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Abstract

This paper analyzes the Name Your Own Price (NYOP) mechanism

adopted by Priceline.com. We characterize a customer�s equilibrium bidding

path under NYOP and show that the expected payo¤of a customer is weakly

higher than that in a �rst-price reverse auction without a reserve price. In

addition, we show that Priceline.com�s lockout period restriction, a design to

protect sellers that seems to hurt customers, can actually bene�t a customer

in some circumstances.

1 Introduction

Priceline.com, known for its Name Your Own Price (NYOP) system, is a website

devoted to helping travelers obtain discount rates for travel-related items such

as airline tickets and hotel stays. The NYOP mechanism works as follows. First,

a customer enters a bid that speci�es the general characteristics of what she

wants to buy (travel dates, location, hotel rating, etc.) and the price that she

is willing to pay. Next, Priceline.com either communicates the customer�s bid

to participating sellers or accesses their private database to determine whether

Priceline.com can satisfy the customer�s speci�ed terms and the bid price. If
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a seller accepts the bid, the o¤er cannot be cancelled. If no seller accepts the

bid, the customer can rebid either by changing the desired speci�cations or by

waiting for a minimum period of time, the lockout period, before submitting a

new, higher price o¤er. For a hotel, the lockout period is 24 hours, for rental cars

it is three days and for an airline ticket seven days. Priceline says in its seller�s

guideline that the rule is designed to protect the sellers. Our analysis suggests

that the lockout period may often bene�t the buyer, because it allows the buyer

to commit to fewer rounds of bidding (the bidding must end before the date of

travel, of course.)

To represent the Priceline.com auction, we use a dynamic model in which a

single buyer suggests prices to N potential sellers for a �nite number of rounds.

The number of rounds T determines the length of the lockout period. By letting

T go to in�nity, we can also consider the case of no lockout period. For simplicity,

we assume that the buyer�s valuation is known. The sellers�costs are privately

known and independently drawn from a common distribution.

We �rst show that without a lockout period and no discounting, there are

two kinds of equilibrium bidding paths. As T goes to in�nity, either sellers are

almost fully discriminated over time or they get pooled into a �nite number of

cost intervals with bids clustering at the lowest price which is accepted by the

seller with the minimum cost. In the latter case, the price pattern is convexly

increasing as the buyer keeps her bids close to the price accepted by the minimum-

cost seller until the very end. The pattern of bidding will be convex and most

of trades (if any) will be realized at the end. This is consistent with empirical

evidence and similar to the deadline e¤ect observed in many bargaining processes

(see for instance Hart (1989) and Spier (1992) on strikes and pretrial negotiation.)

The buyer�s bidding strategy in�uences the rate at which she learns about

the sellers�valuations. Ideally, the buyer would like to commit to a strategy that

optimally reveals this information. If she could do that, she would gradually

raise the price to price discriminate among the sellers and stop at the optimal

reserve price, much like a Dutch auction, but in reverse. But when commitment is

impossible, as we assume, the buyer cannot help but respond to the information

revealed by rejections. As a consequence, she may want to bid so that her initial

bids reveal little information and only at the end will they be more informative.

The last minute rush will lead to pooling and ine¢ cient outcomes, because many
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sellers will accept simultaneously and the winner will be determined by lottery.

The other equilibrium where sellers are discriminated through a gradually

increasing bid sequence is, on the other hand, fully e¢ cient, since the maximum

bid equals the highest seller cost and the sellers are almost fully discriminated.

We also show that without a lockout period, the expected payo¤of a customer

is weakly higher than that in a �rst-price sealed-bid reverse auction (where service

providers submit their bids to a customer) without a reserve price, but lower than

that in a �rst-price sealed-bid reverse auction with the optimal reserve price.

Moreover, when the expected payo¤ is strictly higher than that in a �rst-price

reverse auction without a reserve price, the equilibrium bidding path is convexly

increasing.

The lockout period, by reducing the number of bidding rounds, a¤ects the

process of information revelation. It makes the buyer bid more aggressively early

on, because she does not need to be as concerned about the detrimental e¤ects

of learning more about the sellers�information while still having many bidding

opportunities. This can be especially valuable if the buyer moderately discounts

the future, that is, she wants to learn early about bookings. Thus, the lockout

period can be advantageous to the buyer, because it permits the buyer to commit

to fewer rounds of bidding. However, the welfare e¤ects are ambiguous in general.

The �nding that the lockout period can be valuable is in line with McAdams and

Schwarz (2007)�s view that an intermediary can create value by o¤ering a credible

commitment device.

Our analysis also provides insights into the unexplained bidding paths found

by Spann and Tellis (2006). They analyze buyers�bidding patterns under NYOP

without the lockout period restriction and �nd that 36% of the patterns are

concavely increasing, while 23% are convexly increasing. They argue that the

concave patterns can be explained by the positive bidding cost, but the convex

ones suggest irrational consumer behavior on the Internet. Our paper shows that

a convex pattern where a buyer raises bids more aggressively at the end can occur

in a fully rational environment.

The environment studied here is similar to a durable goods monopoly, but

with the roles of buyer and seller reversed. In a durable goods monopoly, the

seller makes bids. Here the buyer does it. To avoid confusion, call the side that

determines the price the principal and the other side the agents. There are two
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di¤erences between our setting and a durable goods monopoly. First, there is

a deadline in our environment, which results in very di¤erent equilibrium paths

than those of the Coase conjecture.1 Secondly, there is competition among the

agents. With competition, an agent may accept the current price even though

the future price path looks attractive, because there is the risk that another agent

will accept. Therefore, our model works even when there is no discounting.

The paper is organized as follows. Section 2 describes the model. Section

3 presents an example that motivates our research. Section 4 constructs an

equilibrium. Section 5 characterizes the equilibrium bidding behavior. Section

6 analyzes a model with waiting cost to see under what conditions the lockout

period rule bene�ts customers and Section 7 concludes.

2 The Model

There are N � 2 sellers and 1 buyer in the market. The buyer has one unit

of demand for the good provided by the sellers. The buyer�s reservation value

for the good is v, which is known by everyone. Seller i privately knows his cost

�i to provide the good. Each �i is independently and identically distributed on

[c; c]; where c � 0 and c � v; according to a distribution function F . F admits

a continuous density f and has full support. And x + F (x)
f(x) strictly increases in

x. A buyer�s payo¤ is v � b, where b is his payment to the seller, if he gets the
object, and 0 otherwise. All the players are risk neutral. The setting is common

knowledge to everyone in the market.

There is one platform allowing the buyer to submit his bid price to sellers. The

buyer is allowed to adjust his bids for T times. In round t, the buyer announces

the bid price, and sellers decide whether to accept or not. If n sellers accept the

bid, each of them gets the chance to provide the good with probability 1
n , and

the game stops. If no seller accepts and t < T , the process proceeds to the next

round, and the buyer submits a new price. If t = T , then the market closes and

no further transaction can happen.

1 In Stokey�s discrete-time model, she also considers the case when there is a deadline and
shows that the Coase conjecture still holds when the length of the period shrinks. The conclusion
is di¤erent from ours because in Stocky�s model, the deadline is not just the last day to trade,
it is also the last day on which a buyer can enjoy the good and derive utility from it. That is,
a buyer derives less utility if he gets the good on a day closer to the deadline. In our model, a
buyer derives the same utility no matter when he gets the good.
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2.1 Equilibrium concept

The equilibrium concept used in this paper is the perfect Bayesian equilib-

rium. An equilibrium consists of the buyer�s strategy and belief, and the sell-

ers�strategies and beliefs. Only symmetric pure strategy equilibria are consid-

ered. Let pt be the price that the buyer o¤ers the sellers in round t. Denote by

ht = (p1; p2; � � � ; pt) the history of the prices submitted by the buyer in the �rst
t rounds.

Let bt (ht�1) be the price that the buyer would submit in round t given the

price history ht�1 and the fact that no seller accepts in the �rst t � 1 rounds.
The buyer�s strategy is a set of functions fbt (ht�1)gTt=1. A seller�s strategy can
be summarized by functions fxt (ht)gTt=1. In round t, given ht, a seller accepts
the buyer�s o¤er if and only if his cost is less than or equal to xt (ht). The buyer�s

and the sellers�beliefs are summarized by a set of functions fyt (ht�1)gTt=1, which
speci�es the greatest lower bound of a seller�s cost believed by the buyer and

the other sellers given history ht�1 and the fact that no seller accepts in the

�rst t�1 rounds. Denote by u0t (b; x j ht�1; yt (ht�1)) the buyer�s expected utility
given history ht�1 and belief yt (ht�1), and uit

�
b; x�i; xi j ht; �i; yt (ht�1)

�
seller

i�s expected utility, where x�i is the other sellers�strategy,2 and xi is seller i�s

strategy, given ht; the realization �i of seller i�s cost, and belief yt (ht�1).

De�nition 1 A symmetric equilibrium is a (b; y; x) that satis�es

(a) xt (ht) = yt+1 (ht) ;8t; ht, and

(b) u0t (b; x j ht�1; yt (ht�1)) � u0t (b0; x j ht�1; yt (ht�1)) and
uit
�
b; x; x j ht; �i; yt (ht�1)

�
� uit

�
b; x; x0 j ht; �i; yt (ht�1)

�
;8b0; x0; t; ht; ht�1:

Condition (a) means that players�belief about seller i�s cost is consistent with

seller i�s strategy, for all i. Condition (b) means that players cannot do better

by deviating from the equilibrium strategy.

2x�i is a tuple consisting of the other sellers�strategies. But when the other sellers use the
same strategies, x�i can be a single function without confusion.
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3 An Example

Before proceeding to constructing an equilibrium for the general model, we show

calculations for �nding the equilibrium path by using the example where N =

2; v = 1; and F is a uniform distribution on [0; 1], and highlight some interesting

points.

In addition to NYOP, a reverse auction is another mechanism commonly used

by a buyer to determine allocation. Thus, we are interested in comparing the

performances of the two mechanisms. In this example, the reverse auction is

analogous to a standard auction with one seller and two buyers whose values

are uniformly distributed on [0; 1]. In the standard auction, a buyer with value

v bids v
2 in equilibrium. Therefore, in the reverse auction, a seller with cost x

analogously submits ask price 1
2 +

1
2x. The buyer buys from the seller with the

lowest ask price and gets expected payo¤ 1
3 .

T=1: Now suppose the buyer and the sellers trade under an NYOP mechanism

where T = 1. The buyer has one chance to submit his bid b. Seeing the bid, a

seller whose cost is below b accepts the o¤er. Therefore, the buyer maximizes the

expected payo¤ (1� b)
h
1� (1� b)2

i
by choosing b = 1� 1p

3
and gets expected

payo¤ 2
3
p
3
. From the example, we see that for the buyer, NYOP outperforms a

standard auction without a reserve price even when there is only one chance to

bid.

T=2: Next consider the case where T = 2. Suppose that in round 1, the bid

price is b1 and no one buys. In round 2, the buyer believes that both sellers�costs

are above x1(b1), and each seller also believes the other one�s cost is above x1 (b1).

The updated belief about the distribution of a seller�s cost is U [x1 (b1) ; 1]. Since

it is the last round, both sellers will accept if the bid is higher than their costs.

Thus x2(b1; b2) = b2. Given the belief, the buyer will bid at b2(b1) = 1� 1�x1(b1)p
3

to maximize his expected revenue.

In round 1, suppose the buyer has submitted a bid at b1. A seller with

cost x decides whether to accept the bid in this round or wait until the next

one with the belief that the other seller would accept if his cost is below or

equal to x1(b1). If the seller accepts in this round, with probability x1 the other

accepts too, and each of them gets to sell with probability 1
2 ; and with probability
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1 � x1, the seller gets to sell for sure, so the seller�s expected payo¤ is (b1 �
x)
�
1
2x1(b1) + (1� x1(b1))

�
. If the seller waits, with probability 1� x1, the game

moves to the next round. In round 2, the buyer is expected to submit b2(b1).

With probability b2(b1)�x1(b1)
1�x1(b1) , the other seller accepts too and each of them gets

to sell with probability 1
2 ; and with probability

1�b2(b1)
1�x1(b1) , the seller gets to sell for

sure, so the seller�s expected payo¤ is (b2(b1)�x)
h
1
2
b2(b1)�x1(b1)
1�x1(b1) + 1�b2(b1)

1�x1(b1)

i
. The

seller accepts b1 in round 1 if

(b1�x)
�
1

2
x1(b1) + (1� x1(b1))

�
� max

�
0; (b2(b1)� x)

�
1

2
[b2(b1)� x1(b1)] + [1� b2(b1)]

��
:

Note that if a seller with x accepts in round 1, then a seller with x0 < x would

also accept. In equilibrium, a seller with x � x1(b1) decides to accept, so we

can get x1(b1) = 1 �
�3b1+

p
9b21+12(1�b1)
2 by solving (b1 � x1)

�
1
2x1 + (1� x1)

�
=

(b2(b1)� x1)
�
1
2 [b2(b1)� x1] + [1� b2(b1)]

�
:

With belief x1(b1), the buyer chooses b1 to maximize his total expected rev-

enue in the two rounds

max
b1
[1� b1]

h
1� (1� x1(b1))2

i
+ [1� b2 (b1)]

h
(1� x1 (b1))2 � (1� b2 (b1))2

i
:

fb1; x1(b1); b2(b1); x2(b1; b2)g form a symmetric equilibrium. In equilibrium

b1 = 0:4214; b2 = 0:5212; x1 = 0:1709; x2 = 0:5212, and the buyer�s payo¤ is

0:40024.

Numerical results:
In the following table, we show the equilibrium paths of xt and bt and the

expected buyer�s payo¤s when T = 1; 2; 3; 4; and 5. We assume that the game

begins at time 0 and ends at time 1. If the buyer�s bid in the tth round is accepted,

the transaction occurs at (t�1)T : Column E (�) lists the expected transaction time
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conditional on that transaction occurs.

Buyer�s Payo¤ E (�) xT�4 xT�3 xT�2 xT�1 xT

(bT�4) (bT�3) (bT�2) (bT�1) (bT )

T = 1 0:38490 0 0:4225

(0:4225)

T = 2 0:40024 0:2972 0:1709 0:5212

(0:4214) (0:5212)

T = 3 0:40111 0:4563 0:0597 0:2165 0:5475

(0:4099) (0:4538) (0:5475)

T = 4 0:40115 0:5826 0:0154 0:0597 0:2165 0:5475

(0:4007) (0:4127) (0:4538) (0:5475)

T = 5 0:40115 0:6626 0:0070 0:0154 0:0597 0:2165 0:5475

(0:3990) (0:4021) (0:4127) (0:4538) (0:5475)

There are several points worth noticing:

1. The buyer�s payo¤ increases in T , the number of rounds,3 but the increment

becomes smaller and smaller. Therefore, the pro�t of having one more

bidding chance shrinks as T increases.

2. The last-round bid increases in T , but the increment also shrinks as T

increases. Observe that given T , the bidding path bt is increasing. But

with larger T , the increasing rate is small in the �rst few rounds and big

jumps occur in the last few rounds.

3. In equilibrium the buyer does not get the object only if both sellers�costs

are above xT . Therefore, we know the probability that the buyer gets the

object increases in T , but the increment shrinks as T increases. From the

table, we see that when T increases from 3 to 4, and to 5, neither the buyer�s

payo¤ nor the probability that the buyer gets the object increases much.

However, the expected transaction time is much later. This fact suggests

that if the buyer has waiting cost and prefers earlier transactions, having

fewer rounds might be good for him. The analysis in Section 6 con�rms

the conjecture.

3Note that the numbers in the table are not accurate enough to show small di¤erences.
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4 Construction of the Equilibrium

In this section, we construct an equilibrium by solving a series of programs back-

ward and prove the existence of the equilibrium.

To construct the equilibrium, we need to introduce more notations. For

convenience, de�ne

F (x) = 1� F (x) :

Note that F (x) strictly decreases in x. Suppose only sellers with costs between

xt�1 and xt are willing to provide the good. Let

P (xt�1; xt) =

(
F (xt�1)N � F (xt)N ; if xt�1 � xt
0; if xt�1 > xt

be the probability that the demand is ful�lled. Let

H (xt�1; xt) =

( PN�1
n=0

1
n+1

(N�1)!
n!(N�n�1)! (F (xt�1)� F (xt))

n (F (xt))
N�n�1 =F (xt�1)

N ; if xt�1 � xt
1; if xt�1 > xt

=

8<:
PN�1
n=0 F (xt)

N�1�nF (xt�1)n

NF (xt�1)
N ; if xt�1 � xt

1; if xt�1 > xt

be the conditional probability that a seller gets to provide the good if he accepts

the buyer�s o¤er conditional on that the other sellers� costs are above xt�1.4

De�ne

G (xt�1; xt) � H (xt�1; xt)NF (xt�1)N :

bt (xt�1) ; bxt (bt; xt�1) ; and Vt (xt�1) de�ned below are used to characterize equi-
librium strategies, beliefs, and the buyer�s payo¤ for the continuation games

starting from round t. If t = T , let

VT (xT�1) = max
fbT ;xT g

(v � bT )P (xT�1; xT )

s:t: bT = xT ;

4Conditional on that the other sellers�costs are above xt�1, if a seller accepts the buyer�s of-
fer, with probability (N�1)!

n!(N�n�1)! (F (xt�1)� F (xt))
n (F (xt))

N�n�1 =F (xt�1)
N , there are n other

sellers accepting, and each of them gets to sell the good with probability 1
n+1

.
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and

�
bT (xT�1) ; xT (xT�1)

�
2 arg max

fbT ;xT g
(v � bT )P (xT�1; xT ) (P1)

s:t: bT = xT ;

bxT (bT ; xT�1) =
8><>:
c if bT > c

bT if xT�1 � bT � c
xT�1 if bT < xT�1

: (P2)

The constraint bT = xT of the program comes from that in the last round, a seller

accepts the last-round bid bT as long as his cost is below bT , so the cuto¤ xT
equals bT . Knowing this and given the belief that all sellers have cost higher than

xT�1, the buyer chooses bT to maximize his payo¤� the objective function. Note

that there might be multiple solutions to program P1. If there is more than one

solution, only those that ensure the existence of equilibrium can be candidates

for bT (xT�1) and xT (xT�1) (see the proof of Proposition 1 for more details).

If t < T , let

Vt (xt�1) = max
fbt;xtg

(v � bt)P (xt�1; xt) + Vt+1 (xt) (P3)

s:t:(bt � xt)G (xt�1; xt) = Ct+1 (xt)

where Ct+1 (xt) = (bt+1 (xt)� xt)G (xt; xt+1 (xt)) ;

where bt+1 (xt) ; xt+1 (xt) are de�ned as below;

and let

�
bt (xt�1) ; xt (xt�1)

�
2 arg max

fbt;xtg
(v � bt)P (xt�1; xt) + Vt+1 (xt) (P4)

s:t:(bt � xt)G (xt�1; xt) = Ct+1 (xt) :

Note that to solve the round-t program, we must solve all the programs for later

rounds �rst, so function Ct+1 (x) is determined before solving the program. The

right-hand side of the constraint, Ct+1 (xt), is the expected payo¤ of a seller

with cost xt if he waits and accepts in the next period. The left-hand side is

the expected payo¤ of a seller with cost xt if he accepts in period t. Given bt,

sellers with costs lower than xt prefer to accept in period t, and sellers with costs
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higher than xt prefer to accept in period t+1. So for each bt, we �nd the sellers�

equilibrium strategy xt from the constraint. Given the sellers�strategy and the

belief that all sellers�cost are above xt�1, the buyer chooses bt to maximize his

payo¤� the objective function. The following proposition proves that programs

P1 and P4 have a solution

Proposition 1 There exists a set of solutions
�
bt (xt�1) ; xt (xt�1)

	
t
that solves

program P1 and P4 for all t.

Proof. The details of the proof are in Appendix A. Here is the sketch. First,
by Berge�s maximum theorem, VT (xT�1) is continuous, and the solution set of

xT for program P1 is upper hemi-contiuous. Therefore, we are able to pick

xT (xT�1) from the solution set such that CT (xT�1) is lower semi-continuous.

Next, substituting the constraint into the objective function in round T � 1
in program P4, the objective function is graph-continuous de�ned in Leininger

(1984), and by Leininger�s generalized maximum theorem, VT�1 is upper semi-

continuous, and the solution set of xT�1 exists and is upper hemi-continuous.

Applying the same procedure backward, we guarantee the existence of a solution

to each round-t program.

The following assumption is for de�ning bxt (bt; xt�1). We make the assump-
tion to ensure the existence of pure strategy equilibrium.5 Without the assump-

tion, we are still able to construct an equilibrium in which mixed strategies are

applied o¤ the equilibrium path. Therefore, Assumption 1 is not necessary for

an equilibrium to exist.

Assumption 1 Given xt�1, assume that there exists b such that if bt 2 [b; c],
there exists xt such that (bt � xt)G (xt�1; xt) = Ct+1 (xt), and if bt < b, (bt �
xt)G (xt�1; xt) < Ct+1 (xt) for all xt 2 [xt�1; c].

5Note that Ct+1 (xt) constructed in the proof of Proposition 1 is lower semi-continuous.

11



Let

bxt (bt; xt�1) =
8><>:
c if bt � c
xt�1 if bt < b (de�ned in Assumption 1)

xt (xt�1) if bt = bt (xt�1)

; (P5)

otherwise,bxt (bt; xt�1) 2 fxt j (bt � xt)G (xt�1; xt) = Ct+1 (xt)g
The di¤erence between xt (xt�1) and bxt (bt; xt�1) is that xt (xt�1) is determined
at the same time when the buyer determines bt, and bxt (bt; xt�1) is determined
after the buyer submits bt. When deriving bxt (bt; xt�1), we have to take care of
the cases when the buyer submits o¤-equilibrium bids. If an o¤-equilibrium bid

bt is too high, all the sellers accept and bxt = c. If bt is too low, all the sellers

reject and bxt = xt�1.
Lastly, bx0 = c:

Theorem 1 Assume Assumption 1. Let bt be as de�ned in (P1) and (P4), andbxt be as de�ned in (P2) and (P5). The following (b; y; x) is an equilibrium of the

game.

bt (ht�1) = bt (bxt�1 (pt�1; bxt�2 (pt�2; � � � bx1 (p1; bx0) : : :))) ;
xt (ht) = bxt (pt; bxt�1 (pt�1; � � � bx1 (p1; bx0) : : :)) ;

yt+1 (ht) = xt (ht) :

Proof. See Appendix A.

Corollary 1 The equilibrium path f(b1; � � � ; bT ) ; (x1; � � � ; xT )g can be found by
solving the recursive program

V1 (c) = max
fb1;x1g

(v � b1)P (c; x1) + V2 (x1) (P7)

s:t:(b1 � x1)G (c; x1) = C2 (x1) :

The value of the program is the buyer�s payo¤ in equilibrium.

The program shows that the equilibrium path f(b1; � � � ; bT ) ; (x1; � � � ; xT )g
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maximizes the buyer�s payo¤ but is subject to two constraints. The �rst one is

the sellers�IC constraint, which exists in every mechanism and is shown in the

constraint part of the program. The second constraint comes from the recursive

form of the program. In each round, the buyer makes his bidding decision based

on his current information and is not able to commit to a bidding path at the

beginning. The second constraint keeps the buyer from achieving the outcome

derived from the optimal mechanism stated by Myerson (1981).

5 Equilibrium Bidding Behavior

With T chances to submit prices, the buyer is able to segment the sellers in up

to T groups according to their costs. However, the buyer cannot commit to a

bidding path in advance, and in each round, he will choose a price that maximizes

his expected payo¤ based on his belief. Thus, the buyer would su¤er from the

inability to commit and get lower payo¤ than when commitment is possible. In

this section, we focus on the case when there is no lockout period restriction so

that the buyer can submit as many bids as he wants. We �rst show that when

committing to a bidding path is impossible, the optimal outcome for the buyer

stated by Myerson (1981) is not attainable if the optimal auction design involves

setting a reserve price. Next, we characterize the equilibrium bidding behavior.

5.1 Commitment and optimality

Note that in our setting, a �rst-price or second-price reverse auction works as

follows � sellers submit their asks and the buyer chooses to buy an object from

the seller with the lowest ask price. The buyer can announce a reserve price

before the auction starts so that the buyer buys the object only if there is at

least one ask price below the reserve price. A �rst-price or second-price reverse

auction with a reserve price r such that r + F i(r)
fi(r)

= v is an optimal mechanism

prescribed by Myerson (1981). Under NYOP, it is the buyer who submits bids.

When there are a large number of bidding chances, if the buyer commits to raise

bids gradually and stop at r, then to the sellers, the game, like a reverse Dutch

auction with a reserve price, is almost strategically equivalent to a �rst-price

reverse auction with reserve price r, and the optimal outcome for the buyer can

be approximately achieved. The following proposition elucidates this point.
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Proposition 2 Let � (T ) be the buyer�s maximum payo¤ when there are T rounds
and commitment to a path is possible. Let �� be the buyer�s payo¤ in Myerson�s

optimal mechanism. Given any � > 0, there exists T 0 such that for all T > T 0,

�� � � (T ) < �.
Proof. See Appendix B. The proof shows that by committing to a path

(b1; b2; � � � ; bT ) such that in round t, sellers with cost below xt = c+ t r�cT (where

r is the optimal reserve price) accept, the buyer�s payo¤ can be arbitrarily close

to �� when T goes to in�nity.

However, when commitment is not possible, even though the buyer is allowed

to adjust the price as many times as he wants, the maximum payo¤ resulting

from the optimal mechanism is not approximately achievable. By corollary 1

and (P1), we know that on the equilibrium path, the last-round bT and xT can

be found by solving

xT = bT = argmax
b
(v � b)

h
F (xT�1)

N � F (b)N
i
:

A necessary condition for bT is

F (xT�1)
N = F (bT )

N + (v � bT )NF (bT )N�1 f (bT ) : (1)

Suppose the optimal auction involves setting a reserve price r < c. If the optimal

auction can be approximately implemented when T goes to in�nity, then it must

be that limT!1 bT = limT!1 xT = r and limT!1 xT�1 = r. But by equation

(1), if limT!1 bT = r, limT!1 xT�1 < r, so the optimal auction cannot be

approximately implemented.

Proposition 3 When commitment to a path is impossible, the buyer�s payo¤
under NYOP is bounded away from the payo¤ in Myerson�s optimal auction if

the optimal auction involves setting a reserve price.

5.2 Equilibrium bidding path with no lockout period restriction

In this section, we characterize the pattern of the equilibrium bidding path when

T ! 1 (i.e. when there is no lockout period restriction). The question is how

the buyer designs a bidding path to discriminate sellers. When commitment

14



is possible, it is optimal for the buyer to induce sellers to reveal information

about their costs gradually in every round. But when commitment is impossible,

acquiring new information will change the buyer�s pricing strategy later on, and it

is not clear whether doing so is bene�cial for the buyer. Theorem 2 shows that the

equilibrium bidding path might have the feature that the speed of information

elicited from the bidding path is very slow at the beginning, and most of the

information is revealed at the end.

First we characterize how the buyer�s payo¤ changes when the number of

rounds increases.

Proposition 4 The buyer�s payo¤ increases with T , and the payo¤ converges
when T !1.
Proof. When the number of rounds increases from M to M + 1, the buyer can

submit price c in the �rst round and then in the remaining rounds, do the same

thing as when there are M rounds. Following this strategy, the buyer�s payo¤

is the same as when T = M , and he might be able to do better by using other

strategies. Therefore, the buyer�s payo¤ is weakly increasing with T . Moreover,

the buyer�s payo¤ is bounded by the payo¤ in Myerson�s optimal mechanism, so

the payo¤ converges when T !1.

Therefore, when the buyer does not have time preference, having more rounds

is weakly better for him. We need the following condition for subsequent discus-

sion.

Condition 1 Assume that F is such that xTt (xt�1) de�ned in (P1) and (P4) is

continuous on [c; c] for all t and T .

It can be proved that if the distribution F is uniform on [c; c] ; Condition 1

holds.6 Condition 1 ensures that the objective functions and constraints of the

programs in Section 4 are continuous, so the generalized envelope theorem by

Milgrom and Segal (2002) can be applied.

6 If

�Tt (xt�1; xt) � (v � xt)
h
F (xt�1)

N � F (xt)N
i

�CTt+1 (xt; �) [F (xt�1)� F (xt)] + V T
t+1 (xt; �)

is concave in xt for any t and T , then Condition 1 holds.
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For convenience, we denote xt and bt on the equilibrium path when there are

T rounds by xTt and b
T
t . The following proposition shows a convergence property

of xTT�t when T goes to in�nity.

Proposition 5 Assume Condition 1. limT!1 xTT�t exists for all t 2 f0; 1; � � � g :
Proof. Note that given any t and T , xTt (�) = xT+1t+1 (�) (de�ned in program P4

on page 10). When we increase the number of rounds from T to T + 1, xT+11 �
xT+10 = xT0 : By Lemma 1 in Appendix B, x

T+1
1 � xT0 implies xT+1T+1�t � xTT�t for

all t. Hence, xTT�t increases in T . Furthermore, x
T
T�t has an upper bound c, so

we conclude that limT!1 xTT�t exists.

Let XT =
�
xTt
	T
t=1
. The following de�nes a cluster point of the cuto¤ set XT

when T !1.

De�nition 2 z 2 [c; c] is a cluster point if for any � > 0, there exists y such

that (i) 0 < jy � zj < �, and (ii) for any � > 0, there exists T 0 such that for all
T > T 0, there exists x 2 XT such that jy � xj < �.

Let B be the set of cluster points, and [c; c] nB be the complement of B.

Theorem 2 Assume Condition 1.

1. The cluster point set B is either the whole interval [c; c] or a single point

fcg, i.e. B = [c; c] or fcg.

2. The cluster point set B is a single point fcg if and only if the last period
cuto¤ xTT is bounded away from c when T ! 1, i.e. B = fcg if and only
if limT!1 xTT < c:

3. If B = [c; c], the buyer�s payo¤ is approximately the same as that in a

�rst-price auction without a reserve price.

Proof. The details of the proof are in Appendix B. Here is the sketch. Lemma
3 shows that if the number of rounds left in a continuation game starting with

belief xt�1 goes to in�nity, then the di¤erence between xt and xt�1 goes to 0.

So, if a 2 [c; c] is a cluster point, any point x < a must be a cluster point too.

However, Lemma 6 shows that it cannot be the case that a 2 (c; c), [c; a] belongs

16



to the cluster point set B, and (a; c] belongs to the complement of B because

it violates the necessary condition under which the buyer chooses the optimal

strategy for himself in every round. Therefore, the cluster point set is either [c; c]

or fcg. The third statement comes from the revenue equivalence principle.

The �rst statement of the theorem implies that there are only two possible

equilibrium paths: one with the cluster point set B equal to the whole interval

[c; c] and one with the cluster point set equal to a single point fcg. When the
number of rounds is large, if the cluster point set is [c; c], sellers are approximately

fully discriminated; on the other hand, if the cluster point set is fcg, sellers are
segmented into groups, and types in the same group are pooled, and moreover, the

segmentation becomes extremely �ne when approaching to fcg. When the later
situation happens, information is barely revealed in the �rst many rounds and

transactions mostly occur in the last few rounds. The second statement says that

the occurrence that fcg is the only cluster point occurs if and only if limT!1 xTT is
strictly lower than c. In other words, late transaction and information revelation

coincide with the possibility that the buyer�s demand is not ful�lled.

By Theorem 2, we can also characterize the buyer�s bidding pattern when the

number of bidding chances is large. When the cluster point set is [c; c], the buyer

raises bids constantly, and information about sellers�costs is revealed gradually

over time. When the cluster point set is fcg, the buyer only raises the bids largely
at the very end and does not try to induce much information revelation most of

the time.

The result could explain the puzzle proposed by Spann and Tellis. Spann

and Tellis (2006) employ the data of a NYOP retailer in Germany that sells

airline tickets for various airlines and allows multiple bidding to analyze buyers�

bidding patterns. They argue that with positive bidding cost, the pattern should

be concavely increasing because at the beginning consumers try to increase the

probability of successful bidding by bidding higher, but when the bids are closer

to their reservation value, the increasing rate slows down; and with zero bidding

cost, the pattern should re�ect linearly increasing bids. However, the result shows

that only 36% of the data �t the �rst pattern and 5% �t the second pattern. 23%

of the data �t the pattern which is convexly increasing, so they conclude that

consumer behavior on the internet is not so rational. Nevertheless, a convexly

increasing pattern corresponds to the case B = fcg in Theorem 2. Thus, a convex
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path can actually occur in a fully rational environment.7 In addition to the convex

bidding path, the case B = fcg also implies that most transactions happen near
the end. This is related to the deadline e¤ect that has been observed in many

negotiation processes such as bargaining during strikes and pretrial negotiation.

Our model thus provides insight into this phenomenon.

What would happen on the equilibrium path depends on the distribution of

sellers�cost F . Under NYOP, the buyer is allowed to set up a price path so that

limT!1 b
T
T = limT!1 x

T
T < c, which functions as a reserve price. But since there

is no commitment, to sustain limT!1 bTT < c, the buyer must have limT!1 x
T
T >

limT!1 x
T
T�1 > limT!1 x

T
T�2 > � � � > limT!1 xT1 (by Lemma 2 in Appendix B),

and this requirement incurs some costs. First, the buyer has to charge the same

price for sellers between xt and xt�1, and hence sellers receive more information

rent than when fully discriminated. Furthermore, sellers in [xt; xt�1) get to sell

the good with the same probability. Hence, the allocation is not e¢ cient under

NYOP. If the bene�t dominates the loss of having limT!1 bTT < c, the equilibrium

path will lead to limT!1 bTT < c.

Figure 1 shows the path of xt when a seller�s cost is uniformly distributed

on [0; 1] and T = 20; N = 2. When v = 1; v = 1:2 and v = 1:4, the optimal

reserve prices are 0:5; 0:6 and 0:7 respectively. So when v = 1, the buyer is more

inclined to have x20 much lower than c = 1, and in equilibrium, a seller with cost

higher than 0:1 would not sell the good until the last two periods, which implies

transactions are much more likely to occur in the last two periods. On the other

hand, when v = 1:4, the loss of having x20 much lower than c = 1 dominates the

bene�t, so in equilibrium, the buyer raises bids gradually to a price close to 1,

and transactions happen constantly in every period.

One thing that deserves mention is that when the bene�t of having a reserve

price is large enough, in order to attain limT!1 bTT < c, the buyer has to restrict

himself from getting too much information about sellers� costs. Supposing he

raises bids early so that sellers with higher cost also accept, once the bid is

rejected, he believes that sellers�costs are over a higher threshold and will raise

bids further in the next rounds. In the end, limT!1 bTT = c. Therefore, he has

to keep the bids low most of the time and his belief about sellers�costs does not

7After the buyer�s waiting cost is incorporated in the next section, all the three patterns can
occur in our model with di¤erent parameters.
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Figure 1: Path of xt

change much until the last few rounds; and since he only has a few chances left,

he cannot raise bids to c, so limT!1 bTT < c. The following proposition provides

some means to check whether limT!1 bTT < c or limT!1 b
T
T = c.

Proposition 6 If limT!1 xTT = c, there does not exist a �nite number M such

that the buyer�s expected payo¤ when there are M rounds is higher than that in

a �rst-price reverse auction without a reserve price.

Proof. If the buyer�s payo¤ when T = M is higher than that in a �rst-price

reverse auction without a reserve price, by Proposition 4, the buyer�s payo¤when

T ! 1 is weakly higher than when T = M . Hence, by the third statement of

Theorem 2, limT!1 bTT = c would not happen.

For example, when N = 2; F (x) = x on [0; 1] and v = 1, the expected payo¤

of the buyer is 1
3 in a �rst-price reverse auction. But if the buyer is allowed to

submit the price once, and he chooses b = 0:4225, then the expected payo¤ is

0:3849. Thus, we know that xT is bounded away from c when T !1.
The proposition and the theorem give insights about why Priceline.com has

to limit bidding chances within a period of time. Suppose travelers realize their
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demand for a hotel room M days in advance. If allowed to submit bids many

times a day, under some circumstances, travelers would not submit serious bids

until the last day, and so successful transactions only occur on the day just

before the trip. This would somewhat inconvenience the hotels and travelers. If

only one bid is allowed a day, then transactions will occur much earlier, but the

negative impact on travelers�payo¤ is in�nitesimal. This intuition is formalized

and analyzed in the next section.

Based on the analysis above, we can also characterize the buyer�s payo¤ with

di¤erent equilibrium paths and obtain an upper bound and a lower bound for

the buyer�s expected payo¤ under NYOP.

Theorem 3 When T !1, if on the equilibrium path, limT!1 bTT = limT!1 xTT <
c; the buyer�s expected payo¤ is strictly greater than that in a reverse auction with-

out a reserve price. Thus, when T ! 1, the buyer�s expected payo¤ is between
the payo¤ in a reverse auction without a reserve price and the payo¤ in a reverse

auction with the optimal reserve price.

Proof. Note that when T ! 1, a path that almost fully discriminates sellers
and satis�es sellers� IC constraint is a feasible solution candidate to program

P7 (it is the stationary solution to program P7 when T = 1, see Appendix B,
Proposition 9) and it brings the buyer almost the same expected payo¤ as in a

reverse auction with no reserve price. Therefore, if the solution to program P7

is the path with limT!1 bTT = limT!1 x
T
T < c, it must yield a higher value for

the program than in a reverse auction with no reserve price. This proves the �rst

statement. The second statement follows from Theorem 2, Proposition 3, and

the �rst statement.

We can consider the mechanism used in Hotwire.com as a �rst-price reverse

auction without a reserve price. Hotels submit their prices to Hotwire.com, and

Hotwire.com picks the lowest one and announces it on the website. Customers

see the price and decide whether to buy or not. Therefore, we should expect that

customers get higher expected savings under NYOP.
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6 Model with Buyer�s Waiting Cost

At Priceline, when a bid is rejected, a customer has to wait for a period of time to

submit another bid, but some other NYOP websites in Europe allow customers

to rebid immediately once their bids are rejected. In this section, we examine the

conditions under which having the lockout period restriction bene�ts customers.

6.1 The model and an example

We modify the model in Section 2 to �t the real environment better. In reality,

buyers would like to pin down their travel plans as early as possible, so late

transactions actually incur some waiting costs. Therefore, we incorporate buyers�

waiting cost and show that setting an appropriate lockout period rule may bene�t

the buyer. However, we assume that sellers have no preference for early or late

transactions.

The model is modi�ed as follows. The buyer realizes his demand for the good

at time 0 and tries to ful�ll the demand in time period [0;M ]. After timeM , the

buyer no longer needs the good. If the buyer gets the good at price B at time

t, his utility is �
t
M (v �B), where � 2 (0; 1). The platform sets a lockout period

rule which regulates how frequently the buyer can submit a bid. If the lockout

period is s, the buyer can submit bids for bMs c times, that is, T = b
M
s c.

After incorporating waiting cost, let us revisit the example in Section 3 and

con�rm our conjecture about how the lockout period improves the buyer�s payo¤.
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The following table is for the case when � = 0:9:

Buyer�s Payo¤ xT�4 xT�3 xT�2 xT�1 xT

(bT�4) (bT�3) (bT�2) (bT�1) (bT )

T = 1 0:3849 0:4225

(0:4225)

T = 2 0:3897 0:2066 0:5418

(0:4405) (0:5418)

T = 3 0:3844 0:1204 0:2885 0:5891

(0:4422) (0:5006) (0:5891)

T = 4 0:3802 0:0959 0:1840 0:3356 0:6163

(0:4479) (0:4855) (0:5343) (0:6163)

T = 5 0:3773 0:0579 0:1086 0:1875 0:3356 0:6163

(0:4391) (0:4617) (0:4885) (0:5348) (0:6163)

Compared to the result when � = 1, we see that a buyer with waiting cost trades

more eagerly. However, he would still like to have x5 much lower than c to serve

as a reserve price, so he has to suppress his intention to induce early transaction

and cannot raise bids too fast. With the con�ict, the table shows that allowing

two bidding chances yields the highest payo¤ for the buyer. Having more rounds

causes delay, which is costly to the buyer. The example illustrates that the

lockout period rule which puts restriction on the buyer�s bidding chances might

actually help the buyer.

6.2 Equilibrium bidding path with no lockout period and � < 1

When � = 1, we show in Section 5.2 that when there is no lockout period, there

are two possible equilibrium paths �either sellers are almost fully discriminated

over time or they get pooled into some cost intervals. In the latter case, the

price pattern is convexly increasing, and most of trades will be realized at the

end. In this section, we show that with � < 1, there is one more possible path

along which sellers with costs below some level are almost fully discriminated

and sellers with costs above the level are pooled in intervals.
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First, let�
b
T
T (xT�1; �) ; x

T
T (xT�1; �)

�
2 arg max

fbT ;xT g
(v � bT )P (xT�1; xT ) (P1)

s:t: bT = xT ;

and�
b
T
t (xt�1; �) ; x

T
t (xt�1; �)

�
2 arg max

fbt;xtg
(v � bt)P (xt�1; xt) + T

p
�Vt+1 (xt; �)

(P4)

s:t:(bt � xt)G (xt�1; xt) = Ct+1 (xt; �) :

for t < T . We need Condition 2 and Condition 3 for subsequent discussion.

Condition 2 Assume that F is such that xTt (xt�1; �) is continuous in xt�1 on

[c; c] for all t and T .

Condition 3 Assume that F is such that for any T , k, and x 2 [c; c], xTT�k (x; �)
converges to xTT�k (x; 1) when T goes to in�nity.

Note that xTT�k (�; 1) is independent of T . If the distribution F is uniform on

[c; c], it can be proved that Condition 2 and Condition 3 hold.8

Proposition 7 Assume Conditions 2 and 3. Given �, limT!1 xTT�k exists for
all k 2 f0; 1; � � � g :
Proof. See Appendix B

The following theorem is a companion of Theorem 2, which characterizes the

equilibrium path given � 2 (0; 1] when there is no lockout period. The cluster
point set B is de�ned on page 16.

8Given �, if

�Tt (xt�1; xt) � (v � xt)
h
F (xt�1)

N � F (xt)N
i

�CTt+1 (xt; �) [F (xt�1)� F (xt)] +
T
p
�V T

t+1 (xt; �)

is concave in xt for any t and T , then Condition 2 holds. If

�Tt (xt�1; xt) � (v � xt)
h
F (xt�1)

N � F (xt)N
i

�CTt+1 (xt; �) [F (xt�1)� F (xt)] + V T
t+1 (xt; �)

is concave in xt for any t and T , then Condition 3 holds.
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Figure 2: Path of xt with di¤erent values of �

Theorem 4 Assume Conditions 2 and 3. Given � 2 (0; 1] ;

1. The cluster point set B is [c; a], where a 2 [c; c].

2. The cluster point set is not the whole interval [c; c] if and only if the last

period cuto¤ xTT is bounded away from c when T ! 1, i.e. a < c if and

only if limT!1 xTT < c:

Proof. See Appendix B.

Figure 2 illustrates the points made in Theorem 4. It shows the paths of xt for

di¤erent values of � when v = 1, T = 50, N = 2, and a seller�s cost is uniformly

distributed on [0; 1]. The paths with � = 1; 0:95; and 0:8 are consistent with the

case of a < c, and the path with � = 0:3 is consistent with the case of a = c.

When � = 0:3, the di¤erences between adjacent xt�s in the �rst few rounds are

relatively large. However, they shrink as the number of rounds increases, as shown

in Figure 3. Figure 3 depicts the paths of xt in the �rst 30 rounds given � = 0:3

with T = 50; 100; and 150. When T !1, the di¤erences between adjacent xt�s
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Figure 3: Path of xt in the �rst 30 rounds with di¤erent numbers of total rounds,
� = 0:3.

go to 0. When � = 1; 0:95; and 0:8, the di¤erences between adjacent xt�s in the

last three rounds are large. However, they do not shrink when the number of

rounds increases, as shown in Figure 4. Figure 4 depicts the paths of xt given

� = 0:95 with T = 50; 100; and 150.

Theorem 2 is a special case of Theorem 4. When � = 1, a = c or c; and

when � 2 (0; 1), a can be anything in [c; c], and Figure 2 shows that a decreases
in �. The di¤erence comes from the fact that with � < 1, after several rounds,

some waiting cost has been sunk and the remaining time left before the deadline

is shorter. It is as if the buyer now has a higher discount factor, so the buyer�s

bidding behavior changes accordingly. We can see from Figure 2 that with lower

�, the path is more concave at the beginning since the buyer is more eager to get

the good. As time passes by and less time is left, the path turns convex.

6.3 Optimal lockout period

In this section, we use some numerical examples to study the pros and cons of

the lockout period rule and characterize the circumstances under which setting
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Figure 4: Path of xt with di¤erent numbers of total rounds, � = 0:95.

an appropriate lockout period increases the buyer�s payo¤.

With a discount factor � lower than 1, the example in Section 6.1 shows that

the buyer�s payo¤ does not monotonically increase with the number of rounds,

which contrasts to the result in Proposition 4.

Proposition 8 With � 2 (0; 1), the buyer�s payo¤ might not monotonically in-
crease with the number of rounds T .

The following discusses how a lockout period rule a¤ects the buyer�s payo¤

given di¤erent values of �. We focus on the settings in which Myerson�s optimal

mechanism involves setting a reserve price. If setting a reserve price is unneces-

sary, having more rounds always bene�ts the buyer because it helps the buyer

discriminate the sellers better and be able to close the transaction earlier.

With high discount factor When the discount factor is high but lower than

1, if there is no lockout period, in equilibrium, the path of xt is convex (see Figure

2), the last-round price is lower than c, and most transactions occur late. If there

is a lockout period, the buyer has fewer bidding chances and will bid seriously
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from the beginning, so transactions occur earlier. However, the buyer also loses

chances to discriminate sellers with cost around c.

With low discount factor When the discount factor is low, if there is no

lockout period, the buyer raises the bid aggressively, and the bidding path is

concave. With a lockout period, the buyer cannot raise the bid all the way up to

c, so there is a reserve-price-like e¤ect. But the lockout period limits the buyer�s

bidding chances so that the buyer cannot discriminate the sellers well, and it also

prevents the buyer from bidding aggressively and getting the good early.

We consider the example whereN = 2; v = 1:2; and a seller�s cost is uniformly

distributed on [0; 1] : The following table summarizes the number of rounds T �

that maximizes the buyer�s payo¤ and the corresponding buyer�s payo¤ � (T �),

given di¤erent values of �.

� limT!1 xT T � � (T �)

1:00 0:668 1 0:5559

0:95 0:774 2 0:5461

0:90 1 2 0:5399

0:85 1 1 0:5333

The result shows that setting a lockout period so that the buyer has two

bidding chances maximizes the buyer�s payo¤ when � = 0:95 and 0:9. With

� = 0:95, when there is no lockout period, limT!1 xT < 1, so the equilibrium

path of xt is mostly convex, and transaction is very likely to occur late. By

setting a lockout period, the buyer bene�ts from having early transactions but

su¤ers from not being able to discriminate sellers with costs around c. With

� = 0:9, when there is no lockout period, limT!1 xT = 1, so the equilibrium

path of xt is concave, and transactions occur early. By setting a lockout period,

the buyer bene�ts from having a last-round price lower than c, which functions

like a reserve price, but su¤ers from not being able to close transaction early and

discriminate sellers �nely. In these two cases, the bene�t of having a lockout

period dominates the loss. However, with � very close to 1 and � lower than 0:85,

the loss dominates the bene�t, so setting a lockout period hurts the buyer.

In addition, setting a lockout period can be valuable for the buyer when

having a reserve price bene�ts the buyer a lot. Consider another example where
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v = 1 and the other parameters are the same as before. The optimal reserve price

is 0:5. In this case, if � is lower than 0:62, limT!1 xT = 1, so the buyer�s payo¤

when there is no lockout period is at most 13 , the payo¤ in a reverse auction with

no reserve price. On the other hand, the buyer�s payo¤ when only one bidding

chance is allowed is 0:3849 for all �. Therefore, setting a lockout period bene�ts

the buyer if � < 0:62 (it also bene�ts the buyer for higher values of �.)

From the discussion above, we see that NYOP websites with di¤erent designs

of rebidding rules are preferred by di¤erent kinds of customers. Priceline�s lockout

period rule seems to hurt customers by restricting their rebidding opportunities,

but in fact, a customer with waiting cost might �nd it bene�cial.

7 Conclusion

This paper analyzes the Name Your Own Price (NYOP) mechanism adopted by

Priceline.com. We characterize the buyer�s and the sellers�equilibrium strategies

and show that Priceline.com�s lockout period restriction, a design to protect sell-

ers that seems to hurt customers, can actually bene�t a customer with moderate

discount factor.

We show that when there is no lockout period and no waiting cost, the equi-

librium paths can be categorized into two classes. In the �rst class, the cluster

point set of the sellers�cost cuto¤s in all rounds is the whole cost interval [c; c],

which implies that sellers with di¤erent costs are almost fully discriminated and

information about sellers�cost is revealed gradually over time. In this case, the

buyer raises bids constantly, the ending price is the highest possible cost c, and

the buyer�s payo¤ is approximately the same as the payo¤ in a reverse auction

without a reserve price. In the second class, the cluster point set is a single point

fcg, which implies that sellers with di¤erent costs are pooled in intervals except
the one with the lowest possible cost, and information about the sellers�cost is

barely revealed in the �rst many rounds. In this case, the buyer does not raise

the bid much until the very end, the ending price is lower than c, and the buyer�s

payo¤ is greater than the payo¤ in a reverse auction without a reserve price. In

the second type of equilibrium paths, most transactions occur just before the

deadline. The delay of transactions incurs waiting cost if the buyer has time

preference. Therefore, setting a lockout period might actually bene�t a buyer by
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moving transactions forward.

This paper also indicates some interesting extensions for future research.

Based on our analysis, one might be curious about whether Priceline can do

better by adopting other measures, such as restricting the number of bidding

chances instead of the frequency of bidding. Moreover, one can extend the model

to consider the case when there are multiple buyers with private information

about their own valuations, which better characterizes the situation of high travel

season.

A Appendix

Proof of Proposition 1. There exists a set of solutions
�
bt (xt�1) ; xt (xt�1)

	
t

that solves program P1 and P4 for all t. In the last period, recall that

VT (xT�1) = max
xT2[xT�1;c]

(v � xT )P (xT�1; xT ) ;

xT (xT�1) 2 XT (xT�1) = arg max
xT2[xT�1;c]

(v � xT )P (xT�1; xT ) ;

and CT (xT�1) = (xT (xT�1)� xT�1)G (xT�1; xT (xT�1)) :

By Berge�s maximum theorem, we know VT (xT�1) is continuous and XT (xT�1)

is upper hemi-continuous. In period t; t < T; let

�t (xt�1; xt) = (v � xt)
h
F (xt�1)

N � F (xt)N
i

�Ct+1 (xt) [F (xt�1)� F (xt)] + Vt+1 (xt) ;

� (xt�1) = [xt�1; c] :

Then

Vt (xt�1) = max
xt2�(xt�1)

�t (xt�1; xt)

xt (xt�1) 2 Xt (xt�1) = arg max
xt2�(xt�1)

�t (xt�1; xt) :

We show that by picking a proper xt (xt�1) from Xt (xt�1) ; t � T , each round-t
program has a solution.

First observe that for upper hemi-continuous correspondence XT , we are able
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to �nd nT closed intervals [ak; ak+1] ; k = 1; � � � ; nT ; such that [k [ak; ak+1] =
[c; c], and nT continuous functions xT;k : [ak; ak+1]! [ak; c] such that xT;k (x) 2
XT (x) ;8x 2 [ak; ak+1]. Let

CT (xT�1) =

8><>:
(xT;k (xT�1)� xT�1)G (xT�1; xT;k (xT�1)) ; if xT�1 2 (ak; ak+1)

min

(
(xT;k (xT�1)� xT�1)G (xT�1; xT;k (xT�1)) ;

(xT;k+1 (xT�1)� xT�1)G (xT�1; xT;k+1 (xT�1))

)
; if xT�1 = ak+1; k < nT

;

xT (xT�1) =

(
xT;k (xT�1) ; if xT�1 2 (ak; ak+1)

argminx2fxT;k(xT�1);xT;k+1(xT�1)g(x� xT�1)G (xT�1; x) ; if xT�1 = ak+1; k < nT
;

bT (xT�1) = xT (xT�1) :

CT is lower semi-continuous and VT is continuous, so �T�1 is upper semi-continuous.

Note that �T�1 is graph-continuous with respect to �, which is de�ned in Leininger

(1984). So by Leininger�s generalized maximum theorem, VT�1 is upper semi-

continuous, and XT�1 is upper hemi-continuous.

Similarly, since XT�1 is upper hemi-continuous, we are able to �nd nT�1
closed intervals

�
a0k; a

0
k+1

�
; k = 1; � � � ; nT�1; such that [k

�
a0k; a

0
k+1

�
= [c; c], and

nT�1 continuous functions xT�1;k :
�
a0k; a

0
k+1

�
! [a0k; c] such that xT�1;k (x) 2

XT�1 (x) ;8x 2
�
a0k; a

0
k+1

�
. Let

CT�1 (xT�2) =8><>:
(xT�1;k (xT�2)� xT�2)G (xT�2; xT�1;k (xT�2)) + CT (xT�1) ; if xT�2 2

�
a0k; a

0
k+1

�
min

(
(xT�1;k (xT�2)� xT�2)G (xT�2; xT�1;k (xT�2)) + CT (xT�1) ;

(xT�1;k+1 (xT�2)� xT�2)G (xT�2; xT�1;k+1 (xT�2)) + CT (xT�1)

)
; if xT�2 = a0k+1

;

xT�1 (xT�2) =(
xT�1;k (xT�2) ; if xT�2 2

�
a0k; a

0
k+1

�
argminx2fxT�1;k(xT�2);xT�1;k+1(xT�2)g(x� xT�2)G (xT�2; x) + CT (x) ; if xT�2 = a

0
k+1

;

bT�1 (xT�2) = xT�1 (xT�2) +
CT (xT�1 (xT�2))

G (xT�2; xT�1 (xT�2))
:

CT�1 is lower semi-continuous and VT�1 is upper semi-continuous, so �T�2 is

upper semi-continuous. Check that �T�2 is graph-continuous with respect to �.

Applying the same procedure, we conclude that there exists a set of solutions
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�
bt (xt�1) ; xt (xt�1)

	
t
that solves program P1 and P4 for all t.

Proof of Theorem 1. First we show that uit
�
b; x; x j ht; �i; yt (ht�1)

�
�

uit
�
b; x; x0 j ht; �i; yt (ht�1)

�
: If t = T , xT (hT ) = pT . Seller i with cost �i � pT

gets positive expected payo¤ if accepting and 0 if not, so he should accept.

Seller i with cost �i > pT gets negative expected payo¤ if accepting and 0 if

not, so he would not accept. Therefore, he should follow x. For t < T , let

xt�1 = xt�1 (ht�1). In the continuation game, the price path (bt+1; bt+2; � � � ; bT )
and the belief path (yt+1; yt+2; � � � ; yT ) = (xt; xt+1; � � � ; xT�1) can be found by
solving the recursive program

max
xt
(v � bt)P (xt�1; xt) + Vt+1 (xt)

s:t:if (bt � xt�1) < Ct+1 (xt�1) ; xt = xt�1;

otherwise, (bt � xt)G (xt�1; xt) = Ct+1 (xt) :

Seller i�s deviation does not a¤ect (bt+1; � � � ; bT ) and (yt+1; � � � ; yT ). Suppose
seller i�s cost �i is in (xs�1; xs]; s � t, so he should buy in round s. If he accepts
in round s0 6= s, uit

�
b; x; x0 j ht; �i; yt (ht�1)

�
= (bs0 � �i)

G(xs0�1;xs0)
NF (xt�1)

N�1 : If he sticks

to x (accepts in round s), uit
�
b; x; x j ht; �i; yt (ht�1)

�
= (bs � �i) G(xs�1;xs)

NF (xt�1)
N�1 . If

s0 > s; we know that

(bs � xs)G (xs�1; xs) = (bs+1 � xs)G (xs; xs+1)
...

(bs0�1 � xs0�1)G (xs0�2; xs0�1) = (bs0 � xs0�1)G (xs0�1; xs0)

SinceG (xs0�1; xs0) < NF (xs0�1)
N�1 < G (xs0�2; xs0�1) ; for any x < xs0�1; (bs0�1�

x)G (xs0�2; xs0�1) > (bs0 � x)G (xs0�1; xs0). Applying the same argument, since
�i < xs � � � � � xs0�1; (bs��i)G (xs�1; xs) > (bs+1��i)G (xs; xs+1) � � � � � (bs0�
�i)G (xs0�1; xs0) : On the other hand, if t � s0 < s, applying similar arguments,

since �i > xs�1 � � � � � xs0 ; (bs � �i)G (xs�1; xs) > (bs�1 � �i)G (xs�2; xs�1) �
� � � � (�i�bs0)G (xs0�1; xs0) : Therefore, (bs��i) G(xs�1;xs)

NF (xt�1)
N�1 > (bs0��i)

G(xs0�1;xs0)
NF (xt�1)

N�1 .

Next, we show that u0t (b; x j ht�1; yt (ht�1)) � u0t (b0; x j ht�1; yt (ht�1)). For
any t and any ht�1, given x, the buyer�s optimal strategy must generate the path
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that maximizes his conditional utility

max
pt

(v � pt)P (xt�1 (ht�) ; xt ((ht�; pt))) + Vt+1 (xt ((ht�; pt)))
F (xt�1 (ht�))

N
: (P6)

That is, the strategy b is consistent with the solution (pt; � � � ; pT ) derived from
(P6) in the sense that bt (ht�1) = pt; bt+1 (ht�1; pt) = pt+1; � � � : Under our con-
struction of xt (ht), the solution to (P6) is the same as (bt; � � � ; bT ) derived from
(P3). Hence the strategy b constructed from (P3) is consistent with (pt; � � � ; pT )
and is optimal.

B Appendix

Proof of Proposition 2. Let r be the optimal reserve price. Submitting a

path (b1; b2; � � � ; bT ) so that in round t, sellers with cost below xt = c + t r�cT
accept, is a feasible choice. We show that the buyer�s payo¤ with the path can

be arbitrarily close to �� when T goes to in�nity.

Given the path, in the last round, sellers with cost below r accept, so bT =

xT = r. In round t, t < T , a seller with cost xt feels indi¤erent between accepting

now or accepting in the next round, so the following constraint holds:

(bt � xt)G (xt�1; xt) = (bt+1 � xt)G (xt; xt+1)

)(bt � xt)
�
F (xt)

N�1 + F (xt)
N�2F (xt�1) + � � �+ F (xt�1)N�1

�
= (bt+1 � xt)

�
F (xt+1)

N�1 + F (xt+1)
N�2F (xt) + � � �+ F (xt)N�1

�
:

If � � xt+1�xt and � � bt+1� bt are small, an approximation of the equation is

(bt � xt)
�
NF (xt)

N�1 +
(N � 1)N

2
F (xt)

N�2f (xt) �

�
� (bt +�� xt)

�
NF (xt)

N�1 � (N � 1)N
2

F (xt)
N�2f (xt) �

�
)�
�
� (bt � xt) (N � 1)F (xt)N�2f (xt)

F (xt)N�1
=
(N � 1) f (xt) (bt � xt)

F (xt)
:

In a reverse Dutch auction with reserve price r, a seller with cost x accepts at
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price

b (x) = r
F (r)N�1

F (x)N�1
+

1

F (x)N�1

Z r

x
y (N � 1)F (y)N�2 f (y) dy;

which is also the price submitted by a seller with cost x in a �rst-price reverse

auction with reserve price r.

b0 (x) = (N � 1) f (x)
"
xF (x)N�1 +

R r
x F (y)

N�1 dy

F (x)N
� xF (x)

N�2

F (x)N�1

#

=
(N � 1) f (x) (b (x)� x)

F (x)
:

Since b (xT ) = bT = r and b0 (x) = �
� , b (xt) � bt = O

�
�2
�
� T (�) = O (�),

where T (�) = r�c
� . The optimal payo¤ is �

� =
R r
b=c (v � b (x)) dF (x)

N . By the

Riemann-Stieltjes integral, for all � > 0, there exists �0 > 0 such that for all

� < �0; ������
T (�)X
t=1

(v � b (xt))
�
F (xt)

N � F (xt�1)N
�
� ��

������ < �

2
:

Since b (xt) � bt = O (�) and
PT (�)
t=1

�
F (xt)

N � F (xt�1)N
�
= 1, there exists

�00 > 0 such that for all � < �00,������
T (�)X
t=1

[(v � bt)� (v � b (xt))]
�
F (xt)

N � F (xt�1)N
������� < �

2
:

Therefore, for any � � min
�
�0; �00

	
, i.e. for any T � r�c

minf�0;�00g ;�������� �
T (�)X
t=1

(v � bt)
�
F (xt)

N � F (xt�1)N
������� < �:

The buyer can do weakly better by choosing a better path, so ���� (T (�)) < �:

Lemma 1 Assume Condition 1. xTt (xt�1) (de�ned in program P4) increases in

xt�1:
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Proof. It is easy to check that xTT (xT�1) de�ned in program P1 increases in

xT�1. With t < T , xTt (xt�1) is derived from program P4. Let

' (xt; xt�1) � (v � bt (xt;xt�1))
�
F (xt�1)

N � F (xt)N
�
+ V Tt+1 (xt) ;

where bt (xt;xt�1) =
CTt+1 (xt)

F (xt)N�1 + F (xt)N�2F (xt�1) + � � �+ F (xt�1)N�1
+ xt:

@' (xt; xt�1)

@xt
= � [F (xt�1)� F (xt)]

"�
F (xt�1)

N�1 + � � �+ F (xt)N�1
�
+
dCTt+1 (xt)

dxt

#
+f (xt) (xt+1 (xt)� xt)

h
NF (xt)

N�1 �
�
F (xt+1 (xt))

N�1 + � � �+ F (xt)N�1
�i

and
@2' (xt; xt�1)

@xt@xt�1
=

1

c� c

"
NF (xt�1)

N�1 +
dCTt+1 (xt)

dxt

#
:

For any xt, xt�1 and x0t�1 2 [xt�1; xt], if
�
F (xt�1)

N�1 + � � �+ F (xt)N�1
�
+

dCTt+1(xt)

dxt
< 0, @'(xt;xt�1)@xt

> 0 and
@'(xt;x0t�1)

@xt
> 0. If

�
F (xt�1)

N�1 + � � �+ F (xt)N�1
�
+

dCTt+1(xt)

dxt
> 0, @

2'(xt;xt�1)
@xt@xt�1

> 0, so @'
@xt
(xt; xt�1) > 0 implies @'

@xt

�
xt; x

0
t�1
�
> 0.

Therefore, ' (xt; xt�1) satis�es single crossing property of marginal returns. By

Milgrom-Shannon theorem, xTt (xt�1) increases in xt�1.

We use Lemmas 2, 3, and 4 to prove Lemma 5 and Lemma 6, and use Lemmas

5, 6, and 4 to prove Theorem 2. We sometimes add superscript T to Vt (x) and

Ct (x) (de�ned in (P3)) for clari�cation. Note that for two sets (t; T ) and (t0; T 0),

if T � t = T 0 � t0, then V Tt (x) = V T
0

t0 (x) and C
T
t (x) = CT

0
t0 (x) : So, we let

ck (x) = C
T
T�k (x) :

Proof of Theorem 2. By Lemma 6, if B 6= fcg, there does not exist a 2 (c; c)
such that (a; c] � [c; c] nB. Then by Lemma 5, B = [c; c]. So the �rst statement
is proved. The third statement follows from the revenue equivalence principle.

For the second statement, if limT!1 xTT < c, it must be that B = fcg. On the
other hand, if B = fcg, there exists t < 1 such that c � limT!1 xTT�t > 0. By
Lemma 4, limT!1 xTT < c:
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Lemma 2 Assume Condition 1. Given k > 0, there exists �k (�; x) > 0 such

that for any t and T where T � t = k, if xTt = xTt+1 � �, � > 0, then xTt�1 �
xTt � �k

�
�; xTt

�
: �k (�; x) does not depend on T .

Proof. Given any t, T such that where T � t = k and given belief xt�1, the

continuation equilibrium x�t and b
�
t are derived from

V Tt (xt�1) = max
fbt;xtg

(v � bt)
�
F (xt�1)

N � F (xt)N
�
+ V Tt+1 (xt) (P8)

s:t:(bt�xt)(F (xt)N�1+F (xt)N�2F (xt�1)+ � � �+F (xt�1)N�1) = CTt+1 (xt) : (2)

From (2),

bt =
CTt+1 (xt)

F (xt)N�1 + F (xt)N�2F (xt�1) + � � �+ F (xt�1)N�1
+ xt;

dbt
dxt

=
CT 0t+1 (xt)

F (xt)N�1 + F (xt)N�2F (xt�1) + � � �+ F (xt�1)N�1
+ 1

+
(bt � xt)

�
(N � 1)F (xt)N�2 + (N � 2)F (xt)N�3F (xt�1) + � � �+ F (xt�1)N�2

�
f (xt)

F (xt)N�1 + F (xt)N�2F (xt�1) + � � �+ F (xt�1)N�1

The solution fx�t ; b�t g must satisfy the �rst order condition

0 = �dbt (x
�
t )

dxt

�
F (xt�1)

N � F (x�t )N
�
+ (v � bt (x�t ))

�
NF (x�t )

N�1 f (x�t )
�
+ V T 0t+1 (x

�
t )

) 0 = [F (xt�1)� F (x�t )]
h
�
�
F (xt�1)

N�1 + � � �+ F (x�t )
N�1

�
� CT 0t+1 (x�t )

i
�CTt+1 (x�t ) f (x�t ) +N (v � x�t )F (x�t )

N�1 f (x�t ) + V
T 0
t+1 (x

�
t ) : (3)

Note that

V Tt+1 (xt) = max
fbt+1;xt+1g

(v � bt+1 (xt+1;xt))
�
F (xt)

N � F (xt+1)N
�
+ V Tt+2 (xt+1) ;(4)

where bt+1 (xt+1;xt) =
CTt+2 (xt+1)

F (xt+1)N�1 + F (xt+1)N�2F (xt) + � � �+ F (xt)N�1
+ xt+1:

Let
�
x�t+1 (xt) ; b

�
t+1 (xt)

	
be the solution to program (4). By (2), CTt+2

�
x�t+1

�
=

(b�t+1�x�t+1)(F (x�t+1)N�1+F (x�t+1)N�2F (xt)+ � � �+F (xt)N�1): By the envelope
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theorem,

V T 0t+1 (xt) = �NF (xt)
N�1 f (xt)

�
v � x�t+1

�
+ f (xt)C

T
t+2

�
x�t+1

�
: (5)

Plugging into (3), we get

0 = [F (xt�1)� F (x�t )]
h
�CT 0t+1 (x�t )�

�
F (xt�1)

N�1 + � � �+ F (x�t )
N�1

�i
�
�
CTt+1 (x

�
t )� CTt+2

�
x�t+1

��
f (x�t )�NF (x�t )

N�1 f (x�t )
�
x�t � x�t+1

�
= � [F (xt�1)� F (x�t )]

h�
F (xt�1)

N�1 + � � �+ F (x�t )
N�1

�
+ c0k (x

�
t )
i

+f (x�t )
�
x�t+1 � x�t

� h
NF (x�t )

N�1 �
�
F (x�t+1)

N�1 + � � �+ F (x�t )N�1
�i
:(6)

If x�t = x
�
t+1 � �;�

x�t+1 � x�t
� h
NF (x�t )

N�1 �
�
F (x�t+1)

N�1 + � � �+ F (x�t )N�1
�i
is strictly positive,

and so by (6),

[F (xt�1)� F (x�t )]
h�
F (xt�1)

N�1 + � � �+ F (x�t )
N�1

�
+ c0k (x

�
t )
i
is strictly pos-

itive. Condition 1 implies that ck (x) is continuous on [c; c], and c0k (x) ex-

ists almost everywhere and is bounded. Therefore, by (6), if x�t+1 � x�t > 0,

x�t � xt�1 > 0. Moreover, the di¤erence between xt�1 and x�t only depends on

x�t , � (� = x
�
t+1 � x�t ), and k.

Lemma 3 Assume Condition 1. In a continuation game starting from round

t (t < T � 1) with the belief that the greatest lower bound of a seller�s cost is
xt�1, when the number of rounds left in the continuation game goes to in�nity,

xt ! xt�1 on the continuation equilibrium path but xt 6= xt�1.
Proof. In the continuation game, the equilibrium path fx�gt���T and fb�gt���T
are derived from program P8. As T � t!1, the value of the program converges,
so the additional payo¤ a buyer can get by adding one more round goes to 0.

In the following proof, we show that given any T � t, when one more round is
added to the continuation game, the additional payo¤ the buyer can get is strictly

positive if xt > xt�1 + �; � > 0. However, the buyer�s payo¤ is bounded by the

payo¤ in Myerson�s optimal mechanism, so when T � t!1; xt ! xt�1:

Let fx�� ; b��gt���T be the equilibrium path when there are T � t rounds left,
which can be derived from program P8. If we add a constraint xt = xt�1 to P8

and let fx0� ; b0�gt���T be the solution to the program, then the buyer�s payo¤
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and fx0� ; b0�gt+1���T would be the same as those in the continuation game with
T � t� 1 rounds. The value of the program is

Vt (xt�1) =
�
v � b0t

� �
F (xt�1)

N � F (x0t)N
�
+ Vt+1

�
x0t
�
; where x0t = xt�1:

Without the constraint, x0t can be increased by ", and Vt (xt�1) increases approx-

imately byh�
v � b0t

�
NF

�
x0t
�N�1

f
�
x0t
�
+ V 0t+1

�
x0t
�i
"

= [
�
v � b0t

�
NF

�
x0t
�N�1

f
�
x0t
�
�NF

�
x0t
�N�1 �

v � x0t+1
�
f
�
x0t
�

+(b0t+1 � x0t+1)(F (x0t+1)N�1 + F (x0t+1)N�2F (x0t) + � � �+ F (x0t)N�1)f
�
x0t
�
]"

=
�
x0t+1 � x0t

� h
NF

�
x0t
�N�1 � �F (x0t+1)N�1 + F (x0t+1)N�2F (x0t) + � � �+ F (x0t)N�1�i f �x0t� ":

The second equation comes from (b0t � x0t)NF (x0t)
N�1 =

�
b0t+1 � x0t

� �
F (x0t)

N�1 + � � �+ F
�
x0t+1

�N�1�.
Therefore, if x0t+1 > x0t + �, the value is positive and increasing the number of

rounds from T � t� 1 to T � t strictly increases the buyer�s payo¤.

Lemma 4 Given any T and t <1, if xTT�t < c, then xTT < c and xTT�xTT�1 > 0.
Proof. When t = 1, by (1), xTT < c and x

T
T �xTT�1 > 0. When t = 2, if xTT�1 = c,

then xTT = c and the buyer pays for the good at a price higher than or equal to

c, which cannot happen in equilibrium. Therefore, xTT�1 < c, and we can apply

the result we get in the case when t = 1.

Applying the same argument to the case where t = 3; 4; � � � , we can conclude
that, for any t, if xTT�t < c, then x

T
T < c and x

T
T � xTT�1 > 0.

Recall that B is the set of cluster points, and [c; c] n B is the complement of

B.

Lemma 5 Assume Condition 1. If a 2 B, [c; a] � B:
Proof. By Lemma 3, c 2 B. If not the whole interval [c; a] belongs to B,

there must exist [b; c] � [c; a] such that (b; c) � [c; c] n B and b; c 2 B. Since
(b; c) � [c; c] n B, there exist functions t (T ) and t0 (T ) ; t (T ) < t0 (T ) ; such thatn
xTt(T )

o
T
and

n
xTt0(T )

o
T
converge, b � limT!1 xTt(T ) < limT!1 x

T
t0(T ) � c, and no

other sequences
�
xTk
	
T
, xTk 2

�
xTt
	
t(T )<t<t0(T )

, converge. However, since a 2 B,
i.e. limT!1 T � t (T ) =1, Lemma 3 implies xTt(T )+1 is arbitrarily close to x

T
t(T )
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when T is large. Therefore, limT!1 xTt(T )+1� limT!1 x
T
t(T ) = 0, a contradiction.

Lemma 6 Assume Condition 1. If there exists a 2 (c; c) such that (a; c] �
[c; c] nB, then [c; c] nB = (c; c]:
Proof. By Lemma 5, we only need to show that it cannot be the case that

(a; c] � [c; c] n B and [c; a] � B. Suppose [c; a) � B. First, we show that

when T ! 1, there exists x 2 XT , x > a, that is arbitrarily close to a. Since

(a; c] � [c; c] n B; there exists t < 1 such that c � limT!1 xTT�t > 0. By

Lemma 4, limT!1 xTT < c and limT!1 xTT � limT!1 xTT�1 > 0. By Lemma 2,

limT!1 x
T
T�s+1 � limT!1 xTT�s > 0; for all s < 1. Since (a; c] � [c; c] n B, it

must be the case that limt!1 limT!1 xTT�t = a, which also implies a 2 B.
Since [c; a] � B and limt!1 limT!1 xTT�t = a, we can rewrite the necessary

condition (6) for the optimality problem as

0 =
�
F
�
x� dx�

�
� F (x)

� h
�F

�
x� dx�

�N�1 � � � � � F (x)N�1 � C 0 (x)i(7)
�f (x) dx+

h
F
�
x+ dx+

�N�1
+ � � �+ F (x)N�1 �NF (x)N�1

i
where C (x) = limk!1 ck (x), x 2 [c; a], and dx� and dx+ are two positive

numbers which can be arbitrarily small. For x 2 [c; a), dx� 2 O (dx+) but

dx� =2 o (dx+), and an approximation of equation (7) is

) 0 = f (x) dx�
�
�NF (x)N�1 � (N � 1)N

2
F (x)N�2 f (x) dx� � C 0 (x)

�
�f (x) dx+

�
NF (x)N�1 � (N � 1)N

2
F (x)N�2 f (x) dx+ �NF (x)N�1

�
Since dx� and dx+ are arbitrarily small, the equation implies C 0 (x) = �NF (x)N�1

for x 2 [c; a).
However, limx!a+C 0 (x) 6= �NF (x)N�1. If limx!a+C 0 (x) = �NF (x)N�1,

in order to satisfy equation (7), there exists � > 0 such that for x 2 (a; a+ �),
dx� 2 O (dx+) but dx� =2 o (dx+).9 So (a; a+ �) � B, a contradiction. Since

C 0 (x) is not continuous at a, and dx� and dx+ can be arbitrarily small, the

9Suppose dx� 2 o
�
dx+

�
. Since dx� is derived from equation (7), dx� 2 o

�
dx+

�
implies

dx� 2 O
��
dx+

�2�
and C0 (x) = �NF (x)N�1 + (N�1)N

2
F (x)N�2 f (x) 6= �NF (x)N�1 :
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necessary condition (7) does not hold around a. Therefore, a path that [c; a] � B
and (a; c] � [c; c] n B cannot occur in equilibrium. Note that there must be at

least one cluster point in [c; c]. Since only c can be in B; [c; c] nB = (c; c]:

Proposition 9 A path that fully discriminates sellers is a stationary solution to
program P7 when T =1.
Proof. If the buyer fully discriminates sellers, we can rewrite the necessary

condition (6) for a stationary solution as

0 = [F (x� dx)� F (x)]
h
�F (x� dx)N�1 � � � � � F (x)N�1 � C 0 (x)

i
�f (x) dx

h
F (x+ dx)N�1 + � � �+ F (x)N�1 �NF (x)N�1

i
) 0 = f (x) dx

�
�NF (x)N�1 � (N � 1)N

2
F (x)N�2 f (x) dx� C 0 (x)

�
�f (x) dx

�
NF (x)N�1 � (N � 1)N

2
F (x)N�2 f (x) dx�NF (x)N�1

�
;

where dx is a positive number which can be arbitrarily small. Note that C(x)N can

be considered as the information rent given to a seller with cost x. In our setting,

in an incentive compatible mechanism that fully discriminates sellers with di¤er-

ent costs, the information rent R (x) has the property that R0 (x) = �F (x)N�1,
so C0(x)

N = �F (x)N�1. Therefore, the necessary condition holds. Given xt�1,
supposing xt+1�xt is arbitrarily small, one can check that the objective function
of (P8) is concave in xt. Therefore, a path that fully discriminates sellers is a

stationary solution.

Proof of Proposition 7. Since xTT�k (xT�k�1; �) is continuous in xT�k�1 and

limT!1 x
T
T�k (xT�k�1; �) = x

T
T�k (xT�k�1; 1), given any x,

limT!1 x
T
T�k

�
xTT�k�1

�
� � �xTT�k�t (x; �) � � �

�
; �
�
= xTT�k

�
xTT�k�1

�
� � �xTT�k�t (x; 1) � � �

�
; 1
�

for t 2 f0; 1; � � � g. Since the sequence flimT!1 xTT�k
�
xTT�k�1

�
� � �xTT�k�t (x; �) � � �

�
; �
�
;

limT!1 x
T
T�k�1

�
� � �xTT�k�t (x; �) � � �

�
; � � � ; limT!1 xTT�k�t (x; �)g decreases and

is bounded below by c, there exists a limit of the sequence

flimT!1 xTT�k
�
xTT�k�1

�
� � �xTT�k�t (x; �) � � �

�
; �
�
; limT!1 x

T
T�k�1

�
� � �xTT�k�t (x; �) � � �

�
;

� � � ; limT!1 xTT�k�t (x; �)g when t ! 1. Let � be the supremum of the cluster
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point setB given �. Then limT!1 xTT�k = limt!1 x
T
T�k

�
xTT�k�1

�
� � �xTT�k�t (�; 1) � � �

�
; 1
�
.

Proof of Theorem 4. The model in Section 2 is a special case when � = 1.

Given � < 1, since limT!1
T
p
� = 1, Lemmas 3 and 4 hold, so Lemma 5 holds

for � < 1. However, Lemma 6 might not hold with � < 1. By Lemma 5,

the �rst statement of Proposition 4 is proved. For the second statement, if

limT!1 x
T
T < c, it must be that a < c. On the other hand, if a < c, there exists

t <1 such that c� limT!1 xTT�t > 0. By Lemma 4, limT!1 xTT < c:
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