information: uncoupledness √

FACT

- "natural":
 - adaptive
 - simple and efficient:
 - **computation**: finite recall √
 - time to reach equilibrium ?
 - information: uncoupledness √

HOW LONG TO EQUILIBRIUM?

HOW LONG TO EQUILIBRIUM?

Estimate the number of time periods it takes until a Nash equilibrium is reached

HOW LONG TO EQUILIBRIUM?

Estimate the number of time periods it takes until a Nash equilibrium is reached

How?

HOW LONG TO EQUILIBRIUM?

Estimate the number of time periods it takes until a Nash equilibrium is reached

- How?
- An uncoupled dynamic

A distributed computational procedure

HOW LONG TO EQUILIBRIUM?

Estimate the number of time periods it takes until a Nash equilibrium is reached

- How?
- An uncoupled dynamic

 \approx

A distributed computational procedure

■ ⇒ COMMUNICATION COMPLEXITY

Distributed computational procedures

- Distributed computational procedures
 - START: Each participant has some private information

- Distributed computational procedures
 - START: Each participant has some private information
 - communication: Messages are transmitted between the participants

- Distributed computational procedures
 - START: Each participant has some private information
 - communication: Messages are transmitted between the participants
 - END: All participants reach agreement on the result

- Distributed computational procedures
 - START: Each participant has some private information [INPUTS]
 - communication: Messages are transmitted between the participants
 - END: All participants reach agreement on the result

- Distributed computational procedures
 - START: Each participant has some private information [INPUTS]
 - communication: Messages are transmitted between the participants
 - END: All participants reach agreement on the result [OUTPUT]

- Distributed computational procedures
 - START: Each participant has some private information [INPUTS]
 - communication: Messages are transmitted between the participants
 - END: All participants reach agreement on the result [OUTPUT]
- COMMUNICATION COMPLEXITY = the minimal number of rounds needed

- Distributed computational procedures
 - START: Each participant has some private information [INPUTS]
 - communication: Messages are transmitted between the participants
 - END: All participants reach agreement on the result [OUTPUT]
- COMMUNICATION COMPLEXITY = the minimal number of rounds needed

Yao 1979, Kushilevitz and Nisan 1997

How Long to Equilibrium

How Long to Equilibrium

Uncoupled dynamics leading to Nash equilibria

- Uncoupled dynamics leading to Nash equilibria
 - START: Each player knows his own payoff function [INPUTS]

- Uncoupled dynamics leading to Nash equilibria
 - START: Each player knows his own payoff function [INPUTS]
 - communication: The actions played are commonly observed

- Uncoupled dynamics leading to Nash equilibria
 - START: Each player knows his own payoff function [INPUTS]
 - communication: The actions played are commonly observed
 - END: All players play a Nash equilibrium [OUTPUT]

- Uncoupled dynamics leading to Nash equilibria
 - START: Each player knows his own payoff function [INPUTS]
 - communication: The actions played are commonly observed
 - END: All players play a Nash equilibrium [OUTPUT]
- COMMUNICATION COMPLEXITY = the minimal number of rounds needed

- Uncoupled dynamics leading to Nash equilibria
 - START: Each player knows his own payoff function [INPUTS]
 - communication: The actions played are commonly observed
 - END: All players play a Nash equilibrium [OUTPUT]
- COMMUNICATION COMPLEXITY = the minimal number of rounds needed

Conitzer and Sandholm 2004

An uncoupled dynamic leading to Nash equilibria is TIME-EFFICIENT if

• An uncoupled dynamic leading to Nash equilibria is TIME-EFFICIENT if its COMMUNICATION COMPLEXITY is POLYNOMIAL in the number of players (rather than: exponential)

An uncoupled dynamic leading to Nash equilibria is TIME-EFFICIENT if its COMMUNICATION COMPLEXITY is POLYNOMIAL in the number of players (rather than: exponential)

Theorem. There are **NO TIME-EFFICIENT** uncoupled dynamics that reach a pure Nash equilibrium in all games where such equilibria exist.

• An uncoupled dynamic leading to Nash equilibria is TIME-EFFICIENT if its COMMUNICATION COMPLEXITY is POLYNOMIAL in the number of players (rather than: exponential)

Theorem. There are **NO TIME-EFFICIENT** uncoupled dynamics that reach a pure Nash equilibrium in all games where such equilibria exist.

Hart and Mansour, GEB 2009 (?)

Intuition:

- Intuition:
 - different games have different equilibria

Intuition:

- different games have different equilibria
- the dynamic procedure must distinguish between them

Intuition:

- different games have different equilibria
- the dynamic procedure must distinguish between them
- no single player can do so by himself

FACT

There are No general, natural dynamics leading to Nash equilibrium

FACT

There are No general, natural dynamics leading to Nash equilibrium

RESULT

There CANNOT BE general, natural dynamics leading to Nash equilibrium

RESULT

There CANNOT BE general, natural dynamics leading to Nash equilibrium

RESULT

There CANNOT BE general, natural dynamics leading to Nash equilibrium

Perhaps we are asking too much?

RESULT

There CANNOT BE general, natural dynamics leading to Nash equilibrium

- Perhaps we are asking too much?
- For instance, the size of the data (the payoff functions) is exponential rather than polynomial in the number of players

CORRELATED EQUILIBRIUM

Aumann, JME 1974

CORRELATED EQUILIBRIUM:

Nash equilibrium when players receive payoff-irrelevant information before playing the game

Aumann, JME 1974

A Correlated Equilibrium is a Nash equilibrium when players receive payoff-irrelevant signals before playing the game

A Correlated Equilibrium is a Nash equilibrium when players receive payoff-irrelevant signals before playing the game

A Correlated Equilibrium is a Nash equilibrium when players receive payoff-irrelevant signals before playing the game

- Examples:
 - Independent signals

A Correlated Equilibrium is a Nash equilibrium when players receive payoff-irrelevant signals before playing the game

- Examples:
 - Independent signals Nash equilibrium

A Correlated Equilibrium is a Nash equilibrium when players receive payoff-irrelevant signals before playing the game

- Independent signals Nash equilibrium
- Public signals ("sunspots")

A Correlated Equilibrium is a Nash equilibrium when players receive payoff-irrelevant signals before playing the game

- Independent signals Nash equilibrium
- Public signals ("sunspots")
 convex combinations of Nash equilibria

A Correlated Equilibrium is a Nash equilibrium when players receive payoff-irrelevant signals before playing the game

- Independent signals Nash equilibrium
- Public signals ("sunspots")
 convex combinations of Nash equilibria
- Butterflies play the Chicken Game ("Speckled Wood" Pararge aegeria)

"Chicken" game

LEAVE STAY

LEAVE

STAY

5,5	3,6
6,3	0,0

"Chicken" game

	LEAVE	STAY
LEAVE	5,5	3,6
STAY	6,3	0,0

a Nash equilibrium

"Chicken" game

LEAVE STAY

LEAVE

STAY

5, 5	3,6

 $6,3 \quad | \quad 0,0$

another Nash equilibrium

"Chicken" game

LEAVE STAY

LEAVE 5,5

STAY

5, 5	3,6
6,3	0,0

0	1/2
1/2	0

a (publicly) correlated equilibrium

"Chicken" game

	LEAVE	STAY	
LEAVE	5,5	3,6	
STAY	6,3	0,0	

L
$$1/3$$
 $1/3$ S $1/3$ 0

another correlated equilibrium

- after signal L play LEAVE
- after signal s play STAY

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Independent signals Nash equilibrium
- Public signals ("sunspots")
 convex combinations of Nash equilibria
- Butterflies play the Chicken Game ("Speckled Wood" Pararge aegeria)

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Independent signals Nash equilibrium
- Public signals ("sunspots")
 convex combinations of Nash equilibria
- Butterflies play the Chicken Game ("Speckled Wood" Pararge aegeria)
- Boston Celtics' front line

Correlated Equilibrium

Signals (public, correlated) are unavoidable

Correlated Equilibrium

- Signals (public, correlated) are unavoidable
- Common Knowledge of Rationality ⇔ Correlated Equilibrium (Aumann 1987)

Correlated Equilibrium

- Signals (public, correlated) are unavoidable
- Common Knowledge of Rationality ⇔ Correlated Equilibrium (Aumann 1987)

A joint distribution z is a correlated equilibrium

$$\Leftrightarrow$$

$$\sum_{s^{-i}} u(j, s^{-i}) z(j, s^{-i}) \geq \sum_{s^{-i}} u(k, s^{-i}) z(j, s^{-i})$$

for all $i \in N$ and all $j,k \in S^i$

RESULT

RESULT

THERE EXIST general, natural dynamics leading to CORRELATED EQUILIBRIA

Regret Matching

Hart and Mas-Colell, Ec'ca 2000

RESULT

THERE EXIST general, natural dynamics leading to CORRELATED EQUILIBRIA

- Regret Matching
- General regret-based dynamics

Hart and Mas-Colell, Ec'ca 2000, JET 2001

Regret Matching

Regret Matching

"REGRET": the increase in past payoff, if any, if a different action would have been used

Regret Matching

"REGRET": the increase in past payoff, if any, if a different action would have been used

"MATCHING": switching to a different action with a probability that is proportional to the regret for that action

THERE EXIST general, natural dynamics leading to CORRELATED EQUILIBRIA

"general": in all games

- "general": in all games
- "natural"

- "general": in all games
- "natural"
 - adaptive (also: close to "behavioral")

- "general": in all games
- "natural"
 - adaptive (also: close to "behavioral")
 - simple and efficient: computation, time, information

- "general": in all games
- "natural":
 - adaptive (also: close to "behavioral")
 - simple and efficient: computation, time, information
- "leading to correlated equilibria": statistics of play become close to CORRELATED EQUILIBRIA

NASH EQUILIBRIUM: a fixed-point of a non-linear map

- NASH EQUILIBRIUM: a fixed-point of a non-linear map
- CORRELATED EQUILIBRIUM: a solution of finitely many linear inequalities

- NASH EQUILIBRIUM: a fixed-point of a non-linear map
- CORRELATED EQUILIBRIUM: a solution of finitely many linear inequalities

set-valued fixed-point (curb sets)?

"LAW OF CONSERVATION OF COORDINATION":

"LAW OF CONSERVATION OF COORDINATION":

There must be some coordination —

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION—
either in the EQUILIBRIUM notion,

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION—
either in the EQUILIBRIUM notion,
or in the DYNAMIC

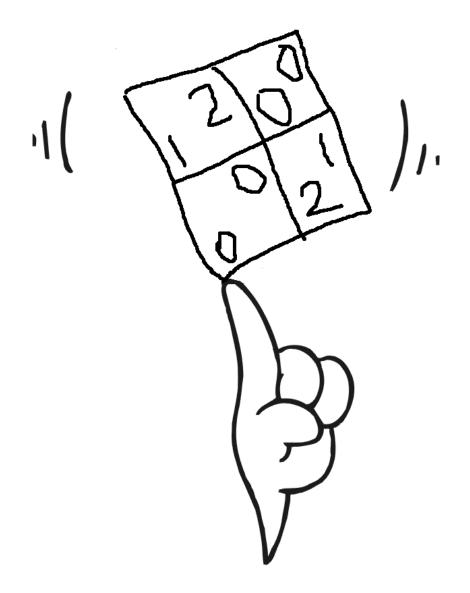
A. Demarcate the **BORDER** between

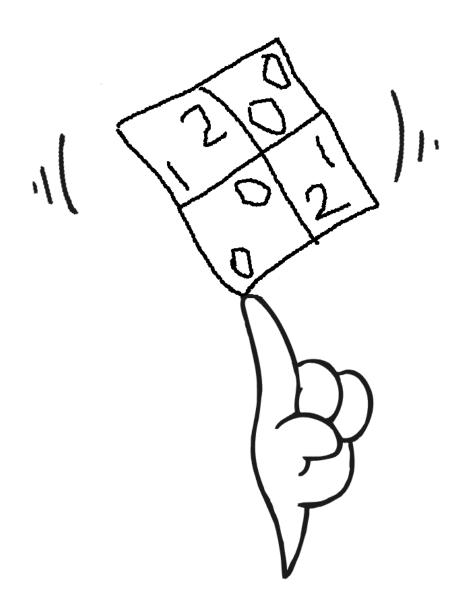
- A. Demarcate the **BORDER** between
 - classes of dynamics where convergence to equilibria CAN be obtained

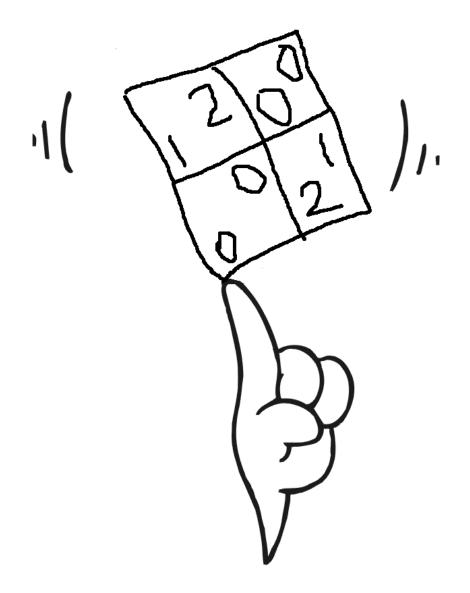
A. Demarcate the **BORDER** between

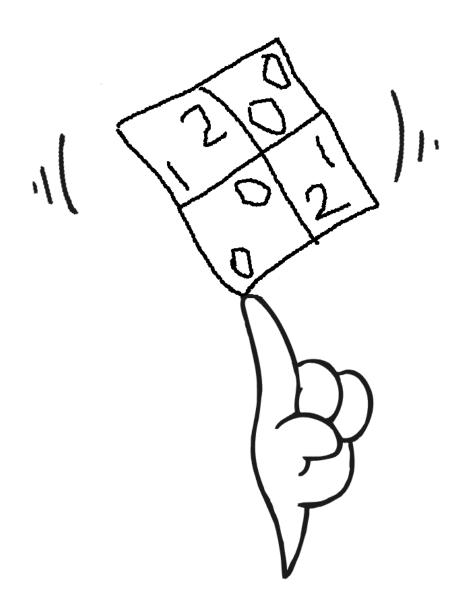
- classes of dynamics where convergence to equilibria CAN be obtained, and
- classes of dynamics where convergence to equilibria CANNOT be obtained

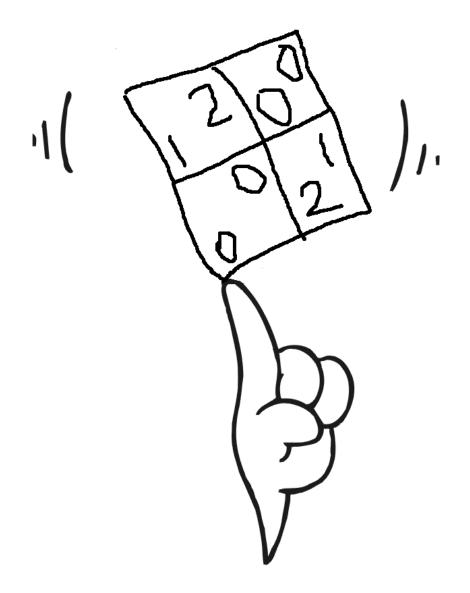
- A. Demarcate the **BORDER** between
 - classes of dynamics where convergence to equilibria
 CAN be obtained, and
 - classes of dynamics where convergence to equilibria CANNOT be obtained
- B. Find NATURAL dynamics for the various equilibrium concepts

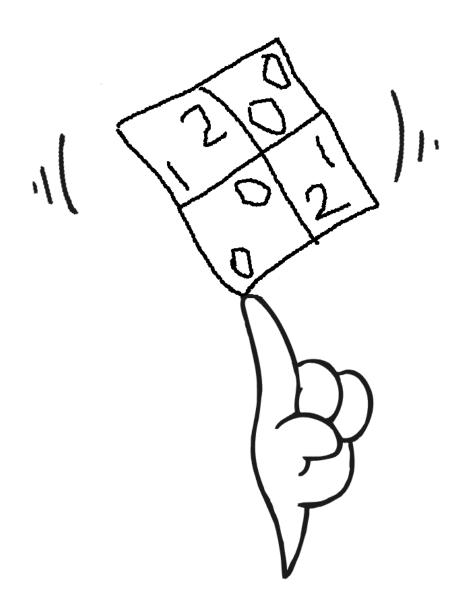


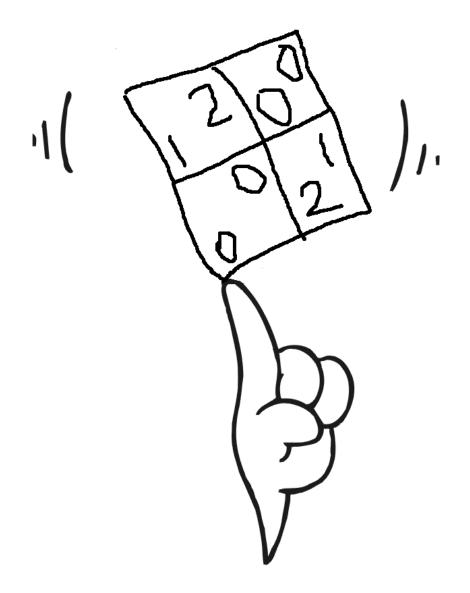


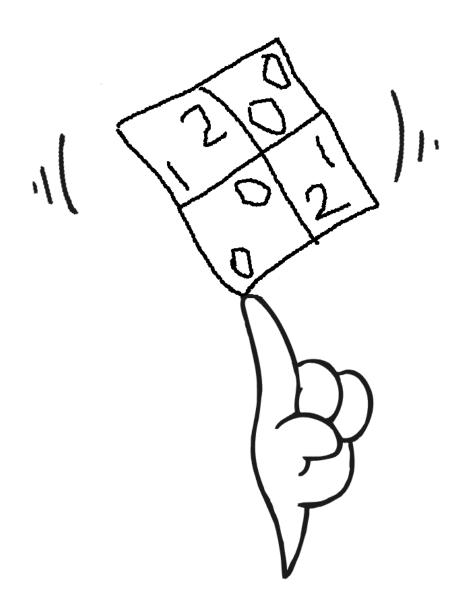




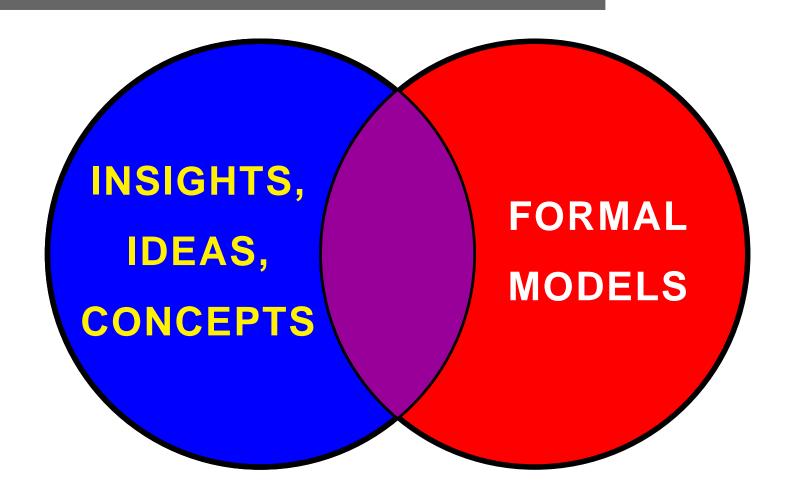












INSIGHTS,
IDEAS,
CONCEPTS

INSIGHTS,
IDEAS,
CONCEPTS

INSIGHTS,
IDEAS,
CONCEPTS

INSIGHTS,
IDEAS,
CONCEPTS