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Abstract

We examine the use of single-agent and representative-agent models to describe the

aggregate behavior of heterogeneous quantal responders. We consider heterogeneous

quantal response functions arising from a distribution of distributions of payoff shocks.

A representative agent would have the average quantal response function. Weakening

a standard assumption about the admissible distributions of payoff shocks, we show

existence of a representative agent. However, this representative agent does not have

a representative distribution of payoff shocks, nor any iid distribution in large enough

games. We consider a specific case of heterogeneous logit responders and find that a

mis-specified homogenous logit parameter will have downward bias.

KEYWORDS: quantal response equilibria, bounded rationality, representative

agent, heterogeneity, logit response
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1 Introduction

Quantal response equilibrium extends the Nash Equilibrium notion to allow bounded

rationality. Players can be seen as making errors while trying to choose optimal

strategies, or equivalently, as observing payoffs disturbed by idiosyncratic noise. The

result is that players may select any action with positive probability assigned by their

quantal response functions.

This paper introduces a general model of quantal response equilibrium with het-

erogeneous agents. We show that the aggregate behavior of a population of hetero-

geneous agents can be captured by a representative agent. But, the representative

agent may be very different than the actual agents in the population. This illustrates

the need to consider heterogeneity and offers insight for how to work around that

heterogeneity with representative-agent models. After presenting the representative-

agent picture, which allows for arbitrary distributions of payoff noise and applies for

all normal form games, we then consider logit responses in the context of a single

choice between two pure strategies that is part of a fixed game. We find that in a

heterogeneous population of agents, all having their own logit rationality parame-

ters, a mis-specified homogenous logit parameter will always exhibit a downward bias

making the population appear to be less rational.

We consider structural quantal response equilibria (QRE) [21, 11] in the context of

a population game. In a large population of agents, we should expect heterogeneity

of behavior [18, 20]. A population of quantal responders should consist of agents
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who may have different error rates, or different distributions of payoff noise. In fact,

McKelvey, et. al. [22] find experimental evidence for heterogeneous error distributions

in trying to fit logit QRE to data on two-by-two asymmetric games. 1

Prior research into quantal response equilibria with heterogeneous agents has con-

sidered a distribution of parameters which parametrize the distributions of payoff

noise [24], with particular interest in distributions of logit responders [4]. Here, we

model heterogeneous distributions of payoff noise with a functional defined over dis-

tribution functions. As we do not assume that distributions of payoff noise take any

particular functional forms, this approach allows for more distribution functions than

can be described with finitely many parameters.

Our interest is in the behavior of an entire population, and we seek a represen-

tative agent whose mixed strategy quantal response always matches the population

aggregate. We need representative-agent models because while we believe people re-

ally are heterogeneous, we cannot determine each person’s quantal response function

individually when we fit data. The representative agent is what we can estimate in

an experiment.

With weak assumptions on the agents’ distributions of payoff noise we prove exis-

tence of a representative agent. However, the distribution of payoff disturbances nec-

essary to produce representative choices is not representative of the noise the actual

1Further motivation to consider heterogeneity in a population of quantal responders comes from

recent findings that models of heterogeneous learners often cannot be adequately approximated by

representative-agent models with common parameter values for all [26, 15, 12].
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agents observe in their payoffs. We show that in games with enough pure strategies, a

representative agent could not have payoff disturbances independent and identically

distributed across actions even if the actual agents did. On the other hand, we find

that if agents all use regular quantal response functions (as defined by Goeree, et. al.

[11]), then the representative agent’s quantal response must also be regular. Different

roles in asymmetric games will in general have different representative agents.

Much of the QRE literature looks to the logit equilibrium in particular to explain

experimental data [5, 8, 10, 6, 1]. Because of the prominence of this logit response

specification, we consider a population of heterogeneous logit responders as a special

case. Our interest here is how a mis-specified homogenous logit model misrepresents

the heterogeneous agents. Because the representative agent for the population is

not itself a logit responder, the homogenous model cannot explain equilibrium choice

probabilities and payoffs in a choice between more than two actions. When the

population has just two pure strategies, we find that the homogenous logit parameter

is systematically biased below the average value of the heterogeneous logit parameters.

We describe the extent of this bias as it varies with the difference in the two strategies’

equilibrium payoffs.

Nash proposed a population game interpretation of equilibrium in his unpublished

PhD dissertation [25]. Following his lead, we assume that there is a population of

agents for each position of a game. A generic n-player game involves n populations of

agents, but if multiple players have identical roles and we adopt the restriction that

players in identical roles should play identical population mixed strategies, then these
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players may be selected from the same population. So, in a totally symmetric game,

we may have only a single population of agents. We assume the populations are large,

and we are interested in the fraction of a population playing a given strategy. An

agent’s payoff is the average of his payoffs against all other combinations of agents

(or equivalently his expected payoff given random matching).

Population games provide a framework for the use of evolutionary learning dy-

namics. Learning rules that assume that players noisily best respond often converge

to QRE [7, 17, 19, 16, 2]. This paper focuses on the QRE itself and not on any partic-

ular learning rule that might lead to it. Population games also describe experimental

settings well, as data is accumulated through the randomly matched interactions of

many subjects.

This paper is organized as follows. Section 2 introduces the notation in the context

of a single population and provides definitions of a QRE and a representative agent.

Section 3 contains our general results describing a representative agent. In Section 4,

we extend our framework and our results to n-player asymmetric games. Section 5

focuses on logit responders, and section 6 concludes. The Appendix contains proofs

omitted from the text.

2 A Single Population

To simplify the presentation, we begin with a single population of agents. The context

can be thought of as a symmetric game or alternatively a single player decision subject
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to incomplete information. In Section 4, we show how to apply these results to general

n-player asymmetric games.

Let S = {s1, . . . , sJ} be the set of pure strategies available to the agents. The

collective play of all the agents defines the population mixed strategy x. Formally,

x ∈ 4J−1, the (J − 1)-dimensional simplex where xj ≥ 0 for all j and
∑

j xj = 1.

A structural QRE arises when agents’ utility functions are modified by noise terms,

privately observed stochastic payoff disturbances. Denote by πj the payoff from taking

pure strategy sj. Of course, payoffs are a function of the strategies used by all

the players, πj = πj(x), but we omit the function’s argument for ease of notation.

Also denote the vector π = π1, . . . , πJ . Formally, π : 4J−1 → <J . For each pure

strategy sj, agent µ observes a payoff disturbance εµj , making agent µ’s disturbed

payoff πµj = πj + εµj . This is the function agents maximize with their choice of

strategy in a QRE.

The distribution of payoff disturbances is assumed to be admissible, meaning that:

(a1) the disturbances are independent across agents;

(a2) each agent has an absolutely continuous joint distribution of (εµ1 , . . . , ε
µ
J), i.e.,

all marginal densities exist;

(a3) disturbances are unbiased in the sense that they all have mean zero.

Allowing only admissible distributions guarantees the existence of a QRE. Here, we

make the additional assumption that for each agent, disturbances are independent

and identically distributed (iid) across the set of actions. This assumption could
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be relaxed, but some such restriction is necessary for the QRE notion to produce

falsifiable predictions [14].

When the setup for QRE does not explicitly involve populations of agents, it is

assumed that each player has a distribution of payoff disturbances. In the context of

a population game, this corresponds to each agent within the population having an

identical distribution of disturbances. That is, the convention is to assume homoge-

nous populations. Here, we specifically want to leave open the possibility that agents

in the same population have different distributions of payoff shocks. So, we do not

assume identical distributions of εµj for all µ.

To model heterogeneity in the distributions of payoff disturbances, consider a

functional defined over such distributions. Let Pε(·) be a distribution function for

the payoff disturbance to a particular action. Each agent has a distinct Pε, which

then applies to εµj for all 1 ≤ j ≤ J , i.e., is the same for all actions in that agent’s

strategy space. Define a functional Fε[Pε] that associates to each distribution function

Pε a probability mass or density describing the fraction of the population with payoff

disturbances distributed by Pε. Technically, we make use of a second functional Iε[Pε]

that equals 1 to indicate a mass point on Pε and 0 to indicate that Fε[Pε] represents

a probability density. For this to make sense we require Iε[Pε] = 1 for only countably

many Pε and ∑
Pε:Iε[Pε]=1

Fε[Pε] +

∫
Pε:Iε[Pε]=0

Fε[Pε] dPε = 1.

The appropriate measure dPε depends on the particular form of the heterogeneity.
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In this approach, the functional captures a distribution of distributions of payoff

shocks in the population. It thus provides a general way to think about heterogeneity

of quantal responses. The conventional assumption of a homogenous population can

be recaptured, for example, by taking Fε[Pε] = 1 for a particular Pε and 0 everywhere

else.

The quantal response function for each agent returns the agent’s likelihood of

choosing each strategy given the agent’s undisturbed payoffs. Let Qµ
j (π) be the prob-

ability that agent µ selects strategy sj given the payoffs to each strategy. Formally,

for any vector π′ = (π′1, . . . , π
′
J) ∈ <J , define

Rµ
j (π′) = {(εµ1 , . . . , ε

µ
J) ∈ <J : π′j + εµj ≥ π′j′ + εµj′ for all j′ = 1, . . . , J}

to be the set of realizations of agent µ’s joint set of payoff disturbances that would

lead to choosing action sj. Then Qµ
j (π) = Prob

{
(εµ1 , . . . , ε

µ
J) ∈ Rµ

j (π)
}

.

The quantal response functions for all the agents can be aggregated across the

population to give the population mixed strategy response to agents’ choices at any

given population mixed strategy. In a finite population of m agents, the population

aggregate quantal response isQj = 1
m

∑m
µ=1Q

µ
j for all j. More generally, the aggregate

quantal response in an infinite population is

Qj =
∑

Pε:Iε[Pε]=1

Fε[Pε]Q
µ
j +

∫
Pε:Iε[Pε]=0

Fε[Pε]Q
µ
j dPε (1)

where we abuse notation by letting µ = µ(Pε) be an agent with payoff disturbances

iid from Pε.
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We can now define a quantal response equilibrium and then formally describe a

representative agent for this heterogeneous population.

Definition A quantal response equilibrium is defined by the fixed point equation

xj = Qj (π(x)) for all j.

Definition A representative agent has a quantal response function Q̂(π) equal to the

population aggregate quantal response function:

Q̂ = (Q1, . . . , QJ). (2)

For all games, the population as a whole behaves exactly as if it were homogenously

composed of representative agents.

Strategy choices are determined by the differences between disturbed payoffs, so

the most relevant variables are the differences between payoff shocks, δµjj′ = εµj −

εµj′ . These δµjj′ are identically distributed across all j, j′ 6= j because the εµj are iid

across all j. By absolute continuity, the marginal densities exist, and by symmetry,

they are even functions. But, there is obviously dependence among these random

variables across j and j′. We will consider the (J − 1)-dimensional random vector

δµj =
(
δµ1j, . . . , δ̂

µ
jj, . . . , δ

µ
Jj

)
for a particular j, which then determines the value of

δµj′ for all other j′. Note that admissibility of the payoff disturbances implies δµj has

zero mean because all the εµj have zero mean. Let Pδµ
j′

: <J−1 → [0, 1] be the joint

distribution function of δµj′ . Then

Qµ
j (π) = Pδµ

j′
(πj − π1, πj − π2, . . . , πj − πJ), (3)
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naturally omitting πj − πj just as we did δµjj.

Heterogeneity in the distributions of payoff shocks leads to heterogeneity in the

distributions of the differences between payoff shocks. That is, the functional over

Pε induces a functional defined on the joint distributions for δµj . Let P (·) be a joint

distribution function of δµj for some µ and any j in 1, . . . , J . Let P be the set of Pε(·),

distribution functions of εµj , which give rise to P (·). If there exists a Pε ∈ P such that

Iε[Pε] = 1, then define I[P ] = 1 and

F [P ] =
∑

{Pε:Iε[Pε]=1,Pε∈P}

Fε[Pε].

Otherwise, define I[P ] = 0 and

F [P ] =

∫
Pε∈P

Fε[Pε] dPε.

Note that there are joint distribution functions that could not apply to any δµj because

they do not describe differences between iid random variables, and our definition

implies F = 0 for these functions.

In an abuse of notation, we will use
∫
dP as a shorthand for

∑
P :I[P ]=1

+

∫
P :I[P ]=0

dP.

This notation will be used even when there are mass points and is not meant to suggest

their exclusion. It merely reflects our desire not to worry about the particular form

the heterogeneity takes.

Our definition of a representative agent can now be translated into a statement

about the representative joint distribution of differences between payoff shocks. It
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means the representative agent has δj distributed according to a joint distribution

function P̂ (·) such that

P̂ =

∫
F [P ]P dP. (4)

The representative agent’s quantal response function can then be found by using P̂

in Equation (3). This provides a working definition of a representative agent that is

more useful than Equation (2).

Given a functional that describes the heterogeneity of the population, we can use

characteristic functions to identify a representative agent. This approach is effective

because there is a bijection between distribution functions and characteristic func-

tions. Let θ : < → C be the characteristic function of a payoff disturbance εj with

distribution function Pε(·),

θ(t) = E(eitεj).

Note that θ is a complex-valued function of a single real variable and θ(−t) = θ̄(t). It

must be uniformly continuous and non-negative definite and satisfy θ(0) = 1, |θ(t)| ≤

1, properties which can be used to define an arbitrary characteristic function. Take

φ : <J−1 → C to be the characteristic function associated with the joint distribution

P (·) of δj. We still write φ(t), now assuming t = (t1, . . . , tJ−1) to be a vector in <J−1.

12



We can express φ in terms of θ,

φ(t) = E(eit·δj)

= E(eit1δ1j · · · eitJ−1δJj)

= E(eit1(ε1−εj) · · · eitJ−1(εJ−εj))

= E(eit1ε1) · · ·E(eitJ−1εJ ) · E(e−i(
PJ−1
l=1 tl)εj)

= θ(t1) · · · θ(tJ−1) · θ(−
J−1∑
l=1

tl). (5)

In addition to the properties just mentioned, we also know that if
∑J

l=1 rl = 0, then

φ(r1, . . . , r̂j, . . . , rJ) is independent of j, because by Equation (5) it has the same

expansion in terms of θ for all j. If there are only two actions, J = 2, then φ is

real and positive because P is symmetric. The functional Fε induces a distribution

over characteristic functions Ψε[θ] = Fε[Pε], with Υε[θ] = Iε[Pε]. Similarly, define

Ψ[φ] = F [P ] along with Υ[φ] = I[P ].

Let

φ̂(t) =

∫
Ψ[φ]φ(t) dφ. (6)

This representative characteristic function can be constructed by taking the integral

pointwise, i.e., independently for every value of t. Fixing the input point t, we know

that the functional integral
∫

Ψ[φ]φ(t) dφ always converges because |φ(t)| ≤ 1. (The

abuse of notation in this context is the same as for the functional over distribution

functions.)
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3 A Representative Agent

The first issue to address is whether a representative agent exists. Theorem 1 tells

us that there is only one pathological type of heterogeneity for which the population

does not have a representative agent. The joint distribution function P̂ (·) can be

constructed given the functional F [P ] describing the heterogeneity in the population,

but there is a danger that it is not an admissible distribution function. Specifically, it

may fail to have finite mean. A particular consequence of the theorem is the fact that

a representative agent is sure to exist whenever only finitely many different distribu-

tion functions are in use in the population. Alternatively, relaxing the requirement

that distributions of disturbances have zero mean also ensures the existence of a

representative agent.

Theorem 1 Define P̂ (·) as in Equation (4). If P̂ (·) has finite mean, then a repre-

sentative agent exists with δj distributed by P̂ (·) and having characteristic function

φ̂(t).

Proof It is well known that the maps between distribution functions and character-

istic functions are linear. Apply the Levy continuity theorem to Equation (6). This

requires φ̂(t) to be continuous at t = 0, which we establish with Lemma 1 in the

Appendix. Lemma 2 in the Appendix establishes that the mean of P̂ (·) is 0 if it

exists, and thus P̂ (·) is admissible when this is the case.

Corollary 1 If F [P ] > 0 for only finitely many joint distribution functions P (·),

then a representative agent exists.
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Proof The only source for divergence of the mean of P̂ (·) is the limit that results

from F [P ] > 0 for infinitely many P . All the joint distribution functions in the

support of F have zero mean, so a finite linear combination of them also describes a

random vector with zero mean. Then Theorem 1 applies.

Taking a closer look at an example P̂ (·) that has divergent mean and thus fails

to be an admissible joint distribution function offers insight into how such cases

arise. For simplicity, assume J = 2. The example works just as well with more pure

strategies, but the notation becomes cluttered. Partition the set of joint distribution

functions P (·) into Py such that P (·) ∈ Py implies P (ey) ≤ 1 − α for some fixed

positive α < 1
2
. This partition is not uniquely determined, but as long as the Py are

non-empty, it will do. Consider the functional F [P ] where

∫
Py
F [P ] dP =


e−y for y ≥ 0

0 for y < 0.

Then the mean of P̂ (·) is divergent because∫ ∞
0

δ dP̂ (δ) =

∫ ∞
0

δ

∫ ∞
0

∫
Py
F [P ]P ′(δ) dP dy dδ

≥
∫ ∞

0

∫
Py
F [P ]

∫ ∞
ey

δ P ′(δ) dδ dP dy

≥
∫ ∞

0

∫
Py
F [P ]αey dP dy

=

∫ ∞
0

α dy.

Admissibility requires P̂ (·) to have zero mean, but when this fails, we shouldn’t

conclude that a representative quantal response function does not exist. Instead, we
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can relax the requirements of admissibility to guarantee that a representative agent

always exists. The restriction to zero mean payoff disturbances is not necessary for

the existence of a QRE, as fixed point theorems can be applied without it. The desire

for unbiased disturbances appears to be aesthetic, and the possible inadmissibility of

representative agents is an artifact of the way it is implemented. Consider replacing

the zero mean assumption (a3) with the following alternative:

(a3’) the Cauchy principal value of the mean of each payoff disturbance is zero2, and

lim
ε→∞

εProb
{
|εµj | ≥ ε

}
= 0 for each εµj .

Assumption (a3’) holds whenever assumption (a3) is satisfied, so this is a weaker

condition to impose on the payoff disturbances. Even though the mean of εµj may blow

up under assumption (a3’), these disturbances are still unbiased, and their likelihood

still decays sufficiently quickly as they get large.

Definition We say payoff disturbances are weakly admissible if assumptions (a1),

(a2) and (a3’) hold.

With just this slight relaxation of admissibility, we always get a representative agent.

Corollary 2 Allow weakly admissible payoff disturbances. A representative agent

exists with δj distributed by P̂ (·) and having characteristic function φ̂(t).

Proof Lemma 2 shows that P̂ (·) always satisfies the weak admissibility assumption

2The Cauchy principal value of an improper integral
∫∞
−∞ f(t) dt is defined as limT→∞

∫ T
−T f(t) dt.
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(a3’). In turn, there exists a joint distribution of (ε1, . . . , εJ) that satisfies (a3’) and

is consistent with δj being distributed by P̂ (·).

We have defined a representative agent with the property that the agent’s choice

of strategy is representative of the population as a whole. We now show that this

is not equivalent to having representative noise in the underlying payoffs. We say

P̂ε(·) is a representative distribution of payoff shocks if it is a (weakly) admissible

distribution function and

P̂ε =

∫
Fε[Pε]Pε dPε. (7)

By applying the Levy continuity theorem here too, we find that a representative

distribution of payoff shocks has characteristic function θ̂(t) =
∫

Ψε[θ] θ(t) dθ. With

this groundwork in place, we are ready for Theorem 2, which says that a representative

quantal response function does not arise from a representative distribution of payoff

shocks.

Theorem 2 A representative agent has a representative distribution of payoff shocks

if and only if the population is homogenous.

Proof Let Θ be the set of characteristic functions of εj that give rise to a given

φ(·). Using Equation (5), Θ = {θ : φ(t) =
(∏J−1

l=1 θ(tl)
)
· θ(−

∑J−1
l=1 tl)}. From the

relationships between the functionals, we have

Ψ[φ] =

∫
Θ

Ψε[θ] dθ if Υ[φ] = 0

∑
{θ∈Θ:Υε[θ]=1}

Ψε[θ] if Υ[φ] = 1.
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We can then express a representative agent’s characteristic function for δj as

φ̂(t) =

∫
Ψε[θ]

(
J−1∏
l=1

θ(tl)

)
θ(−

J−1∑
l=1

tl) dθ.

But

∫
Ψε[θ]

(
J−1∏
l=1

θ(tl)

)
θ(−

J−1∑
l=1

tl) dθ 6=

(
J−1∏
l=1

∫
Ψε[θ] θ(tl) dθ

)
·
∫

Ψε[θ] θ(−
J−1∑
l=1

tl) dθ

(8)

unless for each tl, θ(tl) is the same for all θ in the support of Ψε. Since tl is an

arbitrary variable, this would mean there could only be one function in the support

of Ψε, i.e., no heterogeneity of distributions of payoff shocks in the population.

In light of the fact that a representative agent for a heterogeneous population does

not have a representative distribution of payoff shocks, the question arises as to what

distribution of payoff shocks could actually produce a representative agent. According

to the next result, if there are enough actions and there is heterogeneity of the δjj′ ,

then the representative agent cannot arise from any distribution of payoff shocks that

is iid across the set of actions. Theorem 3 says that if there are just two actions,

there is an iid distribution of payoff shocks (possibly many such distributions) that

generates the representative agent. But, if there are at least four actions, assuming

heterogeneity of the δjj′ , it is impossible for an iid distribution of payoff shocks to

generate the representative agent.3

3Examples indicate that when there are three actions, the representative agent usually cannot

arise from iid shocks, but we cannot rule out special cases of heterogeneity for which the represen-

tative agent is compatible with iid disturbances.
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Theorem 3 Given a representative agent, if J = 2, there exists a distribution of

payoff shocks iid across all actions and each with characteristic function ϑ̂(·) such

that

φ̂(t) =

(
J−1∏
l=1

ϑ̂(tl)

)
· ϑ̂(−

J−1∑
l=1

tl). (9)

But, when J ≥ 4, there is no ϑ̂(·) that satisfies Equation (9) unless every Pε(·) in the

support of Fε gives the same distribution of the δjj′.

Proof When J = 2, we must find a ϑ̂(·) such that φ̂(t1) = ϑ̂(t1) · ϑ̂(−t1). Recall

J = 2 implies that all φ(·) are real and positive, and hence so is φ̂. It suffices to take

ϑ̂(t1) = ϑ̂(−t1) =

√
φ̂(t1).

Now consider J ≥ 4. Given that individual agents do have payoff shocks that

are iid across all actions, any φ(·) in the population can be expressed in terms of

θ(·) with Equation (5). Specifically, φ(a,−a, a, 0, · · · , 0) = (θ(a)θ(−a))2. Similarly,

φ(a, 0, · · · , 0) = θ(a)θ(−a). Thus,

φ(a,−a, a, 0, · · · , 0) = (φ(a, 0, · · · , 0))2 .

But ∫
Ψ[φ]φ(a,−a, a, 0, · · · , 0) dφ 6=

(∫
Ψ[φ]φ(a, 0, · · · , 0) dφ

)2

unless there is no variance of θ(a)θ(−a) in the population. Note that δjj′ has charac-

teristic function θ(t)θ(−t). Thus, if there are two distribution functions in the support

of Fε[Pε] that give different distributions of δjj′ , then for some a,

φ̂(a,−a, a, 0, · · · , 0) 6=
(
φ̂(a, 0, · · · , 0)

)2

.
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This would mean φ̂(·) could not be expressed as
(∏J−1

l=1 ϑ̂(tl)
)
· ϑ̂(−

∑J−1
l=1 tl) for any

ϑ̂(·).

Theorem 3 sounds a cautionary note that even if we believe all agents have noise

in their payoffs that is iid across their actions, heterogeneity of the agents leads the

population as a whole to behave as if payoff disturbances were not iid across actions.

We desired agents with payoff noise iid across actions because this assumption im-

poses restrictions on behavior that can be tested empirically. Although it turns out

the representative agent may not have payoff noise iid across actions, the represen-

tative agent notion still has empirical content because some properties are inherited

from the underlying agents.

Goeree, et. al. [11] introduce four axioms which define a regular quantal response

function Qµ : <J →4J−1 without reference to payoff noise:

(A1) Interiority: Qµ
j (π) > 0 for all j = 1, . . . , J and for all π ∈ <J .

(A2) Continuity: Qµ
j (π) is a continuous and differentiable function for all π ∈ <J .

(A3) Responsiveness:
∂Qµj (π)

∂πj
> 0 for all j = 1, . . . , J and for all π ∈ <J .

(A4) Monotonicity: πj > πj′ implies Qµ
j (π) > Qµ

j′(π), for all j, j′ = 1, . . . , J .

They argue that all quantal response functions obey Continuity and weakly obey

Responsiveness. If the density of payoff disturbances has full support, then Interiority

and Responsiveness are strictly satisfied. When payoff disturbances are iid across

actions, then the quantal response function obeys Monotonicity as well.
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We now show that any regularity property that holds for the underlying agents in

the population also holds for the representative agent.

Theorem 4 If a regularity axiom {(A1), (A2), (A3), or (A4)} applies to Qµ for all

µ (i.e., for µ = µ(P ) whenever P (·) is in the support of F ), then that axiom applies

to the representative agent’s quantal response function Q̂.

Proof Continuity holds for all quantal response functions as a result of the admissi-

bility assumption (a2) that distributions of payoff noise must be absolutely continuous

[11]. Interiority, Responsiveness, and Monotonicity each follow from Equations (1)

and (2), which define a representative agent. Essentially, we just use the fact that an

integral (or sum) must be positive if the integrand (summand) is always positive. For

Responsiveness, we pass the partial derivative inside the integral and sum in Equa-

tion (1). For Monotonicity, we express Q̂j(π) − Q̂j′(π) using Equation (1) and then

pair up terms to form a single sum and integral.

Theorem 4 tells us that in our framework, the representative agent’s quantal re-

sponse function always satisfies Monotonicity. It is this Monotonicity property that

carries empirical content. In principle, subjects in an experiment could violate Mono-

tonicity and choose actions with lower payoffs more often than actions with higher

payoffs. This would be inconsistent with the predicted behavior of the representative

agent.
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4 Asymmetric Games

All of these results, initially presented in the context of a single population, apply

to general asymmetric games. Consider a normal form game with n populations of

agents. The strategy sets may differ across players, so we let Si = {si1, . . . , siJi} be

the set of pure strategies available to agents in population i. Now x = x1 × · · · × xn

denotes the mixed strategy profile across all n populations in the game, with each

mixed strategy vector xi = (xi1, . . . , xiJi) ∈ 4Ji−1.

The vector πi = πi1, . . . , πiJi denotes the payoff to agents in population i from

their available pure strategies. Now, πi : 4J1−1 × · · · × 4Jn−1 → <Ji . Agent µ

observes payoff disturbances εµij for each strategy. The variables δµijj′ = εµij − εµij′

and δµij =
(
δµi1j, . . . , δ̂

µ
ijj, . . . , δ

µ
iJij

)
are similarly defined for each population. The

quantal response functions Qµ
ij(πi) depend on the payoffs in population i, which in

turn depend on the entire n-population mixed strategy profile x. Thus, Equation (3)

applies for each i. The functionals also have to be indexed for the population so that

F i
ε [Pε] describes the fraction of population i with payoff disturbances distributed by

Pε and each F i
ε induces a F i[P ], Ψi

ε[θ], and Ψi[φ]. Equation (1) now applies for each

i, making (Qi1, . . . , QiJi) the ith population aggregate quantal response. The fixed

point equation defining a quantal response equilibrium becomes xij = Qij (πi(x)) for

all i ∈ 1, . . . , n and all j ∈ 1, . . . , Ji.

Theorem 1 now describes the existence of a representative agent for population

i with δij distributed by the joint distribution function P̂ i(·) and having charac-
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teristic function φ̂i(t). For each i, these representative functions are given by Equa-

tions (4) and (6), just as before. And Theorems 2, 3, and 4 apply to the representative

agent from any given population.

However, while obtaining representative agents for each role in the game, we

caution that there is no reason to assume the existence of a single representative

agent the same for all players of an asymmetric game. Such an assumption would

deny heterogeneity across the different roles of the game. And given the fact that a

representative agent does not have a representative distribution of payoff shocks and

that different players may have different strategy sets, it’s not clear exactly what is

meant by a single representative agent for all players of an asymmetric game. The

problem is that we want to have a representative quantal response function Q̂ij(·)

that is independent of i, for each fixed j, but this does not make sense when the set

of actions j depends on i.

Here, we say that there is a single representative agent for all players if there exist

P̂ i such that Ji1 ≤ Ji2 implies that for all ($1, . . . , $Ji2
) and any j ≤ Ji1 ,

Q̂i1j($1, . . . , $Ji1
) = lim

$Ji1+1→−∞
· · · lim

$Ji2
→−∞

Q̂i2j($1, . . . , $Ji2
).

With this definition, we single out the representative agent from a population i that

maximizes Ji. We can think of this agent with δij distributed by P̂ i(·) as represen-

tative of all players in all roles by assuming that when playing a role with too few

possible actions, the agent imagines there are additional actions with infinitely nega-

tive payoffs. In the particular case that all players have the same number of actions,
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Ji = J for all i, a single representative agent for all players would have differences in

payoff shocks jointly distributed by a P̂ that satisfies P̂ = P̂ i for all i. The repre-

sentative agent for each population would have to be the same. There are plenty of

QRE which are incompatible with identical representative agents for all populations,

as the following game illustrates.

Asymmetric Matching Pennies

Left Right

Up 9, -1 -1, 1

Down -1, 1 1, -1

Goeree, et. al. [11] analyze the asymmetric matching pennies game shown above

and find the set of possible QRE is the rectangle 1
6
< p < 1

2
, 1

2
< q < 1, where

p is the probability the column player chooses left and q is the probability the row

player chooses up. However, given the restriction that representative row and column

players have the same quantal response function, a QRE must satisfy the additional

constraint q < 3p if and only if q > 1 − p. This is because q < 3p means that

π2R − π2L < π1U − π1D, i.e., the cost of an error is higher for the row player, and

must lead to relatively fewer errors by the row player, q > 1 − p. The converse

holds equivalently. Note also that if both row and column players use identical logit

responses, the set of possible QRE is reduced to a curve extending from the center of

the strategy space to the Nash Equilibrium (p = 1
6
, q = 1

2
) [21]. In summary, unlike

the existence of a representative agent for each population, we do not necessarily have
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a single representative agent for all players.

5 Logit Responders

Most of the literature on QRE has assumed that the payoff disturbances are all

independently drawn from an extreme value distribution, which generates tractable

logit response functions:

xij(πi) =
eλπij∑Ji
l=1 e

λπil
(10)

where the parameter λ can be interpreted as the agents’ level of rationality. As λ goes

to infinity, agents best respond perfectly, producing a Nash Equilibrium. Conversely,

as λ tends to zero, agents play the uniform mixed strategy, choosing each action with

the same probability without regard to payoffs.

We now assume agents’ quantal response functions take this logit form, but we

preserve heterogeneity in the populations by allowing the agents to have their own

individual rationality parameters. Thus,

Qµ
ij(πi) =

eλµπij∑Ji
l=1 e

λµπil
. (11)

For the purposes of this section, it suffices to consider finite populations of agents, so

xij =
1

mi

mi∑
µ=1

Qµ
ij (12)

for all i and j.

It would be straightforward to apply the results from Section 3 and identify repre-

sentative agents. In a truly heterogeneous population, i.e., with logit parameters not
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all degenerate, the representative agent will not be a logit responder. In this section,

we see what happens when a theorist tries to force a homogenous logit equilibrium

model on a population that is actually heterogeneous. Because the homogenous logit

equilibrium is a mis-specified model of the populations we’re assuming, the value of

the single logit parameter will vary with the game being considered. But, a single

logit parameter value can explain any particular choice probabilities between two ac-

tions if payoff monotonicity is preserved (i.e., if choice probabilities are increasing in

the payoffs). For this reason, we restrict attention to a population with two pure

strategies taking part in a (possibly larger) fixed game.

We identify a downward bias in the single logit parameter determined by the mis-

specified homogenous model as compared with the average of the true logit parameters

in use. Thus, the population seems to behave less rationally if the modeler believes

the agents are all alike when in fact they each have their own levels of rationality.

This bias is exacerbated as the magnitude of the difference in payoffs between the

two actions grows.

First, we present a formula relating the logit parameter of the homogenous model

to the true logit parameters and the equilibrium payoffs in the heterogeneous model.

Let Ji = 2 in a particular population i. Fix equilibrium choice probabilities and

payoffs in accordance with Equations (11) and (12), and denote them x∗i and π∗i

respectively in population i. Assume a game in which the equilibrium payoffs to

the two actions in population i are not equal, π∗i1 6= π∗i2. Denote by λ the logit

parameter of the homogenous model describing behavior in population i. We can
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use Equation (10) to express λ in terms of the choice probabilities and payoffs in

population i. The ratio of the choice probabilities is
x∗i1
x∗i2

= eλ(π∗i1−π∗i2). Thus,

λ =
1

π∗i1 − π∗i2
ln

(
x∗i1
x∗i2

)
. (13)

Equation (13) could also be derived as the maximum likelihood estimate of the ho-

mogenous logit parameter given data on the equilibrium choice probabilities and

payoffs in population i. With sufficiently many observations of choice probabili-

ties and payoffs, this data should accurately reflect the equilibrium satisfying Equa-

tions (11) and (12). These equations, (11) and (12), give us the actual ratio of choice

probabilities in population i. We plug into Equation (11) to get

Qµ
i1(π∗i ) =

eλµ∆π

eλµ∆π + 1

and

Qµ
i2(π∗i ) =

1

eλµ∆π + 1
,

where we let ∆π = π∗i1 − π∗i2 to simplify the notation. Then, using Equation (12),

x∗i1
x∗i2

=

1
mi

∑mi
µ=1

eλµ∆π

eλµ∆π+1
1
mi

∑mi
µ=1

1
eλµ∆π+1

.

Finally, we obtain our desired formula:

λ =
1

∆π
ln

(∑mi
µ=1

eλµ∆π

eλµ∆π+1∑mi
µ=1

1
eλµ∆π+1

)
. (14)

Observe that λ depends both on the heterogeneous logit parameters {λµ} and the

equilibrium payoff difference ∆π. We sometimes refer to the function given by Equa-

tion (14) as λ ({λµ},∆π).
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Our next result helps us interpret this formula. Theorem 5 says that this ho-

mogenous logit parameter is always less than the average of the heterogeneous logit

parameters actually used by the agents. Moreover, the size of this bias in the ho-

mogenous model depends on the equilibrium payoffs. When the magnitude of the

difference in payoffs between the two actions gets large, the homogenous logit param-

eter approaches the smallest of the heterogeneous logit parameters in the population.

In this limit, the population behaves like its single most irrational agent. On the

other hand, when the magnitude of the payoff difference gets small, the homogenous

logit parameter approaches the average of the agents’ true logit parameters.

Theorem 5 Consider a quantal response equilibrium in accordance with Equations (11)

and (12) such that population i has two actions with different equilibrium payoffs, i.e.,

Ji = 2, and ∆π 6= 0. Let λ̄ = 1
mi

∑mi
µ=1 λµ be the average of the heterogeneous logit

parameters used by the agents in population i, and let λ be the homogenous logit pa-

rameter that explains the population’s choice probabilities for these particular payoffs.

Then

λ ≤ λ̄ (15)

with equality if and only if λ1 = λ2 = . . . = λmi.
4 Additionally,

lim
∆π→±∞

λ = min{λµ} (16)

4The convention of using the parameter λ to represent a player’s rationality is somewhat arbitrary

in the sense that a modeler could just as well have defined κ = eλ to be the rationality parameter.

Proposition 1 in the Appendix establishes an inequality analogous to (15), showing downward bias

for such an alternative rationality parameter.
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and

lim
∆π→0

λ = λ̄. (17)

Proof Equation (14) gives the exact value of λ. We twice apply Jensen’s Inequality

to pieces of this expression in order to derive (15).

Without loss of generality, assume action 1 has the higher equilibrium payoff so

that ∆π > 0. Then 1
eξ∆π+1

is a concave up function of ξ. Applying Jensen’s Inequality

to this function,

1

mi

mi∑
µ=1

1

eλµ∆π + 1
≥ 1

eλ̄∆π + 1
(18)

with equality if and only if λ1 = λ2 = . . . = λmi . Similarly, eξ∆π

eξ∆π+1
, being equivalent

to 1− 1
eξ∆π+1

, is a concave down function of ξ. So Jensen’s Inequality implies

1

mi

mi∑
µ=1

eλµ∆π

eλµ∆π + 1
≤ eλ̄∆π

eλ̄∆π + 1
(19)

with equality if and only if λ1 = λ2 = . . . = λmi . When we plug into Equation (14),

the denominators on the right-hand sides of (18) and (19) cancel, giving us

λ ≤ 1

∆π
ln
(
eλ̄∆π

)
= λ̄.

Here again, equality holds exactly when λ1 = λ2 = . . . = λmi .

We prove the limits in (16) and (17) in the Appendix.

Theorem 5 describes a downward bias in the determination of a homogenous logit

parameter when agents are really heterogeneous. The less rational agents seem to
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leave a larger mark on the aggregate population behavior. This bias gets worse when

one action’s equilibrium payoff gets much larger than the other’s. Conversely, the

bias disappears as the payoff difference tends to zero.

Our formula for λ, Equation (14), also allows us to ask whether a determination of

the homogenous logit parameter from data on a choice between two actions restricts

the set of possible logit parameters for members of the population. The next result

says it very well may. A large value of the homogenous logit parameter imposes a

minimum possible value on the set of heterogeneous parameters. Conversely, a small

homogenous logit parameter precludes any individual agent from having too large a

value. For intermediate homogenous logit parameters, however, we cannot rule out

any parameters for a single agent. Naturally, these bounds depend on the population

size and are much less restrictive for a large population.

Theorem 6 Retain the context of Theorem 5. If eλ |∆π| > 2mi − 1, then

min{λµ} ≥
1

|∆π|
ln

(
1

mi

(
eλ |∆π| − (mi − 1)

))
.

If eλ |∆π| < mi+1
mi−1

, then

max{λµ} ≤
1

|∆π|
ln

(
(mi + 1)eλ |∆π| − (mi − 1)

mi + 1− (mi − 1)eλ |∆π|

)
.

Proof See Appendix.

Homogenous logit parameters are estimated in much of the experimental literature

on two-by-two games, although often with data pooled across many populations and

30



many games. Theorem 6 applies to a homogenous logit parameter calculated for a

single population in a particular game. If we believe that agents use logit responses,

but are heterogeneous in their levels of rationality, this theorem translates a mis-

specified homogenous logit parameter into restrictions on the set of possible logit

parameters in a finite population.

To illustrate these results, we can compare a homogenous logit model fit to data

in a two-by-two symmetric game to compatible heterogeneous logit models featuring

two types of responders – one with a high rationality parameter and the other with

a low one. To make the example as simple as possible, we assume exactly half the

agents are of each type (though with the data coming from an experiment on 214

subjects, we have no reason to actually believe there are just two types). We consider

Guyer and Rapoport’s “No Conflict” game, Game #6 in their series of experiments

[13]. The payoff matrix is:

No Conflict

A2 B2

A1 4, 4 2, 3

B1 3, 2 1, 1

The players have a dominant strategy choosing action A. Guyer and Rapoport observe

action A played 90% of the time. Choosing to model this as a homogenous logit

equilibrium, we have an equilibrium payoff difference ∆π = 1 (as the payoff to A

happens to always exceed the payoff to B by one), and thus λ = ln(9) in accordance
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with Equation 13.5

Plugging ∆π = 1 and λ = ln(9) into Equation 14 produces an equation implic-

itly relating λ1 and λ2. Figure 1 shows possible values of these heterogeneous logit

parameters. Pairs of λ1 and λ2 values are determined by fixed x-values in the graph.

Larger x-values correspond to greater dispersion in the heterogeneous logit parameter

values, but the scaling along this axis is arbitrary. We can see that the average of λ1

and λ2 always exceeds ln(9), and the lower value is bounded below by ln(4) while the

higher value may be arbitrarily large. Guyer and Rapoport’s data thus puts a bound

on how irrational the low-type agents can be, and they only approach this bound if

the other agents are hyper-rational.

Because a homogenous logit model is mis-specified in the presence of heterogeneity,

estimates of a single rationality parameter do not translate across different game

environments. Theorems 5 and 6 imply the following result, which tells us that an

estimate of a homogenous rationality parameter in a particular game environment

places no restriction on such an estimate in an alternative game environment, even

with a working assumption that agents’ rationality levels are fixed across games.

Theorem 7 states that the set of heterogeneous logit parameters that is consistent

with a given logit equilibrium in any one game could in some other game give rise to

behavior consistent with any other homogenous logit parameter.

5Goeree and Holt [9] estimate a homogenous logit parameter from data pooled across 37 games,

including this one, from Guyer and Rapoport’s study. We obtain a different value of the homogenous

logit parameter because we use data from just this one game.
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Figure 1: Possible values of a pair of logit parameters (determined at any fixed x-

value) that would be consistent with a homogeneous λ = ln(9), when ∆π = 1. These

values fit data from Guyer and Rapoport’s (1972) “No Conflict” game.

Theorem 7 Consider normal form games for which population i has two actions,

Ji = 2. For any logit equilibrium with population i having payoff difference ∆π∗ 6= 0

and rationality parameter λ∗ > 0 in such a game Γ, and any alternative value λ′ > 0,

there exists a set of heterogeneous logit parameters {λ′µ} that are consistent with the

homogenous logit model applied to population i in Γ,

λ
(
{λ′µ},∆π∗

)
= λ∗, (20)

and there exists a game Γ′ with a heterogeneous logit equilibrium in which population

i has payoff difference ∆π′ 6= 0, such that

λ
(
{λ′µ},∆π′

)
= λ′. (21)
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Proof See Appendix.

Recall that λ ({λµ},∆π) gives the homogenous logit parameter that produces

the same equilibrium choice probabilities as the heterogeneous logit parameters {λµ}

when the equilibrium payoff difference is ∆π. Thus, Equation (20) means that any

estimate of a homogenous rationality parameter in a given game environment can be

explained by some set of heterogeneous logit parameters, and Equation (21) means

that these heterogeneous logit parameters could be consistent with any other ho-

mogenous parameter in an alternative game environment. We should not expect

mis-specified parameter estimates to accurately describe behavior across all games.

6 Discussion

We have proposed a model of heterogeneous populations playing quantal response

equilibria. The paper contributes general results that apply to quantal response

equilibria without specification of their functional form as well as particular results

that are specific to the logit response model.

We have paid extra attention to the logit specification because it is so commonly

employed in practice. The representative agent for a population of heterogeneous

logit responders is not another logit responder. In the case of heterogeneous logit

responders choosing between two pure strategies, we have obtained a formula (Equa-

tion 14) relating a mis-specified homogenous logit parameter to the actual heteroge-

neous parameters in the population. Maximum likelihood estimation could be used
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to fit a homogenous logit parameter to the behavior of heterogeneous agents choosing

between any number of pure strategies, but a closed form solution is not generally

possible. Our formula provides insights in two directions. It tells us that the homoge-

nous model is biased towards less rationality, as the homogenous logit parameter is

always less than the average of the heterogeneous ones. It also allows us to bound

the possible values of the true logit parameters if we have a mis-specified homogenous

model already in place.

These results are applicable to experimental work in which a homogenous logit

model has been fit to data. One particular extension is to explicitly model the ex-

istence of clueless players by giving some fraction of the agents a logit parameter of

zero. This would address the common problem of some subjects not understanding

the game they are playing [3].

Working with a general model that does not assume that quantal responses take

any particular functional forms, we have found that representative agents exist for

heterogeneous populations if we allow weakly admissible payoff disturbances. A rep-

resentative agent chooses strategies in the same proportions as the entire population,

but does not have payoff disturbances distributed in the same proportions as the

population. In games with many pure strategies, representative behavior cannot

arise from any iid distribution of disturbances.

This impossibility of having a representative agent with disturbances iid across

actions stems from the fact that averaging probability distributions almost never

preserves independence. Thus, if we believe populations of agents are heterogeneous,
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but desire representative-agent models, we must be willing to consider noise terms that

are jointly dependent across actions. Our findings support the use of regular quantal

response functions. Regular quantal response equilibrium does generate falsifiable

predictions and is consistent with the representative-agent framework.

Appendix

Lemma 1 φ̂(t) is continuous at t = 0.

Proof Recall that |φ(t)| ≤ 1 and φ(0) = 1 for all φ and thus for φ̂ as well. We will

show for all h > 0, there exists k > 0 such that ‖t‖ < k implies Re
{
φ̂(t)

}
> 1 − h.

Let K be a compact subset of characteristic functions φ such that
∫
KΨ[φ] dφ >

1 − h
4
. Because all the φ are continuous at t = 0, we can choose k[φ] > 0 such that

Re {φ(t)} > 1− h
2

for all ‖t‖ < k[φ]. Then take k = minφ∈K k[φ], and k > 0 because

the minimum is taken over a compact space and the extreme value theorem applies.

We then obtain for all ‖t‖ < k,

Re
{
φ̂(t)

}
=

∫
φ∈K

Re {φ(t)}Ψ[φ] dφ+

∫
φ 6∈K

Re {φ(t)}Ψ[φ] dφ

>

(
1− h

2

)(
1− h

4

)
+ (−1)

(
h

4

)
= 1− h+

h2

8
> 1− h.

Lemma 2 The Cauchy principal value of the mean of P̂ (·) is 0. Additionally, if the

random vector (δ̄1j, . . . ,
̂̄δjj, . . . , δ̄Jj) is distributed according to P̂ (·), then

lim
γ→∞

γ Prob
{
|δ̄j′j| ≥ γ

}
= 0 for all j′.
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Proof A property of characteristic functions is
[

∂
∂tj′

φ(t)
]
t=0

exists if and only if:

(i) PV 〈δj′j〉 exists and

(ii) limγ→∞ γ Prob {|δj′j| ≥ γ} = 0,

and when these conditions are satisfied,
[

∂
∂tj′

φ(t)
]
t=0

= iPV 〈δj′j〉 [27, 23]. So, it

suffices to show
[

∂
∂tj′

φ̂(t)
]
t=0

= 0 for all j′. Differentiability of φ̂(t) follows from the

differentiability of all φ in the support of Ψ, using an argument completely analogous

to the proof of continuity of φ̂(t), Lemma 1. Thus,
[

∂
∂tj′

φ̂(t)
]
t=0

=
∫

Ψ[φ]
[
∂φ
∂tj′

]
t=0

dφ.

For all φ in the support of Ψ, all j′,
[
∂φ
∂tj′

]
t=0

= 0 because PV 〈δj′j〉 = 0 and

limγ→∞ γ Prob {|δj′j| ≥ γ} = 0. Each δj′j must satisfy these two conditions because

the underlying εj and εj′ are required to obey them by assumption (a3) or (a3’).

Proposition 1 Retain the context of Theorem 5. Let f : <+ → < be a monotonically

increasing function, and g : < → <+ be its inverse, g = f−1. Denote κ = f(λ) and

κµ = f(λµ) for all µ. Let κ̄ = 1
mi

∑mi
µ=1 κµ. If

g′′(ξ)

(g′(ξ))2 < ∆π

(
eg(ξ)∆π − 1

eg(ξ)∆π + 1

)
for all ξ ∈ [min{κµ},max{κµ}] , (22)

then κ ≤ κ̄ with equality if and only if κ1 = κ2 = . . . = κmi.
6

6Note that the hypothesis is satisfied when f is an exponential function, i.e., for κ = eλ, because

in this case g(ξ) = ln(ξ) and g′′ is always negative whereas the right-hand side of Inequality (22) is

always positive.
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Proof It is straightforward, albeit tedious, to take a second derivative of 1
eg(ξ)∆π+1

and obtain Inequality (22) as the condition implying that this function is concave up

(assuming once again ∆π > 0 without loss of generality). By the logic used to prove

Theorem 5, λ ≤ g(κ̄) with equality if and only if κ1 = κ2 = . . . = κmi . Because f is

monotonically increasing, we can apply it to both sides of this inequality to obtain

κ ≤ κ̄.

Completing the Proof of Theorem 5.

To obtain

lim
∆π→±∞

λ = min{λµ},

we take the limit as ∆π goes to ∞. By symmetry, the result then holds when ∆π

goes to −∞ as well. First, we use algebra in Equation (14) to come up with a new

expression for λ:

λ =
1

∆π
ln

(∑mi
µ=1 e

λµ∆π
∏

ω 6=µ
(
eλω∆π + 1

)∑mi
µ=1

∏
ω 6=µ (eλω∆π + 1)

)
.

In the limit of ∆π going to ∞,

eλµ∆π
∏
ω 6=µ

(
eλω∆π + 1

)
→ eλµ∆π

∏
ω 6=µ

eλω∆π

=
∏
ω

eλω∆π

and
mi∑
µ=1

∏
ω 6=µ

(
eλω∆π + 1

)
→

∏
ω 6=arg min{λµ}

eλω∆π.
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Thus,

lim
∆π→∞

λ = lim
∆π→∞

1

∆π
ln

( ∑mi
µ=1

∏
ω e

λω∆π∏
ω 6=arg min{λµ} e

λω∆π

)

= lim
∆π→∞

1

∆π
ln
(
mi e

min{λµ}∆π
)

= lim
∆π→∞

min{λµ}∆π + ln (mi)

∆π

= min{λµ}.

To obtain

lim
∆π→0

λ = λ̄,

we apply l’Hospital’s Rule to the expression for λ given in Equation (14). We have

d

d∆π

[
ln

(∑mi
µ=1

eλµ∆π

eλµ∆π+1∑mi
µ=1

1
eλµ∆π+1

)]
=

(∑mi
µ=1

1
eλµ∆π+1∑mi

µ=1
eλµ∆π

eλµ∆π+1

) (∑mi
µ=1

1
eλµ∆π+1

)(∑mi
µ=1

λµ eλµ∆π

(eλµ∆π+1)
2

)
−
(∑mi

µ=1
eλµ∆π

eλµ∆π+1

)(∑mi
µ=1

−λµ eλµ∆π

(eλµ∆π+1)
2

)
(∑mi

µ=1
1

eλµ∆π+1

)2 .

So

d

d∆π

[
ln

(∑mi
µ=1

eλµ∆π

eλµ∆π+1∑mi
µ=1

1
eλµ∆π+1

)]
∆π=0

= (1)

(
mi
2

) (∑mi
µ=1

λµ
4

)
−
(
mi
2

) (∑mi
µ=1

−λµ
4

)
(
mi
2

)2

=

∑mi
µ=1 λµ

mi

= λ̄.

The denominator in (14) is ∆π, so its derivative is 1. Thus,

lim
∆π→0

λ = λ̄.
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Proof of Theorem 6.

Without loss of generality, assume ∆π > 0.

To obtain

min{λµ} ≥
1

∆π
ln

(
1

mi

(
eλ∆π − (mi − 1)

))
,

we make use of the following inequalities: eλµ∆π

eλµ∆π+1
≤ 1 and 1

eλµ∆π+1
≥ 0 for all

µ 6= arg min{λω}. Applying these inequalities to our formula for λ in Equation (14),

we get

λ ≤ 1

∆π
ln

 emin{λµ}∆π

emin{λµ}∆π+1
+mi − 1

1
emin{λµ}∆π+1


=

1

∆π
ln
(
emin{λµ}∆π + (mi − 1)(emin{λµ}∆π + 1)

)
=

1

∆π
ln
(
mi e

min{λµ}∆π +mi − 1
)
.

So

eλ∆π ≤ mi e
min{λµ}∆π +mi − 1,

and thus,

1

∆π
ln

(
1

mi

(
eλ∆π − (mi − 1)

))
≤ min{λµ}.

Note that this bound is meaningful only if eλ∆π > 2mi − 1.

To obtain

max{λµ} ≤
1

∆π
ln

(
(mi + 1)eλ∆π − (mi − 1)

mi + 1− (mi − 1)eλ∆π

)
,

we follow a similar approach using the fact that eλµ∆π

eλµ∆π+1
≥ 1

2
and 1

eλµ∆π+1
≤ 1

2
for all
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µ 6= arg max{λω}. Putting these inequalities into Equation (14) produces

λ ≥ 1

∆π
ln

 emax{λµ}∆π

emax{λµ}∆π+1
+ (mi − 1)1

2

1
emax{λµ}∆π+1

+ (mi − 1)1
2


=

1

∆π
ln

(
2emax{λµ}∆π + (mi − 1)(emax{λµ}∆π + 1)

2 + (mi − 1)(emax{λµ}∆π + 1)

)
=

1

∆π
ln

(
(mi + 1)emax{λµ}∆π +mi − 1

(mi − 1)emax{λµ}∆π +mi + 1

)
.

So

eλ∆π ≥ (mi + 1)emax{λµ}∆π +mi − 1

(mi − 1)emax{λµ}∆π +mi + 1
,

and thus,

(mi + 1)eλ∆π − (mi − 1) ≥ (mi + 1)emax{λµ}∆π − (mi − 1)eλ∆π emax{λµ}∆π,

and finally,

1

∆π
ln

(
(mi + 1)eλ∆π − (mi − 1)

mi + 1− (mi − 1)eλ∆π

)
≥ max{λµ}.

This bound is meaningful only if eλ∆π < mi+1
mi−1

.

Proof of Theorem 7.

Choose mi ∈ N such that mi >
eλ
∗∆π∗+1

2
and mi >

eλ
∗∆π∗+1

eλ∗∆π∗−1
. This ensures that

neither of the bounds in Theorem 6 apply. Thus, we can take λ′1 = 0 and λ′mi >

mi λ
′ and still be able to choose the remaining {λ′µ}, for µ = 2 . . .mi − 1, such

that Equation (20) holds. That means these heterogeneous logit parameters will

be consistent with the homogenous logit model with rationality parameter λ∗ and

equilibrium payoff difference ∆π∗. We have specifically chosen λ′1 and λ′mi so that
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λ′1 < λ′ < λ′. Thus, noting the limits we take in Theorem 5, we establish that

λ
(
{λ′µ},∆π

)
is above λ′ when ∆π ≈ 0 and is below λ′ when ∆π is large. Because

λ
(
{λ′µ},∆π

)
is continuous in ∆π, there is some ∆π′ for which λ

(
{λ′µ},∆π′

)
= λ′.
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