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Abstract

This paper analyzes players’ long run behavior in evolutionary coordination games

with one-dimensional local interaction and imitation. Different from Alós-Ferrer and

Weidenholzer’s study (JET, 2008), players in our model are assumed to extract valuable

information from their interaction neighbors only. It is found that the payoff-dominant

equilibrium could survive in the long run with a positive less-than-one probability. We

derive the conditions under which both risk-dominant-strategy and payoff-dominant-

strategy takers would coexist in the long run. And the risk-dominant equilibrium is the

unique long run equilibrium for the rest cases. These results supplement the findings

of Alós-Ferrer and Weidenholzer. Finally, the convergence rates to all equilibria are

reported.
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1. Introduction

Multiplicity of the Nash equilibria has weakened the prediction power and ap-

plication potentials of the game theory on human behavior. The coordination game

(hereafter CG) with risk- and payoff-dominant equilibria is a typical example. And

the evolutionary learning process is a dynamic method to refine the Nash equilibria.

Various hypotheses have been given in the literature to characterize players’ bound-

edly rational behavior, thus resulting in distinct refinements of the Nash equilibria.

For instance, under the best-response dynamics, Kandori et al. (1993), Young (1993),

Ellison (1993, 2000), Blume (1993, 1995), and Morri (2000) show that players will

eventually coordinate at a risk-dominant equilibrium in the long run. However, the

equilibrium could be changed to a payoff-dominant one when state-dependent (e.g.,

Bergin and Lipman (1996)) or time-dependent mutations (e.g., Robles (1998), and

Chen and Chow (2001)) are introduced, players’ strategy space (e.g., Kandori and Rob

(1995)) is enlarged, or all players participate in the CG simultaneously (e.g., Robles

(1997) and Hansen and Kaarboe (2002)).

In addition to the best-response dynamics, imitation is commonly observed con-

duct. Robson and Vega-Redondo (1996) analyze players’ long run behavior under an

imitation and global interaction setup. In their model, players are randomly and in-

dependently matched in pairs to play the CG at each time period, and they imitate

actions yielding the higher average payoffs. Robson and Vega-Redondo show that play-

ers will eventually coordinate at payoff-dominant equilibrium in the long run because

the uncertainty caused by random matching provides chances for payoff-dominant equi-

librium to outperform risk-dominant equilibrium. In contrast, Vega-Redondo (1996)

show that risk-dominant equilibrium is the unique long run equilibrium under the

local interaction setting. Nevertheless, Eshel et al. (1998) conjecture that both payoff-

dominant and risk-dominant strategies could coexist in the long run. By allowing

players collecting information from other than their interaction neighbors, Alós-Ferrer
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and Weidenholzer (2008) show that payoff-dominant equilibrium would be the unique

long run equilibrium when players’ interactions are not “too global” under arbitrary

network systems.

Through the rapid development of internet and media, people nowadays can obtain

information from the outside world, and interact with their information providers easily.

Thus, players’ information and interaction neighbors are often the same. On the other

hand, searching and screening huge amount of information from internet could be

very time-consuming, people may just talk to their friends and relatives. Therefore,

this paper tries to examine the robustness of Alós-Ferrer and Weidenholzer’s (2008)

outcomes under the setting that players’ information sources are confined to their

interaction neighbors only. In contrast with Alós-Ferrer and Weidenholzer’s general

interaction scheme, we will focus on a one-dimensional local interaction structure for

mathematical tractability, that is, all players are assumed to sit sequentially around

a circle and interact with their two immediate neighbors only. Players would imitate

successful actions taken by their neighbors or themselves. Then, we can compare our

results with those of Vega-Redondo (1996) and Eshel et al. (1998) directly.

It is discovered that players’ long run behavior depends on game’s payoff struc-

ture and population size as mutation rates (or experimental probabilities) tend to

zero. When population size and gain of payoff-dominant-strategy takers are large,

payoff-dominant equilibrium could emerge in the long run with a positive less-than-one

probability. This is also true for some mixed stationary states, in which players taking

risk-dominant and payoff-dominant strategies coexist peacefully, with payoff-dominant-

strategy takers being the majority. In the remaining cases, risk-dominant equilib-

rium survives uniquely in the long run. These results suggest that payoff-dominant

equilibrium and mixed stationary states cannot survive uniquely in the long run, but

risk-dominant equilibrium can, when players gather information from their interaction

neighbors only. The findings differ from Alós-Ferrer and Weidenholzer’s (2008), thus
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could provide a supplement to theirs.

Like Eshel et al. (1998), we assume that players use average strategy payoffs as

the imitation criterion.1 However, Eshel et al. (1998) do not conduct stability analyses

and characterize the equilibria. Vega-Redondo (1996) imposes an extra condition,

in addition to conventional ones, on the payoff structure to enhance chances of risk-

dominant equilibrium emerging in the long run.2 In contrast, we impose no such limit.

The issue of converging to the long run equilibria is also addressed in this study.

As we know, the convergence rate to the equilibrium is one important factor in model

selection. Here we measure the convergence rate by the expected waiting time for the

first long-run-equilibrium visit. Under the global interaction setup, Robson and Vega-

Redondo (1996) show that the convergence rate to the payoff-dominant equilibrium

would depend on the game’s payoff structure, but is independent of its population

size. Nevertheless, our results demonstrate that the convergence rates to the long run

equilibria depend on both the game’s payoff structure and its population size under the

local interaction setup. Moreover, we discover that the convergence rate to the payoff-

dominant equilibrium under local interaction could be slower than that under global

interaction. This outcome is opposite to Ellison’s (1993) finding under the best-reply

dynamics. It is also found that much more time is needed for players to coordinate at

the payoff-dominant equilibrium than at the risk-dominant equilibrium.

1In Eshel et al.’s (1998) study players’ payoffs are determined by the risk-dominant-strategy number

adopted by their neighbors only, while in our model players’ payoffs are decided by the strategies

employed by their neighbors. This difference will cause dissimilar conditions for the existence of long

run equilibria but will not affect the equilibria’s contents in the two studies.
2In Vega-Redondo’s study (1996), players are assumed to meet either of their two neighbors infinite

rounds at each time period, and to imitate actions yielding the higher random average payoff. Under

the circumstance, the strong law of large numbers implies that players have the same probability to

meet each of the two neighbors. Accordingly, the expected strategy payoffs in Vega-Redondo’s (1996)

cases equal halves of the average strategy payoffs in corresponding cases under our setup. An example

is provided in footnote 3.
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Our results are derived using the minimum-cost spanning tree method. This

method is introduced in Appendix B. Similar approaches have been employed in previ-

ous works, such as in Young (1993) and Ellison (2000). Our method differs from these

in that it can fully characterize the invariant distribution of a finite Markov chain, and

derive the associated convergence rate at the same time. Interested readers could refer

to Vega-Redondo (2003) for comparison among different approaches.

Finally, the rest of this paper is organized as follows. In Section 2, our model is

presented. The associated outcomes are demonstrated in Section 3. The conclusions

are drawn in Section 4. And all proofs for our findings are displayed in Appendix C.

2. The Model

Let N = {1, 2, . . . , n}, n ≥ 5, be the set of players. Players are assumed to

sit sequentially and equally spaced around a circle. Each individual has exactly two

neighbors. For i ∈ N , let Ni = {i − 1, i + 1} be the set of player i’s neighbors. Note

that player n+i is the same as player i by modulo n. At each time period t ≥ 1, players

meet with each of their two neighbors once to play the coordination game below.

A B

A a, a b, c

B c, b d, d

Here {A, B} is the strategy set for all players. And a, b, c, and d are payoffs with

a > c, d > b, d > a, and a+ b > c+ d. Accordingly, the state space, S, of our dynamic

system is a set containing strategy profiles of all players. That is, S ≡ {A, B}N with

element ~s = (s1, s2, . . . , sn), where si is the strategy adopted by player i, i ∈ N. For

simplicity, labels ~A = (A, A, . . . , A) and ~B = (B, B, . . . , B) represent states where all

players choose A and B, respectively. Under the conditions of a+b > c+d and d > a, ~A

is called the risk-dominant equilibrium and ~B the payoff-dominant equilibrium. In the
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beginning of each period, players’ actions and payoffs occurred (after mutation) in the

last period are observable to their neighbors.

Our local-interaction dynamic system consists of the imitation and mutation parts

in order. In the imitation process, each player is assumed to imitate the successful

action, i.e., the action yielding the highest average payoff which was adopted among

his neighbors and himself. Let ~s = (s1, s2, . . . , sn) ∈ S be the state in the beginning

of time t, and πA
i (~s) and πB

i (~s) be the respective average payoffs of strategies A and

B among player i and his two neighbors after the game is played at time t. Here

we take the convention that for strategy E ∈ {A, B}, πE
i (~s) = −∞ if sj 6= E for

j ∈ {i − 1, i, i + 1}. Accordingly, player i’s next-period boundedly rational choices,

ri(~s), is required to satisfy

ri(~s) ∈ Mi(~s)
def
= {E ∈ {A, B} : πE

i (~s) = max(πA
i (~s), πB

i (~s)) }. (2.1)

The computation of Mi(~s) in (2.1) depends on the strategies taken by five consecutive

players from i − 2 to i + 2. There are 32 cases in total to be reckoned in order to

determine ri(~s) from (2.1). Since

ri(~s) = si if si−1 = si = si+1, (2.2)

14 cases are left by symmetry. These cases are classified into four categories: (i) only

player i in Ni ∪ {i} taking strategy A, (ii) only player i in Ni ∪ {i} taking strategy

B, (iii) two players including player i in Ni ∪ {i} taking strategy A, and (iv) two

players including player i in Ni ∪ {i} taking strategy B. The corresponding values of

πA
i and πB

i are presented in Figures A, B, AA, and BB of Appendix A. For example,

if (si−2, si−1, si, si+1, si+2) = (A, A, A, B, B) then πA
i (~s) = 1

2
[2a + (a + b)] = 3a+b

2
and

πB
i (~s) = c + d.3

3Under Vega-Redondo’s (1996) setup, the probability of each player meeting either of his two

neighbors is 1/2. Then, the random average payoffs of strategies A and B are 1

2
[a + a+b

2
] = 3a+b

4
and

c+d

2
, respectively. They are halves of πA

i
(~s) and πB

i
(~s), respectively. The same results occur in all

other cases. Thus, our setting is equivalent to Vega-Redondo’s (1996).
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When Mi(~s) is a singleton, no ambiguity occurs. However, if Mi(~s) = {A, B},

selection rules should be considered. For brevity, we assume throughout this paper

that players will stick to their original strategies due to inertia when Mi(~s) is not a

singleton.4 Thus, players’ boundedly rational strategy profile, ~r(~s) = (r1(~s), r2(~s), ..., rn(~s)),

satisfies

ri(~s) = si iff si ∈ Mi(~s) for all i ∈ N. (2.3)

The above imitation process induces a time-homogeneous Markov chain on S. Its

probability transition matrix Q0 : S × S → [0, 1] is given by

Q0(~s, ~r(~s)) = 1 and Q0(~s, ~u) = 0 for ~u 6= ~r(~s). (2.4)

In particular, we have from (2.2) that ~r( ~A) = ~A and ~r( ~B) = ~B. Hence,

Q0( ~A, ~A) = Q0( ~B, ~B) = 1. (2.5)

In the Markov chain terminology, each state in S either is transient or lies in a closed

connected component F . In the latter case, it is called a stationary state. By definition,

all states in any F can reach each other. A state is absorbing iff it lies in some F with

|F| = 1. Therefore, F is sometimes called an absorbing set. Owning to |S| < ∞, set

S0 containing all stationary states is nonempty and can be characterized by

S0 = {~s ∈ S : lim
t→∞

ν(Q0)
t(~s) > 0 for some initial distribution ν on S}. (2.6)

Since ~A and ~B are absorbing states under Q0 by (2.5), we have

{ ~A, ~B} ⊆ S0. (2.7)

After completing the imitation process, players will independently alter their re-

vised rational choices with identical probability ε > 0, which is called the mutation

4Actually, we have tried another tie-breaking rule assuming that both A and B will be selected in

the next period with arbitrary positive probabilities when Mi(~s) is not a singleton. Under the cir-

cumstance, the outcomes will change merely under boundary cases, and ~B will become less favorable.
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rate, at the end of each period. One can regard the mutation rate as the probability

of players’ experimenting with new strategies. All together, our local-interaction dy-

namic system defines a Markov chain {Xt : t = 0, 1, ...} on S with probability transition

matrix Qε, which is a perturbation of Q0 in (2.4) and given by

Qε(~s, ~u) = εd(~r(~s), ~u) · (1 − ε)n−d(~r(~s), ~u) for any ~s, ~u ∈ S, (2.8)

where d(~r(~s), ~u) = |{i ∈ N : ri(~s) 6= ui}| is the number of mismatches between the

truly-adopted strategy ~u and the rational choice ~r(~s) at state ~s.

Because Qε(~s, ~u) > 0 for all ~s and ~u ∈ S, planting mutation has the advantage of

making our dynamic system {Xt} ergodic. Let µε be the associated unique invariant

distribution, which is independent of the initial distribution and characterized by

µε = µε · Qε. (2.9)

We are interested in the limit probability distribution µ∗
def
= limε→0 µε and its support

S∗
def
= {~s ∈ S : µ∗(~s) > 0}. (2.10)

Each element in S∗ is called the stochastically stable state or long run equilibrium

(hereafter LRE). Moreover, we are interested in the order estimate of E(Tε), i.e., the

expected waiting time of first visiting S∗, where

Tε = inf{t ≥ 0 : Xt ∈ S∗} (2.11)

is the first time that {Xt} hits S∗ with, say, the initial X0 uniformly distributed on S.

By letting ε ↓ 0 in (2.9), Vega-Redondo (2003) shows µ∗ = µ∗Q0 and thus

S∗ ⊆ S0 (2.12)

by (2.6). Employing a method in Freidlin and Wentzell (1984; pp.177-199), which is

explained in Appendix B, we can find S∗ and E(Tε). These outcomes are given below.
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3. The Results

Before presenting the results, some notations are introduced. Any state in

M
def
= S0 \ { ~A, ~B} (3.1)

is called a mixed stationary state. If M 6= ∅, any ~s ∈ M consists of some A-strings

alternating with equal number of B-strings as all players sit around a circle. Decompose

M as ∪k≥1Mk, where any ~s ∈ Mk has k A-strings and can be represented as

· · ·A · · ·A
︸ ︷︷ ︸

ak

B · · ·B
︸ ︷︷ ︸

bk

A · · ·A
︸ ︷︷ ︸

a1

B · · ·B
︸ ︷︷ ︸

b1

A · · ·A
︸ ︷︷ ︸

a2

B · · ·B
︸ ︷︷ ︸

b2

· · · . (3.2)

Here ai and bi are the lengths of its i-th A-string and B-string, respectively. To display

our results neatly, we introduce the following notations. For positive integers m and p,

Mm, p
def
= {~s ∈ S : all ai = m, bj = p in (3.2)},

Mm, ≥p
def
= {~s ∈ S : all ai = m, bj ≥ p in (3.2)}.

Similarly, we can define M≥m, ≥p, M≤m, ≥p and so on. Furthermore,

M̄≥m, ≥p = {~s ∈ M≥m, ≥p : aj = aj+1 = m if any bj = p},

and

M̃ = {~s ∈ M≤3, ≥3 : bi ≥ 4 if (ai, ai+1) = (1, 2) or (2, 1), and

bi ≥ 5 if (ai, ai+1) = (1, 1) in (3.2)}.

Throughout the paper we assume that

|N | = n ≥ 5, a > c, d > b, d > a, and a + b > c + d. (3.3)

As a consequence, b > c and then c = min{a, b, c, d}. The notation

f(ε) ≈ εα means that lim
ε↓0

f(ε)/εα exists and is positive,
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dxe represents the least integer no less than x, while bxc means the greatest integer no

greater than x. The main result, which will be proved in Appendix C, is as follows.

Theorem 3.1. Assume imitating-successful-action rule (2.1) and (3.3).

(a) If 3a+b
2

≥ c + d and a + b > c+3d
2

, then S0 = { ~A, ~B} ∪ M with

M =







∅ for c+3d
2

< 2b or 2b < c + d,

M1, ≥3 for c + d < 2b ≤ c+3d
2

,

M1, ≥2 for 2b = c + d.

Moreover, as ε ↓ 0, S∗ = { ~A} and

E(Tε) ≈ ε−1if 2b ≥ c + d, while E(Tε) ≈ ε−2 if 2b < c + d. (3.4)

(b) If 3a+b
2

≥ c + d and a + b ≤ c+3d
2

, then S0 = { ~A, ~B} ∪ M with

M =







M≥2, ≥3 for c+3d
2

< 2b or 2b < c + d,

M≥1, ≥3 for c + d < 2b ≤ c+3d
2

,

M̄≥1, ≥2 for 2b = c + d.

Moreover, S∗ = { ~A} as ε ↓ 0 and (3.4) holds.

(c) If 3a+b
2

< c + d and 2b ≤ c+3d
2

, then S0 = { ~A, ~B} ∪ M≤2, ≥3. Moreover, as ε ↓ 0,







S∗ = { ~A} and E(Tε) ≈ ε−d
n

7 e for 5 ≤ n ≤ 14,

S∗ = S0 and E(Tε) ≈ ε0 for 15 ≤ n ≤ 21,

S∗ = S0\{ ~A} and E(Tε) ≈ ε−3 for n ≥ 22.

(d) If 3a+b
2

< c + d and 2b > c+3d
2

, then S0 = { ~A, ~B} ∪ M̃. Moreover, as ε ↓ 0,







S∗ = { ~A} and E(Tε) ≈ ε−1 for n = 5,

S∗ = { ~A} and E(Tε) ≈ ε−d
n

10e for 6 ≤ n ≤ 20,

S∗ = S0 and E(Tε) ≈ ε0 for 21 ≤ n < 30, n 6= 25,

S∗ = S0\M2, 3 and E(Tε) ≈ ε−1 for n = 25 or 30,

S∗ = (S0\M2, 3)\{ ~A} and E(Tε) ≈ ε−3 for n ≥ 31.

(3.5)
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Note that M2, 3 6= ∅ iff 5|n, where 5|n means that n is a multiple of 5.

Theorem 3.1 demonstrates that players’ long run behavior and convergence rates

to the LREs would depend on both the game’s payoff structure and its population

size. Risk-dominant, payoff-dominant, as well as mixed stationary states could be the

LREs. If gain of payoff-dominant-strategy takers, d, is small with c+d ≤ 3a+b
2

, Theorem

3.1(a)-(b) show that risk-dominant equilibrium is always the unique LRE. In contrast,

if d is large enough with c + d > 3a+b
2

, payoff-dominant equilibrium and some mixed

stationary states could emerge in the long run with a positive less-than-one probability

for large population, which are discussed below.

In the case of c+d > 3a+b
2

and 2b ≤ c+3d
2

, Theorem 3.1(c) shows that, as population

grows, ~A changes from being the unique LRE for 5 ≤ n ≤ 14 to coexisting with

M≤2, ≥3 ∪ { ~B} for 15 ≤ n ≤ 21, and finally to being dominated by M≤2, ≥3 ∪ { ~B} for

n ≥ 22. In sum, risk-dominant equilibrium is the unique LRE when population size

is small. Oppositely, for large population, both payoff-dominant equilibrium and some

mixed stationary states with the ratio of B-player equal to at least 0.6 emerge, but

they cannot survive alone in the long run.

In the most interesting case of c + d > 3a+b
2

and 2b > c+3d
2

, Theorem 3.1(d) shows

that, as population grows, ~A changes from being the unique LRE for 5 ≤ n ≤ 20 to

coexisting with (M \ M2, 3) ∪ { ~B} for 21 ≤ n ≤ 30, and finally to being dominated

by (M \ M2, 3) ∪ { ~B} for n ≥ 31. As in Theorem 3.1(c), risk-dominant equilibrium

is the unique LRE for small population, and payoff-dominant equilibrium and some

mixed stationary states with B-player being the majority could be the LREs with a

less-than-one probability for large population. However, unlike in Theorem 3.1(c), not

all mixed stationary states could be the LREs. For instance, mixed stationary states

in M2, 3 with B-player being the majority can never be the LREs.

Outcomes of Theorem 3.1(a)-(b) and Theorem 3.1(c)-(d) differ because of the
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following reasons. Consider that an A-string having length ≥ 3 confronts a B-string

having length ≥ 3. Players’ total payoffs after finishing playing are

state . . . A A A B B B . . .

total payoff . . . 2a (a + b) (c + d) 2d . . .

Thus, the average payoffs of strategies A and B in the neighbors of the A-player on the

boundary are πA = 2a+(a+b)
2

= 3a+b
2

and πB = c + d, respectively. When 3a+b
2

≥ c + d,

the A-players will retain their strategy, while the B-player on the boundary will switch

to A. In the next step, the B-player on the new boundary will also switch to A, and so

forth. Accordingly, A-string will continue to grow until ~A is reached. Thus, ~A survives

uniquely as shown by Theorem 3.1(a)-(b). In contrast, for 3a+b
2

< c + d and 2b > c+3d
2

,

the A-player on the boundary will change to B, and the B-players will retain their

strategy. In the following periods, B-string will continue to grow until the states in set

M̃, which is defined before (3.3), are reached. In these states, the lengths of A-strings

equal 1, 2, or 3. Since A-players and B-players in these states will be sustained, they

are mixed stationary states. In particular, the states with a single A,

· · ·BBB
•

A BBB · ··,

are mixed stationary state. Through them, other limit states can reach ~B at smaller

cost (or fewer mutations), hence ~B could coexist with some mixed stationary states in

the long run.

Next we compare our results with those of relevant studies. Under the condition of

a+ b > c+3d
2

, Vega-Redondo (1996) demonstrates that risk-dominant equilibrium is the

unique LRE and its convergence rate has order ε−2. This finding is a special case of our

Theorem 3.1(a) with 2b < c+d. Theorem 3.1 also verifies Eshel et al.’s (1998) conjecture

saying that mixed stationary states could be stochastically stable. Furthermore, we

display that only mixed stationary states with payoff-dominant strategy being the

majority could be the LREs. However, not all mixed stationary states satisfying this

condition, such as states in M2, 3, could be the LREs. The conditions for risk-dominant
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and payoff-dominant equilibria to be the LREs presented here are absent in Eshel et

al.’s (1998) study.

Finally, Theorem 3.1 provides the convergence rate to the LRE in all cases. Ba-

sically, the convergence rate to the LRE depends on the game’s payoff structure and

population size. Under global interaction, Robson and Vega-Redondo (1996) show that

the convergence rate to the payoff-dominant equilibrium is of order ε−k, where k is the

smallest integer satisfying

d(k − 1) + c

k
≥ max{a, b}.

Actually, one can illustrate k = 2. In contrast, Theorem 3.1(c)-(d) show that the

convergence rate to the payoff-dominant equilibrium could have order ε−3. This means

that the convergence rate to the payoff-dominant equilibrium under local interaction

could be slower than that under the global interaction. This outcome is different

from Ellison’s (1993), which shows that the convergence rate to the LRE under local

interaction is faster than that under global interaction in the best-reply dynamics.

Moreover, Theorem 3.1(d) displays that the convergence rates to (M \ M2, 3) ∪ { ~B}

have order ε−3, while the convergence rate to ~A is either of order ε−1 or ε−2. It suggests

that more time is needed for players to coordinate at the payoff-dominant equilibrium

than at the risk-dominant equilibrium.

4. Conclusions

This paper investigates players’ long run behavior in evolutionary coordination

games with local interaction and imitation. Players are assumed to imitate successful

actions taken by their neighbors or themselves, and to collect information from their

interaction neighbors only. Which limit states are the long run equilibria and con-

vergence rates to the long run equilibria depend on the game’s payoff structure and

population size. We discover that possible long run equilibria include:(a)risk-dominant
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equilibrium alone, (b)payoff-dominant equilibrium and some mixed stationary states

with payoff-dominant-strategy takers being the majority, and (c)combination of (a)

and (b). This result implies that payoff-dominant equilibrium cannot survive alone in

the long run, neither can mixed stationary states. However, risk-dominant equilibrium

can emerge alone. Moreover, the convergence rate to payoff-dominant equilibrium un-

der local interaction could be slower than that under global interaction. More time is

needed for players to coordinate at payoff-dominant equilibrium than at risk-dominant

equilibrium.

By introducing state-independent and time-independent mutations, Kandori et al.

(1993), Young (1993), and Ellison (1993) show the powerful refining effect of mutation

under the best-reply dynamics. The similar effect is found by Robson and Vega-

Redondo (1996) under the global interaction and imitation setup. Nevertheless, such

refining effect seems to fail under the local interaction and imitation setup. Alós-Ferrer

and Weidenholzer (2006) show that risk-dominant equilibrium will survive uniquely

when players imitate successful players yielding the highest total payoff. Alós-Ferrer

and Weidenholzer’s (2006) and our outcomes suggest that how players imitate will

decisively affect the refining effect of mutation. Moreover, the number of neighbors with

information is also an important factor in influencing the refining effect of mutation

revealed by Alós-Ferrer and Weidenholzer (2008) and our outcomes.

In the future, we would like to examine whether our results here hold under more

general frameworks. Our another study (Chen and Chow (2009)) shows that imitation

rules are crucial in determining players’ long run behavior in evolutionary prisoner’s

dilemma games with identical information and interaction neighbors. Thus, it will

be interesting to find out whether the results would change if players’ information

neighbors are more than their interaction neighbors in repeated prisoner’s dilemma

games. Finally, other matching rules could be investigated under the local interaction

setting, such as the finite-round matching for players at each period proposed by Robson
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and Vega-Redondo (1996).

Appendix A

In Figures A, B, AA, BB, the states depict the strategies adopted by players i− 2, i−

1, i, i + 1, and i + 2.

Figure A

States ~s Average payoffs for strategies A and B

· · ·ABABA · · · πA
i = 2b, πB

i = 2c.

· · ·ABABB · · · πA
i = 2b, πB

i = 3c+d
2

.

· · ·BBABB · · · πA
i = 2b, πB

i = c + d.

Figure B

States ~s Average payoffs for strategies A and B

· · ·AABAA · · · πA
i = a + b, πB

i = 2c.

· · ·AABAB · · · πA
i = a+3b

2
, πB

i = 2c.

· · ·BABAB · · · πA
i = 2b, πB

i = 2c.

Figure AA

States ~s Average payoffs for strategies A and B

· · ·AAABA · · · πA
i = 3a+b

2
, πB

i = 2c.

· · ·AAABB · · · πA
i = 3a+b

2
, πB

i = c + d.

· · ·BAABA · · · πA
i = a + b, πB

i = 2c.

· · ·BAABB · · · πA
i = a + b, πB

i = c + d.

14



Figure BB

States ~s Average payoffs for strategies A and B

· · ·AABBA · · · πA
i = a + b, πB

i = c + d.

· · ·AABBB · · · πA
i = a + b, πB

i = c+3d
2

.

· · ·BABBA · · · πA
i = 2b, πB

i = c + d.

· · ·BABBB · · · πA
i = 2b, πB

i = c+3d
2

.

Appendix B. The Minimum Cost Spanning Tree Method

Some terminologies are needed in order to describe the invariant distribution µε in

(2.9). Let W be a subset of S. A graph g consisting of arrows ~u → ~v, where ~u ∈ S\W

and ~v ∈ S, is called a W -graph if it satisfies the following conditions:

(1) every state in S\W is the initial of exactly one arrow;

(2) there exists a sequence of arrows leading from any state in S\W to W . Or

equivalently, there are no cycles in the graph g.

Denote by G(W ) the set of all W -graphs. For any state ~s ∈ S, define

α~s =
∑

g∈G({~s})

∏

(~u→~v)∈g

Qε(~u,~v). (B.1)

It is shown in Freidlin and Wentzell (1984; p.177) that (α~s : ~s ∈ S) = (α~s : ~s ∈ S) ·Qε.

Since µε is the unique probability distribution satisfying (2.9), it follows that

µε =
1

∑

~s∈S α~s

(α~s : ~s ∈ S). (B.2)

Equation (B.2) holds for any time-homogeneous, irreducible and aperiodic finite-

state Markov chain. In general, it is not useful as computing α~s from (B.1) is difficult.

However, we have from (2.8) that for any ~s, ~u ∈ S,

Qε(~s, ~u) = εU(~s,~u)·(1+O(ε)), where U(~s, ~u) = d(~r(~s), ~u) = |{i ∈ N : ui 6= ri(~s)}| (B.3)
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and ~r(~s) is the rational choice uniquely determined under the rule (2.3). Hence

α~s =
∑

g∈G({~s})

εv(g)(1 + O(ε)) ≈ εv({~s}) for ε small, (B.4)

where v(g) =
∑

(~u→~v)∈g U(~u,~v) and v({~s}) = ming∈G({~s}) v(g) are constants independent

of ε. Define

v1 = min
~s∈S

v({~s}). (B.5)

By (B.2) and (B.4), µ∗ = limε→0 µε does exist and the following holds.

Theorem B1. The support S∗ of µ∗ defined in (2.10) is given by

S∗ = {~s ∈ S | v({~s}) = v1} and µε(~u) ≈ εv({~u})−v1 for any ~u ∈ S. (B.6)

In order to find the order estimate of E(Tε) defined in (2.11), we need to generalize

(B.5). For k ≥ 1 define

vk = min
|W |=k

v(W ), where v(W ) = min
g∈G(W )

v(g). (B.7)

Let Wk be any solution to vk above. Note that W1 ⊆ S∗. Since Wk = S when k = |S|,

that Wk ⊆ S∗ cannot always be valid unless S∗ = S. This exceptional case will not

occur in our models as it is clear from the statements of Theorem 3.1 that S∗ ⊆ S0 6= S.

Theorem B2. (Chiang and Chow (2007)) Let Tε be given in (2.11). Then

E(Tε) ≈ ε−δ as ε ↓ 0, where δ = vk0−1 − vk0
(B.8)

and k0 = min{k ≥ 2 : there exists W ⊆ S with |W | = k, v(W ) = vk and W 6⊆ S∗}.

The constant δ above means “escape energy” in simulated annealing, which is a

probabilistic algorithm aiming at finding the global minima of combinatorial optimiza-

tion problems. With this amount of energy, any state outside S∗, the so-called “global

minima” set, could reach S∗.

Regarding U(~u,~v) as the cost for going from ~u to ~v, then v({~s}) means the mini-

mum cost of all spanning trees with root at ~s. By (B.6), the set S∗ consists of those
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states which attain the minimum cost v1 when treated as a root. Similarly, any solu-

tion Wk to (B.7) represents an optimal choice for attaining vk, the minimum cost of

all spanning forests with k roots. The quantity (vk − vk+1) means the cost saved from

having k roots to having k + 1 roots in constructing optimal spanning forests on S.

Appendix C. Proof of Theorem 3.1.

In view of Theorems B1 and B2, the minimum-cost spanning tree method can be used

to find the support S∗ and the order estimate of E(Tε). The first step is to find S0

as S∗ ⊆ S0 by (2.12). This is the set of limit states under Q0. Let ~s ∈ S \ S0 be

any transient state. By definition, there exist ~s0 = ~s, ~s1, ..., ~sj such that ~sj ∈ S0 and

Q0(~sk, ~sk+1) > 0 for 0 ≤ k < j. By (2.4) and (B.3),
∑k=j−1

k=0 U(~sk, ~sk+1) = 0. The

converse does not hold. Otherwise, ~s ∈ S0. In words,

~s is transient iff ∃ a zero cost path from ~s to S0, but not the converse.

The next step is to compute v({~s}), the minimum cost spanning tree rooted at

~s ∈ S and solutions Wk to (B.7). Then S∗, E(Tε) can be obtained via (B.6)-(B.8). It

suffices to consider ~s ∈ S0 as the formula above implies it saves none by taking any

transient ~u as a root. Hence ~u 6∈ S∗. By the same reason, ~u 6∈ W for any v(W ) = vk

in (B.7) unless no ergodic state in S0 remains available. Note that S0 6= ∅ by (2.7).

Let F be any connected component in S0. Then any two states in F can be

connected by a path in F with zero total cost. Hence, when constructing a minimum

cost spanning forest, all states in F should first converge to a certain state of F and

then reach out from there in case the roots of the forest lie outside F . Only the last

reach-out move will cost some price ≥ 1. In fact, the price is

min{U(~w, ~u) : ~w ∈ F and ∃ a zero cost path from ~u to S0 \ F}

More importantly, it will be shown later that if M 6= ∅ then

all states in M can reach { ~A, ~B} at minimum cost 1 per connected component.
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This is the key ingredient that makes the method of minimum cost spanning forests

efficient for determining S∗ and E(Tε) via (B.6)-(B.8).

For convenience, we introduce the following notations:

~s
k
→ ~u means U(~s, ~u) = k and ~s

k
↔ ~u means U(~u,~s) = k as well.

Note that ri(~s) depends only on the strategies (si−2, si−1, si, si+1, si+2) adopted by five

consecutive players from i − 2 to i + 2 and are, in fact, independent of the time t and

the label of player i. For brevity, we define

r(si−2, si−1, si, si+1, si+2)
def
= ri(~s).

By (3.3), d > b > c and d > a > c. That is c = min{a, b, c, d}. By Figure B,

r(∗, A, B, A, ∗) = A, (C.1)

Here and after, ∗ means a wild card and can be A or B independently. It shows the

strength of A against B. Thus, it is expected that { ~A} ⊆ S∗ or even { ~A} = S∗. As

will be shown below, { ~A} = S∗ indeed when (3a + b)/2 ≥ c + d. Otherwise, it can

happen that ~B ∈ S∗, but ~A 6∈ S∗ as there are three other figures in order to determine

the transitions under Q0 or Qε. Using a + b > c + d > 2c, Figure AA implies that

r(∗, A, A, B, A) = A and r(B, A, A, B, B) = A. As to r(A, A, A, B, B), it depends on

the relative size of (3a + b)/2 and (c + d). And the configuration rules in Figure A

depend on whether 2b ≥ (c + 3d)/2 and 2b ≥ (c + d). Similarly, the relative size of

(a + b) and (c + 3d)/2 determines the configuration rules in Figure BB. That is how

we get those classifications in Theorem 3.1.

Case (a) 3a+b
2

≥ c + d and a + b > c+3d
2

. By (3.3), we have from Figure AA that

r(∗, B, A, A, ∗) = A. (C.2)

Of course, r(∗, A, A, B, ∗) = A holds by symmetry. In order to determine the configura-

tion rules from the remaining Figures A and BB, the following subcases are considered.
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Subcase (a1) 2b > c+3d
2

. Since c + 3d > 2(c + d) > 3c + d, Figure BB implies that

r(∗, A, B, B, ∗) = A, (C.3)

while we have from Figure A that

r(∗, B, A, B, ∗) = A. (C.4)

By (C.1)-(C.4), any A-string with length ≥ 1 in a state ~s will expand, at zero cost,

by absorbing its two neighboring Bs every period under Q0 until ~A is reached. Thus,

M
def
= S0 \ { ~A, ~B} = ∅, and S0 = { ~A, ~B}. Accordingly, the most economic way under

Qε from ~A to ~B and vice versa are shown as follows :

~B
1
→ · · ·BB

•

A BB · · ·
0
→ · · ·BA

•

A AB
0
→ · · ·

0
→ ~A and ~A

n
→ ~B.

In particular, it saves for ~A to jump to ~B directly. Thus v({ ~A}) = 1 and v({ ~B}) = n.

By (B.5) and (B.8), v1 = 1, v2 = v({ ~A, ~B}) = 0 and δ = v1 − v2 = 1. It follows from

Theorems B1 and B2 that S∗ = { ~A}, µε( ~B) ≈ εn−1 and E(Tε) ≈ ε−1.

Subcase (a2) c + d < 2b ≤ c+3d
2

. While (C.4) still holds, Figure BB implies that

r(B, A, B, B, B) = B and r(A, A, B, B, B) = r(∗, A, B, B, A) = A. (C.5)

We first claim that the set M of mixed stationary states is M1,≥3. By (C.1), (C.2),

(C.4) and (C.5), this follows easily from the following observations:

(S1) Any A-string in a state can hold under Q0 in the next period.

(S2) Any A-string with length ≥ 2 in a state will expand by absorbing its two neigh-

boring Bs every period under Q0 until ~A is reached.

Hence, all ai = 1 for any possible ~s ∈ M with the representation in (3.2). Then

(S3) any B-string with length ≤ 2 in a state will be eliminated in the next period

under Q0 and form an A-string with length ≥ 2 which can hold by (S1).

Hence, all bi ≥ 3 for any possible ~s ∈ M . This shows M ⊆ M1,≥3.

(S4) M1,≥3 ⊆ M by the first equation in (C.5). Thus M = M1,≥3 as claimed.
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As explained at the beginning of this section, we need first to find v({~s}) for all

~s ∈ S0 in order to get S∗ and E(Tε) via Theorems B1 and B2. Decompose M = M1,≥3

as M = ∪k≥1Mk, where k is the number of A-strings in (3.2) for ~s ∈ M .

Step 1. For convenience, define M0 = { ~B}. The following diagram shows any ~s ∈ Mk

with k ≥ 1 can reach some state in Mk−1 at cost 1 and vice versa :

· · · A
︸︷︷︸

1

B · · ·B
︸ ︷︷ ︸

bi≥3

•

A
︸︷︷︸

1

B · · ·B
︸ ︷︷ ︸

bi+1≥3

A
︸︷︷︸

1

· · ·
1
↔ · · · A

︸︷︷︸

1

B · · ·B
•

B B · · ·B
︸ ︷︷ ︸

bi+1+bi+1

A
︸︷︷︸

1

· · · . (C.6)

Since |M0| = 1, the diagram above implies, by varying k successively from one on, that

all states in M ∪ { ~B} can reach any fixed state in it at total cost |M |.

Step 2. By Step 1 and (S2) above, all states in M ∪{ ~B} can reach ~A by first merging

to a certain state ~s ∈ M1 and then moving to ~A at cost 1 as shown below.

· · ·BB A
︸︷︷︸

1

•

B BB · · ·
1
→ · · ·BB A

•

A
︸ ︷︷ ︸

2

BB · · ·
0
→ · · ·B AA

•

A A
︸ ︷︷ ︸

4

B · · ·
0
→ · · · ·

0
→ ~A.

Step 3. By (S2) and (S3), the most economic path for ~A to reach M ∪ { ~B} is

~A
n−bn

4 c
−→ ABBB

︸ ︷︷ ︸

repeat bn

4c times

· · ·ABBB
︸ ︷︷ ︸

B · · ·B
︸ ︷︷ ︸

r

∈ Mbn

4 c
, where r = n − 4

⌊
n

4

⌋

. (C.7)

For any ~s ∈ M ∪ { ~B}, we have v({~s}) = |M | + n −
⌊

n
4

⌋

by Step 1 and v({ ~A}) =

|M | + 1 by Step 2. Because n −
⌊

n
4

⌋

> 1 for n ≥ 5, it follows from Theorem B1 that

v1 = |M | + 1, S∗ = { ~A} and µε( ~B) ≈ εn−bn

4 c−1. (C.8)

By (B.7), v2 = |M | and is attained at { ~A,~s} for any ~s ∈ M ∪ { ~B}. It follows from

Theorem B2 that

δ = v1 − v2 = 1 and E(Tε) ≈ ε−1. (C.9)

Subcase (a3) 2b = c + d. While (C.4) still holds, Figure BB implies that

r(B, A, B, B, ∗) = B and r(A, A, B, B, ∗) = A. (C.10)

20



In comparison with (C.5), it means that when surrounded by singleton A-strings, any

B-string with length ≥ 2 in a state can hold in the next period under Q0, while the

length of such a B-string has to be ≥ 3 in Subcase (a2) as indicated by the first

equation of (C.5). This is the only difference between subcases (a2) and (a3) on the

configuration rules under Q0. Thus, M = M1,≥2 can be verified similarly. Likewise,

(C.8) and (C.9) hold still except µε( ~B) ≈ εn−bn

3 c−1 as the diagram (C.7) is replaced by

~A
n−bn

3 c
−→ ABB

︸ ︷︷ ︸

repeatb n

3c times

· · ·ABB
︸ ︷︷ ︸

B · · ·B
︸ ︷︷ ︸

r

∈ Mbn

3 c
, where r = n − 3

⌊
n

3

⌋

. (C.11)

Subcase (a4) 3c+d
2

≤ 2b < c + d. Instead of (C.4), we now have from Figure A that

r(B, B, A, B, B) = B and r(A, B, A, B, ∗) = r(∗, B, A, B, A) = A, (C.12)

while (C.10) remains valid from Figure BB.

We first claim that M = ∅. Since (S2) above still holds, we have for any possible

~s ∈ M that all ai = 1 and then bi ≥ 2 by (C.1) and the second equation in (C.12).

Yet, the first equations in (C.12) and (C.10) imply that such ~s will go to ~B in the next

period under Q0 and then stays there as ~B is an absorbing state. Hence, M = ∅.

It remains to find the minimum cost path from ~A to ~B and vice versa. By (C.12)

and (S2) above, the diagram (C.11) remains optimal for ~A to reach ~B except now

~A
n−bn

3 c
−→ ABB

︸ ︷︷ ︸

repeat bn

3c times

· · ·ABB
︸ ︷︷ ︸

B · · ·B
︸ ︷︷ ︸

r

0
→ ~B, where r = n − 3

⌊
n

3

⌋

. (C.13)

Due to the first equation in (C.12), the following path is optimal for ~B to reach ~A:

~B
2
→ · · BB

•

A
•

A
︸︷︷︸

2

BB · ·
0
→ · · B A

•

A
•

A A
︸ ︷︷ ︸

4

B · ·
0
→ · · AA

•

A
•

A AA
︸ ︷︷ ︸

6

··
0
→ · · · ·

0
→ ~A. (C.14)

Hence, v({ ~B}) = n −
⌊

n
3

⌋

> v({ ~A}) = 2 as n ≥ 5 by assumption (3.3). Because

|S0| = 2, we have v1 = v({ ~A}) = 2, v2 = v({ ~A, ~B}) = 0 and δ = v1 − v2 = 2 − 0 = 2.

Finally, S∗ = { ~A}, µε( ~B) ≈ εn−bn

3 c−2 and E(Tε) ≈ ε−2 by Theorems B1 and B2.
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Subcase (a5) 2b < 3c+d
2

. While (C.10) still holds, strategy A becomes even weaker

as, instead of (C.12), we now have from Figure A that

r(A, B, A, B, A) = A and r(B, B, A, B, ∗) = r(∗, B, A, B, B) = B. (C.15)

We first show M = ∅. Since (S2) above still holds, all ai = 1 for any possible ~s ∈ M .

We claim that bi ≥ 2 for such ~s ∈ M . This is verified by observing that any string

· · · ∗BABAB ∗ · · · in ~s will either produce an A-string of length ≥ 3 in the next period

under Q0 if any ∗ above is A, or become an all B-string at the second period if both

∗ are B. In either case it will be unable to go back to itself under Q0, which violates

the ergodic property in (2.6). But then (C.10) and (C.15) imply that such ~s will go to

~B in the next period under Q0, which is an absorbing state under Q0. Hence, M = ∅.

It remains to find the minimum cost path from ~A to ~B and vice versa. By (C.10)

and (C.15), the diagram (C.14) remains optimal for ~B to reach ~A. By (C.1), (C.15)

and (S2) above, any AA or ABABA string has to be avoided in order to reach ~B from

~A. This leads to the following modification to diagram (C.11):

~A
n−2bn

5 c−b
r

3c
−→ ABBAB

︸ ︷︷ ︸

repeat b n

5c times

· · ·ABBAB
︸ ︷︷ ︸

A
︸︷︷︸

b r

3c

B · ·B
︸ ︷︷ ︸

r−b r

3c

0
→ ~t

0
→ ~B,

where r = n − 5
⌊

n
5

⌋

, and ~t is some intermediate state. As did in Subcase (a4),

v1 = v({ ~A}) = 2, δ = v1 − v2 = 2 − 0 = 2. Then S∗ = { ~A}, µε( ~B) ≈ εn−2bn

5 c−b
r

3c−2

and E(Tε) ≈ ε−2 by Theorems B1 and B2.

Case (b) 3a+b
2

≥ c + d and a + b ≤ c+3d
2

. Since c = min{a, b, c, d}, (C.1) and (C.2)

still hold as in Case (a) above. We follow the classification in Case (a) to determine

the configuration rules from the remaining Figures A and BB. As a result, the con-

figuration rules from Figure A for each subcase below will remain the same as in the

corresponding one in Case (a). But the configuration rules from Figure BB will be

different due to a + b ≤ c+3d
2

now.

Subcase (b1) 2b > c+3d
2

. Using c = min{a, b, c, d}, we still have (C.4) from Figure
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A, while Figure BB implies that

r(A, A, B, B, B) = B and r(B, A, B, B, B) = r(∗, A, B, B, A) = A. (C.16)

This, together with (C.1), means that a B-string in any state can hold under Q0 only if

its length is ≥ 3 and is surrounded by A-strings with length ≥ 2. By (C.2), any A-string

with length ≥ 2 can hold under Q0. Hence, M≥2,≥3 ⊆ M . In fact, it can be shown that

M = M≥2,≥3. Since all the configuration rules, and thus the results, are the same as

in Theorem 3.2 (iii) of Chen and Chow (2007) except C, D there need to be renamed

as B, A respectively. The proof is omitted. In particular, S∗ = { ~A}, µε( ~B) ≈ ε3 and

E(Tε) ≈ ε−1.

Subcase (b2) c + d < 2b ≤ c+3d
2

. While we still have (C.4) from Figure A, strategy

B becomes stronger as Figure BB now shows

r(∗, A, B, B, B) = B and r(∗, A, B, B, A) = A. (C.17)

We claim that M = M≥1,≥3. This is easily verified as (S1) holds by (C.2) and

(C.4), (S3) holds by (C.1) and (C.17), and the first equation in (C.17) shows

(T1) any B-string with length ≥ 3 in a state can hold under Q0.

Next, we will examine in the following four steps the minimum cost to any state

in S0 from all the other states in S0. Write M = M≥1,≥3 = ∪k≥1Mk, where k is the

number of A-strings in the representation (3.2) for ~s ∈ M.

Step 1. For convenience, define M0 = { ~B}. The following diagram shows that any

~s ∈ Mk can move within Mk, with the minimum cost 1 for each move along the path,

to reach some state in M ∗
k = {~s ∈ Mk : all ai = 1 in (3.2) } and vice versa :

· · B · ·B
︸ ︷︷ ︸

bi−1≥3

◦

A · · A
•

A
︸ ︷︷ ︸

ai

B · ·B
︸ ︷︷ ︸

bi≥3

··
1
↔ · · B · ·B

︸ ︷︷ ︸

bi−1

◦

A · · A
︸ ︷︷ ︸

ai−1

•

B B · ·B
︸ ︷︷ ︸

bi+1

··
1
↔ · · ·

1
↔ · · B · ·B

︸ ︷︷ ︸

bi−1

◦

A
︸︷︷︸

1

B · ·B
︸ ︷︷ ︸

bi+ai−1

··

Step 2. For k ≥ 1, (C.6) shows any state in M ∗
k can reach some state in M ∗

k−1 at cost
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1 and vice versa. Since |M0| = 1, this and Step 1 imply that all states in M ∪ { ~B} can

reach any fixed state in M ∪ { ~B} at cost 1 each. That is at total cost |M |.

Step 3. By Step 2 and (S3), all states in M ∪ { ~B} can reach ~A by first attaining the

following state in M1 and then going to ~A at cost 1 as follows.

BB
•

B A · · ·A
︸ ︷︷ ︸

n−3

1
→ BB

•

A A · · ·A
︸ ︷︷ ︸

n−2

0
→ ~A. (C.18)

Step 4. By (S3) and (T1), the most economic path for ~A to reach M ∪ { ~B} is

~A
3
→

•

B
•

B
•

B A · · ·A
︸ ︷︷ ︸

n−3

∈ M1. (C.19)

By Step 3, v({ ~A}) = |M | + 1. By Steps 2 and 4, v({~s}) = |M | + 3 for any

~s ∈ M ∪ { ~B}. Then v1 = |M | + 1 and v2 = |M | = v({ ~A,~s}). Hence, δ = v1 − v2 = 1

by (B.8). It follows from Theorems B1 and B2 that

S∗ = { ~A}, µε( ~B) ≈ ε2 and E(Tε) ≈ ε−1. (C.20)

Subcase (b3) 2b = c + d. While (C.1), (C.2) and (C.4) remain valid as in Subcase

(b2), strategy B becomes even stronger as Figure BB now shows

r(A, A, B, B, A) = A and r(∗, A, B, B, B) = r(B, A, B, B, ∗) = B. (C.21)

We first examine the set M of all mixed stationary states. Note that (S1) and

(T1) hold as in Subcase (b2). Because of (S1), we have from (C.1) that

(T2) no singleton B-string can hold under Q0. Hence, all bj ≥ 2 for any ~s ∈ M .

In case some bi = 2 for ~s ∈ M , (C.21) implies that ai = ai+1 = 1. Otherwise, this

B-string will soon be eliminated under Q0. In summary, M = M̄≥1,≥2 as desired.

The conclusion is the same as (C.20) because all the arguments in Steps 1-4 of

Subcase (b2) can be repeated except the optimality of the path in (C.19) is based on

(C.1) and the first equation in (C.21).
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Subcase (b4) 3c+d
2

≤ 2b < c + d. While (C.21) from Figure BB remains valid as

above, strategy A becomes weaker as we now have (C.12) from Figure A as in Subcase

(a4). As a result, (T1) still holds and (S1) is weakened to

(T3) any A-string with length ≥ 2 in a state can hold under Q0.

Thus, M ⊇ M≥2,≥3 by (T1) and (T3). In fact, we can verify M = M≥2,≥3 as

follows. Because of (C.1), (C.12) and (T3), we still have (T2). In turn, (C.12), (C.21)

and (T1) imply that all ai ≥ 2 for any ~s ∈ M as a singleton A-string cannot hold

under Q0 at the present situation. Finally, all bj ≥ 3 by the first equation in (C.21).

Next, we will mimic the steps in Subcase (b2) to find the minimum cost to any

state in S0 from all the other states in S0. Write M = M≥2,≥3 = ∪k≥1Mk, where k is

the number of A-strings in the representation (3.2) for ~s ∈ M .

Step 1. For convenience, define M0 = { ~B}. For k ≥ 1, any ~s ∈ Mk can move within

Mk, with the minimum cost 1 for each move along the path, to reach some state in

M †
k = {~s ∈ Mk : all ai = 2 in (3.2) } and vice versa.

Step 2. For k ≥ 1, any state in M †
k can reach some state in M †

k−1 at cost 1 as follows.

· · ·B · · ·B
︸ ︷︷ ︸

bi≥3

A
•

A
︸ ︷︷ ︸

2

B · · ·B
︸ ︷︷ ︸

bi+1≥3

· · ·
1
→ · · ·B · · ·B

︸ ︷︷ ︸

bi

A
︸︷︷︸

1

•

B B · · ·B
︸ ︷︷ ︸

bi+1+1

· · ·
0
→ · · ·AA

︸︷︷︸

2

B · · ·B
︸ ︷︷ ︸

bi+2+bi+1

A
︸︷︷︸

2

· · · .

Note that the reverse can be done at a minimum cost 2. However, it is irrelevant to

the desired conclusion. Since |M0| = 1, this and Step 1 imply that all states in M can

reach { ~B} at cost 1 each by first merging to some state in M †
1 as shown below :

A
•

A
︸ ︷︷ ︸

2

B · · ·B
︸ ︷︷ ︸

n−2

1
→ A

︸︷︷︸

1

•

B B · · ·B
︸ ︷︷ ︸

n−1

0
→ ~B and ~B

2
→

•

A
•

A
︸︷︷︸

2

B · · ·B
︸ ︷︷ ︸

n−2

.

By the first equation in (C.12), the latter path above is optimal for ~B to reach out.

Since the diagrams (C.18) and (C.19) remain optimal, we have for any ~s ∈ M≥2,≥3,

v({ ~A}) = |M | + 2, v({ ~B}) = |M | + 3 and v({~s}) ≥ |M | − 1 + 2 + 3 = |M | + 4.
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Thus, v1 = |M |+2, v2 = |M | = v({ ~A, ~B}) and δ = v1−v2 = 2 by (B.8). In conclusion,

S∗ = { ~A}, µε( ~B) ≈ ε1 and E(Tε) ≈ ε−2. (C.22)

Subcase (b5) 2b < 3c+d
2

. While (C.21) from Figure BB remains valid as in Subcase

(b4), strategy A is further weakened as we now have (C.15) from Figure A. So we

still have (T1) and (T3). In fact, all the arguments in Subcase (b4) can be repeated

exactly to get M = M≥2,≥3 and the conclusion (C.22), except some minor modification

is needed to verify (T2). If there is a singleton B-string in some ~s ∈ M , then ~s must be

· · ·BBA
•

B ABB · · · . That is because any A-string with length ≥ 2 can hold forever

under Q0 by (T3). Using (T1), the following diagram shows a contradiction to the fact

that any ~s ∈ M should be an ergodic state under Q0 :

· · ·BB A
•

B A
︸ ︷︷ ︸

3

BB · · ·
0
→ · · · ∗ B B

•

A B
︸ ︷︷ ︸

3

B ∗ · · ·
0
→ · · · ∗ ∗B

•

B B
︸ ︷︷ ︸

3

∗ ∗ · · · .

Now it remains to consider the case that (3a+b)/2 < c+d, which implies 2a+c+d <

3a + b < 2(c + d) < 2(a + b) by (3.3). It follows easily that 2a < c + d, a < b, thus

c < a < b < d. Moreover,

3c + d < 2(c + d) < 2(a + b) < 4b and 2(a + b) < c + d + 2b < c + 3d. (C.23)

By (3.3) and (C.23), we still have (C.1) and (C.4) from Figures B and A, respectively.

Because (3a + b)/2 < c + d, we have, instead of (C.2), the following from Figure AA

r(B, B, A, A, A) = B and r(A, B, A, A, ∗) = r(∗, B, A, A, B) = A, (C.24)

which reflects the fact that strategy A is weaker than before. In order to determine

the configuration rules from Figure BB, we have to compare 2b with (c + 3d)/2. This

leads to the remaining two cases of the theorem.

Case (c) 3a+b
2

< c + d and 2b ≤ c+3d
2

. By (C.23), the configuration rules from Figure

BB is the same as shown in (C.17).
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As before, we need to characterize M first. By (C.4), (C.24) and (C.17),

(U1) any A-string with length ≤ 2 and B-string with length ≥ 3 can hold under Q0.

In particular, M≤2,≥3 ⊆ M . By (C.1) and (C.24), we have the following

· · ·A
•

B A · · ·
0
→ · · ·A

•

A A · · · .

The newly formed A-string above could shrink under Q0, but there is no way to grow

any B in its interior later on. Hence, the length of any B-string in a state ~s ∈ M must

be ≥ 2. In fact, we can show that

(U2) all bi ≥ 3 for any state ~s ∈ M .

By the second equation in (C.17), any BB string in a state will be eliminated in

the next period under Q0. Because of (U1), the only possible case for it to be recovered

is to be surrounded by two A-strings each with length ≥ 3. Yet, the following diagram

· · ·AAA
•

B
•

B AAA · · ·
0
→ · · · ∗ AB

•

A
•

A BA ∗ · · ·
0
→ · · · ∗ AA

•

A
•

A AA ∗ · · ·

indicates that the original BB string cannot be recovered under Q0, thus such a state

cannot be in M . This verifies (U2).

Using (U2) and the first equation in (C.24), any A-string with length ≥ 3 will

shrink successively under Q0 and then becomes invariant by (U1) when its length

drops to 1 or 2. Hence, all ai ≤ 2 for any state ~s ∈ M . Combining together with (U1)

and (U2), we have M = M≤2,≥3.

Next, we mimic the steps in Subcase (b2) to find the minimum cost to any state

in S0 from all the other states in S0. Define M0 = { ~B}. Steps 1 and 2 there can be

repeated exactly. Hence, all states in M ∪ { ~B} can reach any fixed state in it at total

cost |M |. By using (C.1), (C.24) and (C.17), the minimum cost for ~A to reach M ∪{ ~B}

is at least 3 and is so achieved as in Step 4 there except the diagram (C.19) is replaced

by

~A
3
→

•

B
•

B
•

B A · · ·A
︸ ︷︷ ︸

n−3

0
→ B

•

B
•

B
•

B B A · · ·A
︸ ︷︷ ︸

n−5

0
→ · · ·

0
→ B · · ·B

︸ ︷︷ ︸

n−r

A · A
︸ ︷︷ ︸

r

∈ M1,
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where r = 2 or 1 depending on whether n is odd or not.

It remains to find an optimal path from M ∪{ ~B} to ~A. Because of (U2), Step 3 in

Subcase (b2) no longer works. In order to avoid any B-string with length ≥ 3, it saves

to start from some state ~s ∈ M2,≥3 ⊆ M which has as many As as possible. Moreover,

it takes at least ` mutations under Qε to eliminate the ith B-string of ~s if bi ≥ 3`. Since

any B-string in ~s ∈ M needs at least one mutation to be eliminated under Qε, it is most

economic, in order to reach ~A, to have the block AABBBBB duplicated in ~s up to the

maximum allowed
⌊

n
7

⌋

times and one mutation is enough to eliminate those five Bs in

any such block. As to the remained block of length r = n − 7
⌊

n
7

⌋

, an optimal choice

for being both in M = M≤2,≥3 and economic is ∅, B, BB, BBB, ABBB, AABBB,

and AABBBB for r = 0, 1, 2, 3, 4, 5 and 6, respectively. It takes 1 mutation to

eliminate the extra block if r ≥ 1. In summary, an optimal path from M ∪ { ~B} to ~A

is as follows :

AABB
•

B BB
︸ ︷︷ ︸

repeatbn

7ctimes

· · · (∅,
•

B,
•

B B,
•

B BB, ABB
•

B, AABB
•

B, AABB
•

B B)
dn

7 e
→ ~t

0
→ ~A,

where ~t is some transient state. Putting everything together, we have that for any

different ~s and ~t in M ∪ { ~B},

v({~s}) = |M | + 3, v({ ~A}) = |M | +
⌈
n

7

⌉

, v({ ~A,~s}) = |M | and v({~s,~t}) = |M | + 2.

The conclusion follows by comparing
⌈

n
7

⌉

with 3. For example,
⌈

n
7

⌉

= 3 iff 15 ≤ n ≤ 21.

In that case, v({~s}) = |M | + 3 for any ~s ∈ S0. Hence, S∗ = S0 and then E(Tε) ≈ ε0

as k0 = |S0| + 1 and δ = 0 in (B.8). Moreover,
⌈

n
7

⌉

> 3 iff n ≥ 22. In that case,

v1 = |M | + 3 and v2 = |M |. Hence, S∗ = S0 \ { ~A} and E(Tε) ≈ ε−3.

Case (d) 3a+b
2

< c + d and 2b > c+3d
2

. Using (C.23), we have (C.16) from Figure BB.

This is the most complicated case in this paper as M = M̃ which was defined before the

statement of the theorem. While each state in M is an absorbing state under Q0 in all

the previous cases, it is not valid here. Since all the configuration rules from those four
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figures are the same as Theorem 3.2 (ii) in Chen and Chow (2009) except strategies

B, A were named there as C, D respectively, the conclusions remain the same. The

proof is omitted here.
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