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Abstract: A system has been created that provides a new framework for analyzing Ultimatum Games 
based on modeling strategy change throughout a game. It models strategy change of individuals, groups, 
or populations and characterizes dynamics by quantifying newly-defined rates, accelerations, and stability 
indices of strategy change. To better model real situations, the system has been generalized to ultimatum 
bargaining games with multi-dimensional strategies. It also applies to experimental environments. 

1. INTRODUCTION

1.1. BACKGROUND

A system has been created whose purpose is to provide a new framework for analyzing Ultimatum 
Games based on modeling strategy change throughout a game. This approach fundamentally differs from 
the more common focus of game theory on strategies and outcomes. It models strategy change of 
individuals, groups, or populations and characterizes dynamics by quantifying newly-defined rates, 
accelerations, and stability of strategy change.

To better model real situations, the system is generalized to ultimatum bargaining games with 
multi-dimensional strategies. The framework also applies to experimental environments. The Ultimatum 
Game, selected for its simplicity, models bargaining between two entities, e.g., people, businesses, or 
nations (Guth, Schmittberger, & Schwarze, 1982). 

This system describes strategy change without using dynamical systems or differential equations. 
It is a simpler approach that is based on an essential aspect of strategy change: an entity cannot have an 
instantaneous rate of strategy change because it must employ a strategy at all times. 

Smith discusses rates (1976), but only in terms of rates of evolution, which describe a population’s 
fitness relative to its environment. The system described in this paper focuses on strategy change 
irrespective of whether fitness, in evolutionary terms, improves or not. This work also differs from replicator 
dynamics (Hofbauer, & Sigmund, 1998), a mathematical tool of evolutionary game theorists, because the 
system assumes a finite, not infinite, population and focuses on the entirety of a game, not just its 
outcomes or interim strategies. Maximum stability, defined later in this paper, is equivalent to the classic 
stability state.

This work is organized into seven sections plus references. In the first section, the Ultimatum 
Game introduces the definitions for a strategy dimension and basic game parameters. The fundamental 
parameters and theorems underlying the analytical system are then developed; these establish the new 
concepts of strategy points and the strategy graph. Next, the construction of a strategy graph is outlined. 
Section four introduces the new properties of strategy distance, rate, and acceleration, and new definitions 
for stability. The fifth section describes Ultimatum Game experiments that were conducted to demonstrate 
these properties. The Discussion section highlights significant ramifications and applications of the system. 
The paper closes with a summary of conclusions and ideas for future research based on the unique 
perspectives offered by the system.
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1.2.  THE ULTIMATUM GAME 
The Ultimatum Game.is played by a “Proposer” and a “Responder,” who aim to split a total 

“pie” (Π) or a pot of money. The game begins with the Proposer temporarily getting the entire pie and the 
Responder getting nothing. The Proposer then makes an offer of part of the pie to the Responder. The 
Responder can accept or reject this offer. If the Responder accepts the offer, the pie is split accordingly. 
However, if the Responder rejects the offer, neither player gets anything in that round, i.e., both players 
receive a payoff of zero from that pie. (Guth, Schmittberger, & Schwarze, 1982).

Strategies to a given game have one or more dimensions, where each dimension describes a 
category of action chosen by a player during the game. An Ultimatum Game strategy is two-dimensional, 
having an offer value, called a p value, and an acceptance limit, called a q value (Shayan, 2003). Thus, the 
notation for an Ultimatum Game strategy is (p,q). 

In an Ultimatum Game, the experimenter sets certain parameters for players. ε is the minimum 
amount that a player can offer or accept (Guth, Schmittberger, & Schwarze, 1982), which is set at ε > 0 for 
this work. Another parameter, increment of play, i in element-units, describes the increment of the unit 
allowed for an offer or acceptance, such as amounts rounded to one hundred dollar increments. 

2. THE ANALYTICAL SYSTEM – FUNDAMENTALS

The analytical system deals with a finite number of pure strategies for a given game. Strategy 
points are graphable abstractions that contain strategies, based on the following definitions:
1. Dimensions and sets: A strategy point is composed of sets, with one set per dimension. Each set 
consists of a category of actions – up to all the actions – for its dimension. A particular strategy at a point is 
specified by one element from each dimensional set. 
2. Size of sets: Each dimensional set has the same size, m elements per set. ∴Strategy points for a given 
game all contain a uniform number of elements. ≥m  1, ∈m integers – or else the strategy points would 
cease to exist. m-space is the set size and width of a point in element-units, based on the difference 
between the last and first element of a dimension or = i for  m = 1. m-space ≥  i . m-space shows how 
much strategy space is contained in a point.
3. Element order: All elements that can be in a dimension are sequenced in an ascending arithmetic 
progression within each dimensional set for m > 1, with difference = i element-units. If the difference were 
smaller than i, then some strategies in that dimension would be unavailable to players. If it were larger than 
i, then usable strategies would not be accounted for. 
4. Element correspondence: Each element in a dimensional set has a corresponding element by position in 
every other dimensional set for every point (from definitions 2 and 4).

The aggregation of strategy points for a game comprises the strategy map, also known as the 
strategy graph, for that game. The dimensional sets that define each strategy point are the coordinates of 
that point on the strategy graph. The coordinates for strategy point Rx  in the Ultimatum Game are (px , qx). A 
valid strategy graph of a game is complete, i.e., all possible strategies of the game must be accounted for 
and so must exist somewhere within the strategy points. The graph depicts all strategies, meaning that it is 
player-independent – players are mapped to strategy points on the strategy graph.

To determine the number of points in a strategy graph, let:
 Ω be the set of all strategies; Ωx be the number of strategy points necessary to represent all elements of 

set Ω on a complete and valid strategy graph for a particular game.
 z be the number of distinct sets that can become any dimensional set ∀ strategy points in a game
 y be the number of dimensions to a strategy point, such that Ωx , z , y ∈  Integers and Ωx , z , y > 0
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Theorem 1: Ωx = zy

Proof: This is a permutation with replacement. z •  z •  z... y times = zy � each dimension offers z 
possibilities. Distinct strategy points are generated p ∃  z sets for each dimension and each 
dimension is independent. ∴Ωx = zy 
Ωx = z2 in the standard Ultimatum Game because the Ultimatum Game always has two-dimensional 

strategies, (p , q). If m grows to where all elements are in one set, then z = 1 ∴ Ωx =1 strategy point. 
z can either be specified or derived. Let:

 Π be the maximum value of an element in a game, in element-units in the Ultimatum Game.


i

π
= the total number of elements for the game; 

i

π
≥  m ; ε > 0; m, z, y, Ωx ∈  integers

Theorem 2: (Ωx)1/y = 
im

π

Proof: Since 
i

π
 = number of elements in a game; divide number elements by number elements per set:

im

π
= z  , so zy = ( ) y

y

im

π
and Ωx = zy ∴(Ωx)1/y = 

im

π
 

The incremental change between strategy points is measured by a distance unit. Let:
 1 strategy meter = the magnitude of m-space, measured between corresponding elements
 yd = any dimension of strategy point R; ydm = incremental change of m units to yd

 yd ±  ydm are both 1 strategy meter away from yd

 A, B be different points on a strategy graph, which are one strategy meter apart
 λ = {a1,…,am} and ρ = {b1,…,bm} are sets in the same dimension for points A and B, respectively
 Ψ represents all other dimensional sets, which are held constant; A = (λ , Ψ) and B = (ρ , Ψ)
Postulate 1: For any dimension in a y-dimensional strategy game, addition or subtraction on one 

dimensional set of a point has no effect on the other dimensional sets of that point. Dimensions are 
independent of one another from a tool perspective, as opposed to a player perspective.

Theorem 3: Points that are one strategy meter apart on a strategy graph are adjacent, with a gap of i 
between them.

Proof: Since there are only m elements per set and A and B are one strategy meter apart,
a1 + m = b1 and am + m = bm , where  b1 

∉  λ , b1 ∈  ρ and bm 
∉  λ , bm ∈  ρ

Elements in the open interval (a1, am) will also yield corresponding elements within ρ when m is added: 
{a1+m,…, am+m} = {b1,…, bm} .  No element of a set can be outside of a point, meaning that A and 
B are adjacent with a gap of i between them, the difference between the consecutive elements am 

and b1 along the dimension changed. Subtraction of m from a dimensional set is equivalent to 
going from any element of ρ to the corresponding element of λ. ∴  Points on a strategy map that 
are one strategy meter apart are adjacent, with a gap of i between them. 

 Corollary 1: There is only one network for the strategy graph of a given game and a given m. Adjacency 
between two adjacent strategy points is based on the dimension that has changed, not the 
dimensions held constant. Thus, adjacent points have a specific orientation relative to one another. 

Corollary 2: There exist two incremental operations of m, plus and minus. If μ = the number of pathways 
from a specific strategy point to adjacent points on a strategy graph, then y ≤  μ ≤ 2y. The 
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minimum number of links is y, because for all y dimensions, the minimum adjacency is either 
addition or subtraction per dimension and the maximum is addition and subtraction per dimension.

Corollary 3: If y ≥  2, then all the pathways along the strategy graph will be closed. There will be no 
isolated points, since all points will have at least two pathways (theorem 1, corollary 2).

Corollary 4: Each strategy point for a given game is unique, since at least one corresponding dimension 
between any two points is represented by different sets.

3. CONSTRUCTION OF THE STRATEGY GRAPH 

One constructs the strategy graph by computing the adjacencies for every point. By definition, 
adjacent points are most similar to each other. Based on the properties of theorem 3 and its third corollary, 
the Incremental function I(R) generates one adjacent point for every dimensional set of a point. It does this 
through the addition or subtraction of m, while holding the other dimensional sets constant. The resulting 
table establishes every adjacency in the graph.

I(R) = {R ±  y1m, … , R ±  yym} , where y1 and yy are the 1st and yth dimensions to a y-dimensional 
strategy point, respectively, and R ±  yym is the increment of m to the dimensional set for y of a strategy 
point R. The restriction on I(R) is that the incremental operations must result in existing strategy points, not 
points above or below the specified parameters of the game (“domain of the game”). Table 1 shows I(R) for 
a standard, two-dimensional Ultimatum Game.

R R + pm R – pm R + qm R – qm

R1 = (1,1) (2,1) = R3 O.D. – e.n.p. (1,2) = R2 O.D. – e.n.p.
R2 = (1,2) (2,2) = R4 O.D. – e.n.p. O.D. – e.n.p. (1,1) = R1

R3 = (2,1) O.D. – e.n.p. (1,1) = R1 (2,2) = R4 O.D. – e.n.p.
R4 = (2,2) O.D. – e.n.p. (1,2) = R2 O.D. – e.n.p. (2,1) = R3

TABLE 1. I(R) output for Ultimatum Game: i = 1, m=1, and z=2; 1 and 2 are elements of different 
sets. O.D. – e.n.p. means this operation is outside the domain and so there exists no point on this 
strategy graph for that operation.

Ωx = 4 (R1 through R4). y = {p,q}, a cardinality of 2. ∴  ∃ four operations of I(R) for every R. Each 
row depicts the strategy points one strategy meter from the corresponding R in that row. If players in a 
game have different, non-overlapping strategy sets (different set Ω), then they are mapped on different 
strategy graphs.

Strategy points of a strategy graph can be depicted as congruent polygons with 2y vertices 
(corollary 2 to theorem 3) – or as line segments for y = 1. For each point, the ordered elements of every 
dimensional set can be represented as an axis, with the lowest and highest elements at opposite vertices. 
Figure 1 is the strategy graph for the Ultimatum Game constructed from the output of I(R) in Table 1. 
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4. SYSTEM PROPERTIES 

4.1 DISTANCE

A distance between any two points is defined as the shortest path between those points. The 
pathways and distances between strategies can be determined visually by inspecting a strategy graph, 
counting hops from one point to the next point along the shortest path in strategy meters, or algorithmically 
by associating each strategy with its strategy point. 

For a given game, specify: y dimensions, z number of dimensional sets, m elements per set, 
minimum valueε of the initial element of a dimension, and i increments of play; a is the value for some 
element of a set. A pathway from one strategy point to any other point in the graph could trace movement 
in one to up to y dimensions. 

Based on theorem 1 and postulate 1, the distance is the sum of the net displacement in each 
dimension. If one starts with strategies, the point-to-point distance is calculated in strategy meters using the 

Strategy Integer operator, SI, a piece-wise function using the quotient and remainder for
m

a
. 

Step 1: Identify the dimensional set to which element a belongs using SI:

              












m

a
      ∀ elements of a dimensional set, except

              












m

a
 - 1 for condition 1: There are ε (mod m) exceptions per dimensional set, starting with the 

                                element where a ≡ 0 (mod m) and continuing to the mth element, when ε (mod m) > 0. 
Step 2: The shortest distance between two points in the dimension generating the movement = SI∆  

Thus, net displacement distance in strategy meters across all the dimensions = ∑
=

∆
y

j 1
jSI  .

A relation between the L1Norm and the strategy meter validates the strategy metric. Let: 
 U, V be two strategy points on a strategy graph, each composed of y dimensional sets
 cj, dj be corresponding elements of dimensional sets in U and V for dimension j;  elements cj and dj 

must correspond in the L1 Norm N there is only one element per dimension per point; for consistency, 
they correspond for the strategy meter 

 gj = jj d - c , the distance traveled from point U to point V in dimension j, in number of element-units

 m-space in element-units; y = the number of dimensions for a strategy point

Theorem 4: strategy metric in strategy meters = 
spacem −

 NormL1

Proof: For both systems, the distance from point U to point V in dimension j can be evaluated individually 
for each j and then summed with the distance computed for the all other dimensions.

L1 Norm distance between points U and V = ∑
=

y

j
jg

1

  each gj is evaluated individually.

The strategy distance between points U and V = ∑
=

y

j
jg

m 1

1
; 

spacem −
1

 is used to convert the metric from 

element-units to strategy meters. To convert the L1 Norm distance to strategy meters, divide by m-
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space. ∴strategy metric in strategy meters = 
spacem −

 NormL1
 

The remaining system properties relate to mapping entities onto the strategy graph for a given 
game. An entity can be a population, group, or individual.

4.2 RATE

Strategy points never move; players “travel” from point to point along the graph as their strategies 
change from round to round. There are two rates of strategy change for an entity. Both rates are based on 
distances between an entity’s strategy points identified from an earlier and later round. The choice of 
rounds depends on the experimenter’s objectives. The rates are:
Displacement rate: the net distance between the two points divided by number of rounds elapsed.
Distance rate: the cumulative distance traveled divided by number of rounds elapsed. 

If a player moved away from an initial point and then moved back towards it, the displacement 
rate over these rounds would be less than the distance rate.

The rate of change for each rate is a strategy acceleration, defined as displacement-acceleration 
and distance-acceleration for the displacement rate and distance rate, respectively. 

4.3 TIME

An entity’s affinity for a point is a time-related attribute called t-space. It is a probability, computed 
as the sum of an entity’s visits to a point divided by the total number of visits during some number of 
rounds. Since there is only one visit per round, the denominator equals the number of rounds elapsed. A 
visit must include the entire entity. Each point has multiple t-spaces, based on the entities.  

t-space is an indicator of similarity between entities, when entities have the same t-spaces for 
multiple points. If a point’s t-space approaches some non-low percentage as time continues, then that t-
space could indicate part of the stability distribution for that entity. 

4.4 STABILITY 
An evolutionary stable strategy is a strategy that will eventually exist within the population with a 

frequency of one and remain that way even if a mutant deviant enters the population; an evolutionary stable 
state is a stable distribution of strategies throughout a population (Hofbauer, & Sigmund, 1998). The typical 
stability definition is equivalent to the maximum stability of the system, defined below. 
Postulate 2: Stability in this new system is: If and only if an entity persists on one strategy point or it 
persists in a constant distribution among strategy points or it oscillates between a constant distribution of 
strategy points, then that entity is stable. Stability states can be broken; therefore stability can exist for finite 
periods of time.

Postulate 2’s conditions are satisfied when displacement rate of an entity consistently equals zero 
for some number of successive rounds. Thus, movement within a point is stable. An entity’s proximity to a 
stable state is tracked by graphing time versus displacement. Its stability is measured by a stability index, β:

β =
m

1
, where  1

1 ≤≤ β
π

 π=maxmm from theorem 2 and =minm 1 , by definition. 

Lower β-values result in a less stable dynamic, since the entity’s stability is relative to strategy points that 
incorporate more strategies. For example, the four-point strategy graph in Figure 1 for m = 1 becomes a 
one-point graph containing all strategies for m = 2. To find the stability value, a new graph does not have to 
be drawn. The experimenter simply determines the strategy space that must be occupied by the points in 
order for the stability definition to be satisfied and then plugs into the stability equation.
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5. DEMONSTRATION WITH THE ULTIMATUM GAME

5.1 EXPERIMENTAL METHOD

To demonstrate the validity and utility of the system, two Ultimatum Game experiments were 
performed. These experiments maintained the features of anonymity, subjects’ inexperience with the 
Ultimatum Game, and non-influential external environments. These settings were implemented to test 
whether people play a game differently based on whom they play and whether they share some common 
characteristic with their opponent.

 A pen and paper method was created to perform these experiments. Payoffs were mentally 
computed in real-time during an experiment. The first experiment used four players and the second 
experiment used six. At the outset of an experiment, players filled out a social orientation scale (Van Lange, 
Otten, De Bruin, & Joireman, 1997). Since the number of players for each experiment was predetermined, 
random pairings and roles for every round of the experiments could be made ahead of time. Strategy 
sheets were created for each round, in which players would indicate their player number, the round 
number, the amount each would offer if selected to be the Proposer, and the amount each would minimally 
accept if selected to be the Responder. 

Both experiments consisted of seven rounds. Only one strategy dimension for each player was 
used per round, which was the player’s pre-selected role. After collecting the strategy sheets, payoff sheets 
for each round were tabulated per pairing and then distributed to the corresponding players. The payoff 
sheets were then collected and the players advanced to the next round. To ensure that subjects did not 
write down random numbers for their strategies, the top two subjects with the most total payoff at the end of 

seven rounds received a prize, donated by local merchants. The strategy graph is shown in Figure 2.
The independent variables for these experiments: π  total per round (aka П “pie”) = 10; y number 
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of dimensions = 2 for offer and acceptance; i increment of play = 1; ε minimum offer or acceptance = 1; m 
number of elements per set = 2. ∴ z = 5 sets and zy=25 points in the strategy graph. The measured 
dependent variables: record of players’ offer and acceptance strategies per round.

5.2 EXPERIMENTAL RESULTS 
The dependent experimental variables are based on the properties of the strategy system: strategy 

distance, displacement and distance rates, acceleration, t-space, β, and strategy point frequency per round. 
The graphs below are derived from data of the six-player experiment. They demonstrate how the system 
provides a framework for analyzing an Ultimatum Game’s dynamics, using the various property variables.

Simply based on network connectivity, one might expect strategy point frequencies to be generally 
less for points with fewer links. Based on inspection of the 25-point strategy graph in figure 2, the least 
probable frequencies would be associated with the corner points R1, R2, R3, and R4  – each with the 
minimum of two links. The most likely frequencies would be associated with all points within the perimeter 
of the graph -- each with the maximum of four links. This is shown by the frequency graph in figure 3, in 
which the highest frequencies do occur on points with four links and the next highest frequencies occur at 
R6 and R20, points with three links each.

Figure 4 shows displacement and distance rates versus round for each player. Although the 
displacement rates show an interesting trend towards convergence, the stability for the population works 
out to a consistently low β-value of 0.1. This occurs because some rates decrease, while others increase.
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Other system-related plots include overlays for each player of documented and projected strategy 
pathways, t-space vs. round, displacement rate and distance rate vs. payoff, and β-stability plots for 
different values of m. For some experiments, though not for the ones described above, these plots might 
correlate with more standard plots of payoff vs. round, average per round for offer, acceptance, payoff, and 
distance, or graphs involving social groupings or experience.

6. DISCUSSION

6.1 Applications and Modifications to the Reverse Ultimatum Game 
Bargaining is typically not a one-shot situation. Parties usually go back and forth numerous times 

until an agreement is reached. This makes the Ultimatum Game, a one-shot game, a simplified bargaining 
model. Gneezy et. al.’s Reverse Ultimatum Game depicts the process more realistically (Geezy, Haruvy, & 
Roth, 2003). In their Reverse Ultimatum Game, there is one Proposer, one Responder, and a pie to be 
divided between them. This game can be, and usually is, multistage rather than one-shot. If the Proposer’s 
offer is rejected, the Proposer can make another offer as long as it is strictly higher than the previous one. 
The game ends when either the offer is accepted or the Proposer decides to walk away. Therefore, the 
number of stages to the game is not known ahead of time. In Gneezy et. al.’s paper, the Reverse 
Ultimatum Game is investigated both with and without a time deadline. This paper modifies the reverse 
ultimatum game to make it even more general and then applies the analytical system. 

Bargaining situations that end in agreements don’t always follow the stipulation of increasing offers. 
In our modified version of the Reverse Ultimatum Game, the requirement of strictly increasing offers is 
removed to allow for more generality. For instance, as a deadline nears, a party might make a final “take it 
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Figure 4. Displacement and distance strategy rates: per player for each round, calculated relative to 
round 1. This graph suggests a trend of rate convergence among players for both rate types. In the 
legend, numbers five through ten identify the six players.
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or leave it” offer which is less than a previous offer. Some might argue that such an offer is irrational if a 
previous offer has been rejected. However, the proposing party makes such an offer indicating that the 
opportunity of a better one has been lost. The modified Reverse Ultimatum Game has a deadline setting 
not of time but of stages. Before the game begins, a stage limit is specified. Both players know the stage 
limit. If there is no agreement by the final stage, both players receive a payoff of zero. Because of the stage 
deadline setting, the “walk away” element of the Proposer’s strategy space need not be included. A 
Proposer can propose any offer value at any stage and therefore if she is not willing to offer more than p, 
she can continue to offer p or less at later stages. This implies that she is willing to walk away and have 
both players receive a payoff of zero if p is not accepted in the final stage. 

Therefore, Proposers have all elements of all z sets in their strategy sets. Responders also have all 
elements of all z sets in their strategy sets because they can change their acceptance threshold at various 
stages to either demand more or accommodate lesser proposals in trying to reach an agreement. 
Proposers don’t know whether their offer will be accepted early on or not. Responders don’t know whether 
they will get an acceptable offer early on or not. Thus, players must have a strategy encompassing all 
potential stages of the game. If roles are not fixed, then strategy points have double the dimensions of the 
maximum number of stages in the game – just as in the classic one-shot Ultimatum Game. 

It is assumed that players are “sufficiently rational.” This is defined to mean that in the case that 
roles are not fixed, players do not have the same utility goal for both bargaining roles in a given round. This 
allows the total strategy space to be defined. For example, the Ultimatum Game strategy (p,q) = (1,2) for 
π  = 4 exists. If this player is a Proposer and his offer is accepted, he will be left with 3. If this player is a 
responder, he is willing to accept 2. Sufficiently rational proposers will offer p: 

ε ≤  p ≤  π – i and sufficiently rational responders have an acceptance threshold q: q ≥  ε.

6.2 Factors that affect strategy change in this evaluative model:
1. Payoff: Players react to payoff in some way. Even if they are satisfied with their own realized payoffs 

and/or payoffs of others in a given round, players may experiment to see how playing another strategy 
will change their payoff. Therefore, payoff affects the dynamics of the game indirectly. Such 
experimenting is a version of trial and error learning.  (Young, 2008).

2. Player matchings and population sizes: Players will probably not interact with all other strategies or all 
other players. The reactions and experiments that a player makes will be based on the players and 
strategies that that player has come into contact with. The size of the population will affect player 
matchings because a larger population means it is less likely for a player to come into contact with 
every other player. Multiple populations coming into contact with one another also affect player 
matchings by nature of a larger, new population being created. However multiple populations do not 
complicate the analysis of the analytical system because the system is player-independent.  

3. Players implement fictitious play and information updating. 
4. Imitation: “Strategies are chosen in proportion to how frequently they were played in the population in 

the previous period.” Direct quote from Levine & Pesendorfer (2005).
5. Innovation: “Strategies are picked regardless of how widely used they are, or how successful they are.” 

Direct quote from Levine & Pesendorfer (2005).

6.3 Connectivity of the Strategy Graph and Nash Equilibria
For bargaining games, the equilibrium strategy point(s) have the lowest possible connectivity and 

exist on the outside of the strategy graph. This is true because its coordinates are the extremes: low offer 
value and low acceptance threshold. This does not mean that all points of lowest connectivity in bargaining 
games are Nash Equilibria.
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An experimenter using the analytical system described in this research would set m at some 
intermediate level. There are two competing motivations for adjusting m up or down, one to increase the 
level of detail observed and one to decrease the detail observed in order to evaluate stability. 

 SI demonstrates that movement within a point for a given m gets rounded down to zero – there is 
no change in points, even though there is a strategy change. To evaluate movement between strategies 
contained within a point and to increase the detail of the analysis, reduce m to generate a related strategy 
graph having more points and containing fewer elements per dimension. This can influence the 
experimental design, since ε or i should be set sufficiently small. Movement in the recast strategy graph 
could be a full strategy meter or more. 1lim →m  (number of strategies per strategy point) = 1 describes the 

greatest detail, since a strategy is defined as one element per dimensional set and minm = 1 .
Alternatively, when stability has not been achieved, the experimenter might increase m to the 

minimum value necessary for attaining stability, based on a strategy graph recast for the higher m. The 
analytical cost of increasing m is a lower stability, as measured by β. If stability has been achieved, then 
one can decrease m to the lowest value where stability still exists, based on graphs of an entity’s 
displacement rate versus time. Change in the levels of stability can be tracked with a plot of time versus β 
by re-computing β during an experiment at different times, while using a consistent time increment over 
which to define stability. Such a plot could be used to better predict stability and a rate of stability.

For constant displacement or distance acceleration of an entity – even if it is non-zero – a locus of 
points and branching pathways for succeeding rounds can be forecast by extrapolating an entity’s positions 
on a strategy graph. The probability of two or more players residing on the same strategy point in 
subsequent rounds can be more accurately predicted using this approach. A change in the trend of an 
entity’s rate or acceleration might indicate the effects of some factor. The magnitude of the change would 
suggest the sensitivity of strategy rate or acceleration to the change in that factor. 

The strategy change system might be applied to population dynamics, since a behavior or trait can 
be called a strategy. Individual changes and thus individual dynamics could be explored with this system to 
describe how an evolutionary dynamic of a population occurs. For example, punctuated equilibrium can be 
depicted in a stability graph of time versus β. Where a plot for population would show a sharp change in β-
value, stability plots at the group or individual level might identify the individual(s) causing the change. An 
overlay of these individuals’ plots with the population plot would show the time lag between the causes at 
the individual level and the effect at the population level (Smith, 1976).

A player employing a mixed strategy has probabilities for using each pure strategy (Siegfried, 
2006). Mixed strategies can be represented in a strategy graph by the t-spaces for an entity. If t-space < 1 
and stability exists, then a player has a mixed strategy and oscillates amongst strategy points.

Most games have one- or two-dimensional strategies. As more dimensions are involved, games 
become more complex. The more dimensions a game has, the more that model approaches reality. The 
analytical system developed by this research has been generalized to a finite, y-dimensions and so 
supports analysis of multi-dimensional games.

7. CONCLUSIONS AND FUTURE RESEARCH 

A new system has been established that models strategy change throughout a bargaining game for 
individuals, groups, and populations. It provides game experimentalists and theorists with a unique 
framework for analyzing relationships and trends in data from new or documented experiments, relative to 
the newly-quantified system properties of distance, rates, acceleration, t-space, and the β stability index. 
For example, the framework can explain how some strategies have a higher probability of implementation 
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than others.
One can forecast probable strategy pathways for any timeframe based on a constant strategy 

acceleration of an entity and its corresponding locus of points. A stability index has been defined that 
expresses how close an entity is to maximum stability. Since stability is quantified, time to maximum 
stability – or any β value – can be forecast based on a trend throughout rounds of a repeated game. 

To better model real situations, the system has been generalized to bargaining games of multi-
dimensional strategies. A logical next step for future research will focus on whether the system can be 
further generalized to other games, such as games with unquantifiable actions. Another research direction 
will address whether additional system properties and relationships derive from graph theory. For example, 
does the number of links to a strategy point correlate with strategy frequency or t-space?  

Further investigations could also pursue questions raised by the demonstration experiments: Do 
entities’ rates converge at any time (see figure 4)? Is there a geometry to strategy change, meaning do 
players of various types travel along the strategy graph in specific patterns? Under imitation behaviors, do 
different time delays exist for different possible geometries of strategy change? Can accelerations become 
constant and, if so, do they decrease uniformly on the way to stability states? 
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