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Game 1: Typewriter
d q

D 5,5 0,0

Q 0,0 4,4

This game has two pure coordination equilibria:

• Play D and d, respectively;

• Play Q and q.
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Game 1: Typewriter
d q

D 5,5 0,0

Q 0,0 4,4

This game has two pure coordination equilibria:

• Play D and d, respectively;

• Play Q and q.

Question
Is there a natural model in which players learn to coordinate?
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• Markov model of learning in a repeated game.

• A variant of Fictitious Play (Brown, 1951).

• Finite memory m and sample size s (with s ≤ m).

• Play a best-response to the empirical distribution of the sample.
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• Markov model of learning in a repeated game.

• A variant of Fictitious Play (Brown, 1951).

• Finite memory m and sample size s (with s ≤ m).

• Play a best-response to the empirical distribution of the sample.

The transition matrix M0 for the Typewriter Game with m = s = 1:

M0 Dd Qd Dq Qq

Dd 1 0 0 0
Qd 0 0 1 0
Dq 0 1 0 0
Qq 0 0 0 1
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• Markov model of learning in a repeated game.

• A variant of Fictitious Play (Brown, 1951).

• Finite memory m and sample size s (with s ≤ m).

• Play a best-response to the empirical distribution of the sample.

The transition matrix M0 for the Typewriter Game with m = s = 1:

M0 Dd Qd Dq Qq

Dd 1 0 0 0
Qd 0 0 1 0
Dq 0 1 0 0
Qq 0 0 0 1

M0 has three pure “equilibria” (i.e., stationary distributions):
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Every stationary distribution of M0 is a convex combination of these.
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• Play a best-response with probability 1− ǫ.

• Play arbitrarily with probability ǫ.
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• Play a best-response with probability 1− ǫ.

• Play arbitrarily with probability ǫ.

The transition matrix Mǫ for the Typewriter Game with m = s = 1:

Mǫ Dd Qd Dq Qq

Dd (1 − ǫ)(1 − ǫ) (1 − ǫ)ǫ ǫ(1 − ǫ) ǫ2

Qd ǫ(1 − ǫ) ǫ2 (1 − ǫ)(1 − ǫ) (1 − ǫ)ǫ

Dq (1 − ǫ)ǫ (1 − ǫ)(1 − ǫ) ǫ2 ǫ(1 − ǫ)

Qq ǫ2 ǫ(1 − ǫ) (1 − ǫ)ǫ (1 − ǫ)(1 − ǫ)
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• Play a best-response with probability 1− ǫ.

• Play arbitrarily with probability ǫ.

The transition matrix Mǫ for the Typewriter Game with m = s = 1:

Mǫ Dd Qd Dq Qq

Dd (1 − ǫ)(1 − ǫ) (1 − ǫ)ǫ ǫ(1 − ǫ) ǫ2

Qd ǫ(1 − ǫ) ǫ2 (1 − ǫ)(1 − ǫ) (1 − ǫ)ǫ

Dq (1 − ǫ)ǫ (1 − ǫ)(1 − ǫ) ǫ2 ǫ(1 − ǫ)

Qq ǫ2 ǫ(1 − ǫ) (1 − ǫ)ǫ (1 − ǫ)(1 − ǫ)

• Mǫ is an example of a perturbed Markov matrix (PMM).

• For ǫ > 0, Mǫ has a unique stationary distribution.

• Letting ǫ→ 0, we can select a stationary distribution of M0,

the so-called stochastically stable distribution (SSD) of the PMM.
• We give an efficient algorithm to compute the SSD of a PMM.



Preliminary Experimental Results

• Outline

Why

• Equilibrium Selection

• Adaptive Learning

• Perturbed Adaptive
Learning

• Experimental Results

What

How

Our Representation

Our Algorithm

An Example

Summary

7 / 48

Game 2: Typewriter’
d q

D 5,5 0,3

Q 3,0 4,4
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Game 2: Typewriter’
d q

D 5,5 0,3

Q 3,0 4,4

Theorem (Young, 1998) For 2s ≤ m sufficiently large, the

stochastically stable states of the repeated version of a 2× 2
coordination game correspond to risk-dominant conventions.
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Game 2: Typewriter’
d q

D 5,5 0,3

Q 3,0 4,4

Theorem (Young, 1998) For 2s ≤ m sufficiently large, the

stochastically stable states of the repeated version of a 2× 2
coordination game correspond to risk-dominant conventions.

Experimental Results

• For 2 ≤ s ≤ m ≤ 4, the stochastically stable distribution is

concentrated at Q · · ·Qq · · · q.

• These results suggest that it may be possible to strengthen
Young’s theorem.
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Game 3: Generic Coordination
l c r

T 3,3 0,0 0,0

M 0,0 2,2 0,0

B 0,0 0,0 1,1
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Game 3: Generic Coordination
l c r

T 3,3 0,0 0,0

M 0,0 2,2 0,0

B 0,0 0,0 1,1

Experimental Results

• Perhaps surprisingly, when s = m = 3, the SSD is

Pr[TTT lll] = 6
7 , Pr[MMMccc] = 1

7 .

• Are there values of s and m for which the SSD is
concentrated at T · · ·T l · · · l?

• Either way, reasonable dynamics may put sufficiently

high probability on T · · ·T l · · · l.
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• Edgeworth (1881) proposed a model for contracting within a

simple housing economy.

• Serrano and Volij (2003) have augmented Edgeworth’s model,

allowing agents to make mistakes.

• Kaihatsu and Milionis in the Brown Department of Economics
have applied our algorithm to Serrano and Volij’s model to show

that the various core allocations of the economy will emerge in

the long-run with different relative frequencies.
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A matrix M ∈ R
n×n is Markov iff

• its columns sum to 1, and

• its entries are non-negative

M =




1
4

1
4

1
2

0 1
4 0

3
4

1
2

1
2






Markov Matrices and Stationary Distributions

• Outline

Why

What
• Markov Matrices and
Stationary Distributions

• The Geometry of
Markov Matrices
• Exponentially
Convergent Functions

• Perturbed Markov
Matrices and
Stochastically Stable
Distributions

How

Our Representation

Our Algorithm

An Example

Summary

11 / 48

A matrix M ∈ R
n×n is Markov iff

• its columns sum to 1, and

• its entries are non-negative

M =




· 1
4

1
2

0 · 0
3
4

1
2 ·






Markov Matrices and Stationary Distributions

• Outline

Why

What
• Markov Matrices and
Stationary Distributions

• The Geometry of
Markov Matrices
• Exponentially
Convergent Functions

• Perturbed Markov
Matrices and
Stochastically Stable
Distributions

How

Our Representation

Our Algorithm

An Example

Summary

11 / 48

A matrix M ∈ R
n×n is Markov iff

• its columns sum to 1, and
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A vector v ∈ R
n is a distribution iff

• its entries sum to 1, and

• its entries are non-negative

v =
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A matrix M ∈ R
n×n is Markov iff
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v =
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Theorem Every Markov matrix M has a stationary (or invariant)

distribution v: i.e., Mv = v.
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A matrix M ∈ R
n×n is Markov iff

• its columns sum to 1, and

• its entries are non-negative

M =




· 1
4
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0 · 0
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4

1
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
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A vector v ∈ R
n is a distribution iff

• its entries sum to 1, and

• its entries are non-negative

v =




2
5

0
3
5




Theorem Every Markov matrix M has a stationary (or invariant)

distribution v: i.e., Mv = v.

Theorem Every unichain Markov matrix M has a unique

stationary distribution v.
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• A communicating class is a maximal set of nodes such that every
node in the set is accessible from every other node: {1, 3}, {2}

• A closed class is a communicating class from which no nodes

outside the class are accessible: {1, 3}

• The transients are not members of any closed class: {2}
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• A communicating class is a maximal set of nodes such that every
node in the set is accessible from every other node: {1, 3}, {2}

• A closed class is a communicating class from which no nodes

outside the class are accessible: {1, 3}

• The transients are not members of any closed class: {2}

A Markov matrix M is unichain if it has exactly one closed class.
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Definition
f is asymptotically equal to g (i.e., f ∼ g) iff limǫ→0+

f(ǫ)
g(ǫ) = 1.

Examples
f(ǫ) g(ǫ)
1
2

1
2

ǫ− ǫ2 ǫ

2ǫ2 − 3ǫ4 2ǫ2



Exponentially Convergent Functions

• Outline

Why

What
• Markov Matrices and
Stationary Distributions

• The Geometry of
Markov Matrices
• Exponentially
Convergent Functions

• Perturbed Markov
Matrices and
Stochastically Stable
Distributions

How

Our Representation

Our Algorithm

An Example

Summary

13 / 48

Definition
f is asymptotically equal to g (i.e., f ∼ g) iff limǫ→0+

f(ǫ)
g(ǫ) = 1.

Examples
f(ǫ) g(ǫ)
1
2

1
2

ǫ− ǫ2 ǫ

2ǫ2 − 3ǫ4 2ǫ2

Definition
Let C

+ be the set of functions f(ǫ) that are asymptotically equal

to a positive exponential: i.e., f(ǫ) ∼ cǫr for some c, r ≥ 0.

Examples
f(ǫ) c r
1
2

1
2 0

ǫ− ǫ2 1 1
2ǫ2 − 3ǫ4 2 2
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A matrix Mǫ with entries in C
+ is called

perturbed Markov iff

• it is Markov

• it is unichain

for sufficiently small ǫ > 0.
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A matrix Mǫ with entries in C
+ is called

perturbed Markov iff

• it is Markov

• it is unichain

for sufficiently small ǫ > 0.
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Theorem Every perturbed Markov matrix

Mǫ has a unique stationary distribution vǫ

with entries in C
+.
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A matrix Mǫ with entries in C
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Theorem Every perturbed Markov matrix

Mǫ has a (unique) stochastically stable

distribution v0 = limǫ→0 vǫ.
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A matrix Mǫ with entries in C
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Theorem Every perturbed Markov matrix
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We give an efficient algorithm for computing the SSD of a PMM.
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Success!
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Markov Chain Tree Theorem The stationary distribution of a unichain
Markov matrix M is proportional to the vector wM of sums of aggregated
weights of its directed spanning subtrees.
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Markov Chain Tree Theorem In particular, the stationary distribution of a
PMM Mǫ is proportional to the vector wMǫ

of sums of aggregated weights
of its directed spanning subtrees.
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Markov Chain Tree Theorem In particular, the stationary distribution of a
PMM Mǫ is proportional to the vector wMǫ

of sums of aggregated weights
of its directed spanning subtrees.
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Markov Chain Tree Theorem In particular, the stationary distribution of a
PMM Mǫ is proportional to the vector wMǫ
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Gaussian Elimination
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Gaussian Elimination

Example Mǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

 

1 1 1

−2ǫ ǫ
1+2ǫ

0

!

2ǫ 1 + 2
−→

 

1 1 1

0
ǫ(3+4ǫ)
1+2ǫ

2ǫ

!

↓ 1+2ǫ
ǫ(3+4ǫ)

2

 

1 0 1
3+4ǫ

0 1 2+4ǫ
3+4ǫ

!

1 − 2
←−

 

1 1 1
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3+4ǫ

!

ssd (Mǫ) = lim
ǫ→0

 

1
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Definition Two PMMs, Mǫ and M ′
ǫ, are asymptotically equal (a.e.)

iff their entries are: i.e., (Mǫ)i,j ∼ (M ′
ǫ)i,j , for all i, j.

Definition Two PMMs are stochastically equal (s.e.) iff their

stationary distributions are asymptotically equal.

Theorem If two PMMs are a.e., then they are also s.e..

In particular, they have the same SSD.
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Definition Two PMMs, Mǫ and M ′
ǫ, are asymptotically equal (a.e.)

iff their entries are: i.e., (Mǫ)i,j ∼ (M ′
ǫ)i,j , for all i, j.

Definition Two PMMs are stochastically equal (s.e.) iff their

stationary distributions are asymptotically equal.

Theorem If two PMMs are a.e., then they are also s.e..

In particular, they have the same SSD.

Example

Mǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

and M ′

ǫ =

 

· ǫ

2ǫ ·

!

inv (Mǫ) =

 

1
3+4ǫ

2+4ǫ
3+4ǫ

!

and inv
`

M ′

ǫ

´

=

 

1
3
2
3

!

ssd (Mǫ) =

 

1
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2
3

!

= ssd
`
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Key Idea Represent the PMM Mǫ by a pair of real-valued matrices,

C and R, such that Mǫ ∼ CǫR.

Example

Mǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

∼

 

· ǫ

2ǫ ·

!

= M ′

ǫ

Mǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

∼ CǫR where C =

 

1 1

2 1

!

and R =

 

0 1

1 0

!
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Key Idea Represent the PMM Mǫ by a pair of real-valued matrices,

C and R, such that Mǫ ∼ CǫR.

Example

Mǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

∼

 

· ǫ

2ǫ ·

!

= M ′

ǫ

Mǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

∼ CǫR where C =

 

1 1

2 1

!

and R =

 

0 1

1 0

!

Theorem Addition and multiplication are well-defined on

asymptotic equivalence classes, while subtraction and division are

only defined in restricted cases: 2ǫ− 3ǫ, ǫ2

ǫ3
6∈ C

+.



Our Contributions

• Outline

Why

What

How

Our Representation
• Asymptotic
Equivalence

• Efficient
Representation

• Our Contributions

Our Algorithm

An Example

Summary

25 / 48

Geometric Approach: MCTT

• Using our representation, one can compute the SSD using MCTT

because C
+ is closed under addition and multiplication.

• But this approach is combinatorial (O(nn)).
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Geometric Approach: MCTT

• Using our representation, one can compute the SSD using MCTT

because C
+ is closed under addition and multiplication.

• But this approach is combinatorial (O(nn)).

Algebraic Approach: GE

• Using our representation, one cannot compute the SSD using GE
because C

+ is not closed under subtraction and division.



Our Contributions

• Outline

Why

What

How

Our Representation
• Asymptotic
Equivalence

• Efficient
Representation

• Our Contributions

Our Algorithm

An Example

Summary

25 / 48

Geometric Approach: MCTT

• Using our representation, one can compute the SSD using MCTT

because C
+ is closed under addition and multiplication.

• But this approach is combinatorial (O(nn)).

Algebraic Approach: GE

• Using our representation, one cannot compute the SSD using GE
because C

+ is not closed under subtraction and division.

• Our algorithm can be viewed as a careful implementation of GE.

◦ We subtract and divide only by elements of C
+ for which the

entries of the PMM remain exponentially convergent.

◦ E.g., We invert only unperturbed Markov matrices (O(n3)).
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A recursive algorithm calls itself on smaller problem instances.
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Theorem For any Markov matrix M :

• M restricted to each of its closed classes has a unique

stationary distribution.
• Every stationary distribution of M is a convex combination of the

stationary distributions of its closed classes.

• Every stationary distribution of M puts weight 0 on transients.
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Theorem For any PMM Mǫ:

• Its SSD is one of the stationary distributions of the unperturbed

matrix M0: Mǫvǫ = vǫ →M0v0 = v0.

• Hence, the is a convex combination of the stationary distributions

of the closed classes of M0.
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Theorem For any PMM Mǫ:

• Its SSD is one of the stationary distributions of the unperturbed

matrix M0: Mǫvǫ = vǫ →M0v0 = v0.

• Hence, the is a convex combination of the stationary distributions

of the closed classes of M0.

Corollary
If M0 is unichain, its unique stationary distribution is the SSD of Mǫ.
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A recursive algorithm calls itself on smaller problem instances.

Base Case

• If M0 is unichain, then the SSD of Mǫ is the unique stationary

distribution of M0.
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Reduce

• Reduce Mǫ to M̂ǫ by eliminating indices of Mǫ, so that M̂ǫ

contains only one representative of each SCC of M0.

• Along the way, record (multiples of) the stationary distributions of

the closed classes of M0 in the columns of a matrix i0.

• Key to the Recursion: The entries of the SSD of M̂ǫ are the

coefficients that combine the columns of i0 into the SSD of Mǫ.
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• Reduce Mǫ to M̂ǫ by eliminating indices of Mǫ so that M̂ǫ

contains only one representative of each SCC of M0.
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M̂ǫ = reduceǫ (Mǫ)

1. Λǫ = Mǫ − I

2. Λ̂ǫ = pǫΛǫiǫ, where

pǫ =
`

I −Nǫ Λǫ
−1

´

P and iǫ = P t

„

I

−Λǫ
−1
fNǫ

«

3. M̂ǫ = Λ̂ǫ + I

Here, P is a permutation matrix taking a subset of indices s ⊂ {1, . . . , n} of Λǫ to

the last |s| indices of Λǫ: PΛǫP
t =

 

fΛǫ Nǫ

fNǫ Λǫ

!

.
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Example s = {3}

Λǫ =

0

B

B

@

· 0 ǫ

2ǫ · 1
2

0 1
2

·

1

C

C

A

−→ cΛǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

pǫ =
`

I −Nǫ Λǫ
−1

´

P =

 

1 0 2ǫ
1+2ǫ

0 1 1
1+2ǫ

!

iǫ = P t

„

I

−Λǫ
−1
fNǫ

«

=

0

@

1 0
0 1
0 1

1+2ǫ

1

A

cΛǫ = pǫΛǫiǫ

=

 

1 0 2ǫ
1+2ǫ

0 1 1
1+2ǫ

!

0

B

B

B

@

· 0 ǫ

2ǫ · 1
2

0 1
2

·

1

C

C

C

A

0

@

1 0
0 1
0 1

1+2ǫ

1

A

=

0

@

−2ǫ ǫ
1+2ǫ

0

2ǫ − ǫ
1+2ǫ

0

1

A

0

@

1 0
0 1
0 1

1+2ǫ

1

A =

0

@

· ǫ
1+2ǫ

2ǫ ·

1

A
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Theorem When reducing one of M0’s closed classes, i0 records

(a multiple of) the stationary distributions of that class.

Example

lim
ǫ→0

iǫ = lim
ǫ→0

0

@

1 0
0 1
0 1

1+2ǫ

1

A =

0

@

1 0
0 1
0 1

1

A = i0
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Theorem When reducing one of M0’s closed classes, i0 records

(a multiple of) the stationary distributions of that class.

Example

lim
ǫ→0

iǫ = lim
ǫ→0

0

@

1 0
0 1
0 1

1+2ǫ

1

A =

0

@

1 0
0 1
0 1

1

A = i0

Theorem Up to normalization, i0 maps ssd
(
M̂ǫ

)
to ssd (Mǫ).

Example

ssd
“

cMǫ

”

∝

„

1
2

«

0

@

1 0
0 1
0 1

1

A

−→

0

@

1
2
2

1

A ∝ ssd (Mǫ)
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Observation By definition, Λ̂ǫ = Λ̃ǫ −N ǫ Λ
−1
ǫ Ñǫ, but

Λ̂′
ǫ ≡ Λ̃ǫ −N ǫ Λ

−1
0 Ñǫ yields essentially the same result.
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Observation By definition, Λ̂ǫ = Λ̃ǫ −N ǫ Λ
−1
ǫ Ñǫ, but

Λ̂′
ǫ ≡ Λ̃ǫ −N ǫ Λ

−1
0 Ñǫ yields essentially the same result.

Theorem M̂ǫ and M̂ ′
ǫ are stochastically equal.

Check

cMǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

and cM ′

ǫ =

 

· ǫ

2ǫ ·

!

inv
“

cMǫ

”

=

 

1
3+4ǫ

2+4ǫ
3+4ǫ

!

and inv
“

cM ′

ǫ

”

=

 

1
3
2
3

!

ssd (Mǫ) =

 

1
3
2
3

!

= ssd
`

M ′

ǫ

´
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Observation By definition, Λ̂ǫ = Λ̃ǫ −N ǫ Λ
−1
ǫ Ñǫ, but

Λ̂′
ǫ ≡ Λ̃ǫ −N ǫ Λ

−1
0 Ñǫ yields essentially the same result.

Theorem M̂ǫ and M̂ ′
ǫ are stochastically equal.

Check

cMǫ =

 

· ǫ
1+2ǫ

2ǫ ·

!

and cM ′

ǫ =

 

· ǫ

2ǫ ·

!

inv
“

cMǫ

”

=

 

1
3+4ǫ

2+4ǫ
3+4ǫ

!

and inv
“

cM ′

ǫ

”

=

 

1
3
2
3

!

ssd (Mǫ) =

 

1
3
2
3

!

= ssd
`

M ′

ǫ

´

Corollary Up to normalization, i0 maps ssd
(
M̂ ′

ǫ

)
to ssd (Mǫ).
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A recursive algorithm calls itself on smaller problem instances.

Base Case

• If M0 is unichain, then the SSD of Mǫ is the unique stationary

distribution of M0.

Step

• Reduce each of M0’s SCCs to one representative, recording the

corresponding transformations i0 to recover the SSD.
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Problem

What is the SSD of M̂ ′
ǫ =

(
· ǫ

2ǫ ·

)
? (NB: M̂ ′

0 is not unichain.)
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Problem

What is the SSD of M̂ ′
ǫ =

(
· ǫ

2ǫ ·

)
? (NB: M̂ ′

0 is not unichain.)

Scale

• Introduce at least one edge into G (M0) exiting a closed class.
The result is one fewer closed class or one additional SCC.

• Record the corresponding transformation i0 to recover the SSD.

• Two types of scaling: uniform and non-uniform.
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Example “Divide” Λǫ by 2ǫ.

Mǫ =

 

· ǫ

2ǫ ·

!

−→ M ′

ǫ =

 

· 1
2

1 ·

!

G (Mǫ)
1

2

2ǫ ǫ −→

G (M ′

ǫ)
1

2

1 1
2
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Example “Divide” Λǫ by 2ǫ.

Mǫ =

 

· ǫ

2ǫ ·

!

−→ M ′

ǫ =

 

· 1
2

1 ·

!

G (Mǫ)
1

2

2ǫ ǫ −→

G (M ′

ǫ)
1

2

1 1
2

Observation
G (M0) contains two singleton SCCs.

G (M ′
0) contains a non-singleton SCC.
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Example “Divide” Λǫ by 2ǫ.

Mǫ =

 

· ǫ

2ǫ ·

!

−→ M ′

ǫ =

 

· 1
2

1 ·

!

G (Mǫ)
1

2

2ǫ ǫ −→

G (M ′

ǫ)
1

2

1 1
2

Observation
G (M0) contains two singleton SCCs.

G (M ′
0) contains a non-singleton SCC.

Theorem inv (Mǫ) = inv (M ′
ǫ).

Corollary ssd (Mǫ) = ssd (M ′
ǫ).
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M ′ = scale (Mǫ, Dǫ)

1. Λǫ = Mǫ − I

2. Λ′

ǫ
= ΛǫDǫ

3. M ′

ǫ
= Λ′

ǫ
+ I
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M ′ = scale (Mǫ, Dǫ)

1. Λǫ = Mǫ − I

2. Λ′

ǫ
= ΛǫDǫ

3. M ′

ǫ
= Λ′

ǫ
+ I

Example If Mǫ =

(
· ǫ

2ǫ ·

)
and Dǫ =

(
1

2ǫ
0

0 1

2ǫ

)
,

then M ′

ǫ
= scale (Mǫ, Dǫ) =

(
· 1

2

1 ·

)
.
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Example “Divide” only the first two columns of Λǫ by ǫ2.

Mǫ =

0

@

· 0 ǫ3

ǫ5 · 1
2

0 ǫ2 ·

1

A −→ M ′′

ǫ =

0

@

· 0 ǫ3

ǫ3 · 1
2

0 1 ·

1

A

G (Mǫ)

1

2

3

ǫ2

ǫ3

ǫ5 1
2 −→

G (M ′′

ǫ )

1

2

3

1

ǫ3

ǫ3 1
2
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Example “Divide” only the first two columns of Λǫ by ǫ2.

Mǫ =

0

@

· 0 ǫ3

ǫ5 · 1
2

0 ǫ2 ·

1

A −→ M ′′

ǫ =

0

@

· 0 ǫ3

ǫ3 · 1
2

0 1 ·

1

A

G (Mǫ)

1

2

3

ǫ2

ǫ3

ǫ5 1
2 −→

G (M ′′

ǫ )

1

2

3

1

ǫ3

ǫ3 1
2

Dǫ =

0

B

@

1
ǫ2

0 0

0 1
ǫ2

0

0 0 1
ǫ2

1

C

A
and iǫ =

0

B

@

1 0 0

0 1 0

0 0 ǫ2

1

C

A

M
′

ǫ = scale (Mǫ, Dǫ)

M
′′

ǫ = scale
`

M
′

ǫ, iǫ
´
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Example “Divide” only the first two columns of Λǫ by ǫ2.

Mǫ =

0

@

· 0 ǫ3

ǫ5 · 1
2

0 ǫ2 ·

1

A −→ M ′′

ǫ =

0

@

· 0 ǫ3

ǫ3 · 1
2

0 1 ·

1

A

G (Mǫ)

1

2

3

ǫ2

ǫ3

ǫ5 1
2 −→

G (M ′′

ǫ )

1

2

3

1

ǫ3

ǫ3 1
2

Observation
G (M0) contains three singleton SCCs.

G (M ′′
0 ) contains a non-singleton SCC.
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Example “Divide” only the first two columns of Λǫ by ǫ2.

Mǫ =

0

@

· 0 ǫ3

ǫ5 · 1
2

0 ǫ2 ·

1

A −→ M ′′

ǫ =

0

@

· 0 ǫ3

ǫ3 · 1
2

0 1 ·

1

A

G (Mǫ)

1

2

3

ǫ2

ǫ3

ǫ5 1
2 −→

G (M ′′

ǫ )

1

2

3

1

ǫ3

ǫ3 1
2

Observation
G (M0) contains three singleton SCCs.

G (M ′′
0 ) contains a non-singleton SCC.

Theorem Up to normalization, iǫ maps inv (M ′′
ǫ ) to inv (Mǫ).

Corollary Up to normalization, i0 maps ssd (M ′′
ǫ ) to ssd (Mǫ).
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A recursive algorithm calls itself on smaller problem instances.

Base Case

• If M0 is unichain, then the SSD of Mǫ is the unique stable

distribution of M0.

Step

• Reduce each of M0’s SCCs to one representative, recording the

corresponding transformations i0 to recover the SSD.

• Once all M0’s SCCs are singletons, scale to introduce at least
one edge into G (M0) exiting a closed class, recording the

corresponding transformation i0 to recover the SSD.
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function SSD (Mǫ)

1. Calculate the communicating classes C of M0,

marking each as closed, transient, and/or singletons

2. If M0 has only 1 closed class

3. return (inv (M0))

4. If M0 has a non-singleton SCC

5.
(
Λ̂ǫ, i0

)
= collapse0 (Λǫ, C)

6. return
(
i∗0

(
SSD

(
M̂ǫ

)))

7. Else (if all M0’s SCCs are singletons)
8. (Λ′

ǫ, i0) = nonUniformScale (Λǫ, C)
9. Λ′′

ǫ = uniformScale (Λ′
ǫ, C)

10. return (i∗0 (SSD (M ′′
ǫ )))
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1
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1
2

1
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1
2

0

B
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B

B

B

@

·
1
2

0 0 ǫ3

1
2

· 0 0 0

0 ǫ5 ·
1
2

1
2

0 0 1
2

· 0

0 0 0 ǫ2 ·

1

C

C

C

C

C
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1

2 3

4

5

ǫ2ǫ3

ǫ5

1
2

1
2

1
2

1
2

1
2

0

B

B

B

B

B

@

−
1
2

1
2

0 0 ǫ3

1
2

· 0 0 0

0 ǫ5 ·
1
2

1
2

0 0 1
2

· 0

0 0 0 ǫ2 ·

1

C

C

C

C

C
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1

2 3

4

5

ǫ2ǫ3

ǫ5

1
2

1
2

1
2

1
2

1
2

0

B

B

B

B

B

@

−
1
2

1
2

0 0 ǫ3

1
2

· 0 0 0

0 ǫ5 ·
1
2

1
2

0 0 1
2

· 0

0 0 0 ǫ2 ·

1

C

C

C

C

C

A

reduce to

0

B

B

@

· 0 0 0

ǫ5 ·
1
2

1
2

0 1
2

· 0

0 0 ǫ2 ·

1

C

C

A

−

0

B

B

@

1
2
0
0
0

1

C

C

A

“

−
1
2

”

−1
“

1
2

0 0 ǫ3
”
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1 2

3

4

ǫ2

ǫ3

ǫ5

1
2

1
2

1
2

0

B

B

B

B

B

@

−
1
2

1
2

0 0 ǫ3

1
2

· 0 0 0

0 ǫ5 ·
1
2

1
2

0 0 1
2

· 0

0 0 0 ǫ2 ·

1

C

C

C

C

C

A

0

B

B

B

B

B

B

@

1 0 0 0
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Geometric Approach: MCTT

• Using our representation, one can compute the SSD using MCTT

because C
+ is closed under addition and multiplication.

• But this approach is combinatorial (O(nn)).
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Geometric Approach: MCTT

• Using our representation, one can compute the SSD using MCTT

because C
+ is closed under addition and multiplication.

• But this approach is combinatorial (O(nn)).

Algebraic Approach: GE

• Using our representation, one cannot compute the SSD using GE
because C

+ is not closed under subtraction and division.

• We give an efficient algorithm for computing the SSD of a PMM

that restricts the use of arithmetic operations.



References

• Outline

Why

What

How

Our Representation

Our Algorithm

An Example

Summary

• Our Contributions

• References

48 / 48

• J. Wicks. An Algorithm to Compute the Stochastically Stable Distribution of a
Perturbed Markov Matrix. PhD thesis, Department of Computer Science, Brown
University, Providence, May 2009

• Mark Friedlin and Alexander Wentzell. Random Perturbations of Dynamical
Systems, volume 260 of Grundlehren der mathematischen Wissenschaften.
Springer–Verlag, Berlin, 1984

• Anna Gambin and Piotr Pokarowski. A combinatorial aggregation algorithm for
stationary distribution of a large markov chain. In Fundamentals of Computation
Theory, volume 2138 of Lecture Notes in Computer Science, pages 384–387.
Springer, 2001

• Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University
Press, New York, 1985

• Michihiro Kandori, George J. Mailath, and Rafael Rob. Learning, mutation, and
long run equilibria in games. Econometrica, 61(1):29–56, January 1993

• H. Peyton Young. The evolution of conventions. Econometrica, 61(1):57–84,
January 1993


	Outline
	Why
	Equilibrium Selection Problem
	Adaptive Learning
	Perturbed Adaptive Learning
	Preliminary Experimental Results
	Preliminary Experimental Results (cont'd)
	Related Experimental Results

	What
	Markov Matrices and Stationary Distributions
	The Geometry of Markov Matrices
	Exponentially Convergent Functions
	Perturbed Markov Matrices andStochastically Stable Distributions

	How
	Numerical Method
	Numerical Method (cont'd)
	Geometric Approach for MMs
	Geometric Approach for PMMs
	Algebraic Approach for MMs
	Algebraic Approach for PMMs

	Our Representation
	Asymptotic Equivalence
	Efficient Representation
	Our Contributions

	Our Algorithm
	Recursive Algorithm
	Characterization of Stationary Distributions
	Characterization of Stochastically Stable Distributions
	Algorithm: Base Case
	Key Construction #1: Reduce
	Reduce Graphically
	Reduce Algebraically
	Reduce Algebraically (cont'd)
	Recovering Dynamics
	Recovering Dynamics (cont'd)
	Algorithm: Step 1
	Key Construction #2: Scale
	Uniform Scale
	Scale Algebraically
	Non-uniform Scale
	Algorithm: Step 2
	Pseudocode

	An Example
	An Example

	Summary
	Our Contributions
	References


