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Abstract. Buyers and sellers make relationship specific investments to enable trade,

which is modeled as a network formation problem. Inefficiencies are investigated and

depend on bargaining power and the investment protocol: whether buyers and sellers

must make fixed non-substitutable exogenous investments, or whether they can endoge-

nously negotiate individual contributions. It is shown that inefficiencies can consume

all the gains from trade, except when exogenous investment are made in proportion to

bargaining power. Inefficiencies are partitioned into three types: over-investment in rela-

tionships used only to generate outside options, under-investments in relationships that

should be used for trade, and coordination inefficiencies. With exogenous investments,

under-investment inefficiency can consume all the gains from trade whenever invest-

ment shares are not exactly proportional to bargaining power, whilst over-investment

inefficiency is bounded. With endogenous investment, there is no under-investment

inefficiency, but over-investment inefficiency can consume all the gains from trade.

Key Words: Trade networks, network formation, bargaining, outside option, inefficiency,

relationship specific investment, hold up.

1. Motivation

In many markets costly relationship specific investments are necessary to enable trade:

In labour markets relationship specific investments may occur in the form of interviews

and other aspects of the recruitment process; a supplier may have to learn the specific

requirements of a manufacturer and the manufacture the capabilities of the supplier

before they can trade;1 the same may be true of activities outsourced by a firm; prior to

the acquisition of a firm a relationship specific investment may have to be made by the

acquirer through the due diligence process whilst the target may have to share sensitive
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information;2 before buying a painting a collector may invest in authenticating it; etc.3

This paper analyzes inefficiencies in these investment decisions when contracts cannot be

written4.

Relationship specific investments have been extensively analyzed in the literature and

it is well understood, in a variety of contexts, when such investments will be made ef-

ficiently and what inefficiencies might be present.5 Even in the case of trade network

formation these questions have received attention from Kranton and Minehart (2000b),

(2001). This paper provides a more thorough analysis of inefficiencies in the context of

trade network formation than has previously been undertaken. It’s main contributions6

are to: (i) investigate how large inefficiencies can get; (ii) determine which inefficiencies

are important when; and (iii) utilize these results to consider the impact of parties en-

dogenously negotiating their investments rather than having to make fixed exogenous

investments to enable trade.7

Although a full review of the literature is delayed until Section 6, Kranton and Minehart

(2001) provides a useful point of comparison. Kranton and Minehart (2001) consider inef-

ficiency in trade network formation where outcomes are determined by an auction process

over the network such that buyers have all the bargaining power, only buyers can form

links, sellers are identical and ex-ante buyers are identical. Their main and salient result

is that the efficient network is stable. This paper considers a more general environment.

There are ex-ante heterogenous gains from trade between buyer-seller pairs, different

levels of bargaining power, and alternative investment protocols: buyers and sellers must

make fixed non-substitutable exogenous investments, or they can endogenously negotiate

individual contributions. Whilst it is well understood that moving away from the special

case considered by Kranton and Minehart inefficiencies may be present in the stable net-

works, it might seem reasonable to conjecture that inefficiencies are initially bounded and

2See Brandenburger and Nalebuff (1996) (pg 80).
3Although the model presented is stylized and not intended to capture the functioning of any one of
these specific markets it is hoped that it will capture features present in these markets and many others.
4Whilst this assumption abstracts from the underlying causes of contractual incompleteness, it can be
both theoretically and empirically motivated. When complete, state contingent contracts are cannot be
written contracting is not necessarily an improvement over ex-post negotiation. See for example Che and
Hausch (1999), Segal (1999) and Bernheim and Whinston (1998). Further, Uzzi (1996) and Nishiguchi
(1994) provide evidence of the gains from trade being determined after investment decisions have been
made.
5See the literature review in Section 6.
6Other contributions are made in relation to the bargaining model developed to determine how gains
from trade are split over formed networks. This model is intuitive, permits heterogenous gains from
trade between buyer seller-pairs and has a number of appealing properties. See Section 3.
7To the best of my knowledge endogenous investments of this form have not been considered in the
context of trade network formation or more generally.
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small, at least on the best stable network, and then grow as the environment is changed

more. This conjecture is incorrect. Moving only slightly away from the special case, in

any one of a number of possible directions, inefficiencies on even the best stable network

may consume all the net surplus generated by the efficient network (Proposition 1). In-

efficiencies are then partitioned into three types: Over-investment in relationships used

only to generate outside options, under-investments in relationships that should be used

for trade, and coordination inefficiencies. Which inefficiencies are important depends

on bargaining power and the investment protocol. With exogenous investments, under-

investment inefficiency can consume all the gains from trade, except for when bargaining

power is exactly proportional to parties’ cost shares, whilst over-investment inefficiency

is bounded. It might then be conjectured that permitting endogenous negotiation of

investment shares will eliminate under-investment inefficiency thereby bounding overall

inefficiency.8 This conjecture is also incorrect. Although under-investment inefficiency is

indeed eliminated, over-investment inefficiency can now consume all the gains from trade

(Proposition 2).

To illustrate these results consider Example 1

Example 1. Figure 1a shows potential gains form trade between buyers and sellers, where

ε is a small positive number and the cost of link formation is c = 1
2
− ε. Buyers and

seller first form links to enable trade and then bargain over the formed network. Each

party can ultimately trade with at most one other.

(a) Potential links (b) Efficient network (c) Complete network

Figure 1. Inefficiencies of stable networks

8Currarini and Morelli (2000) model non-cooperative network formation where the split of surplus is
endogenously determined as part of the formation process. This is a little bit like moving to a contractible
environment but is also similar to endogenizing investment contributions. They find that networks are
formed efficiently when their condition of size monotonicity is satisfied.
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The efficient network maximizes the net gains from trade (the realized gains from trade

less costs expended on link formation) and is shown in Figure 1b. The net gains from

trade generated by this network are 1 −
(

1
2
− ε
)

= 1
2

+ ε. Consider the different types

of inefficiency possible in the context of this example. If the empty network were formed

there would be inefficiency due to an under-investment in trade links: b1 and s1 do not

trade with anyone and could jointly gain more from trading than it would cost to form

a link between them. If the complete network were formed there would be inefficiency

due to an over-investment in non-trade links: the link between b1 and s2 would not be

traded over and would therefore make no contribution to total surplus but still cost c to

form. Finally, if only the link between b1 and s2 were formed there would be coordination

inefficiency: were the link between b1 and s1 formed instead, gains from trade could be

increased without affecting the total amount spend on forming links.

Let sellers have all the bargaining power such that their trade partners receive only the

minimum payoff necessary to prevent them from trading with another seller they are con-

nected to. Consider the case where both the buyer and seller must make equal exogenous

investments of c
2

= 1
4
− ε

2
to form a link between themselves. The efficient network is not

stable. Were the efficient network formed b1 would have no alternative but to trade with

s1 and as sellers have all the bargaining power s1 would extract all the gains from trade

leaving b1 with a negative payoff of −
(

1
4
− ε

2

)
. The complete network is not stable either.

As b1 can trade with only one seller, the seller they do not trade with will receive a payoff

of −
(

1
4
− ε

2

)
. The empty network is the unique stable network.

Suppose now that buyers and sellers could negotiate over the link formation costs they

each pay and that a link between them is formed as long as their combined investment in

it is greater than c. The empty network is no longer stable: b1 and s1 could negotiate to

split the cost c such that s1 pays the entire cost, leaving b1’s payoff unaffected but strictly

increasing s1’s payoff. However, the efficient network is not stable either. Buyer b1 will

want to form a link to s2. Once this link is formed b1 can play s1 and s2 off against each

other and will be guaranteed a payoff of at least 1 − ε. Forming a link to s2, which b1

alone pays for, increases b1’s payoff by 1−ε at a cost of 1
2
−ε. The unique stable network

is now the complete network.

When buyers and sellers had to pay an equal share of the costs of link formation the

unique stable network was the empty network: b1 refused to invest in a link to s1 for

fear of hold up. This led to an under-investment in relationships that would have been

generated more gains from trade than the investment would have cost. Further, this
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under-investment inefficiency eliminated all the gains from trade that would have been

generated by the efficient network. Allowing buyers and sellers to negotiate their cost

shares eliminates this under-investment inefficiency. However, there are now more links

formed in the stable network than the efficient network: b1 invests in a link they have no

intention of ever trading over in order to improve their terms of trade. Over-investment

inefficiency now consumes all the gains from trade as ε → 0: Eliminating the under-

investment inefficiency by permitting parties to negotiate their investment contributions

results in over-investment inefficiency that consumes all the gains from trade.

The paper proceeds as follows. Section 2 sets up the model before Section 3 analyzes

bargaining over a fixed network. This section presents a new cooperative model of bar-

gaining over networks with heterogenous gains from trade filling a gap in the literature

and permitting the analysis of later sections. Section 4 then identifies the efficient net-

work(s) providing a useful benchmark for the set of stable networks which are considered

in Section 5. Section 5 examines the inefficiency present in stable networks and contains

the main results of the paper. Section 6 then places these results in the context of the

related literature before Section 7 concludes. Proofs are relegated to the Appendices.

2. Model Set Up

There is a set of m buyers denoted B and a set of n sellers denoted S. The value of

trade between a buyer (bi or i) and a seller (sj or j) is given by αij ≥ 0 where the first

subscript always refers to the buyer and the second subscript to the seller. The m × n
dimensional matrix α describes the value of all potential bi-lateral trades.

In stage one pairs of buyers and sellers form links between themselves at a cost of c > 0

for each link. Two cases are considered: a buyer and seller each pay some fixed proportion

of c or they bargain over how c is split such that the link is formed whenever they jointly

benefit from it. The formation of links is binary (they are formed or not formed) and

is represented in the m × n dimensional matrix of ones and zeros L. The formed links

determine which buyers can trade with which sellers. It is assumed that these investments

are non-contractible.

In stage two buyers and sellers are matched where L determines the possible matches

and α determines the gains from trade from these matches. A match µ(L) is a function

from the set of all buyers and sellers into itself, µ(L) : B ∪ S → B ∪ S, such that: (i)

µ(i, L) ∈ S ∪ i (a buyer is matched to themselves if they are not matched to a seller); (ii)
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µ(j, L) ∈ B ∪ j; (iii) if µ(i, L) = j, then µ(j, L) = i and lij ∈ L; and (iv) if µ(j, L) = i,

then µ(i, L) = j and lij ∈ L. The set of all possible matches for a network L is denoted

M(L). Buyer bi’s payoff is denoted by πBi (L, α) : <+m×n → <+ and seller sj’s payoff

by πSj (L, α) : <+m×n → <+, although, where obvious, notation will be abused and the

superscripts S and B dropped.

A coalition of buyers and sellers Ψ ⊆ B ∪ S, can obtain a maximum surplus (joint

payoff) of V (Ψ, L): V (Ψ, L) = maxµ∈M(L)

{∑
i∈Ψ αiµ(i)

}
= maxµ∈M(L)

{∑
j∈Ψ αµ(j)j

}
,

where αii = αjj = 0.

Where there can be no confusion notation will be abused the argument L dropped from

the above notations.

The symmetry of buyers and sellers in the model means that for all the results found

for buyers there are equivalent results for sellers. To save on notation some results and

definitions are stated for just buyers or just sellers.

3. Bargaining over a Fixed Network

To analyze network formation a backward induction approach will be applied and trade

over a given network considered first. This section proposes a mapping from the network

structure (L, α) into outcomes (matches and payoffs) and identifies how the network

structure affects these outcomes.

The following example helps to clarify the bargaining outcomes that might be expected

over a network with heterogenous gains from trade:

Example 2. Consider Figure 2:

Figure 2. Simple Network

A natural outcome on this network would be for buyer b1 to be matched to seller s1 and

for s1 to receive a payoff πs1 ∈ [5, 10], whilst b1 receives a payoff πb1 = 10−πs1 ∈ [0, 5]. In



INEFFICIENCIES IN TRADE NETWORKS 7

this example the network provides s1 with the outside option of trading with b2 instead of

b1 and they should be able to use this outside option to guarantee themselves a payoff of at

least 5. One way to think about this outside option is as the (best) payoff s1 could achieve

if their trade partner (b1) were removed from the network. Buyer b1 has no outside option

and so the best they can guarantee themselves is 0. Equivalently, were s1 removed from

the network b1 would receive a payoff of 0.

The bargaining outcomes that are considered in this section satisfy the following three

condition:

Condition C1: The match generates the maximum possible combined surplus.

Condition C2: Matched buyer-seller pairs split their trade surplus such that each party
receives a payoff at least as large as the payoff they could achieve were
their trade partner removed from the network.

Condition C3: Additional gains from trade, after each party has received their minimal
payoff, are exogenously split in proportion to buyers’ bargaining power
relative to sellers’ (β).

It can immediately be seen that these three conditions are consistent with the bargaining

outcomes that would be expected on the simple network presented in Example 2. Ap-

plying condition C1 requires that b1 trades with s1. Condition C2 restricts b1 to receive

a payoff greater than or equal to 5 and places no lower bound on the payoff that can be

received by s1. Condition C3 generates the following payoffs: πb1 = 5+β5, πs1 = (1−β)5

and πs2 = 0.

It will be shown that conditions C1, C2 and C3 generate a mapping from each network

into a unique vector of payoffs (for a given β). Conditions C1 and C2 will be shown

to be relatively minimal requirements.9 Condition C3 is most restrictive and it is this

condition that pins down the unique set of payoffs. To emphasize that many of the results

presented in this section do not rely on this third condition it will only be imposed at

the end of this section.

Assumption: Conditions C1 and C2 are satisfied by bargaining outcomes.

The first condition identifies a generically unique match for any given the network. This

match is referred to as the ‘optimal match’: µ(L)∗ = argmaxµ∈M(L)

{∑
i∈B αiµ(i)

}
. If

bi′ is matched to sj′ in this optimal match then the following notation will be used:

9It will be shown that these conditions are necessary for no connected buyer-seller pair to be able to
profitably deviate by breaking their existing matches and instead trading with each other.
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sj′ = µ(i′, L)∗ and bi′ = µ(i′, L)∗. The second condition is not yet well defined but will

place a lower bound on the payoffs that can be received by any party. To determine the

payoff a party ‘could achieve were their trade partner removed from the network’ the

negotiated rematching process is considered:

Definition: The negotiated rematching process proceeds as follows.

(1) Consider a bargaining outcome (matches and payoffs) such that bi′ trades with

sj′ : sj′ = µ(i′)∗.

(2) Suppose now that sj′ is removed from the network and consider this new network.

(3) Sellers payoffs can be thought of as the price they charge. At the current price

vector consider which buyers demand which goods over this new network. If it is

possible to match each buyer to a seller in their demand set10 the process stops.

(4) If the process does not end there must be some minimal over demanded set of

sellers.11 The price charged by these sellers is then increased by one unit. Return

to step 3.12

Although this negotiated rematching process is run by a fictitious auctioneer, it is in-

tended to capture a decentralized renegotiation of matches and terms of trade following

the removal of a party from a network:13 Following the removal of a seller other sellers

cannot be expected to lower their prices in response to increased demand and there is no

reason for buyers to bid up seller’s prices beyond the minimum necessary levels for the

market to clear. Whilst the payoff a party achieves in the negotiated rematching process

following the removal of their trade partner from the network does depend on the initial

prices being charged by sellers:14

Lemma 1. For any initial bargaining outcome in the core, following the removal of µ(i′)∗

the negotiated rematching process:

10A buyers demand set is the set of sellers with whom they most like to trade at current prices.
11Ψs ⊂ S is minimally over-demanded if no strict subset of Ψs is also over-demanded.
12This process can also be run following the removal of a buyer from the network with the roles of buyers
and sellers reversed.
13The negotiated rematching process is adapted from the multi-unit auction mechanism analyzed by
Demange, Gale and Sotomayor (1986) and discussed in Roth and Sotomayor (1990). The only differences
are that as a rematching process is being modeled the initialization is the old price vector rather than
the zero price vector and trade is precluded between buyers and sellers who are not linked, although this
can be modeled in the multi-unit auction mechanism by setting the gains from trade to zero for unlinked
buyers and sellers.
14For example the negotiate rematching process only ever increases the price of sellers so if sellers’ payoffs
on the initial network are very high, their payoffs following the negotiated rematching process will also
be very high.



INEFFICIENCIES IN TRADE NETWORKS 9

(i) maximizes the combined gains from trade realized on the reduced network L −
µ(i′)∗; and

(ii) yields a payoff for bi′ of πBi′ (L− µ(i′)∗)BO, where πBi′ (L− µ(i′)∗)BO is bi′’s highest

possible core payoff on the reduced network L− µ(i′)∗.

Proof. It is shown in Appendix A that the negotiated rematching process will terminate at

a core outcome. Part i) then follows immediately. Lemma 6 in Appendix A shows that for

any initial bargaining outcome in the core the negotiated rematching process following the

removal of supplier µ(i′)∗ gives remaining suppliers a payoff equal to max{πSj (L), πSj (L−
µ(i′)∗)BO}. By construction bi′ must bid up the payoff of any supplier they ultimately

trade with and so can only be matched to a seller receiving a payoff πSj (L − j′)BO. If

matched bi′ must then receive a payoff equal to πBi′ (L−µ(i′)∗)BO. If unmatched bi′ receives

a payoff of zero, but this will then be their unique core payoff on the network L− µ(i′)∗.

Thus regardless of whether bi′ is matched or not they receive a payoff πBi′ (L−µ(i′)∗)BO. �

When referring to the negotiated rematching process in the rest of the paper it will be

assumed that the initial outcomes on the network are in the core such that the results of

Lemma 1 hold.15 Although the core is formally defined in Appendix A, for the purpose

of interpreting Lemma 1 it will be more helpful to apply the result that a payoff and

match are in the core if and only if no buyer-seller pair can form a deviating coalition

by, for example, breaking their existing matches and rematching to each other.16

The negotiated rematching process itself makes precise what is meant by the payoff a

party ‘could achieve were their trade partner removed from the network’. Lemma 1

shows that this payoff corresponds to the highest payoff that can be achieved by bi′ on

L − µ(i′)∗ without some buyer-seller pair having a profitable deviation. This can then

also be interpreted as the best bi′ can hope to do without their trade partner µ(i′)∗.

Definition: bi′ ’s outside option value (πi′) is the payoff they would receive from the

negotiated rematching process were their trade partner µ(i′)∗ removed from the network.17

So far a generically unique match has been identified for each network and bounds have

been placed on possible payoffs. However, nothing has been said about how the network

structure affects these bounds. The value of each party’s outside option is closely related

15This is consistent with the bargaining outcomes proposed in this section, which will be shown to be
in the core.
16See Shapley and Shubik (1972) and Roth and Sotomayor (1990).
17The negotiated rematching process will generate a unique outside option value for each party.
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to the rematching that must occur, by condition 1, were their trade partner removed

from the network.

Definition: An optimal rematch rematches buyers and sellers following the removal

of a party from a network such that the combined gains from trade are maximized.

sj′ ’s outside trade partner (ν(j′)) is the buyer they would be matched to in an optimal

rematch following the removal of their trade partner from the network: ν(j′) = µ(j′, L−
µ(j′, L)∗)∗.18

The optimal rematch following the removal of a party from a network is generically

unique and must occur for the new bargained outcome to be consistent with condition

C1. By Lemma 1 the negotiated rematching process implements the optimal rematch

and rematches the party who’s trade partner is removed from the network to their outside

trade partner.19

It is shown in Appendix A that the optimal rematch can be represented as a chain (a

sequence of links that share one of the parties they connect in common). If sj′ ’s trade

partner (bi′) is removed from the network and sj′ is rematched to bi′′ , bi′′ might have

already been matched to another seller sj′′ . Seller sj′′ would then be displaced and may

be rematched to some other buyer bj′′′ and so on. This optimal rematch then follows

the following chain of links: li′j′′ ; li′′j′′ ; li′′j′′′ ; . . . . Further, this chain alternates between

links utilized for trade in the optimal rematch li′j′′ , li′′j′′′ and links that cease being used

for trade in the optimal rematch li′′j′′ . For reasons that will become clear this chain of

rematches is referred to as an ‘outside option chain’.

Definition: Seller sj′ ’s outside option chain is defined as the sequence of links reached

by the optimal rematch when represented as a chain, following the removal of their trade

partner (µ(j′, L)∗) from the network.2021 A link is upstream in seller sj′ ’s outside option

chain of another link if it is earlier in the sequence of links that constitute sj′ ’s outside

option chain.

A party’s outside option chain determines their outside option value in a relatively simple

way. Consider a seller sj′ and suppose that their trade partner is removed form the

18When µ(j′, L− µ(j′, L)∗)∗ = j′, j′ is said to have no outside trade partner.
19A party’s outside trade partner is then generically unique. Unlike parties’ trade partners, ν(j′) = bi′

does not imply ν(i′) = sj′ .
20Outside option chains, although derived and motivated in a very different way, are similar to the
opportunity paths identified by Kranton and Minehart (2000a) for networks with homogeneous gains
form trade. Outside option chains can be viewed as a generalization of opportunity paths.
21Generically each party’s outside option chain is unique and in this paper each party’s outside option
chain will be treated as unique. When parties have multiple outside option chains any one of them can
be selected and the same results will carry through.
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network. Denote the set of newly traded over links in sj′ outside option chain by Lj
′

s→b

and the set of links that are ceased trading over by Lj
′

b→s.

Lemma 2.

(i) Seller sj′’s outside option value is πSj′ =
∑

l∈Lj
′
s→b

αl −
∑

l∈Lj
′
b→s

αl;

(ii) Buyer µ(j′, L)∗’s payoff when their trade partner sj′ receives only their outside

option is their Vickrey payoff (their marginal contribution to the grand coalition);

and

(iii) These payoffs correspond to seller sj′’s and buyer µ(j′, L)∗’s buyer optimal core

payoffs.

Lemma 2 is proved in Appendix A. It uncovers specifically how the network structure

determines each party’s outside option payoff- the minimal payoff they could receive over

the network. It is also motivates the use of the negotiated rematching process to define

the payoff a party ‘could achieve were their trade partner removed from the network’:

For seller sj′ this payoff is equal to the lowest payoff that they can achieve in any core

outcome on the initial network L: πj′(L)BO = πj′(L− µ(j′, L)∗)SO.

For the interested reader a simple process for decomposing any network into a directed

network that simultaneously identifies all parties outside option chains is presented in

Appendix B. This provides a powerful tool for taking any network and quickly determin-

ing which links matter and how for each party’s payoff. The process is possible because in

every outside option chain parties are only ever rematched to their outside trade partner.

It also therefore identifies an interdependence between parties’ outside option chains.22

Having identified a generically unique match implemented by a network and bounded

each party’s payoff, additional restrictions can be placed on the bargaining outcomes

to identify unique payoffs. To do this condition 3 is imposed: Matched buyer-seller

pairs split the remaining gains from trade, after they have each received their outside

option payoffs, in proportion to buyers’ bargaining power relative to sellers (β) which is

exogenously given.

Assumption: Condition 3 holds.

22Suppose seller sj′ is downstream of seller sj′′ in sj′′′ ’s outside option chain. The links which determine
seller sj′ ’s outside option will also affect seller sj′′ ’s outside option. In particular, an increase in seller
sj′ ’s outside option value will have a 1:1 affect on seller sj′′ ’s outside option value.
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By construction the role the network plays is in affecting bargaining outcomes is through

each party’s outside option.23 Gains from trade remaining after each party has received

their outside option are split such that the buyer receives a proportion β and the seller a

proportion 1− β where β is an exogenous parameter. Assuming that buyers’ bargaining

power relative to sellers (β) is the same for all buyer-seller pairs can be motivated by

thinking of the institutional environment of the market determining β.2425

Payoffs can therefore be represented as follows:

πBi′ = πBi′ + β(αi′µ(i′,L)∗ − πBi′ − πSµ(i′,L)∗) (1)

πSj′ = πSj′ + (1− β)(αµ(j′,L)∗,j′ − πBµ(j′,L)∗ − πSj′) (2)

Remark: Each party’s payoff can be represented as a weighted sum of the gains from

trade over the link they trade over, the links in their outside option chain and the links

in their trade partners outside option chain by applying Lemma 2. These payoffs are still

in the core as the core is convex and by Lemma 2 the set of payoffs where buyers receive

only their outside option payoff (β = 0) is the seller optimal point of the core and the

set of payoffs where sellers only receive their outside option payoff (β = 1) is the buyer

optimal point of the core.

This representations of payoffs permits, for a given level of bargaining power, each net-

work to be mapped into a unique set of payoffs. More importantly, for the purpose of

examining network formation, this process determines how the network structure affects

these payoffs. In particular the process identifies which links affect which parties’ payoffs

and how.

23Outside options in this paper play a similar role to outside options in an alternating offer bargaining
game where there is some probability that the trading opportunity will be lost each period. Outside
options play a different role in an alternating offer bargaining game where the cost of delay is captured
in time preference. In that case outside option only have an affect on the split reached when they bind.
See Binmore, Rubinstein and Wolinsky (1986). This role of outside options employed here follows much
of the search literature (see Rogerson, Shimer and Wright (2005)) but also differs from much of the
contract theory literature (see Malcomson (1997)).
24This assumption identifies a subset of points in the core corresponding to different value of β. Whilst
allowing for heterogeneous bargaining powers for different buyer-seller pairs would generate outcomes
that cover the core, it would also included outcomes outside the core. To fully characterize the core
heterogeneous bargaining powers could be permitted, but with additional restrictions on the β’s.
25Restricting attention to only this subset of core outcomes can be motivated by the equilibrium payoffs of
a public alternating offer bargaining game over the network. When the gains from trade are homogeneous,
a public alternating offer bargaining game, as considered by Corominas-Bosch (2004), identifies the same
subset of the core considered in this paper. This alternating public offer bargaining game is defined, and
equivalence to the core outcomes considered in this section, proved in Section AM-2 of the additional
material.
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4. Efficient Network Formation

When considering network formation it is useful to have the benchmark of efficient net-

works.

Definition: A network will be viewed as efficient (and referred to as efficient) when it

maximizes the net gains from trade.26 The efficient match is the optimal match for the

efficient network.27

Definition: The net gains from trade generated by a network L with Q(L) links

(NGT (L)) is the trade surplus (TS) generated by the network less the costs of forming

the links in L:

NGT (L) = TS(L)− cQ(L) =
∑
i∈B

αiµ(i,L)∗ − cQ(L)

where αii = 0, ∀i ∈ B.

The efficient network only identifies a subset of the Pareto frontier. However, consider a

network L that is not efficient but is Pareto efficient. There will always exist transfers

that could be made on the efficient network that would constitute a Pareto improvement

to L.28 In efficient networks there are no links formed and not traded over.

5. Network formation

The objective of this section will be to compare networks that are likely to be formed

(stable networks) to the efficient network. Broadly, the following questions will be con-

sidered: When are efficient networks stable? How inefficient can stable networks get in

different circumstances? What types of inefficiencies can be present? When are these

different types of inefficiencies important? In order to address these questions it will

be necessary to define a measure of the size of inefficiencies, identify different types of

possible inefficiencies and identify conditions under which networks can be considered

stable. The main results of the paper will then be presented.

26This notion of efficiency was introduced in Jackson and Wolinsky (1996) and referred to as ‘strong
efficiency’.
27Generically the efficient network is unique and it will be treated as unique for the rest of the paper.
However, were there multiple efficiency networks then these would all generate the same net gains from
trade (by definition) and any of them could be used as an equally valid point of comparison for stable
networks.
28Further, it is not necessary for transfers to be possible between all buyers and sellers to achieve this
Pareto improvement. For the Pareto improvement to occur transfers only have to be made over the links
that are traded over in network L. See Jackson (2003).
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5.1. Measuring the size of inefficiencies. When the cost of link formation is zero the

complete network can be formed and the size of any inefficiency goes to zero. This cor-

responds to markets that have traditionally been considered where buyers can costlessly

transact with any seller. When the cost of link formation is larger than the potential

gains from trade between any buyer and any seller the empty network will be the unique

stable network and it is also the efficient network. This corresponds to the case of trans-

action costs being prohibitively high for any trade. Thus there is no inefficiency for both

very large costs of link formation and no cost of link formation. This paper is concerned

with the case of intermediate costs of link formation.

To consider the size of inefficiency for intermediate costs of link formation it is useful

to compare the net gains from trade generated on the efficient network to the net gains

form trade generated by stable networks, and in particular the best stable network and

the worst stable network. The best and worst stable networks correspond to the stable

networks with the highest and lowest net gains from trade respectively:

Definition: The best case efficient loss (BCEL) is the proportion of the net gains from

trade generated by the efficient network that are lost on the best stable network (Ls):
NGT (LE)−NGT (Ls)

NGT (LE)
∈ [0, 1].29

Definition: The worst case efficient loss (WCEL) is the proportion of the net gains

from trade generated by the efficient network that are lost on the worst stable network

(Ls): NGT (LE)−NGT (Ls)
NGT (LE)

∈ [0, 1].30

The best case efficiency loss measures the efficiency lost on the best stable network

compared to the efficient network. For example a value of 0.5 implies that 50% of the

net gains from trade realized on the efficient network are lost on the best stable network.

5.2. Different types of inefficiency. This section will identify different types of inef-

ficiency that can be present in stable networks.

Definition: The inefficiency of a network L (Inefficiency(L)) is the difference between

the net gains from trade generated by the efficient network (LE) and the net gains from

trade generated by L: NGT (LE)−NGT (L).

Three types of inefficiency can be identified in networks:

(1) under investment in trade links;

29This is the analog of the price of anarchy which is defined as Panarchy ≡ NGT (LE)
NGT (Ls) ∈ [1,∞).

30This is the analog of the cost of anarchy which is defined as Canarchy ≡ NGT (LE)
NGT (Ls) ∈ [1,∞).
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(2) over investment in non-trade links (outside options); and

(3) coordination inefficiency.31

These types of inefficiencies for a network L are defined below:

Definition: Inefficiency due to over-investment in non-trade links is the resources allo-

cated to forming links that are not used for trade on the network L. When there are Q

links formed on the network L and K matches occur inefficiency due to over-investment

in non-trade links is: (Q(L)−K(L))c.

Definition: Consider a network L such that a set of m′ buyers B′ and a set of n′

sellers S ′ are unmatched. Let the m′ × n′ matrix α̂′ denote the potential net gains

from trade between these buyers and sellers: the gains from trade between each possible

unmatched buyer-seller pair less the cost of link formation c.32 Let µ′ be a matching on

the set B′ ∪ S ′ and denote the set of all such possible matchings M ′. Inefficiency due

to under-investment in non-trade links (UI) on the network L is then the maximum net

gains from trade that could be obtained by matching unmatched parties on L: UI(L) =

maxµ′∈M ′
∑

i′∈B′{α̂′i′µ′(i′)}, where α̂′i′i′ = α̂′j′j′ = 0.

Definition: Coordination inefficiency on a network L (CI(L)) is the increases in the

net gains from trade that could have been obtained by buyers and sellers if they had

coordinated on the formation of links even after all over-investment inefficiency and

under-investment inefficiency has been removed from L. Coordination inefficiency is

given by: CI(L) = NGT (LE)− (TS(L) + UI(L)−K(L)c)

Remark: Each type of inefficiency is greater than or equal to zero and by construction

they are mutually exclusive and collectively exhaustive:

(Q(L)−K(L))c+ UI(L) + CI(L) = NGT (LE)−NGT (L)

It is interesting to note that over-investment in non-trade links will be most damaging

when the cost of link formation is large, but this is when incentives for over-investment

are lowest. Similarly under-investment in a trade link will be most damaging when the

value of this link is very high relative to the costs of link formation but this is when

31To be in the core the gains from trade must be maximized by the match implemented on the formed
network. Coordination inefficiency captures that the efficient match is not possible on the formed
network.
32For example an unmatched buyer i′ and unmatched seller j′ have net potential gains from trade
α̂′i′j′ = αi′j′ − c.
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the incentives for under-investment are lowest. Nonetheless, it will be shown that these

inefficiencies can be important.

5.3. Exogenous cost shares. Before considering the different types of inefficiency and

the size of inefficiencies in more detail a stable network has to be defined. To do this cost

shares will be assumed (at first) to be exogenous:

Assumption: For every link formed the buyer pays γc and the seller pays (1 − γ)c,

γ ∈ [0, 1].

This assumption can be motivated by thinking of buyers and sellers both having to make

separate investments to form a link where these investments are non-substitutable.33

A network will be viewed as stable (and referred to as stable) when it meets the require-

ment of pairwise Nash stability.

Definition: The simultaneous link formation game is a simultaneous move game of

complete and perfect information. Buyers and sellers are the players. Their strategy

sets consist of the different sets of links they could pay to form. Payoffs are the payoffs

generated on the formed network (given β) less the costs paid towards forming links

(given γ). When γ = 1 a link is formed if and only if the buyer chooses to form it, when

γ = 0 a link is formed if and only if the seller chooses to form it and when γ ∈ (0, 1) a

link is formed if and only if both the buyer and seller choose to form it.

Whilst it is natural to assume that a stable network should be a Nash equilibrium of

the simultaneous link formation game this permits networks where a buyer and seller fail

to coordinate on forming a link that would benefit them both. In particular the empty

network will be stable ∀γ ∈ (0, 1). To eliminate these types of networks from the set of

stable networks buyers and sellers will be allowed to coordinate on forming a link that

benefits them both. This is captured through the requirement of pairwise stability.

Definition: A network L is pairwise stable if and only if:34

(i) All links formed benefit both connected parties:

• πBi (L) ≥ πBi (L− lij) + γc; and

• πSj (L) ≥ πSj (L− lij) + (1− γ)c, ∀lij ∈ L.

(ii) Unformed links would not benefit both connected parties if formed:

• If πBi (L+ lij)− γc > πBi (L), then πSj (L+ lij)− (1− γ)c < πSj (L); and

33It is (implicitly) assumed that buyers and sellers cannot make transfers based on these investments or
more generally contract over these investments.
34This concept is introduced by Jackson and Wolinsky (1996).
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• If πSj (L+ lij)− (1− γ)c > πSj (L), then πBi (L+ lij)− γc < πBi (L), ∀lij /∈ L.

where L+ lij is the network L with the additional link lij.

Combining the requirements of pairwise stability and that the links formed are a Nash

equilibrium of the simultaneous link formation game, networks will be considered stable

when they are pairwise Nash stable.35

Definition: A network is pairwise Nash stable if and only if it is both a Nash equilibrium

of the simultaneous link formation game and pairwise stable.36

Remark: For all potential gains from trade (∀α), for all levels of bargaining power (∀β)

and for all cost shares where each party makes some contribution towards the cost of link

formation (∀γ ∈ (0, 1)) there exists a stable network.37

The question of when efficient networks will be stable can now be considered. This can be

done by simplifying the above conditions for a network to be stable using the properties

of efficient networks. Necessary and sufficient conditions for the efficient network to be

stable are identified and discusses in the additional material.38 Of particular interest is

the result that the efficient network will be stable when buyers (sellers) have to pay the

entire cost of forming a link, γ = 1 (γ = 0), but have all the bargaining power, β = 1

(β = 0).39

Having defined a stable network under-investment and over-investment inefficiencies can

be considered more precisely. Consider again the network in Example 1 and the case

where both buyers and sellers had to make an equal exogenous investment for links to

form. It was shown that the unique stable network was the empty network such that all

the gains from trade that would have been generated by the efficient network were lost

on the stable network. The best and worst case efficient loss for this example is therefore

100% and it is due to an under-investment in links that should be traded over. In this

example there is no inefficiency due to over-investment in non-trade links. Example 3

below considers a network with over-investment inefficiency.

35Pairwise stability here refers to network formation. Matches on a given network may also be pairwise
stable or not depending on whether two agents can profitably deviate in their trades on the formed
network.
36Pairwise Nash stability is a relatively minimal requirement for a network to be stable. In particular a
network can be pairwise Nash stable even if a buyer and seller could profit from forming a link between
themselves and simultaneously deleting some other link.
37This is proved in Section AM-3 of the additional material.
38Section AM-4
39This corresponds to the main result of Kranton and Minehart (2001).
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Example 3. Assume that buyers bargaining power is β = 1
2
, costs are again shared evenly

(γ = 1
2
) and the cost of link formation is c = 1− ε.

(a) Potential links (b) Efficient network (c) Stable network

Figure 3. Over-investment inefficiency

The efficient network is again unstable, but now it is because of over-investment in non-

trade links. Buyer b1 and seller s1 can increase their payoffs by forming a non-trade link

between themselves. Again the stable network found is the unique stable network. Here

not all the net gains from trade generated by the efficient network are lost. However, half

the gains from trade are lost as ε → 0 (the best case and worst case efficiency loss is

50%).

Under-investment inefficiency in the first example is a direct result of the assumption

that cost shares are exogenous. If buyers and sellers could negotiate over the costs of

link formation they would always be able to negotiate a cost share that eliminated any

under-investment inefficiency. This possibility is considered in the next section.

5.4. Endogenous cost shares.

Assumption: Link formation is endogenous to the network such that a link is formed

whenever the buyer-seller pair jointly benefit from it.40

This assumption can be motivated in a couple of ways. Most simply buyers and sellers

just have to make a joint investment where investment by one of them is perfectly sub-

stitutable with investment by the other. Alternatively, buyers and sellers may be able to

40This is made clearer by the definition of side payment pairwise stable networks given below.
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make transfers to one another based on the non-substitutable investments they make.41

With this new cost sharing arrangement it is necessary to adjust the definition of a stable

network.

Definition: Given potential gains from trade α, a network L is side payment pairwise

stable if and only if:42

(i) All links formed jointly benefit the connected parties:

• πBi (L) + πSj (L) ≥ πBi(L− lij) + πSj (L− lij) + c, ∀lij ∈ L; and

(ii) All links not formed would not jointly benefit both connected parties:

• πBi (L) + πSj (L) ≥ πBi (L+ lij) + πSj (L+ lij)− c, ∀lij /∈ L

where if an additional link l′ 6∈ L were added to L, the cost shares over each link l ∈ L
would remain the same on the network L+ l′ as they were on L.43

When considering the simultaneous link formation game there are now many possible

different cost sharing arrangements. All these possibilities are considered when defining

a side payments pairwise Nash stable network.

Definition: A network is now a Nash equilibrium of the simultaneous link formation

game if the costs of link formation are shared between the buyers and sellers forming

each link such that the set of links formed by each party is a best response to the links

formed by all other parties.44

Definition: A network is side payment pairwise Nash stable if and only if there exists

some share of link formation costs such that the set of links formed is both a Nash

equilibrium of the simultaneous link formation game and pairwise stable.45

41Brandenburger and Nalebuff (1996) provide an example of investments being negotiated endogenously
in this way. When Craig McCaw wanted to acquire LIN and he was the only credible bidder, LIN paid
Bell South’s due diligence and other costs so they would enter the bidding process.
42This concept of pairwise stability is a natural extension of pairwise stability to environments with
transfers and is introduced in Jackson and Wolinsky (1996).
43Whilst this condition does restrict the scope of possible profitable deviations (i.e. a link cannot be
added and the cost shares of different links simultaneously changed) it is in the same sprit as pairwise
stability which considered a network to be stable even if it is profitable for a link to be jointly formed
whilst others are simultaneously deleted.
44Instead of searching over different possible cost sharing arrangements to identify the set of Nash
equilibria, the simultaneous link formation game could be changed. The strategy set of parties in the
simultaneous link formation game could be expanded such that players choose not only which links they
want to form but also how much they are prepared to pay towards the formation of these links. A link
is then formed if and only if the contributions named by the buyer and seller are sufficient to cover the
cost of forming it.
45A side payment pairwise Nash stable network does not always exist. This is shown in Section AM-3
of the additional material.
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Necessary and sufficient conditions for the efficient network to be stable are identified

and discussed in the additional material.46

Having defined what is meant by a stable network when cost shares are endogenous the

size of inefficiencies can be considered.47 Consider again Example 1. When cost shares

are endogenous it was argued that the unique stable network was the complete network

and that as ε→ 0 all of the net gains from trade would be lost due to an over-investment

in outside option links by b1. This can now be made precise. In the stable (complete)

network b1 must pay the entire cost of forming the link l12 as s2 does not trade and

therefore receives no benefit from the link. However, the exact share of costs for link l11

is not pinned down. s1 would be willing to pay up to ε for it and b1 must then pay the

rest. Thus πb1 ∈ [ε, 2ε] and πs1 ∈ [0, ε] depending on the cost share agreed. Note that

both these payoffs go to zero as ε→ 0. Indeed BCEL = WCEL =
1
2

+ε−2ε
1
2

+ε
= 1−2ε

1+2ε
which

goes to 100% as ε→ 0.

The examples considered so far suggest that under-investment in trade-links may be a

more serious problem than inefficiency due to over-investment in non-trade links when

cost sharing is exogenous whilst inefficiency due to over-investment in non-trade links

will become more problematic when cost shares are endogenous. Proposition 2 in the

next section makes this intuition precise.

5.5. Main Results. With the definitions of stability, the different types of inefficiency

identified and a measure of the size of inefficiencies in hand, the main results of this paper

can be presented:

Proposition 1. When buyers have all the bargaining power β = 1 and have to pay

all the costs of link formation γ = 1 the efficient network is stable for any potential

gains from trade (α) and there does not exist a stable network with any inefficiency due

to over-investment in non-trade links or under-investment in trade links. However, if

either:

• buyers’ bargaining power declined (β < 1); or

• sellers had to pay some costs of link formation (γ < 1); or

46Section AM-4.
47It is shown in Section AM-5 of the additional material that when cost sharing is endogenous the
absolute size of inefficiency on any stable network with Q links is bounded from above by Qc. It is
interesting that as either c → 0 or Q → 0 there can be no inefficiency. That there is no inefficiency as
c→ 0 is intuitive and consistent with observation that at c = 0 the efficient network will be stable. The
fact that inefficiency goes to zero for Q → 0 emphasizes that inefficiency due to under-investment has
been removed from the network: No longer can there be any inefficiency on the empty network if it is
stable.
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• buyers and sellers could negotiate over the costs of link formation

there would exist potential gains from trade (α) where, on even the most efficient stable

network, ALL the gains from trade are consumed by inefficiencies.

It is well known that inefficiencies can be present when parties cost shares and bargaining

power do not coincide. The contribution of Proposition 1 is identifying the discontinuity

in the level of inefficiency present moving away from the special case where the efficient

network is always stable: Moving even slightly away from this special case all the gains

from trade generated by the efficient network can be lost on even the best stable network.

Proposition 2.

When costs shares are exogenous:

• inefficiency due to over-investment in non-trade link on even the worst stable

network is bounded at 50% of the net gains from trade generated by the efficient

network, for γ ∈ (0, 1);

• whilst inefficiency due to under-investment in trade links on even the best stable

network can be 100% of the net gains from trade generated by the efficient network

for β 6= γ.

Endogenizing cost shares:

• inefficiency due to under-investment in non-trade links is eliminated;

• but inefficiency due to over-investment in non-trade links on even the best sta-

ble network is no longer bounded and can be 100% of the net gains from trade

generated by the efficient network.

Proposition 2 emphasizes that inefficiency is not an artifact of the cost sharing assump-

tion, although this does affect which types of inefficiency are likely to be most important

and when. Removing under-investment inefficiency problems by permitting buyers and

sellers to endogenously negotiate over the cost split exacerbates over-investment ineffi-

ciency problems insofar as they are no longer bounded.

An immediate consequence of Proposition 2 is given in Corollary 1:

Corollary 1. For each change identified in Proposition 1 that moves the environment

away from the special case of β = 1 and γ = 1, either inefficiency due to over-investment

in non-trade links alone or inefficiency due to under-investment in trade links alone can
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account for the existence of potential gains from trade (α) where the inefficiency consumes

all the gains from trade:

Proposition 1 change Inefficiency responsible for the result
Buyers’ bargaining power declines (β < 1) under-investment in trade links

Sellers have to pay some costs (γ < 1) under-investment in trade links
Buyers and sellers negotiate over costs over-investment in non-trade links

Table 1. Accounting for the possible 100% BCEL identified in Proposition 1.

When costs are shared in exogenous proportions under-investment in trade links is suf-

ficient to generate the result of Proposition 1. In contrast inefficiency due to over-

investment in non-trade links is bounded. Moving to endogenous cost sharing resolves

the problem of under-investment in trade links. However, over-investment in non-trade

links is now sufficient to generate 100% inefficiency, as measured by the best case effi-

ciency loss.

This trade-off between inefficiency due to under-investment in trade links when cost

sharing is exogenous and over-investment in non-trade links when it is endogenous is

also reflected in the conditions under which the efficient network is stable.48 In the case

of vertically differentiated suppliers,49 when costs are shared exogenously the efficient

network is only ever unstable because of insufficient incentives to retain traded over links

whilst when costs are shared endogenously the efficient network is only ever unstable

because of incentives to form outside option links.

5.6. Proving the Main Results. Propositions 1 and 2 and Corollary 1 follow imme-

diately from three lemmas that are presented in this section.

Lemma 3. When cost shares are exogenous the best case efficiency loss due to only

under-investment in trade links can be 100% ∀β 6= γ. In contrast there is no inefficiency

loss due to under-investment in trade links when β = γ: When β 6= γ there always exists

some potential gains from trade α where in the best stable network all the net gains from

trade generated by the efficient network are lost despite there only being inefficiency due

to under investment in trade links. When β = γ there is no under-investment inefficiency

in any stable network for any potential gains from trade α.

48See Section AM-4 of the additional material.
49See Section AM-6 of the additional material
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The proof of Lemma 3 is in Appendix C. It is intuitive that there will be no under-

investment in efficiency when β = γ. In this case each party’s revenue and cost shares

from joint production are aligned.50

The next lemma will bound the worst case efficiency cost due to over-investment in trade

links when cost shares are exogenous. However, it is first necessary to define the worst

case efficiency loss due to over-investment in trade links.

Definition: The worst case efficiency loss due to over-investment in non-trade links,

given gains from trade α is given by: (Q̃−K̃)c

NGT (L)−K̃c , where L is the stable network that

maximizes this expression (and implements K̃ matches and has Q̃ links in total).

The worst case efficiency loss searches over all stable networks. It finds the stable network

with the highest lost gains from trade due over-investment in non trade links where this

loss is expressed as a percentage of the net gains from trade that could be realized on

the network were there no over-investment inefficiency.

Lemma 4. The worst case efficiency loss due to over-investment in non-trade links is

bounded by the amounts shown in the table below and this bound is tight: There does not

exist a stable network for any potential gains form trade that results in a higher loss in

efficiency due to over-investment in non-trade links, but there does exist a stable network

for some potential gains from trade with this level of inefficiency.51

β γ Bound on WCEL caused by over-investment

∈ (0, 1) ∈ (0, 1) h(K̃, γ, β)∗ ≤ 1
2

∈ {0, 1} ∈ (0, 1) 0∗∗

0 0 0

∈ (0, 0.5) 0 β
1−β

∈ [0.5, 1] 0 1
∈ [0, 0.5] 1 1

∈ (0.5, 1) 1 1−β
β

1 1 0

Table 2. Bounding the worst case efficiency lost due to over-investment
in non-trade links

* h(K̃, γ, β) ≡ K̃−1

max
{

(K̃−1)+(1−γ)
1−β +

(K̃−1)(1−γ)
β

,
(K̃−1)+(γ)

β
+

(K̃−1)(γ)
1−β

}
−K̃

** The unique stable network is the empty network so the worst case efficiency loss due to

over-investment in non-trade links is 0.

50Similar conditions are also found in Hosios (1990) and Caballero and Hammour (1998).
51The size of the cost of link formation is normalized away: the values of α can always be scaled to
compensate for a higher or lower c.
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where K̃ is the number of matches on the component in the network with the most matches when

β ≤ (1 − γ); the number of matches on the component in the network with the least number

of matches greater than one when β > (1 − γ) and there is a component with more than one

match; and 1 when all components have only one match.

The proof of Lemma 4 is in Appendix C. These bounds are shown in Figure 6 below.

(a) All parameters (b) Interior points

Figure 4. Over-investment inefficiency bound (K̃ = 10)

Figure 4a shows the bound on the worst case efficiency loss due to over-investment in

non-trade links for γ ∈ [0, 1], β ∈ [0, 1], K̃ = 10 and c normalized to 1. There are similar

bounds for other values of K̃. In particular the bound on the worst case efficiency loss,

for γ ∈ (0, 1), is always largest for γ = β = 1
2

and at this point is always 1
2

(50% of the

net gains form trade generated by the efficient network) ∀K̃ > 1.

From Figure 4a the discontinuity in the bound at the extreme values of γ is apparent.

This is because when γ ∈ {0, 1} either buyers or sellers cannot contribute towards the cost

of link formation. This relaxes a number of constraints on the stable network: outside

option links no longer have to benefit both the parties they connect, they only need to

benefit the party who has to pay for them.

As can be seen in Figure 4b, and is easily shown directly from the h() function, for any β

the interior bound is highest when γ = β.52 Recall that the it is precisely when γ = β that

there is no under-investment inefficiency. Thus, it is when there is no under-investment

inefficiency that the problem of over-investment is most acute.

52This is proved as part of the proof of Lemma 4 in Appendix C.
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The final Lemma that is required for the proof of the main results shows that the best

case inefficiency loss due to over-investment in non-trade links is unbounded when cost

shares are endogenous.

Lemma 5. When cost sharing is endogenous the worst case inefficiency due to over-

investment in outside trade links can be 100%: There exist potential gains from trade

where the most efficient stable network consumes all the net gains from trade generated

on the efficient network due to over-investment inefficiency.

The proof of Lemma 5 is in Appendix C.

In is proved in the additional material that the efficient network is stable when buyers

(sellers) have all the bargaining power and only they can form links.53 Propositions 1

and 2 and Corollary 1 then follow immediately from Lemmas 3, 4 and 5.

6. Related Literature

The section places the models of Sections 3 and 5 in the context of three related liter-

atures: the literatures on bargaining over fixed networks, forming trade networks, and

the considerable literature on making relationship specific investments when contacts are

incomplete.54

6.1. Bargaining over fixed networks. There is a growing literature on bargaining

over a fixed network. An important difference between much of this literature and the

model built in this paper is the ability to model heterogenous gains from trade. In

many situations allowing for heterogeneous agents is more realistic and it also leads to

a richer model of bargaining over a network that permits new results to be derived.

Most importantly, modeling heterogeneous buyers and sellers is essential for a thorough

analysis of inefficiencies in network formation.

The role of networks in affecting bargaining outcomes has long been recognized (e.g.

Emerson 1967).55 Models of bargaining over a network tend to have taken one of two

53Section AM-4.
54Some related literatures are not discussed. Network formation not in the context of trade networks is
considered by Bala and Goyal (2000), Galeotti et al (2006) and Goyal and Vega-Redondo (2007) amongst
others. Jackson (2008) provides an overview. Perhaps most relevant in this literature is Currarini and
Morelli (2000) who consider a non-cooperative game of network formation in which players form links
and propose surplus splits thereby endogenzing these splits. This is bit similar to permitting buyers and
sellers to negotiate their investment shares. In contrast to model of Section 5, they find that the efficient
network is stable under the condition of size monotonicity. The search literature is also related but not
discussed. See Rogerson, Shimer and Wright (2005) for an excellent survey or Pissarides (2000).
55In experiments Cook and Emerson (1983) have investigated the role of networks in determining the
terms of trade and found that the network mattered.
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approaches: A non-cooperative game theoretic approach or a cooperative game theoretic

approach. There are a number of papers that model non-cooperative alternating offer

bargaining games over the network. Corominas-Bosch (2004), Navarro and Perea (2001),

Polanski (2007), Manea (2008) and Abreu and Manea (2008) all pursue this methodol-

ogy. The Corominas-Bosch model (2004) is closest to the model considered in this paper.

As in this paper, the Corominas-Bosch model can be viewed as affecting bargaining out-

comes by providing outside options.56 Further, if the environment of the model presented

in this paper is restricted to only permit homogeneous gains from trade, as is modeled

in Corominas-Bosch (2004),57 the alternative methodology employed in this paper repli-

cates the Corominas-Bosch equilibrium payoffs.58 This provides some non-cooperative

justification for the cooperative approach pursued in this paper.59

The second approach to modeling bargaining over a network employs cooperative game

theory. Myerson (1977) pioneered this approach by applying the Shapley value over a

network.60 Unlike many other bargaining models, the Shapley value can be applied to

networks with heterogenous gains from trade. However in the context of buyers and

sellers bargaining over a bipartite network, it seems unreasonable to constrain links,

especially those that generate outside options, to benefit both connected parties equally.

Thus the core is considered a more appealing solution concept. The core is also widely

used in the matching literature.61

The analysis of bargaining over a fixed network in this paper is closest to Kranton and

Minehart (2000a) who also generate outcomes in the core. Kranton and Minehart con-

sider competitive bargaining outcomes (which correspond to core bargaining outcomes)

and identify chains of links between buyers and sellers which in effect determine outside

options. However, they are only able to deal with the case of identical sellers such that

56This contrasts with Manea (2008) and Abreu and Manea (2008) where the network can be interpreted
as affecting parties bargaining power. The approximate intuition is that when a party has more links
(although it also matters who these links are to) the bargaining protocol selects this party more often
to receive and make offers reducing the time they wait between making or receiving offers. This has the
affect of making parties with more links more patient, increasing their bargaining power.
57It is not straight forward to directly extend Corominas-Bosch’s model to include heterogeneous gains
from trade. Indeed she concludes that although it is “natural to ask for the introduction of a little bit
of heterogeneity in the model [. . . ] [w]e believe that this line of research is unlikely to lead to fruitful
results.”
58See Section AM-2 of the additional material.
59Charness and Corominas-Bosch (2007) provide experimental support for the qualitative predictions of
Corominas-Bosch (2004).
60Navarro and Perea (2001) replicate the payoffs identified by Myerson with a non-cooperative bargaining
protocol. Kranton and Minehart (2000b), Segal and Whinston (2000) and Rajan and Zingales (1998)
all consider investments prior to surpluses being split in accordance with the Shapley value.
61See Roth and Sotomayor (1990).
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it does not matter which seller a buyer trades with, only whether they trades with a

seller or not. Their analysis exploits the homogeneity of sellers, and in particular the

fact that they provide a common reference price to all buyers connected to them. To

consider heterogenous gains from trade it is necessary to take a different, albeit related

approach building on their core insights. This new approach generates new results. For

example, a key result in the bargaining over a fixed network section of this paper is the

characterization of payoffs as a weighted sum of the potential gains from trade over links

in the network (Lemma 2). This result has no counterpart in Kranton and Minehart

(2000a).62

6.2. Trade network formation. The main focus of this paper is modeling the forma-

tion of trade networks and analyzing inefficiencies in these networks. The paper closest to

the methodology pursued in this paper is Kranton and Minehart (2001) and has already

been described in Section 1.

Kranton and Minehart (2000b) consider supply networks as an alternative to vertical

integration. Buyers make a decision whether to form their own integrated production or

to form links to potential external suppliers. Suppliers must decide whether to invest in

productive capacity and produce a good that can be sold to any connected buyer. There

is uncertainty in buyers’ valuations for inputs. Kranton and Minehart consider splits of

the surplus generated by the network according to both the Shapley value and the buyer

optimal point of the core. When surpluses are shared according to the Shapley value

buyers can both form too many or too few links. When surpluses are shared according to

the buyer optimal point of the core buyers invest efficiently, as in Kranton and Minehart

(2001), but sellers may under-invest.63

Manea (2008) considers both pairwise stable and unilaterally stable networks where gains

from trade are split according to his non-cooperative bargaining game and there are no

costs to forming links. With no costs of link formation links can no longer be interpreted

as relationship specific investments, indeed there are no investments at all. Thus the

network formation problem considered by Manea is fundamentally different form the

problem considered in this paper: Were c = 0 in the model of Section 5 there would be

no inefficiencies in network formation.

62Considering heterogenous gains from trade also permits new situations to be analyzed. For example,
the special case of vertically differentiated sellers is considered in Section AM-6 of the additional material,
whilst in Kranton and Minehart (2000a) sellers are assumed identical.
63Whilst this is suggestive of inefficiency being more of a problem with the Shapley value than the buyer-
optimal core, at other points of the core buyers will receive less than their marginal social contribution
and so may not invest efficiently.
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6.3. Other models of relationship specific investments. Outside of the formation

of trade networks there is a very large literature considering the efficiency of relationship

specific investments. This section considers a few of the most relevant papers in this

literature. In much of this literature relationship specific investment take a very different

form to those considered in Section 5 (where parties make joint investments that matter

only insofar as they enable trade). In the case of fixed exogenous investments, considered

in Section 5.3, when γ ∈ (0, 1) both parties must make positive investments to enable

trade, investment decisions are binary and highly interdependent: A link is not formed

unless both parties invest. When investments are negotiated endogenously, as consid-

ered in Section 5.4, parties’ investments are again highly interdependent: Only joint

investment greater than c generate a link. In contrast much of the relationship specific

investment literature models the returns to investments as increasing at a diminishing

marginal rate. This difference is important. Many of the solutions for restoring efficiency

discussed in the relationship specific investment literature cannot be applied given the

set up of this paper.

Caballero and Hammour (1998) are an exception and model investments in a similar way

to how fixed exogenous investments are modeled in Section 5.3. In their model capital

and labour must be combined in fixed proportions to be productive and parties split the

surplus generated from investment equally. When capital and labour must be combined

in equal proportions to generate a productive unit efficient investment decisions are made.

This follows from Hosios (1990) and is a special case of the condition, β = γ, identified

in this paper, under which there is no under-investment inefficiency. By construction

there is no over-investment inefficiency in Caballero and Hammour as only two parties

are modeled. The condition that there will be no under-investment inefficiency when

β = γ, in both Caballero and Hammour and this paper, contrasts with the standard

condition that parties must have all the bargaining power to make efficient relationship

specific investments.64 This difference arises because investments are, in effect, jointly

made by the parties rather than separately as in the majority of the literature. As far

as I am aware the case of endogenizing investment decisions of the form considered in

this paper, by allowing parties to negotiate their cost contributions such that the Hosios

condition can always be met, has not previously been studied.

Although the investments made in this paper differ from those made in much of the

contract theory literature, inefficiencies due to under-investment for fear of hold up and

over-investment in outside options, have been widely identified and analyzed. However,

64See Malcomson (1997).
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the approaches identified to restore efficiency cannot typically be applied when relation-

ship specific investments enable trade.65 Grossman and Hart (1986) and Hart and Moore

(1990) consider the affect of adjusting asset ownership to improve investment decisions

where investments are asset specific. When another party owns an asset (has residual

control rights over it), a specific investment in that asset is translated into a relationship

specific investment and is subject to hold up. In contrast when a party owns the asset

they are investing in, their investment is no longer relationship specific: they can obtain

the full benefits of the investment outside of the relationship. Adjusting asset ownership

can therefore affect the efficiency of investment decision. Cole, Mailath and Postlewaite

(2001b) also remove the specificity of investments, but do so by modeling a continuum

of potential trade partners such that there are outside trade partners who benefit from

investments as much as trade partners do. However, when investments create links that

enable trade they are often fundamentally relationship specific. These investments are

the subject of this paper.

Cole, Mailath and Postlewaite (2001b) consider a finite economy and look for conditions

under which relationship specific investments will be efficient. They show it is possible to

construct bargaining protocols such that there is efficiency. By conditioning the equilib-

rium selected from the core on parties’ investments, incentives for efficient investment are

restored. This approach might also yield efficiency when investments are in relationships

that enable trade. However, the bargained outcomes require careful manipulation to gen-

erate the correct incentives for efficient investment and if bargaining power is determined

institutionally, the efficient outcomes cannot be reached in this way.

7. Conclusions

This paper aims to provide a thorough and systematic investigation of inefficiencies in re-

lationship specific investment decisions that enable trade when there are many potential

trade partners for each party. Contributions are made to the trade network formation lit-

erature by: (i) extending the environment these models have considered, (ii) introducing

new tools for measuring the size of inefficiencies in general and by the different types of

inefficiency, and (iii) generating new results that (a) illustrate the potential significance of

65An exception, and perhaps the simplest approach towards reducing inefficiency, is to ensure only one
party can make a relationship specific investment and this party has all the bargaining power. See,
for example, Hart and Moore (1988). This is also the approach successfully taken, by assumption, by
Kranton and Minehart (2000b), (2001) as already discussed. However, situations in which only buyers,
or only sellers, make relationship specific investments and have all the bargaining power are a relatively
special case.
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inefficiencies (Proposition 1) and (b) identify the impact of investments being negotiated

endogenously (Proposition 2).

Previous models of network formation have not considered environments in which links

are formed between buyers and sellers with different ex-ante potential gains from trade,

bargaining power is varied and investment protocols include both exogenous fixed con-

tributions to forming links and endogenous negotiated individual contributions towards

forming links. This relatively rich environment permits a fuller analysis of inefficiencies

than would otherwise be possible. To analyze inefficiencies new tools are introduced to

measure the size of inefficiencies, the best and worst case efficiency loss, and inefficiencies

are partitioned into different types: under-investment in links that should be used for

trade, over-investment in links that are not used for trade and so provide no contribution

to total surplus, and coordination inefficiencies. Analysis of these inefficiencies generated

new and interesting results.

Kranton and Minehart (2001) show that there is no inefficiency when investments are

exogenous, only buyers contribute towards link formation costs, and buyers have all the

bargaining power. It is striking that efficiency can be achieved even in this relatively

specialized environment and already well understood that in environments close to this

inefficiencies may be present. However what was not well understood is whether ineffi-

ciencies in close by environments could be significant. It is shown that even on the best

stable network all the gains from trade can be lost to inefficiencies in environments even

arbitrarily close to this special case. This then raises additional questions about what

these inefficiencies are and when they are important. When buyers’ bargaining powers is

not in proportion to their share of the link formation costs under-investment inefficiency

can consume all the gains from trade. Under-investment inefficiency is eliminated by

permitting endogenous negotiations over costs shares. However, permitting endogenous

negotiations also makes it easier to form outside options links. Whilst over-investment

inefficiency is bounded on any stable network with exogenous cost shares it becomes un-

bounded on even the best stable network when cost shares are endogenously determined.

The trade off between under investment inefficiency with exogenous cost sharing and

over-investment inefficiency with endogenous cost sharing is also reflected in the neces-

sary and sufficiency conditions under which the efficient network is stable.66 In particular,

when there is vertical differentiation, with exogenous investments the efficient network

is only ever unstable due to incentives to delete trade links whilst when investments are

endogenous the efficient network is only ever unstable due to incentives to form outside

66See Section AM-4 of the additional material.
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option links.67 To the best of my knowledge the impact of endogenizing cost shares in

this way has not been considered before.

To permit the analysis of trade network formation in environments where there are het-

erogenous gains from trade and it matters who is matched to who, it was necessary to

first model bargaining over networks with heterogenous gains from trade. An intuitive

methodology for determining bargaining outcomes was presented that emphasized the

role of networks in generating outside options. Further, this process identified precisely

how the structure of any network impacted all parties’ payoffs. It is hoped this tool will

also be useful for future work.

In many applications it may be unrealistic to think of all parties knowing the potential

gains from trade between all buyer-seller pairs when forming relationships. Indeed, in

some applications it may be the case that relationship specific investments are undertaken

precisely for the purpose of determining the gains from trade. Modeling this imperfect

information environment in the presence of ex-ante heterogeneous expected gains from

trade is left to future work. Nonetheless this paper should provide a foundation for

further work in this direction as well as some immediate incremental improvement to our

understanding of these markets.

67See Section AM-6 of the additional material.
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Appendix A. Bargaining over a Fixed Network- Additional Results

This section supports Section 3 by providing additional detail and results referred to therein.

It is useful to first formally define the core for bargaining outcomes over a network:

Definition: Payoff vectors πS , πB are feasible for a coalition Ψ ⊆ B∪S if
∑

i∈Ψ π
B
i +
∑

j∈Ψ π
S
j ≤

V (Ψ).

Definition: Payoff vectors πS , πB are implementable for µ by a coalition Ψ ⊆ B ∪ S if∑
i∈Ψ π

B
i +

∑
j∈Ψ π

S
j ≤

∑
i∈Ψ αiµ(i) and µ(i) ∈ Ψ, ∀i ∈ Ψ.

Definition: Payoff vectors πB, πS and match µ are in the core for a network L if the payoff
vectors are feasible for B ∪ S, implementable by µ for B ∪ S, and there do not exist a payoff
vectors π̃B and π̃S for any coalition Ψ ⊆ B ∪ S that is weakly preferred by all members of the
coalition, strictly preferred by one member and feasible: There do not exist a payoff vectors π̃B

and π̃S such that:

• π̃Bi ≥ πBi , ∀i ∈ Ψ and π̃Sj ≥ πSj , ∀j ∈ Ψ;
• π̃Bi > πBi , for some i ∈ Ψ or π̃Sj > πSj , for some j ∈ Ψ; and
•
∑

i∈Ψ π̃
B
i +

∑
j∈Ψ π̃

S
j ≤ V (Ψ).

A.1. Negotiated Rematching. Having formally defined the core it can be seen that the
negotiated rematching process terminates in the core. By construction there is no buyer-seller
pair that could form a deviating coalition and this is necessary and sufficient for no coalition of
buyers and sellers being able to form a deviating coalition.68

Payoffs can be pinned down by the negotiated rematching process:

Lemma 6. Suppose a seller sj′ is removed from a network (L) leaving their trade partner
bi′ = µ(j′, L)∗ unmatched. Following a negotiated rematching process remaining sellers’ payoffs
are given by:

πSj (L− j′) = max{πSj (L), πSj (L− j′)BO}, ∀j 6= j′

where πSj (L− j′)BO is seller sj’s payoff at the buyer optimal point of the core (the lowest payoff
sj can receive for any core outcome) on the network L− sj′.

Proof. The negotiated rematching process bids up the payoffs of sellers following the removal
of seller sj′ form a network. This proof will proceed in three steps. First it will be shown that
all sellers sj 6= sj′ such that πSj (L) > πSj (L − j′)BO never have their payoff bid up further.
Second it will be shown that all sellers sj 6= sj′ such that πSj (L) ≤ πSj (L − j′)BO never have
their payoff bid up above πSj (L − j′)BO. Third it will be shown that all sellers sj 6= sj′ such
that πSj (L) ≤ πSj (L − j′)BO must have their payoff bid up to at least πSj (L − j′)BO. It then
follows that πSj (L− j′) = max{πSj (L), πSj (L− j′)BO}, ∀sj 6= sj′ .

Partition the set of sellers S on the network L− j′ such that Ŝ = {j : πSj (L) ≤ πSj (L− j′)BO}
and S̃ = {j : πSj (L) > πSj (L − j′)BO}. As sellers’ payoffs are simply the prices they receive

68Shapley and Shubik (1972); Roth and Sotomayor (1990).
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these terms will be used interchangeably. Label the set of trade partners of sellers sj ∈ Ŝ on
the initial network L, B̂ = µ(Ŝ)∗ ≡ {bi ∈ B : µ(bi, L)∗ ∈ Ŝ} and label the set of trade partners
of sellers s ∈ S̃ on the initial network L, B̃ = µ(S̃)∗ ≡ {bi ∈ B : µ(bi, L)∗ ∈ S̃} (this is not
necessarily a partition of all buyers).

Suppose that the negotiated rematching process has reached any point where πSj ≤ πSj (L−j′)BO,
∀sj ∈ Ŝ and πSj = πSj (L) > πSj (L− j′)BO, ∀sj ∈ S̃. It will be shown that any buyer bi /∈ B̃ will
not demand trade with any seller sj ∈ S̃ at these prices such that the price received by sellers
sj ∈ S̃ cannot be bid up. Suppose, in contradiction, that a buyer bi′ /∈ B̃ demanded trade with
some seller sj ∈ S̃ at these prices. Now weakly increase the price of all sellers sj ∈ Ŝ such that
πSj = πSj (L − j′)BO and decrease the price of all sellers sj ∈ S̃ such that πSj = πSj (L − j′)BO.
Buyer bi′ must still demand trade with a seller sj ∈ S̃. Further all buyers bi ∈ B̃ must still
demand trade with a seller sj ∈ S̃. There must then be some seller sj ∈ S̃ with whom buyers
over demand trade. Thus the prices at the buyer optimal point of the core for network L− j′

are not stable. This is a contradiction.

Continue to consider payoffs such that πSj ≤ πSj (L − j′)BO, ∀sj ∈ Ŝ and πSj = πSj (L) >

πSj (L− j′)BO, ∀sj ∈ S̃. It will be shown that the payoff of any seller sj ∈ Ŝ will never be bid up
above the buyer optimal point. Suppose in contradiction that a seller sj′′ ∈ Ŝ’s payoff would be
bid up above the buyer optimal point in the next round of the negotiated rematching process.
The payoffs of sellers sj ∈ S̃ were stable (in the core) on the network L. Thus increasing the
relative price of trade with other sellers will not result in any buyer bi ∈ B̃ demanding trade with
any seller sj ∈ Ŝ, including sj′′ . For a sj′′ ’s payoff to be bid above the buyer optimal payoff on
network L− j′ it must then be that trade with sj′′ is over-demanded by buyers B′ ⊆ {i : i /∈ B̃}
at current prices. Suppose that the prices of all sellers sj ∈ Ŝ were weakly increased such
that πSj = πSj (L − j′)BO. Demand for trade with sj′′ must have weakly increased and still be
demanded by all buyers bi ∈ B′. Further, buyers bi ∈ B̃ must still demand trade with sellers
sj ∈ S̃. Suppose that the prices of sellers s ∈ S̃ are decreased such that πSj = πSj (L − j′)BO.
Buyers B′ ∪ B̃ must then demand trade with sellers sj′′ ∪ S̃ such that trade with at least one
of these sellers is over-demanded. As all prices are now at the buyer optimal point of the core
this is a contradiction.

It is has been shown that the payoff of a seller sj ∈ S̃ cannot be bid up above πSj (L − j′)BO

by the negotiated rematching process unless there is some seller sj ∈ Ŝ with a payoff greater
than πSj (L − j′)BO. It has also been shown that the payoff of a seller sj ∈ Ŝ cannot be bid
up above πSj (L− j′)BO by the negotiated rematching process unless there is some seller sj ∈ S̃
with a payoff greater than πSj (L). As at the beginning of the negotiated rematching process
πSj ≤ πSj (L − j′)BO, ∀sj ∈ Ŝ and πSj = πSj (L) > πSj (L − j′)BO, ∀sj ∈ S̃ this means that the
payoff of a seller sj ∈ S̃ cannot be bid up above πSj (L) and the payoff of a seller sj ∈ Ŝ cannot
be bid up above πSj (L− j′)BO.

Finally, as the negotiated rematching process cannot terminate at a point where trade with a
seller is over-demanded, sellers’ prices must be bid up to at least the buyer optimal point of the
core. Thus πSj (L− j′) = max{πSj (L), πSj (L− j′)BO}. �

A.2. Optimal Rematches. The optimal rematch can be represented as a chain where each
party is sequentially rematched to their optimal rematch along connected links:
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Lemma 7. Suppose µ(i′)∗ is removed from the network L. The optimal rematch can be repre-
sented as a chain (a sequence of links each sharing a node in common). This chain never cycles
and only ever rematches parties to their optimal rematch. The chain is of the following form:

(i) Set bi = bi′.
(ii) If µ(i, L − µ(i′)∗)∗ = bi such that bi is matched to himself in the optimal rematch

following the removal of µ(i′)∗ the process ends. If not rematch bi to µ(i, L−µ(i′)∗)∗ =
ν(i).

(iii) If seller ν(i) was unmatched on the initial network (µ(ν(i), L)∗ = ν(i)), the process
ends. If not, then a new buyer µ(ν(i), L)∗ is displaced.

(iv) Set bi equal to this displaced buyer and go back to step ii).

Proof. As all rematches in the chain are to parties’ unique optimal rematches, rematching each
buyer at most once, the chain must terminate having only matched parties to their optimal
rematch and the only way the chain could fail to implement the optimal rematch would be if
it terminated before all optimal rematches had been made. Denote by Ψ the set of buyers and
sellers that are not rematched in the chain but are rematched in the optimal rematch. The
buyers and sellers in Ψ could also have been rematched on the original network L without af-
fecting the matchings of any buyers and sellers outside of Ψ. As the initial matching maximized
the gains from trade on L, Ψ = ∅ and all rematches implemented by the optimal rematch must
also be implemented by the chain identified. �

As the chain identified in Lemma 7 implements the optimal rematch it will be referred to
as the optimal rematch chain. Further, as the negotiated rematching process implements the
optimal rematch, the rematches it implements can also be represented by the optimal rematch
chain.69 In optimal rematch chains (and therefore outside option chains) all the parties that
are rematched at any point of the chain must be rematched to their outside trade partner. This
is proved in Lemma 8:

Lemma 8. ∀sj displaced by the optimal rematch chain on L− bi′, their optimal rematch is to
their outside trade partner, µ(sj , L − bi′)∗ = µ(sj , L − µ(sj , L)∗)∗ = ν(sj)∗, and they receive
their outside option value, πSj (L− bi′) = πSj (L− µ(sj , L)∗)SO = πSj (L).

Proof. It will then be shown that if a party is displaced and rematched to someone other
than their outside trade partner in the optimal rematch chain, then the optimal rematch chain
cannot yield matches that maximized the gains from trade on the reduced network. Thus each
displaced party must be rematched to their outside trade partner.

To complete this proof it is useful to first develop some additional notation: Define µRC(L−i′)∗

as the sequence of rematches that occur in the optimal rematch chain following the removal of
bi′ from the network L. This sequence of rematches can be partitioned into two subsequences
of rematches in the following way. Abusing notation and letting µRC(L − i′) also be the
set of matches in the sequence µRC(L − i′), suppose that the match {i′′, µ(i′′, L − i′)∗} ∈
µRC(L− i′)∗. Then the sequence µRC(L− i′)∗ can be partitioned into those matches before and

69In the non-generic case where there are multiple optimal rematches each of these rematches will have
a corresponding optimal rematch chain which can all be implemented by the negotiated rematching
process.
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including {i′′, µ(i′′, L− i′)∗} and those matches after {i′′, µ(i′′, L− i′)∗}. The subsequence (and
substring) of matches before and including {i′′, µ(i′′, L− i′)∗} will be denoted µi

′′

RC(L− i′)∗ and
the subsequence (and substring) of matches after and not including {i′′, µ(i′′, L − i′)∗} will be
denoted µi

′′

RC(L− i′)∗. Thus µRC(L− i′) = µ
i′′

RC(L− i′)∗, µi
′′

RC(L− i′)∗. It is assumed that each
party has a unique outside trade partner in this proof. This is generically true and even if it
were not true the proof could be extended to allow for multiple optimal trade partners and /
or multiple optimal outside trade partners with a little additional work.

Consider an optimal rematching chain µRC(L− i′)∗. By definition, if rematched, µ(i′, L)∗ must
be rematched to their outside trade partner ν(µ(i′, L)∗). Let i′′ be this buyer (i′′ = ν(µ(i′, L)∗)).
Suppose, in contradiction, that i′′’s trade partner on L, µ(i′′, L)∗ is not rematched to their
outside trade partner: µ(µ(i′′, L)∗, L− i′)∗ 6= ν(µ(i′′, L)∗).

There are two cases to consider. Suppose that were i′′ removed from the network L the optimal
rematch µRC(L− i′′)∗ would not displace i′. Consider again the optimal rematch following the
removal of i′ and in particular the sequence of rematches after µ(i′′, L)∗ is reached. At this
point both sequence of rematches µi

′′

RC(L − i′)∗ and µRC(L − i′′)∗ are possible. By definition
of the optimal rematch when i′′ is removed from the network the total additional surplus
generated by the rematch µRC(L− i′′)∗ must be greater than for any other rematch. The total
additional value generated by the rematch µRC(L − i′′)∗ must then be weakly greater than
the total additional value generated by remainder of the optimal rematch µi

′′

RC(L − i′)∗. Thus
µRC(L− i′′)∗ = µi

′′

RC(L− i′)∗. This is a contradiction.

Consider now the second case where i′ is rematched in the sequence µRC(L− i′′)∗. As optimal
rematches never rematch the same party twice the subsequence of optimal rematches µi

′

RC(L−
i′′)∗ is a possible rematch on the network L−i′. Similarly the subsequence of optimal rematches
µi
′′

RC(L− i′)∗ is a possible rematch on the network L− i′′. The optimal rematch must implement
matches that maximize the gains from trade on the reduced network. Abusing notation such
that µ′ represents a matched buyer and seller pair:

∑
µ′∈µRC(L−i′)∗

αµ′ +
∑

j 6∈µRC(L−i′)∗
αµ(j,L)∗j >

∑
µ′∈µi

′
RC(L−i′′)∗

αµ′ +
∑

j 6∈µi
′
RC(L−i′′)∗

αµ(j,L)∗j (3)

∑
µ′∈µRC(L−i′′)∗

αµ′ +
∑

j 6∈µRC(L−i′′)∗
αµ(j,L)∗j >

∑
µ′∈µi

′′
RC(L−i′)∗

αµ′ +
∑

j 6∈µi
′′
RC(L−i′)∗

αµ(j,L)∗j (4)

Combining equations 3 and 4:

∑
µ′∈µi

′
RC(L−i′′)∗

αµ′ +
∑

µ′∈µi
′′
RC(L−i′)∗

αµ′ >
∑

j∈µi
′
RC(L−i′′)∗

αµ(j,L)∗j +
∑

j∈µi
′′
RC(L−i′)∗

αµ(j,L)∗j (5)

Consider the left hand side of equation 5. The two rematching chains summed over provide
a sequence of links that goes from µ(i′′, L)∗ to i′, and then from µ(i′, L)∗ back to i′′. This is
a cycle. Consider now the right hand side of equation 5. The rematching chains on this side
of the equation rematches exactly the same set of buyers and sellers as are rematched on the
left hand side of the equation. However, these buyers and sellers are matched to their optimal
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matches on L. As the matches implemented on L must have maximized the gains from trade
this is a contradiction.

It has been shown that µ(i′′, L)∗ cannot be rematched to someone other than their outside trade
partner on the network L − i′, where i′′ = ν(µ(i′, L)). Consider now the next buyer reached
on µRC(L − i′)∗: i′′′ = ν(µ(i′′, L)). As µ(i′′, L)∗ was matched to their outside trade partner,
µ(i′′′, L)∗ must also be matched to their outside trade partner (repeat the arguments above
replacing i′ with i′′ and i′′ with i′′′). Thus by induction every seller displaced in the optimal
rematching chain µRC(L − i′)∗ must be rematched to their outside trade partner. Using the
symmetry of buyers and sellers, all parties displaced by any rematching chain must be rematched
to their outside trade partner.

By construction of the negotiated rematching process, the terms of trade a party receives from
the negotiated rematching when they have been displaced at any point is equivalent to the
terms of trade they would have received were their trade partner removed from the network.
Consider a displaced buyer b1 and suppose that ν(b1) = s2. It has already been shown that b1
must be rematched to s2. b1 therefore has to just induce s2 to trade with them instead of their
current trade partner. Further, s2’s current trade partner must be s2’s trade partner on the
initial network (µ(s2, L)∗) as the optimal rematch rematches a party at most once. b1 therefore
negotiates the same terms of trade to just incentivize s2 to trade with them as they would
have in the negotiated rematching process were µ(b1, L)∗ initially removed from the network.
Displaced parties therefore receive their outside option payoff. �

A.3. Proof of Lemma 2. For convenience Lemma 2 is replicated here:

Consider a seller sj′ and denote the set of non-traded over links in their outside option chain
Lj
′

s→b. Denote the set of traded over links in their outside option link Lj
′

b→s.

(i) Seller sj′’s outside option value is πSj′ =
∑

l∈Lj
′
s→b

αl −
∑

l∈Lj
′
b→s

αl;

(ii) Buyer µ(j′, L)∗’s payoff when their trade partner sj′ receives only their outside option
is their Vickrey payoff (their marginal contribution to the grand coalition); and

(iii) These payoffs correspond to seller sj′’s and buyer µ(j′, L)∗’s buyer optimal core payoffs.

Proof. Part i): Consider a seller sj′ ’s outside option value. This is the payoff they would
obtain from the negotiated rematching process were buyer µ(j′, L)∗ removed from the network.
Without loss of generality suppose that there are k rematches that occur on this chain. Relabel
buyers and sellers as follows: Label buyer µ(j′, L)∗, b1, seller sj′ , s1, their outside trade partner
ν(s1, L) = b2, the second displaced seller µ(b2, L)∗ = s2, their outside trade partner ν(s2, L) = b3

and so on until the kth displaced seller is labeled sk. Consider first the last seller, sk, to be
displaced by the outside option chain. This seller is either rematched to an unmatched buyer
ν(sk, L) = bk+1, in which case their outside option payoff is αk+1,k or they remain unmatched in
which case their outside option payoff is zero. Consider now the k′ < kth rematched seller to be
displaced (sk′). This seller is rematched to buyer bk′+1. However for sk′ to induce bk′+1 to trade
with them they will offer (under the negotiated rematching process) bk′+1 a payoff just sufficient
to prevent bk′+1 from continuing to trade with sk′+1: πBk′+1 = αk′+1,k′+1 − πSk′+1. By Lemma
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870 the outside option chain on the network L− i′ must give each rematched seller their outside
option value. Thus sk′ receives a payoff πSk′(L− i′) = πSk′(L) = αk′+1,k′ −αk′+1,k′+1 +πSk′+1. By
induction πSj′ =

∑
l∈Lj

′
s→b

αl −
∑

l∈Lj
′
b→s

αl.

Part ii): Recall that the coalitional value of a subset of buyers and sellers V (Ψ ⊆ B ∪ S) is
defined as the maximum gains from trade the coalition Ψ can generate. Suppose that a buyer
bi′ is removed from a network L. The negotiated rematching process maximizes the gains from
trade on the network L − i′, therefore generating gains from trade V (B ∪ S/i′). The initial
match on the network L must also maximize the gains from trade and therefore generate gains
from trade V (B ∪ S). The difference in these gains from trade is the value of the matches
broken under the negotiated rematching process when moving from L to L− i′, less the value
of matches formed in the negotiated rematching process when moving from L to L− i′:71

V (B ∪ S)− V (B ∪ S/i) = αi′µ(i′,L)∗ −

 ∑
l∈Lµ(i′,L)∗

s→b

αl −
∑

l∈Lµ(i′,L)∗
b→s

αl


= αi′µ(i′,L)∗ − πSµ(i′,L)∗ = πBi′

Part iii): Buyer bi′ can never receive a core payoff above their Vickrey payoff. This is because,
by definition, this would leave the coalition of all buyers and sellers other than bi′ with a prof-
itable deviation. To show that the vector of Vickrey payoffs is in the core for this environment
Theorem 7 of Ausubel and Milgrom (2002) can be employed. First however it must be shown
that the coalitional value function in this environment is buyer-submodular:

Definition: The coalitional value function V is buyer-submodular if for all i ∈ B and all
coalitions {ΨB ∪ΨS} ⊂ {Ψ̂B ∪ΨS} such that ΨS ⊂ S and ΨB ⊂ Ψ̂B ⊂ B, V (ΨB ∪ΨS ∪ i)−
V (ΨB ∪ΨS/i) ≥ V (Ψ̂B ∪ΨS ∪ i)− V (Ψ̂B ∪ΨS/i).

The coalitional value function is buyer-submodular when the marginal contribution of a buyer
to a coalition, for a given set of sellers, is weakly greater when some other buyers are removed
from the coalition. From Corollary 9 in the additional material, a buyer’s payoff must weakly
increase following the removal of another buyer from the network. This is true for all levels of
bargaining power including β = 1. For this level of bargaining power, by part ii), buyers’ payoffs
are equal to their marginal contribution to total surplus. Thus the marginal contribution of a
buyer to total surplus must be higher when there are fewer other buyers present (in the strong
set order): The coalitional value function is buyer-submodular. In then follows from Theorem
7 of Ausubel and Milgrom that buyer bi′ ’s payoff when their trade partner sj′ receives their
outside option value is their payoff at the buyer optimal point of the core. Correspondingly
seller sj′ ’s outside option value is also their payoff at the buyer optimal point of the core. �

70See Section A
71Equivalently the difference is the value of the gains from trade generated by i′’s match, less the
additional gains from trade generated by the optimal rematch.
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Appendix B. Network Decomposition

As outside option chains only rematch displaced parties to their outside trade partner outside
options chains can be found on a network by identifying each party’s trade partner and outside
trade partner. This can be done using the process below which represents this information on
a directed graph:72

(i) Identify trade partners. The matches on a network that are in the core must maximize
the gains from trade. In the non-generic case any such match can be selected.

(ii) Identify outside trade partners. To find seller sj′ ’s outside trade partner remove their
trade partner µ(j′, L)∗ from the network and identify the match that maximizes the
gains from trade on this new network.73 sj′ is now matched to their outside trade
partner. If sj′ is left unmatched they have no outside trade partner. Repeat for all
sellers and all buyers.

(iii) Construct directed graph. This graph consists of two types of directed links. Links to
trade partners and links to outside trade partners. For each buyer and seller construct a
solid directed link to trade partners and a dashed directed link to outside trade partners.

The following relatively simple example shows how this process can be implemented. A more
complex example is given in Section AM-1 of the additional material.

Example 4. This example will show how a network can be decomposed to identify sellers’
outside option chains. An equivalent process could be used to identify buyers’ outside option
chains. Consider the network shown in Figure 5a.

(a) Underlying network (b) Outside options (c) Outside Option Chains

Figure 5. Directed Network Decomposition for Sellers

Matching b1 to s1 and b2 to s2 maximizes the possible gains from trade. This is shown below in
match µ(L)∗. Each seller’s outside trade partner is found by removing their trade partner from
the network and considering who they would be rematched to in order to maximize the gains
form trade over this new network. For example to find s1’s outside trade partner we remove

72Generically this directed graph will be unique. However, if it is not unique, any directed graph can be
selected and the results of this section will continue to hold.
73In the non generic case any such match can be selected. Although the directed network representation
will not be unique the same outside option payoffs will ultimately be derived.
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their trade partner b1 from the network. On this reduced network (L − b1) match µ(L − b1)∗

maximizes the gains from trade by matching s1 to b2. b2 is therefore s1’s outside trade partner.
Outside trade partners for the other sellers are found in a similar way. These outside trade
partners are represented by dashed arrows in Figure 5b whilst trade partners are shown by the
solid arrows. Buyers’ outside trade partners could be found in a similar way to generate the full
directed network representation of L although this not shown in Figure 5. In Figure 5b parties
benefit from a directed link that originates from them. For example s1 has a directed trade link
to b1 and a directed non-trade (outside option) link to b2.

µ(L)∗ =
{b1, s1}
{b2, s2}
{b3, ∅}

µ(L− b1)∗ =
{b2, s1b2, s1b2, s1}
{b3, s2}

µ(L− b2)∗ =
{b1, s1}
{b3, s2b3, s2b3, s2}

Sellers’ outside options chains can then be found from Figure 5b.74 This is done by following the
set of directed links originating at them and alternating between outside option links and trade
links. Sellers’ outside option chains are highlighted in Figure 5c. Seller s1’s outside option
chain is in red and s2’s is in blue.

As shown in Lemma 2 each sellers’ outside option value can be found by alternately adding and
then subtracting the value of the links in their outside option chain:

πS =

(
α2,1 − α2,2 + α3,2

α3,2

)
=

(
8− 5 + 3 = 6

3

)

This representation of sellers’ outside option payoffs identifies exactly how each link in the
network affects each seller’s outside option.

Appendix C. Network Formation Proofs

C.1. Proof of Lemma 3. The best case efficiency loss due to only under-investment in trade
links can be 100% ∀β 6= γ. In contrast there is no inefficiency loss due to under-investment in
trade links when β = γ: When β 6= γ there always exists some potential gains from trade α

where in the best stable network all the net gains from trade generated by the efficient network
are lost despite there only being inefficiency due to under investment in trade links. When
β = γ there is no under-investment inefficiency in any stable network for any potential gains
from trade α.

Proof. It will be shown that for β 6= γ there always exists gains from trade such that the empty
network is the unique stable network and a non-empty network is efficient.

Consider gains from trade α such that there is a unique non-empty efficient network.75 For
every link formed on the efficient network there must be gains from trade greater than the cost
of link formation: αi′µ(i′,LE)∗ > c, ∀i′ : µ(i′, LE)∗ 6= i′.

For the empty network to be stable there must be no incentives to form any trade links.
For the links constructed on the efficient network to not be formed either the buyer or seller

74To find buyers’ outside option chains buyers outside trade partners would have to be added to Figure
5b.
75Generically this is true anyway.
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must be unwilling to pay their share of the cost of link formation: either βαiµ(i,LE)∗ < γc or
(1−β)αiµ(i,LE)∗ < (1− γ)c.76 Thus links that would be formed on the efficient network are not
formed when:

max

{
γc

β
,
(1− γ)c
(1− β)

}
> αiµ(i,LE)∗ > c

Then ∀αiµ(i,LE)∗ ∈ (max{γcβ ,
(1−γ)c
(1−β) }, c) there can exist links that are efficient to form that are

not formed.

Consider now gains from trade α such that there is a unique efficient network LE that im-
plements k > 0 matches such that for each of these k matches ({i, µ(i, LE)∗}), αiµ(i,LE)∗ ∈
(max{γcβ ,

(1−γ)c
(1−β) }, c) and all other potential gains from trade are zero (αij = 0, ∀j 6= µ(i, LE)∗).

With these potential gains from trade the unique stable network is the empty network but the
efficient network generates positive net gains from trade: the best case efficiency loss is 100%.
Such gains from trade exist if and only if max{γcβ ,

(1−γ)c
(1−β) } > c or equivalently if and only if

β 6= γ.

In any stable network when γ = β there can not exist an unmatched buyer i′ and unmatched
seller j′ such that αi′j′ > c. If such an unmatched pair existed buyer i′ would be willing to
form the link li′j′ (as βαi′j′ > γc) and seller j′ would also be willing to form to this link (as
(1− β)αi′j′ > (1− γ)c). Any network with any under-investment inefficiency cannot therefore
be stable. �

C.2. Proof of Lemma 4. The worst case efficiency loss due to over-investment in non-trade
links is bounded by the amounts shown in the table below and this bound is tight: There does
not exist a stable network for any potential gains form trade that results in a higher loss in
efficiency due to over-investment in non-trade links, but there does exist a stable network for
some potential gains from trade with this level of inefficiency.77

β γ Bound on WCEL caused by over-investment

∈ (0, 1) ∈ (0, 1) h(K̃, γ, β)∗ ≤ 1
2

∈ {0, 1} ∈ (0, 1) 0∗∗

0 0 0

∈ (0, 0.5) 0 β
1−β

∈ [0.5, 1] 0 1
∈ [0, 0.5] 1 1

∈ (0.5, 1) 1 1−β
β

1 1 0

Table 3. Bounding the worst case efficiency lost due to over-investment
in non-trade links

76If βαiµ(i,LE)∗ = γc and (1− β)αiµ(i,LE)∗ = (1− γ)c then there would also be no incentives for the link
li′µ(i′,LE)∗ to be formed on the efficient network, but the efficient network would not be unique
77The size of the cost of link formation is normalized away: the values of alpha can always be scaled to
compensate for a higher or lower c.
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* h(K̃, γ, β) ≡ K̃−1

max
{

(K̃−1)+(1−γ)
1−β +

(K̃−1)(1−γ)
β

,
(K̃−1)+(γ)

β
+

(K̃−1)(γ)
1−β

}
−K̃

** The unique stable network is the empty network so the worst case efficiency loss due to
over-investment in non-trade links is 0.

where K̃ is the number of matches on the component in the network with the most matches when
β ≤ (1 − γ); the number of matches on the component in the network with the least number
of matches greater than one when β > (1 − γ) and there is a component with more than one
match; and 1 when all components have only one match.

Proof. This proof is undertaken in four parts. Part i) corresponds to the first row in the above
table, Part ii) to the second row, Part iii) to rows five and six and Part iv) to rows three, four,
seven and eight. In each part the existence of the bound and it tightness is proved.

Part i): First consider inefficiency due to the excessive formation of non-trade links when
β ∈ (0, 1) and γ ∈ (0, 1). When γ ∈ (0, 1) all non-trade links must benefit both parties and as
outside option chains cannot cycle (Lemma 7) each component of the network must take the
form of a chain, as shown below for four trade links.78

Figure 6. Component structure: 4 trade links

First it will be shown that on each component of the network with K̃ matches the level of
inefficiency due to the excessive formation of non-trade links is limited.

Suppose buyers and sellers are labeled in the same way as the component in Figure 6, but with
K̃ buyers and K̃ sellers. Buyer bK̃ and seller s1 must have sufficient incentives to form their
trade links: βπB

K̃
≥ γc and (1− β)πS1 ≥ (1− γ)c. Applying Lemma 2:

πS1 =
k=j∑
k=2

(αk−1,k−1 − αk−1,k) + πSj ≥
(1− γ)c
(1− β)

πB
K̃

=
k=K̃−1∑
k=i

(αk+1,k+1 − αk,k+1) + πBi ≥
γc

β
∀j ∈ {2, . . . , K̃}; ∀i ∈ {1, . . . , K̃ − 1}

78To illustrate the structure of a component Figure 6 is shown for four traded over links and three
non-traded over links.
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As neither bK̃ or s1 have an outside trade partner πB
K̃

= 0 and πS1 = 0. All other buyers and
sellers must have sufficient incentives to form their outside option links. For the other sellers
βπSj ≥ (1− γ)c and for the other buyers (1− β)πBi ≥ γc. Applying Lemma 2 again:

πBi =
k=K̃−1∑
k=i

(αk,k+1 − αk+1,k+1) ≥ γc

(1− β)

πSj =
k=j∑
k=2

(αk−1,k − αk−1,k−1) ≥ (1− γ)c
β

∀j ∈ {2, . . . , K̃}; ∀i ∈ {1, . . . , K̃ − 1}

Combining the above expressions:

πBi ≥ γc

β
+
k=K̃−1∑
k=i

(αk,k+1 − αk+1,k+1) ≥ γc

β
+

γc

(1− β)

πSj ≥ (1− γ)c
(1− β)

+
k=j∑
k=2

(αk−1,k − αk−1,k−1) ≥ (1− γ)c
(1− β)

+
(1− γ)c

β

∀j ∈ {2, . . . , K̃}; ∀i ∈ {1, . . . , K̃ − 1}

The gains from trade on a network are equal to the total payoffs received by all parties. This
is true at the buyer and seller optimal points:

K̃∑
k=1

αk,k =
K̃∑
k=1

(πBk + πSk ) ≥ (K̃ − 1)
(

1
β

+
γ

(1− β)

)
c+

γ

β
c

K̃∑
k=1

αk,k =
K̃∑
k=1

(πBk + πSk ) ≥ (K̃ − 1)
(

1
(1− β)

+
1− γ
β

)
c+

1− γ
1− β

c

This provides a lower bound on the gains from trade reached with K̃ − 1 outside option links.

Applying the definition for the worst case efficient loss due to over-investment in non-trade
links: WCEL = (K̃−1)c∑K̃

k=1 αk,k−K̃c
. The denominator of this expression is bounded from below and

this expression is bounded from above. Define the following functions:

f1(K̃, γ, β) ≡ (K̃ − 1)
(

1
(1− β)

+
1− γ
β

)
+

1− γ
1− β

f2(K̃, γ, β) ≡ (K̃ − 1)
(

1
β

+
γ

(1− β)

)
+
γ

β

f(K̃, γ, β) ≡ max{f1(K̃, γ, β), f2(K̃, γ, β)}

h(K̃, γ, β) ≡ K̃ − 1
f(K̃, γ, β)− K̃
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Thus we have that on any component with K̃ matches, buyer bargaining power β and a buyer
cost share of γ: WCEL ≤ h(K̃, γ, β).

In a stable network however, there may be multiple components. First note that the WCEL
on the network must lie between the WCEL on the component with the highest WCEL and
the component with the lowest WCEL. When β ≤ 1 − γ the upper bound on the WCEL is
weakly increasing in the size of the component. Therefore the WCEL on the network must be
less than or equal to the WCEL on the largest component. When β > 1 − γ the bound on
the worst case efficiency loss is weakly decreasing in the size of the component (for components
involving at least two buyers and sellers- smaller components are necessarily efficient when
stable). Therefore the WCEL on the network must be less than the WCEL on the smallest
component with at least two buyers and two sellers. The existence of the bound follows.

To show that this bound is always less that 50% the worst case efficiency loss bound can be
maximized over β and γ: WCEL∗ ≡ maxβ,γ

{
h(K̃, γ, β)

}
. It is straightforward to show that

the worst case efficient loss bound is maximized at β = γ = 1
2 . Thus WCEL∗ = 1

2 . This is
independent of K̃.

To show that the derived bound is tight an example will be constructed such that the binding
constraints are just satisfied. Suppose that β ≥ γ, such that f1 > f2 and buyers have more
bargaining power relative to their cost share than sellers. In f1 the binding constraints are on
sellers’ incentives to form trade links and on buyers’ incentives to form outside option links.
An example will be constructed such that these constraints are tight, assuming that the other
constraints are slack. It will then be verified that these other constraints are slack.

For s1 to be just willing to construct their trade link πS1 = α11− πB1 = (1−γ)c
1−β . For b1 to be just

willing to construct their outside option link πB1 = γc
1−β . Combining these equations α11 = c

1−β .

For s2 to be just willing to construct their trade link πS2 = α22 − πB2 = (1−γ)c
1−β + (1−γ)c

β . For b2
to be just willing to construct their outside option link πB2 = γc

1−β . Thus α22 = c
1−β + (1−γ)c

β .

Applying the same logic αk,k = c
1−β + (1−γ)c

β , ∀k ∈ {2, K̃ − 1}. For sK̃ to be just willing to

construct their trade link πS
K̃

= αK̃K̃ − π
B
K̃

= αK̃K̃ = (1−γ)c
1−β + (1−γ)c

β . This pins down the value
of all trade links. For bK̃−1 to just form their outside option link πB

K̃
= αK̃−1,K̃ − αK̃K̃ = γc

1−β .

Thus αK̃−1,K̃ = c
1−β + (1−γ)c

β . Working backwards it is straight forward to shown that all

outside option links must have (at least) this value: αk−1,k = c
1−β + (1−γ)c

β , ∀k ∈ {2, . . . K̃.
The minimum values of all traded links such that sellers are just willing to contribute to their
formation have now been found, in conjunction with outside option links which buyers are just
willing to form. The value of all other links can be set to zero and it can be verified that all
other constraints are satisfied. The constructed network is therefore stable, by construction
achieves the inefficiency bound and all inefficiency is due to over-investment in non-trade links.

Part ii): When β = 1 and γ ∈ (0, 1) the seller has no incentive to form a trade link unless
they also have an outside option link. Further a buyer will not pay towards the cost of forming
any link unless they trade with a seller (because their payoff will be zero). Suppose the stable
network was non-empty. As outside option chains cannot cycle there must exist a connected
seller in the network without a valuable non-trade link, or a connected buyer without a trade
partner. This party will not contribute towards the cost of forming any link and so cannot
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be connected to any other party as γ ∈ (0, 1). This is a contradiction and so the unique
stable network must be the empty network. Thus there is never any efficiency loss due to
over-investment in non-trade links.

Part iii): When β ≥ 1
2 and γ = 0 or β ≤ 1

2 and γ = 1 there exist potential gains form trade
where the best case efficiency loss is 100%. This is shown for β ≤ 1

2 and γ = 1. Consider the
gains from trade shown in the example below.

(a) Potential links (b) Efficient network (c) Unique
stable network

Figure 7. Unbounded over-investment inefficiency

Here the unique stable network is the network shown in Figure 7c. The efficient network
shown in Figure 7b is not stable because b1 always wants to form an outside option link to s2:
(1 + β)ε ≥ β(2c + 2ε) − c for β ≤ 1

2 . As buyer b1 can form links on their own (γ = 1) and as
b1 receives a positive payoff on the network shown in Figure 7c, the empty network cannot be
stable: To be stable it must be a Nash equilibrium of the simultaneous link formation game
and b1 would not be playing a best response. The network shown in Figure 7c is therefore the
unique stable network. The best case efficiency loss is therefore: c

2c+2ε−c → 1, as ε→ 0.

Part iv): In this proof it will be argued that the worst case efficiency loss due to over-investment
in non-trade links can be largest on a subset of possible networks. This subset of networks will
then be parameterized and largest possible worst case efficiency loss on any such network found.

Let β < 1
2 and γ = 0. As γ = 0 only sellers can form outside option links. By Lemma 2 seller

sj ’s incentives to form an outside option link to buyer bi are given by β(αν(j)j−πBν(j)) ≤ βαν(j)j .
Thus the maximum incentives to form outside option links can always occur on networks where
sellers’ outside trade partners do not trade with anyone and β(αν(j)j−πBν(j)) = βαν(j)j . Without
loss of generality therefore, and as sellers will form at most one outside option link, inefficiency
on network components consisting of two buyers and one seller can be considered: If a bound
is found for the worst case efficiency loss on these networks it applies to all networks.

Consider then, without loss of generality,79 the following network component:

79Varying ε ≥ 0 and ζ > 0 this example accounts for all possible two buyers one seller networks, for any
c.



INEFFICIENCIES IN TRADE NETWORKS 45

(a) Potential links (b) Efficient network (c) Stable network

Figure 8. Bounded over-investment inefficiency

On this network component for any efficiency loss due to over-investment in non-trade links s1

must form links to both b1 and b2. To be incentivised to do this s1’s payoff on the network
shown in Figure 8c must be greater than their payoff on the efficient network: ζ+(1−β)ε−2c ≥
(1 − β)(ζ + ε) − c. This holds if and only if ζβ ≥ c. Let c = ζβ − ξ, ξ ≥ 0, such that this
constraint is satisfied. For this cost, and for the gains from trade above, WCEL = ζβ−ξ

ζ(1−β)+ε+ξ .
The worst case efficiency loss is maximized by setting ξ = ε = 0. Thus the worst case efficiency
loss due to over-investment in non-trade links must be less than or equal to β

1−β for any network
with β < 1

2 and γ = 0. This bound is achieved in the above example with ξ = ε = 0. �

C.3. Proof of Lemma 5. When cost sharing is endogenous worst case inefficiency due to
over-investment in outside trade links can be 100%: There exist potential gains from trade where
the most efficient stable network consumes all the net gains from trade generated on the efficient
network.

Proof. This proof is by counter example. Potential gains form trade (for all β ∈ [0, 1]) such
that the unique stable network is the complete network and on the complete network there are
zero net gains from trade are identified. The proof proceeds first by considering β ∈ [0, 1

2 ] and
then β ∈ [1

2 , 1].

Consider again the potential gains from trade shown in Figure 1a in Example 1. Suppose now
that instead of sellers having all the bargaining power β ∈ [0, 1

2 ]. The efficient network will not
be stable for any such β: b1 will receive an increase in their share of the surplus generated from
trade with s1 equal to (1 − β)αb1s2 = (1 − β)(1 − ε), at a cost of c = 1

2 − ε, if they form the
link to s2. This increases b1’s net payoff if and only if (1 − β)(1 − ε) > 1

2 − ε, or equivalently
β < 1

2−2ε ≤
1
2). It is then straightforward to show that the unique efficient network is the

complete network with b1 paying for the link lb1s2 and paying between 1
2 − (2− β)ε and 1

2 − ε
towards the formation of link lb1s1 . The best case efficiency loss is therefore

1
2
−ε

1
2

+ε
. As ε → 0

the best case efficiency loss goes to 100%. To show that the best case efficiency loss can go to
100% for β ∈ [1

2 , 1] relabel b1 as s1, s1 as b1 and s2 as b2. �
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