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Abstract. We show that compact games have pure strategy Nash equilibria if

conditions C and Q are satisfied. Condition C states that, whenever a profile

of strategies x is not an equilibrium, there exists an open neighborhood V of x

and well behaved maps ϕi, one for each player i, mapping V to each player’s

strategies, and satisfying the following property: for any profile of strategies y in

the neighborhood V , there exists one player i such that ϕi(y) belongs to player

i’s strict upper contour set, while ϕj(y) is unrestricted for players j other than

i. For other profiles ŷ in V , the chosen player need not be player i. Condition Q

is a weakening of own-strategy quasiconcavity. This result unifies and generalizes

results establishing existence of pure strategy Nash equilibria in the literatures on

discontinuous quasiconcave games and on qualitative convex games.
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1. Introduction

The known sufficient conditions for existence of Nash equilibria in games fall into

two literatures. On the one hand, for games with possibly discontinuous payoff

functions, Baye, Tian and Zhou [3] and Reny [28] provide conditions on the allowed

discontinuities of the payoff functions and on the convexity of the preferences that

guarantee the existence of a Nash equilibrium. On the other hand, for games with

possibly incomplete and non transitive preferences (i.e. qualitative games), there is

a large literature (captured by the monographs of Tarafdar and Chowdhuri [33] and

Yuan [39]) providing conditions on the allowed discontinuities of the strict upper

contour sets and on the convexity of preferences guaranteeing existence of a Nash

equilibrium.
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In this paper we identify a condition that unifies and generalizes the allowed

discontinuities in both literatures, and allows us to prove existence of Nash equi-

libria under a weak notion of convexity of preferences. Our notion of convex-

ity is weaker than the standard quasiconcavity of payoff functions and the con-

vexity/irreversibility condition imposed on strict upper contour sets in qualitative

games. Moreover, since discontinuities are the sole responsible for lack of existence

of Nash equilibria (c.f. Dasgupta and Maskin [8]), our result provides the weakest

set of assumptions guaranteeing existence of Nash equilibria.

By analyzing a game with payoff functions from the perspective of the strict

upper contour sets, and by applying the “better reply security” logic in Reny [28] to

qualitative games, we are able to identify the underlying conditions on the allowed

discontinuities of payoff functions and strict upper contour sets, and then to propose

our generalization.

The better reply security logic, which can be traced back to the logic behind “di-

agonal transfer continuity” in Baye, Tian and Zhou [3], goes as follows. Whenever a

profile of strategies is not an equilibrium, there must exist a player whose preferences

are sufficiently well behaved locally. This means that there exists a strategy that

“secures” strictly more than a given payoff limit in an open neighborhood of the

opponents’ strategies. In a loose sense, this securing strategy is a constant selection

of the strict upper contour set of the given player.

Our approach starts off by allowing more general selections of the strict upper

contour sets. One can think of continuous selections of a particular player’s upper

contour set. Or even semicontinuous selections. The problem with those selections,

for a given player, is that the sort of discontinuities found in economic games will

not necessarily be taken into account. As emphasized by Dasgupta and Maskin [8]

the discontinuities in economic games are likely to be complementary. In fact, in

any zero-sum discontinuous game (like war of attrition), whenever the payoff of one

player jumps down it must be that the payoff of the other jumps up (by definition

of a zero-sum game). In more elaborated models about competing players, similar

discontinuities arise naturally.

We keep the complementarity idea and allow different players to secure payoffs

locally. Whenever complementary discontinuities emerge, we switch the player that

is required to secure a payoff. This is captured by our condition C: whenever a

profile of strategies x is not an equilibrium, there must exist an open neighborhood

Vx of the profile x and, for each player i, a well behaved correspondence ϕi,x mapping

strategies in this neighborhood to strategies of player i with the property that for

any profile of strategies y ∈ Vx there exists a player j that is “activated”, that is,
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whose image ϕj,x(y) lies on the strict upper contour set of his preferences. For other

profiles ŷ ∈ Vx, the activated player may differ. This switching among activated

players reflects the complementarity in the discontinuities in economic games.

The kinds of discontinuities allowed by the idea above are quite permissive. For

instance, in Example 2.3, we have a game where the strict upper contour sets of the

players are erratic, jumping from one end to the other of the strategy space (the

interval [0, 1]) as profiles of strategies are composed entirely of rational numbers

or not. There are obviously no continuous or semicontinuous selections, and yet

condition C is satisfied.

In addition to addressing complementary discontinuities, the more general selec-

tions allowed by condition C also address games where discontinuities can be offset

by coalitional deviations, in the sense that a subset of the group of players has a

well behaved “path” of strategies that guarantees a higher payoff to at least one of

the players in the group, for each profile of strategies in the neighborhood of a given

non equilibrium strategy profile.

Condition C and convexity of preferences guarantee the existence of a pure strat-

egy Nash equilibrium. This result generalizes every result on existence of pure

strategy Nash equilibria in quasiconcave games known to us: better reply secure

and diagonal transfer continuous games, and qualitative games with lower hemicon-

tinuous strict upper contour sets all satisfy condition C.

Actually, the results proven here are more general than the description above.

Borrowing from the qualitative games literature, we allow the “securing” strategies

to lie outside of the strict upper contour set of the activated player, say player i,

provided that they lie on a correspondence Bi that majorizes i’s strict upper contour

set while still satisfying the “convexity/irreversibility” condition xi /∈ coBi(x) (where

xi is the ith coordinate of the strategy profile x). Because this latter condition is

only required to hold for the activated player, our convexity requirement is weaker

than the usual own-strategy quasiconcavity condition.

We also provide sufficient conditions for games with non-compact strategy sets.

Formally, the results described above require the strategy spaces to be compact and

convex. Using a fixed point result due to Yuan [39], we generalize the results for

paracompact and convex strategy spaces. Apart from one minor technical condition

that is not required in the compact case, the conditions are immediate extensions

of the conditions described above. For this reason, and because the results in the

literature focus on compact and convex strategy spaces, we present the non compact

case separately. The fact that any metrizable space is paracompact, on the other
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hand, adds considerable appeal to our results: if strategy spaces are metrizable, no

assumption other than convexity is required on the strategies, a result that is bound

to be useful in applications, where boundedness of strategy spaces is sometimes a

restrictive assumption.

For applications, we also provide a generalization of the sufficient conditions for

better reply security identified in Reny [28] and Bagh and Jofre [2], as follows: a

“generalized payoff secure” game is a game where each player can secure a payoff

at most ε > 0 below any given payoff, for every ε > 0, where securing a payoff

means that there exists a well behaved correspondence mapping strategies in an

open neighborhood of the others’ strategies to strategies of the given player that

yield the required payoff. We show that a generalized payoff secure and “weakly

reciprocal upper semicontinuous” game is generalized better reply secure, and a

fortiori satisfies condition C. Recently, Carmona [6] identified an alternative pair of

sufficient conditions for existence of pure strategy Nash equilibria in quasiconcave

games: “weak payoff security” and “weak upper semicontinuity”. On the one hand

weak payoff security is weaker than generalized payoff security because it does not

require well behaved “securing” correspondences, and on the other hand weak upper

semicontinuity is stronger than weak reciprocal upper semicontinuity. We show that

condition C is implied by these two conditions.

The paper proceeds as follows. Our main results, Theorems 2.4 and 2.6, are pre-

sented in Section 2, together with an explanation of the way the proofs work. In

Sections 3 and 4, we prove that condition C generalizes every known condition on the

allowed discontinuities of either strict upper contour sets or payoff functions. In par-

ticular we provide generalized versions of better reply security and diagonal transfer

continuity (and of the recent condition “weak transfer continuity”, introduced by

Nessah and Tian [24]), and show that these generalized versions are still special cases

of condition C. In Section 5, we take a brief pass on the mixed extension of a game,

providing a generalized version of uniform payoff security (c.f. Carbonell-Nicolau

and Ok [5] and Monteiro and Page [20]) that is sufficient for the mixed extension

to be generalized payoff secure. In Section 6, we present two economic applications

of our results: the first is an application of our ideas to existence of equilibria in

abstract economies, and the second is a general model of multi-principal multi-agent

games, where discontinuities that arise naturally are allowed by condition C and not

by the other conditions in the literature. Finally, the Appendix provides the proofs

of the results.
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2. Existence of Nash Equilibria

Let N be the set of players. Each player i ∈ N has a pure strategy set Xi, which

is a nonempty and convex subset of a Hausdorff locally convex topological vector

space, and a preference relation ≻i defined on X ×X, where X = ×i∈NXi. Product

sets are endowed with the product topology and we use X−i to denote ×j 6=iXj , with

typical element x−i. Let Pi(x) = {yi : (yi, x−i) ≻i (xi, x−i)} denote player i’s strict

upper contour set, also called player i’s preference correspondence. A qualitative

game is given by G = (Xi, Pi)i∈N . A (possibly) discontinuous game is the special

case when each ≻i can be represented by a payoff function ui : X → R, in which

case Pi(x) = {yi : ui(yi, x−i) > ui(xi, x−i)}. For ease of notation, in this section

G = (Xi, Pi)i∈N will be used to denote both a qualitative and a discontinuous game,

and we will simply refer to G as a “game”.

A pure strategy Nash equilibrium of G = (Xi, Pi)i∈N is a profile x∗ ∈ X such that

Pi(x
∗) = ∅ for all i ∈ N . Let E ⊂ X denote the set of pure strategy Nash equilibria

of G.

Let Φ : X ⇉ Y be a correspondence between two topological vector spaces. We

say that Φ is upper hemicontinuous if the set {x ∈ X : Φ(x) ⊂ V } is open for

every open set V ⊂ Y . We say that Φ has non empty, convex, compact values if

Φ(x) is non empty, convex, compact for each x ∈ X. When Φ is compact valued,

upper hemicontinuity is equivalent to the closedness of the graph of Φ, given by

{(x, y) ∈ X × Y : y ∈ Φ(x)}. Since we will repeatedly use such correspondences,

we say that a correspondence Φ is well behaved if it is non empty, convex and

compact valued, and upper hemicontinuous. For any set K ⊂ X, let coK denote

the convex hull of K.

Definition 2.1. A game G = (Xi, Pi)i∈N satisfies Condition C if whenever x /∈ E,

there exist an open neighborhood Vx of x and well behaved correspondences ϕi,x :

Vx ⇉ Xi, for i ∈ N , such that for each y ∈ Vx there exists i ∈ N with ϕi,x(y) ⊂

Bi(y), where Bi : X ⇉ Xi is a convex valued correspondence such that coPi(x) ⊂

Bi(x) for every x ∈ X.

If condition C is satisfied, we say that player i is activated at y ∈ Vx if ϕi,x(y) ⊂

Bi(y).

Definition 2.2. A game G = (Xi, Pi)i∈N satisfies Condition Q if xi /∈ Bi(x) for

every i ∈ N that is activated at x.
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The use of the “majorizing” convex-valued correspondence Bi : X ⇉ Xi instead

of the convex hull coPi comes from the use of the various majorizing classes in the

qualitative games literature.1 It provides an added degree of generality, in that it

does not require that the mappings ϕi,x be contained in coPi.

Condition Q is a weakening of the standard convexity/irreversibility condition

xi /∈ coPi(x), for every x ∈ X and i ∈ N in the qualitative games literature, which

in turn is the counterpart of the standard own strategy quasiconcavity in games with

payoff functions, that is, the assumption that ui(·, x−i) : Xi → R is quasiconcave for

each x−i ∈ X−i.

In order to appreciate the scope of condition C, consider the following example.

Example 2.3. There are three players with strategy sets Xi = [0, 1], i = 1, 2, 3. The

payoffs of player i = 1, 2, 3 are given by

ui(xi, xj , xk) =



















0 if xi ∈ (0, 1)

1 if xi = 0 and (xj , xk) ∈ Q2 ∩ [0, 1]2

1 if xi = 1 and (xj , xk) /∈ Q2 ∩ [0, 1]2

0 otherwise

where 0 is considered a rational number.

The strict upper contour sets of the players are quite erratic. For instance, for xi ∈

(0, 1), Pi(xi, xj , xk) = {0} if both xj and xk are rational numbers and Pi(xi, xj , xk) =

{1} if at least one of them is an irrational number. Hence, there do not exist

continuous selections of Pi. Nevertheless, for a fixed pair (xj , xk), Pi(xi, xj , xk) is a

convex set (if non-empty), so condition Q is satisfied. More importantly, condition

C is also satisfied: the unique equilibrium is given by xi = xj = xk = 0, so any

profile x = (xi, xj , xk) with at least one non-zero coordinate is not an equilibrium.

For any such profile x, let i be a player with xi > 0 and Vx be an open neighborhood

not containing the point (0, 0, 0), and put ϕi,x(y) = {0}, ϕj,x(y) = ϕk,x(y) = {1}

for all y ∈ Vx. Pick any y ∈ Vx: if the jth and kth coordinates are rational, then

1 For instance, let Φ : X ⇉ Y be a correspondence between a topological space X = ×i∈IXi

and a subset Y of a vector space, and for a given x ∈ X let Φx : X ⇉ Y and Vx be an open

neighborhood of x such that (a) for each z ∈ Vx, Φ(z) ⊂ Φx(z), (b) zi /∈ coΦx(z), and (c) for each

y ∈ Y Φ−1

x (y) = {z ∈ X : y ∈ Φx(z)} is open in X. The pair (Φx, Vx) is called an LC-majorant

of Φ at x. We say that Φ is LC-majorized if for each x ∈ X with Φ(x) 6= ∅ there exists an

LC-majorant (Φx, Vx). From Theorem 4.5.20 in Yuan [39], we know that whenever X is a regular

topological space, Φ is LC-majorized and the domain of Φ is open and paracompact, then there

exists a correspondence (the majorant) Ψ : X ⇉ Y such that (a) Φ(x) ⊂ Ψ(x) for every x ∈ X, (b)

xi /∈ coΨ(x), and (c) Ψ−1 is open in X.
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player i is activated; if the jth coordinate is irrational, then player j is activated if

at least one of the other two coordinates is irrational, otherwise it is player k that is

activated; and finally if the jth coordinate is rational and the kth is irrational, then

player j is activated.

In Sections 3 and 4, we show that Example 2.3 violates all of the conditions

proposed in the literature. And, in Section 6, we provide a class of multi-principal

multi-agent games that also satisfy condition C and violate all of the conditions

proposed in the literature.

Our main result is the following:

Theorem 2.4. Let G = (Xi, Pi)i∈N be a game such that Xi is compact for each

i ∈ N and conditions C and Q are satisfied. Then there exists a pure strategy Nash

equilibrium.

The idea of the proof is the following. If there is no equilibrium, then the open

neighborhoods figuring in condition C form an open covering of the compact space

X. There then exists a partition of unity subordinated to a locally finite open

refinement of the open covering. This means that we can glue the mappings ϕi,x

together and construct, for each player i ∈ N , a well behaved mapping φi : X ⇉ Xi.

The mapping φ : X ⇉ X, given by φ = ×i∈Nφi is well behaved and must have a

fixed point x∗ ∈ X. A fortiori, x∗
i ∈ φi(x

∗) for every i. Now condition C states that

one player must be activated at x∗, and this will contradict condition Q if it is also

the case that φi(x
∗) ∈ Bi(x

∗). The main step of the proof is in showing this fact.

That is, in guaranteeing that the open neighborhoods can be refined in such a way

that there is never a case that a player must be activated at x∗ using ϕi,x and cannot

be activated at x∗ with some other ϕi,z. The refinement used is what is known as

a ∆-refinement of an open covering: a new open covering such that the family of

open sets formed by the “stars” of each point refines the given open covering, where

a star of a point is the union of all of the open sets in the covering that contain the

point. Notice that we can use the open neighborhoods in the new open covering as

the ones figuring in condition C. Hence, it can never be the case that a player must

be activated at x∗ according to some ϕi,x and cannot be activated at x∗ according

to some ϕi,z, because the corresponding open sets are in the star of x∗, which in

turn is entirely contained in one of the original open neighborhoods Vx.

2.1. Non Compact Strategy Sets. In applications, it is often the case that strat-

egy spaces are not compact. We now provide an extension of Condition C that allows

for non compact strategy spaces. We say that a correspondence A : X ⇉ X satisfies
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the coercive condition if there exist a non empty compact and convex subset X0 of

X and a non empty compact subset K of X such that for each y ∈ X\K there exists

x ∈ co(X0 ∪ {y}) with y /∈ X\A−1(x). As noted by Yuan [39], any correspondence

A : X ⇉ X satisfies the coercive condition whenever X is compact and convex.

Notice that the main step of the proof of Theorem 2.4 described above allows us to

define an “activating” mapping I : X ⇉ N indicating the players that are activated

at a given profile x ∈ X, independently of which neighborhood we consider. With

such mapping, we can define an aggregator, given by a correspondence A : X ⇉ X

with A(x) = ×i∈NAi(x), where for each i ∈ N

(2.1) Ai(x) =

{

Bi(x) if i ∈ I(x)

Xi otherwise

where Bi : X ⇉ Xi is the majorizing mapping figuring in condition C. The following

is a strengthening of condition C that allows us to deal with non compact strategy

spaces:

Definition 2.5. A game G = (Xi, Pi)i∈N satisfies Condition Cnc if (i) whenever

x /∈ E, there exist an open neighborhood Vx of x and well behaved correspondences

ϕi,x : Vx ⇉ Xi, for i ∈ N , such that for each y ∈ Vx there exists i with ϕi,x(y) ⊂

Bi(y); (ii) Bi : X ⇉ Xi is a convex valued correspondence with coPi(x) ⊂ Bi(x)

for every x ∈ X; (iii) X\Bi(y) is compact whenever ϕi,x(y) ⊂ Bi(y); the aggregator

A = ×i∈NAi, where Ai is given by (2.1) using the implied activating mapping I,

satisfies the coercive condition.

Theorem 2.6. Let G = (Xi, Pi)i∈N be a game such that Xi is paracompact for each

i ∈ N and condition Cnc and Q are satisfied. Then there exists a pure strategy Nash

equilibrium.

Theorem 2.6 does not fully encompass Theorem 2.4 in the compact case because

of the assumption that X\Bi(y) is compact whenever player i is activated at y ∈ X.

On the other hand, the local convexity assumption of the underlying topological

vector spaces is not needed in Theorem 2.6.

3. Qualitative Games

Theorems 2.4 and 2.6 strictly generalize a host of results providing sufficient

conditions for existence of equilibria in the qualitative games literature, and their

corresponding results for generalized games and abstract economies. For instance, in

the case that each Xi is compact (paracompact) and convex, and to the best of our
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knowledge, Theorem 2.4 (Theorem 2.6) improves upon every result in the literature.2

What is at stake here is that condition C does not require that the strict upper con-

tour sets (or the majorants Bi) have continuous selections (c.f. Example 2.3 above).

In contrast, the typical result in the literature assumes that each Pi satisfies some

continuity condition. For instance, each Pi has to have open inverses or to satisfy

the local intersection property, or to belong to some majorized class, forcing the

majorants Bi to satisfy some continuity condition (in the case of LC-majorants, for

instance, each Bi would be required to have open inverses, as explained in footnote

1.)

To illustrate further, consider the following example taken from Bagh and Jofre

[2]:

Example 3.1. There are two players with strategy sets Xi = [0, 1], i = 1, 2. The

game is zero-sum and the payoffs of player 1 are given by

ui(xi, xj) =











10 if x1 < x2 or x1 = x2 > 1
2

1 if x1 = x2 ≤ 1
2

−10 otherwise

The profile of strategies (x1, x2) = (0, 0) is a pure strategy Nash equilibrium,

and the payoff functions are quasiconcave in the owner’s strategy. The strict upper

contour set of player 1 does not have open lower sections: for instance, the lower

section of the strategy x1 = 3
4 is given by {(x1, x2) : x1 > 3

4 , x2 ≥ 3
4}, hence not open

in [0, 1]2. Hence the sufficient conditions set forth in the literature on qualitative

games do not apply. And condition C is easily verified: it suffices to activate player

1 below the diagonal and activate player 2 above (and including) the diagonal.

4. Discontinuous Games

In this section, we will restrict the analysis to games with payoff functions, so for

consistency we will write G = (Xi, ui)i∈N . Let Γ = {(x, u) ∈ X ×RN : u(x) = u} be

the graph of the game’s vector payoff function, and let Γ be its closure. Reny [28]

defined the following condition:

Definition 4.1. A game G = (Xi, ui)i∈N is called better reply secure if whenever

(x∗, u∗) ∈ Γ and x∗ is not an equilibrium, there exists a player i and a strategy x̄i such

that ui(x̄i, y−i) ≥ α > u∗
i , for some α ∈ R and all y−i in some open neighborhood V

of x∗
−i.

2For a summary of the results, see the monographs of Tarafdar and Chowdhuri [33] and Yuan

[39].



10 BARELLI AND SOZA

Notice that it is without loss of generality to use a neighborhood V of x∗ in the

definition above, since the ith coordinate of y ∈ V does not matter for the inequality

ui(x̄i, y−i) ≥ α > u∗
i .

Baye, Tian and Zhou [3] defined the following condition:

Definition 4.2. A game G = (Xi, ui)i∈N is called diagonal transfer continu-

ous if for each non equilibrium strategy profile x, there exists a profile x̄ such that
∑N

i=1 ui(x̄i, y−i) >
∑N

i=1 ui(y), for all y in some open neighborhood Vx of x.

The following example (taken from Carmona [6]) illustrates a class of games where

condition C improves on diagonal transfer continuity and better reply security.

Example 4.3. A diagonal game is a two-player game with strategy sets Xi =

[0, 1], i = 1, 2 and payoff functions given by

ui(xi, xj) =

{

φi(x) if xi = xj

fi(x) if xi 6= xj

where φi, fi : [0, 1]2 → R are continuous functions. In addition, assume that the

functions φi, fi are such that ui is quasiconcave in Xi and either φi(xj , xj) =

supxi∈Xi
ui(xi, xj) or there exists x̄i ∈ Xi such that fi(x̄i, xi) > fi(xj , xj).

The continuity of the functions φi, fi ensure that the game satisfies condition

C, trivially. In fact, the strict upper contour sets of the players are continu-

ous, so condition C and the sufficient conditions in the qualitative games litera-

ture are satisfied. As Carmona [6] shows, the functions φi, fi can be chosen so

as to violate diagonal transfer continuity and/or better reply security. Consider a

weakening of the conditions: for player i, the functions φi, fi remain continuous,

φi(xj , xj) = supxi∈Xi
ui(xi, xj), and for player j, φj(xi, xi) < supxj∈Xj

uj(xj , xi),

and the function φj is discontinuous in such a way that the strict upper contour set

is not lower hemicontinuous. Then condition C is still satisfied because the diagonal

xi = xj is the graph of player i’s best response correspondence, and for any pair

(xi, xj) with xi 6= xj , continuity of fi ensures that player i can secure payoffs with

a continuous function mapping a small enough open neighborhood to the diagonal.

Finally, recently Nessah and Tian [24] introduced the following condition:

Definition 4.4. A game G = (Xi, ui)i∈N is called weakly transfer continuous

if for each non equilibrium strategy profile x, there exist an open neighborhood Vx of

x, a player i and a strategy x̄i such that ui(x̄i, y−i) > ui(y) for every y ∈ Vx.
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Let us now propose generalized versions of the three conditions presented above.

In Proposition 4.8 below we show that these generalized versions are intermediate

steps between each of the conditions and condition C.

Definition 4.5. A game G = (Xi, ui)i∈N is called generalized better reply secure

if whenever (x∗, u∗) ∈ Γ and x∗ is not an equilibrium, there exists a player i and a

triple (ϕi, Vx ∋ x∗, αi > u∗
i ) where ϕi : V ⇉ Xi is a well behaved correspondence,

and Vx is open, such that ui(zi, x−i) ≥ αi for every zi ∈ ϕi(x) and all x ∈ Vx.

Definition 4.6. A game G = (Xi, ui)i∈N is called generalized diagonal trans-

fer continuous if for each non equilibrium strategy profile x, there exists an open

neighborhood Vx of x and well behaved correspondences ϕi,x : X ⇉ Xi such that
∑N

i=1 ui(zi, y−i) >
∑N

i=1 ui(y), for all y ∈ Vx and all zi ∈ ϕi,x(y).

Definition 4.7. A game G = (Xi, ui)i∈N is called generalized weakly transfer

continuous if for each non equilibrium strategy profile x, there exist an open neigh-

borhood Vx of x, a player i and a well behaved correspondence ϕi,x : X ⇉ Xi such

that ui(zi, y−i) > ui(y) for all y ∈ Vx and every zi ∈ ϕi,x(y).3

The idea behind the generalized versions is that the “securing” strategies are

allowed to vary as we vary the profiles y in the open neighborhood. The following

result shows that condition C is more general than these generalized versions.

Proposition 4.8. If a game G = (Xi, ui)i∈N is either generalized better reply secure,

generalized diagonal transfer continuous or generalized weakly transfer continuous,

then condition C is satisfied.

The latter two implications follow directly from the definitions. In order to show

the former, i.e., that generalized better reply security implies condition C, we pro-

ceed as follows. For any given non equilibrium profile of strategies x ∈ X, we collect

the set of payoff limits that each player can secure according to generalized better

reply security, and compute the supremum of this set.4 If condition C is violated,

then we can find a sequence of profiles y converging to x such that each player’s

3In an early version of this project, we introduced a generalization of weak transfer continuity,

allowing the securing strategy x̄i to vary continuously as y varied in Vx. The version below allows

for semicontinuous variations. As explained in the Introduction, such condition does not capture

complementary discontinuities, like those in Example 3.1, which is the fact that led us to propose

condition C.
4As argued by Reny [28], it is without loss to have bounded payoff functions, so that this

supremum is finite.
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corresponding “securing” strategy does not secure more than the payoffs ui(y) as-

sociated with y. But since y converges to x, for any payoff limit u = (ui)i∈N with

ui = limy→x ui(y) for each i ∈ N , resulting from this sequence, there must exist a

player i than can secure a payoff strictly above ui. But this is impossible because we

started off with the supremum of the set of payoffs that a given player can secure.

The details are in the Appendix.

Collecting the results above, we have:

Corollary 4.9. Let G = (Xi, ui)i∈N be a compact game. Then there exists a pure

strategy Nash equilibrium if the game is either generalized better reply secure, gen-

eralized diagonal transfer continuous or generalized weakly transfer continuous, and

the associated condition Q is satisfied.

Therefore, whenever X is a Hausdorff locally convex topological vector space, we

have a strict generalization of Theorem 3.1 in Reny [28] and an extension of Theorem

1 in Baye, Tian and Zhou [3] and Theorem 3.1 in Nessah and Tian [24].5 It is only an

extension of Theorems 1 in Baye, Tian and Zhou [3] and 3.1 in Nessah and Tian [24]

because the convexity condition used in these theorems, namely diagonal transfer

quasiconcavity, is quite weak. In fact, it is a necessary condition for existence of

pure strategy Nash equilibria. On the other hand, in addition to allowing securing

strategies to vary, Corollary 4.9 shows that Theorem 1 in Baye, Tian and Zhou [3]

and Theorem 3.1 in Nessah and Tian [24] are valid under condition Q, which neither

implies nor is implied by diagonal transfer quasiconcavity.6

Recall that Example 4.3 satisfies condition C and violates both better reply secu-

rity and diagonal transfer continuity. It is simple to verify that it satisfies generalized

better reply security, generalized diagonal transfer continuity and generalized weak

transfer continuity.7 But Example 2.3 violates generalized better reply security and

generalized weak transfer continuity because the strict upper contour sets are erratic,

5In Reny [28], X is not required to be either Hausdorff or locally convex.
6It is important to stress that our generalization is in terms of the allowed discontinuities, not

in terms of the convexity requirements. A number of papers in the qualitative games literature,

and Baye, Tian and Zhou [3] and Nessah and Tian [24] explore the route of relaxing the convexity

requirements. In fact, Nessah and Tian [24] covers a lot of ground in that direction, with the

following condition: for every finite set F ⊂ X, there exists a profile x ∈ X such that ui(yi, x−i) ≤

ui(x), for every player i and every y ∈ F . Nessah and Tian [24] shows that this condition can

be used in the place of quasiconcavity in Theorem 3.1 in Reny [28], and in the place of diagonal

transfer quasiconcavity in Theorem 1 in Baye, Tian and Zhou [3], also dropping the assumption

that Xi be convex.
7Example 3.1 does not satisfy generalized weak transfer continuity.
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and it also violates generalized diagonal transfer continuity, because of the following

argument. At the non equilibrium profile x = (1, 0, 1), the only two candidate pro-

files to “secure” a sum of payoffs strictly above 1 are (0, 1, 0) and (0, 0, 0). Any open

neighborhood of x will include profiles of the form y = (1, r, 1−r), where r is a small

irrational number. For such profiles, we have
∑3

i=1 ui(zi, y−i) ≤ 1 =
∑3

i=1 ui(y),

where z is either (0, 1, 0) or (0, 0, 0), so the game is not generalized diagonal trans-

fer continuous. It follows that condition C is strictly weaker than the generalized

versions of better reply security, diagonal transfer continuity and weak transfer con-

tinuity.

4.1. Payoff Security. One of the distinctive features of better reply security is that

Reny [28] identified two simple and easily verifiable sufficient conditions for better

reply security. A game is called payoff secure if for each x ∈ X and each ε > 0,

there exists an open neighborhood V of x and a strategy x̄i such that ui(x̄i, y−i) ≥

ui(x) − ε for all y ∈ V . A game is weakly reciprocal upper semicontinuous

(wrusc) if whenever (x∗, u∗) ∈ Γ\Γ, there exists a player i and a strategy x̄i such

that ui(x̄i, x
∗
−i) > u∗

i . As shown in Bagh and Jofre [2] (extending the argument in

Reny [28]), a payoff secure and wrusc game is better reply secure. Let us propose

the following extension, allowing the securing strategies to vary:

Definition 4.10. A game is called generalized payoff secure if for each x ∈ X,

each i ∈ N and each ε > 0, there exists an open neighborhood V of x and a well

behaved correspondence ϕi : V ⇉ Xi such that ui(zi, y−i) ≥ ui(x) − ε for every

zi ∈ ϕi(y) and all y ∈ V .

Adapting the argument in Bagh and Jofre [2] we have:

Proposition 4.11. A generalized payoff secure and wrusc game G = (Xi, ui)i∈N is

generalized better reply secure, and a fortiori satisfies condition C.

Hence, generalized payoff security and wrusc are sufficient conditions for existence

of pure strategy Nash equilibria in compact and quasiconcave games. Recently,

Carmona [6] introduced the following two conditions. A game is weakly payoff

secure if for every i ∈ N , ε > 0 and x ∈ X there exists an open neighborhood V

of x such that for each z ∈ V there exists a yi such that ui(yi, z−i) ≥ ui(x)− ε; and

a game G = (Xi, ui)i∈N is weakly upper semicontinuous if for every (x, y, u) in

the frontier of the graph of u : X × X → R, where u(x, y) = {ui(xi, y−i)}i∈N , there

exists an x̄i such that ui(x̄i, y−i) > ui. In a compact, metric and quasiconcave game,
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Carmona [6] showed that weak payoff security and weak upper semicontinuity are

sufficient conditions for existence of a pure strategy Nash equilibrium.

It is clear that weak payoff security is weaker than generalized payoff security:

generalized payoff security allows the “securing” strategy to vary, so it is more gen-

eral than payoff security, but it only allows some forms of semicontinuous variations,

whereas weak payoff security does not restrict the kinds of variations allowed. Also,

weak upper semicontinuity is stronger than wrusc (wrusc has bite only when y = x

in the definition of weak upper semicontinuity). The last example in Carmona [6]

shows that we do not have room to improve on Proposition 4.11: it is an example

of a compact, quasiconcave, weakly payoff secure and wrusc8 game with no pure

strategy Nash equilibrium.

Nevertheless, we have the following:

Proposition 4.12. A compact game G = (Xi, ui)i∈N , where each Xi is metric,

satisfying weak payoff security and weak upper semicontinuity satisfies condition C.

Proposition 2.4 then shows that a compact, metric, weak payoff secure and weak

upper semicontinuous game satisfying condition Q has a pure strategy Nash equi-

librium.

As a final remark, let us mention that Nessah and Tian [24] provided some suffi-

cient conditions for weak transfer continuity, introducing the following two notions.

A game is weakly transfer upper continuous if whenever x is not an equilib-

rium, there exists a player i, a strategy x̄i and an open neighborhood Vx of x such

that ui(x̄i, x−i) > ui(y) for every y ∈ Vx; and a game is weakly transfer lower

continuous if whenever x is not an equilibrium, there exists a player i, a strategy x̄i

and an open neighborhood Vx of x such that ui(x̄i, y−i) > ui(x) for every y ∈ Vx. It

is straightforward to extend such conditions to allow the securing strategies to vary

according to a well behaved correspondence, in the lines of generalized payoff secu-

rity and provide sufficient conditions for generalized weak transfer payoff security,

and a fortiori to condition C. The details are left for the reader.

5. Mixed Strategies

As advanced in the Introduction, our results strictly generalize the known suffi-

cient conditions for existence of Nash equilibria under standard convexity assump-

tions. The traditional justification for convexity assumptions is the presumption

that players may randomize their choices. Formally, for any given compact and

8In fact, the sum of payoffs in the example is smooth.
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Hausdorff game G = (Xi, ui)i∈N , the mixed extension is obtained by using the

spaces of Borel probability measures ∆(Xi) as the choice spaces for each player, and

assuming that each ui is a Borel measurable function so that expected utilities can

be computed. By construction, the mixed extension is a compact and convex game

with linear payoff functions. Therefore, we have existence of mixed strategy Nash

equilibria whenever the mixed extension satisfies condition C.

Carbonell-Nicolau and Ok [5] and Monteiro and Page [20] introduced a sufficient

condition for a game to have a payoff secure mixed extension. Namely, a game is

called uniform payoff secure if if for each player i, each xi ∈ Xi and each ε > 0,

there exists x̄i such that for every x−i ∈ X−i there exists an open neighborhood

Vx−i
of x−i with ui(x̄i, y−i) ≥ ui(xi, x−i) − ε for all y−i ∈ Vx−i

.

Let us propose an extension that allows the securing strategies to vary:

Definition 5.1. A game is called generalized uniform payoff secure if for each

player i, each xi ∈ Xi and each ε > 0, there exists a well behaved correspondence

ϕi : X−i ⇉ Xi such that for every x−i ∈ X−i there exists an open neighborhood Vx−i

of x−i such that ui(zi, y−i) ≥ ui(xi, x−i)−ε for every zi ∈ ϕi(y−i) and all y−i ∈ Vx−i
.

A straightforward extension of the arguments in Carbonell-Nicolau and Ok [5]

and Monteiro and Page [20] shows that a generalized uniform payoff secure game

has a generalized payoff secure mixed extension. Hence, existence of mixed strategy

equilibria is guaranteed if in addition the mixed extension satisfies wrusc. A sufficient

condition for which is that the sum of the payoffs be upper semicontinuous, as shown

in Reny [28]. As an example, a zero sum game that is generalized uniform payoff

secure has a Nash equilibrium in mixed strategies.

A different approach to existence of mixed strategy Nash equilibria is taken by

Simon and Zame [32]. They allow payoff functions to be highly discontinuous and

determined only in equilibrium. More precisely, Simon and Zame [32] define a game

with endogenous sharing rules as (Xi, U)i∈N , where U : X ⇉ RN represents the

universe of possible payoff functions. A solution is a measurable selection u : X → R

from U and a profile of mixed strategies that form an equilibrium of the game

(Xi, ui)i∈N . The main result in Simon and Zame [32] is as follows: if Xi is a compact

metric space, and U is a non empty, bounded, convex, and upper hemicontinuous

correspondence, then the game with endogenous sharing rules has a solution. Even

though condition C in principle allows payoff functions that are highly discontinuous,

and possibly not even measurable, the conditions in Simon and Zame [32] neither

imply nor are implied by by condition C on the mixed extension of a game. On

the other hand, a quite successful application of Simon and Zame [32] is in ensuring
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existence of a mixed strategy (subgame perfect) Nash equilibrium in two period

games where a group of players moves in the first period, and the rest of the players

moves in the second period, in particular games of competing mechanisms: for the

first period movers, the realized payoffs can be viewed as a selection of an universe

of possible payoffs that are a function of what happens in the second period. In the

next section, we present an economic application of such games where conditions C

and Q are satisfied and the conditions in Simon and Zame [32] are not.

6. Economic Applications

Summarizing, conditions C and Q are sufficient for existence of pure strategy

Nash equilibria in compact, convex games, and Cnc in the place of C works for

paracompact (in particular metric) games. In this section we show that conditions

C and Q allow us to ascertain existence of Nash equilibria in important classes of

economic games.

6.1. Abstract Economies. To begin with, the standard application of qualitative

games is in showing existence of a general competitive equilibrium. The approach

was pioneered by Mas-Colell [16], and followed by many others.9 The basic idea is

that a competitive economy gives rise to what is called an “abstract economy”, which

is easily seem as a “generalized game”, that is, a qualitative game with feasibility

constraints. Formally, a generalized game is given by (Xi, Pi, Fi)i∈N , where for

each agent i ∈ N , Xi is the consumption set, Pi : X ⇉ Xi is the preference

correspondence, and Fi : X ⇉ Xi is the feasibility correspondence. An equilibrium

is a profile x ∈ X such that xi ∈ Fi(x) and Pi(x) ∩ Fi(x) = ∅ for each i ∈ N .

An immediate extension of condition C is to consider that, whenever x is not an

equilibrium, there exist an open neighborhood Vx of x and well behaved correspon-

dences ϕi,x : Vx ⇉ Xi, one for each i ∈ N , such that for each y ∈ Vx there exists

i ∈ N with ϕi,x(y) ⊂ Bi(y), where Bi : X ⇉ Xi is a convex-valued majorant of

coPi ∩ Fi.

And an immediate extension of condition Q is that yi /∈ Bi(y) whenever i is

activated at y, where activation means that ϕi,x(y) ⊂ Bi(y). Following the steps

leading to the proof of Theorem 2.4 it is straightforward to verify that an equilibrium

exists whenever these conditions are satisfied and Xi is a compact and convex subset

9The list is too numerous to cite; the early contributions include Gale and Mas-Colell [11], Shafer

and Sonnenschein [30], McKenzie [18], Yannelis and Prabhakar [38]. Again, see the monographs

Tarafdar and Chowdhuri [33] and Yuan [39] and the references therein for a more complete account

of the recent developments.
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of a Hausdorff LCTVS. The extension to non compact spaces is also a straightforward

adaptation of the steps leading to the proof of Theorem 2.6.

The extension above by-passes the issue of feasibility by implicitly resolving it in

the proposed extension of condition C. An alternative approach goes as follows. Let

F = {x ∈ X : xi ∈ Fi(x) for every i ∈ N} and put Wi = {x ∈ F : Pi(x)∩Fi(x) 6= ∅}.

Assume the following extension of condition C:

Definition 6.1. A generalized game (Xi, Pi, Fi)i∈N satisfies condition Cg if, when-

ever x ∈ Wi for some i, then there exists an open neighborhood Vx of x, with Vx ⊂ F ,

and well behaved correspondences ϕi,x : Vx ⇉ Xi with ϕi,x(y) ⊂ Fi(y) for all y ∈ Vx,

such that for each y ∈ Vx there exists i ∈ N with ϕi,x(y) ⊂ Bi(y), where Bi : X ⇉ Xi

is a convex-valued majorant of coPi ∩ Fi.

And define the condition Qg as above: yi /∈ Bi(y) whenever i is activated at y,

where activation means that ϕi,x(y) ⊂ Bi(y). We can now show that a generalized

game has an equilibrium whenever each Fi is a well behaved correspondence, each

Xi is a compact and convex subset of a Hausdorff LCTVS, and conditions Cg and

Qg are satisfied. In fact, if there was no equilibrium, then we would have Wi = F

for each i, and since F is a closed subset of X, it is paracompact, and the steps

leading to the proof of Theorem 2.4 would generate a contradiction, guaranteeing

the existence of an equilibrium. Again, an analogous analysis can be applied to show

existence of an equilibrium in the non compact case.

As with qualitative games, the improvement relative to the known results in the

literature is that the extensions of condition C used above do not require that the

strict upper contour sets (or their majorants) have continuous selections.

6.2. Multi-Principal Multi-Agent Games. Let us turn now to games with pay-

off functions. Since condition C strictly generalizes the conditions in Dasgupta and

Maskin [9], Simon [31], Baye, Tian and Zhou [3] and Reny [28], among others, the

economic applications considered in these works are examples of applications of our

results. And one can in principle relax some of the continuity requirements in those

applications. Instead of following this route, we present a class of multi-principal

multi-agent games where the discontinuities that arise naturally are allowed by con-

dition C and not allowed by the previous conditions used in the literature. The class

encompasses and generalizes the following widely studied models:

(i) The original principal-agent model

(ii) Models with many principals and one agent, known as common agency games

(see Bernheim and Whinston [4] and Martimort [14])
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(iii) Models with one principal and many agents such as in Segal [31].

There is a set N of principals and a set M of agents. Let i denote the typical

element of N and m the typical element of M . The game takes place in two stages.

First the principals move simultaneously, each principal choosing a collection of

contracts, one to each agent. The principals’ offers are publicly announced to the

agents, who then simultaneously take actions that are feasible given the principals’

choices.

The set of available contracts of principal i ∈ N is denoted by Xi, with typical

element xi. Let X = ×i∈NXi denote the set of contract profiles available. Each

agent has a set of available actions Am, which may or may not depend on the

principals’ choices in the previous period. Let am denote a typical element of Am,

and A = ×m∈MAm be the set of outcomes, with typical element a. Assume that

each Xi and Am is a compact and convex subset of a Hausdorff LCTVS.

This framework allows principals to use more complex mechanisms. Very few

papers investigate existence of equilibria with such generality. McAfee [17] considers

only direct mechanisms, and the principals in Prat and Rustichini [27] are allowed to

choose only transfer schedules such that the money an agent receives is contingent

on the action chosen by that particular agent. For a discussion on the issues that

arise when one expands the set of allowed mechanisms, see Epstein and Peters [10]

and Martimort and Stole [15].

As for the preferences, we allow for externalities among agents, principals, and

cross-externalities. Thus, agent m’s payoff is vm : X × A → R. The payoff to

principal i is ui : X × A → R. Finally, we will focus on subgame perfect equilibria

of the two stage game (X, A, (ui)i∈N , (vm)m∈M ).

Remark 6.2. It is possible to extend this setting to allow for incomplete informa-

tion. Carmona and Fajardo [7] generalize Simon and Zame [32] in that direction,

by allowing the payoff correspondence representing the universe of possible payoffs

of the principals to depend in a measurable way on the agents type. Along the same

lines of Prat and Rustichini [27], we avoid this route since keeping track of mea-

surability of strategies would only add difficulties to the analysis without bringing

any insightful conclusion. Likewise, it is possible to adapt the above model to allow

contract offers to be private. The conclusions are virtually unchanged.

6.2.1. Equilibrium analysis. For each given profile x ∈ X of mechanisms chosen by

the principals, we have a continuation game Gx = (Am, V x
m)m∈M , where

V x
m(a) = vm(x, a).
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Assume that, for each x ∈ X, the continuation game Gx satisfies conditions C

and Q, so that it has an equilibrium. Note that we can allow the agents to use mixed

strategies, so that condition Q is without loss of generality. In this case, Am is the

set of probability distributions over a given set of pure strategies, and vm is agent

m’s expected payoff. The results are the same.

Given any choice x ∈ X of the principals, let σ(x) denote a possibly random

selection from the set of equilibria of the agents’ game, that is, σ(x) ∈ ∆(E(Gx)),

where E(Gx) is the set of equilibria of the continuation game Gx. The mapping σ

induces a game played by the principals in the first stage, in which each principal

i ∈ N has strategy space Xi and derives payoff

uσ
i (x) =

∫

ui(x, a)σ(x)(da).

If uσ satisfies conditions C and Q, then Proposition 2.4 ensures that the induced

game Gσ = (Xi, u
σ
i )i∈N has an equilibrium. Under this combination of assumptions,

therefore, the original game has a subgame perfect equilibrium.

This framework generalizes the best available existence results on existence of

equilibria in multi-principal multi-agent models. It is general enough to encompass

externalities among agents and principals and to allow for a large set of available

mechanisms - direct and indirect, exclusive and non-exclusive. The results in Prat

and Rustichini [27] do not apply to this case because payoff functions are assumed

separable, there are no externalities among principals and the mechanisms are re-

stricted to monetary transfers between principals and agents.

The standard approach taken in the literature is to assume that the payoff func-

tions of the principals are continuous and that the agents are allowed to use corre-

lated strategies, so that the conditions in Simon and Zame [32] are satisfied and one

can use their result to conclude that a mixed strategy equilibrium exists, with the

agents’ actions providing the endogenous sharing rule for the principals’ game. There

are two problems with this approach. First, it is not clear that the principals’ payoffs

should be continuous, especially if there are externalities among them. Second, it is

still desirable to find equilibria in pure strategies. In fact, Prat and Rustichini [27]

investigates the connection between pure-strategy equilibria and efficiency;10 Pérez-

Castrillo [26] investigates the connection between pure-strategy equilibria and the

set of stable solutions and the core of a cooperative game.

10Although they show that with direct agent externality, such as in our framework, there is no

connection between pure-strategy equilibria and efficiency.
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Instead, we consider that the discontinuities arising from the response of the

agents are of the form allowed by condition C. To illustrate, consider the following

example of an coordination game among principals. There are two principals and

M agents. Principal i’s payoff is given by

ui(xi, xj) =

{

fi(a) if x1 = g(x2)

0 otherwise

where g : X2 → X1 is a continuous and injective function, and fi : A → R is a non

negative function.

The idea is the if the principals manage to coordinate their choices (that is, if

x1 = g(x2)), then each i can potentially obtain a positive payoff, provided that the

agents respond with an equilibrium a ∈ A such that fi(a) > 0. The function fi may

capture how the agents coordinate their actions to visit the principals. For instance,

if a given action a means that agents choose to contract only with principal 1, then

f1(a) > 0 and f2(a) = 0. If other action ã implies that some agents visit principal

1 and other agents visit principal 2, then f1(ã) > 0 and f2(ã) > 0.

Note that the strict upper contour set of each principal is either a singleton or

the empty set, so condition Q is satisfied. Now, for each fixed profile of continuation

equilibria σ : X → A, we see that condition C is satisfied for the game Gσ. It

suffices to use ϕi,x : X → Xi with ϕ1,x(y) = g(y2) and ϕ2,x(y) = g−1(y1), for every

x ∈ X that is not an equilibrium of the game Gσ, and for an open neighborhood

Vx belonging to the complement of the graph of g. Therefore, there exist Nash

equilibria, which are by construction subgame perfect.

The game is not better reply secure, diagonal transfer continuous or weakly trans-

fer continuous. This is obvious because the function g need not allow for constant

securing strategies. Therefore, the approach taken in Monteiro and Page [20] and

Monteiro and Page [21] does not work for this example. Moreover, the game does

not satisfy the conditions in Simon and Zame [32] either, because the correspondence

U : X ⇉ R2, given by the universe of possible payoff vectors for the principals, given

the response of the agents, is not upper hemicontinuous. In fact, for profiles xn ap-

proaching a profile x with x1 = g(x2), and with g(xn
1 ) 6= g(xn

2 ), the payoffs of both

principals are equal to zero, and in the limit at least one may jump up to a strictly

positive number, depending on the equilibrium response of the agents. Therefore,

the approach taken in Monteiro and Page [22] and Carmona and Fajardo [7] does

not work either for this example.

Finally, notice that the response of the agents does provide the sharing rule: for

instance, it may well be that, for each x with x1 = g(x2), there are two equilibria
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of the continuation game, where in the equilibrium σ1(x) every agent chooses the

mechanism of principal 1, so f1(σ
1(x)) > 0 and f2(σ

2(x)) = 0, and in the equilibrium

σ2(x) every agent chooses the mechanism of principal 2, so f1(σ
2(x)) = 0 and

f2(σ
2(x)) > 0. So, in effect, the two equilibria of the continuation game act as a coin

flip for the principals. Notice also that for a fixed profile of continuation equilibria

σ : X → A, the payoff function of a given principal may be highly discontinuous

in X, with agents responding with different choices of principals for nearby profiles

x ∈ X. This feature makes the strict upper contour sets erratic, and yet is a natural

economic condition (consumers may all coordinate in one store when two competitors

choose the same price for their products).

To summarize, given our assumptions guaranteeing existence of a continuation

equilibrium σ(x) for each x ∈ X, assume further that the game Gσ satisfies con-

ditions C and Q as in the example above. Then we guarantee existence of a pure

strategy subgame perfect equilbrium in a class of games where some of the discon-

tinuities that arise naturally are allowed only by condition C.

7. Appendix

Recall the Fan-Glicksberg fixed point theorem:

Lemma 7.1. Let X be a compact and convex subset of a Hausdorff locally convex

topological vector space, and Φ : X ⇉ X a well behaved correspondence. Then there

exists x ∈ Φ(x).

A topological space X is paracompact if every open covering V has a locally

finite open refinement U that is still a covering of X. That is, for every U ∈ U there

exists V ∈ V with U ⊂ V , the set {U ∈ U : x ∈ U} is finite, and X =
⋃

{U : U ∈ U}.

For a given open covering U of X and x ∈ X, let Star(x,U) =
⋃

{U ∈ U : x ∈ U}. If

the open covering {Star(x,U) : x ∈ X} refines an open covering V of X, then we say

that U is a ∆-refinement of V. A topological space is called fully normal if every

open covering has an open ∆-refinement. Stone’s theorem states that a T1 space

is paracompact if and only if it is fully normal.11 In particular, X is paracompact

whenever it is either a compact Hausdorff space or a metric space.

A paracompact space admits a partition of unity subordinated to the locally

finite open refinement V = {Vα}α∈D, which consists of a family of functions {gα}α∈D

such that:

(i) gα : X → [0, 1] is continuous for each α ∈ D,

11A topological space X is called T1 for every distinct points x, y of X there exist two open

sets U and V , with x ∈ U , y ∈ V , x /∈ V and y /∈ U . A Hausdorff space is T1. For more on the

topological concepts used here, see Howes [12].
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(ii) {x : gα(x) > 0} ⊂ Vα for each α ∈ D,12

(iii)
∑

α∈D gα(x) = 1 for each x ∈ X.

Partitions of unity allow one to obtain global properties from local properties.

Formally, we have the following “Gluing Lemma”:

Lemma 7.2. Let X be a paracompact and convex subset of a topological vector

space. If for each x ∈ X there corresponds an open neighborhood Vx of x and a well

behaved correspondence ϕx : Vx ⇉ X, then the ϕx’s can be glued together into a well

behaved correspondence Φ : X ⇉ X.

Proof. Because X is paracompact, there exists a locally finite open refinement

{Vα}α∈D of the open cover {Vx}x∈X and a partition of unity {gα}α∈D subordinated.

Define Φ : X ⇉ X by

(7.1) Φ(x) =
∑

α∈D

gα(x)ϕxα(x).

Now, because {Vα}α∈D is locally finite, each x has a neighborhood V that intersects

only finitely many of the Vα’s. Hence Φ(x) is a convex combination of finitely many

ϕx’s, and hence the values of Φ are non empty, convex and compact. Finite convex

combinations of compact valued upper hemicontinuous correspondences are upper

hemicontinuous13, so we need to show that the correspondence gϕ : X ⇉ X, defined

by g(x)ϕ(x) for each x ∈ X, where g : X → [0, 1] is a continuous function, is upper

hemicontinuous with compact values. The values of gϕ are compact because each

g(x)ϕ(x) is the continuous image of a compact set. Pick a net xα converging to x

and a corresponding net yα ∈ g(xα)ϕ(xα). Then yα = cαzα with cα = g(xα) and

zα ∈ ϕ(xα). If yα → y, then because [0, 1] is compact, cα → c ∈ [0, 1], and a fortiori

zα → z with y = cz. By upper hemicontinuity of ϕ, z ∈ ϕ(x), and by continuity of

g, c = g(x). Hence y ∈ g(x)ϕ(x). �

Let N be an indexing set let Xi be a convex subset of a topological vector space,

for each i ∈ N . Let X = ×i∈NXi and E ⊂ X be a given (possibly empty) subset of

X. For any set K ∈ X, let coK denote its convex hull.

Definition 7.3. Condition A is satisfied if: (i) there exist correspondences Ai :

X ⇉ Xi, i ∈ N , such that for each x ∈ X there exists i ∈ N with xi /∈ coAi(x);

(ii) whenever x /∈ E, there exist an open neighborhood Vx of x and well behaved

12For any set K ⊂ X, K denotes its closure in X.
13Aliprantis and Border [1] Theorem 17.32.
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correspondences ϕi,x : Vx ⇉ Xi, for each i ∈ N , such that ϕi,x(y) ⊂ Ai(y) for every

y ∈ Vx and every i ∈ N .

Theorem 7.4. For each i ∈ N , let Xi be a compact and convex subset of a Hausdorff

locally convex topological vector space. Let X = ×i∈NXi and E ⊂ X satisfy condition

A. Then E 6= ∅.

Proof. By way of contradiction, if E = ∅, then X = {x ∈ X : ∃(Vx, {ϕi,x}i∈N )

as in condition A}. Because a compact Hausdorff space is paracompact, Lemma

7.2 applied to each i ∈ N yields a non empty, convex and compact valued upper

hemicontinuous correspondence Φi : X ⇉ Xi. By condition A, Φi(x) ⊂ coAi(x) for

every x ∈ X and i ∈ N . Putting Φ : X ⇉ X as Φ(x) = ×i∈NΦi(x), we have that Φ

is a non empty, convex and compact valued upper hemicontinuous correspondence,

and we must have x /∈ Φ(x) for every x ∈ X, for otherwise xi ∈ coAi(x) for every

i ∈ N , contradicting condition A. But from Lemma 7.1 there must exist a fixed

point of Φ. This contradiction establishes that E 6= ∅. �

Using E ⊂ X as the set of pure strategy Nash equilibria, from Theorem 7.4 we

immediately have the following:

Corollary 7.5. Let G = (Xi, Pi)i∈N be a game such that Xi is compact for each i ∈

N and condition A is satisfied. Then there exists a pure strategy Nash equilibrium.

Corollary 7.5 has no counterpart in the literature. It requires no assumption on the

allowed discontinuities of the preference correspondences or the payoff functions, and

neither does it require convexity/quasiconcavity assumptions. On the other hand,

it does not provide a useful way of verifying if a particular game has an equilibrium,

for condition A is not tied down to conditions on the payoff functions of the players.

Let I : X ⇉ N be a non empty correspondence, and let Gr(I) = {(x, i) ∈

X × N : i ∈ I(x)}. An aggregator is a correspondence A : X ⇉ X given by

A(x) = ×i∈NAi(x), where for each i ∈ N

(7.2) Ai(x) =

{

Bi(x) if i ∈ I(x)

Xi otherwise

where Bi : X ⇉ Xi is a convex valued correspondence with coPi(x) ⊂ Bi(x) for

every x ∈ X. The idea is that i ∈ I(x) means that i is “activated” at x.
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Definition 7.6. A game G = (Xi, Pi)i∈N satisfies Condition B if whenever x /∈ E,

there exist an open neighborhood Vx of x and well behaved correspondences ϕi,x :

Vx ⇉ Xi, for i ∈ N , such that ϕi,x(y) ⊂ Ai(y) for every y ∈ Vx, for some aggregator

A.

Definition 7.7. A game G = (Xi, Pi)i∈N satisfies Condition QB if xi /∈ Bi(x) for

every (x, i) ∈ Gr(I).

Using the aggregator A in the definition of condition A, it is immediate that:

Lemma 7.8. If a game G = (Xi, Pi)i∈N satisfies conditions B and QB, then it

satisfies condition A.

Using Lemma 7.8 we have the following corollary of Theorem 7.4:

Corollary 7.9. Let G = (Xi, Pi)i∈N be a game such that Xi is compact for each

i ∈ N and conditions B and QB are satisfied. Then there exists a pure strategy Nash

equilibrium.

It is clear that condition B implies condition C. The converse is not necessarily

true, because we may have a situation where one player must be activated at a profile

y from the perspective of y ∈ Vx (that is, using the well behaved correspondence

ϕi,x : Vx ⇉ Xi) and that the same player cannot be activated at the same profile y

from the perspective of y ∈ Vz, with x 6= z. In the proof of Theorem 2.4 below we

show that these situations can be avoided.

7.1. Proof of Theorem 2.4. By way of contradiction, assume that the game sat-

isfies conditions C and Q and E = ∅. Since X is paracompact and X = {x ∈ X :

∃(Vx, {ϕi,x}i∈N ) as in condition C}, the open covering V = {Vx}x∈X has an open

∆-refinement U . Assign to each x ∈ X an open neighborhood Ux ∈ U , and the

associated well behaved correspondences ϕi,y restricted to Ux for some Vy ∈ V with

Ux ⊂ Vy. Now, since Star(x,U) ⊂ V for some V ∈ V, it is impossible to have a

situation where one player must be activated at a profile y from the perspective of

y ∈ Ux and that the same player cannot be activated at the same profile y from the

perspective of y ∈ Uz, with x 6= z: both Ux and Uz are contained in Star(y,U), which

is in turn contained in some V ∈ V, and the associated well behaved correspondences

can be applied throughout Star(y,U). Hence we can define the activating mapping

I : X ⇉ N by declaring that i ∈ I(x) whenever player i is activated from the

perspective of all neighborhoods forming Star(x,U). Now defining the aggregator



EXISTENCE OF NASH EQUILIBRIA 25

as in (7.2), we have that conditions C and Q imply that conditions B and QB are

satisfied, contradicting Corollary 7.9.

7.2. Extension to Non-Compact Spaces. Let Φ : X ⇉ Y be a correspondence

between two topological vector spaces. We say that Φ satisfies the local intersec-

tion property if whenever Φ(x) 6= ∅, there exists an open neighborhood Vx of

x such that
⋂

z∈Vx
Φ(z) 6= ∅.14 Given any correspondence Φ : X ⇉ Y with non

empty values and an open neighborhood U of the origin of X, the correspondence

ΦU : X ⇉ Y defined by ΦU (x) =
⋃

x′∈x+U Φ(x′) satisfies the local intersection

property.15

Yuan [39] proved the following fixed point theorem:

Lemma 7.10. Let X be a convex subset of a Hausdorff topological vector space, and

let A : X ⇉ X be a correspondence satisfying the coercive condition. Let Φ : X ⇉ X

be a non empty valued correspondence satisfying the local intersection property and

with Φ(x) ⊂ A(x) for every x ∈ X. Then there exists x ∈ coA(x).

Let Xi be a convex subset of a topological vector space for each i ∈ N , X =

×i∈NXi and E ⊂ X be a given (possibly empty) subset of X.

Definition 7.11. Condition Anc is satisfied if: (i) there exist convex correspon-

dences Ai : X ⇉ Xi, i ∈ N , such that for each x ∈ X there exists i ∈ N with xi /∈

Ai(x); (ii) the set X\A(x) is compact for each x ∈ X, where A(x) = ×i∈NAi(x),

and A : X ⇉ X satisfies the coercive condition; (iii) whenever x /∈ E, there exist

an open neighborhood Vx of x and well behaved correspondences ϕi,x : Vx ⇉ Xi, for

each i ∈ N , such that ϕi,x(y) ⊂ Ai(y) for every y ∈ Vx and every i ∈ N .

Theorem 7.12. For each i ∈ N , let Xi be a paracompact and convex subset of a

Hausdorff topological vector space. Let X = ×i∈NXi and E ⊂ X satisfy condition

Anc. Then E 6= ∅.

Proof. If E = ∅, then {Vx}x∈X , where Vx is the open neighborhood of x figuring

in condition A, is an open covering of X, and from paracompactness and Lemma

7.2 we have a well behaved correspondence Φ : X ⇉ X with Φ(x) ⊂ A(x) for every

x ∈ X, where A(x) = ×i∈NAi(x). We claim that there exists an open neighborhood

U of the origin such that ΦU (x) ⊂ A(x) for every x ∈ X. If such U does not exist,

14Local intersection property is also called “transfer open inverse valuedness” in the literature.
15In fact, there exists a symmetric open neighborhood V of the origin such that V ⊂ U . Let

y ∈ Φ(x). For any z ∈ x + V we have x ∈ z + V ⊂ z + U , so y ∈ ΦU (z) for every z ∈ x + V .
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then we can construct a net xU → x with a corresponding net yU ∈ Φ(xU ) with yU /∈

A(x). Because X\A(x) is compact, there is a convergent subnet yU → y /∈ A(x),

contradicting upper hemicontinuity of Φ. Because ΦU satisfies the local intersection

property, Lemma 7.10 implies that there exists x ∈ A(x), contradicting condition

Anc. This contradiction establishes that E 6= ∅. �

It is important to note that condition Anc does not correspond to condition A

when X is compact. Although the assumption that the correspondence A satisfies

the coercive condition is trivially satisfied when X is compact and convex, the as-

sumption that X\A(x) is compact requires assuming, in addition to condition A,

that the correspondence A be open-valued. It is also important to notice that X

need not be locally convex in Theorem 7.12, as opposed to Theorem 7.4. The reason

is that the fixed point theorem employed is based on local intersection property, and

not on upper hemicontinuity. The cost, as just noted, is that extra assumption of

open-valuedness of the correspondence A.

The results in the compact case can be extended to the non-compact case in

a simple way. As above, since Lemma 7.10 does not require local convexity, the

underlying spaces are assumed to be Hausdorff topological vector spaces. From

Theorem 7.12 we have:

Corollary 7.13. Let G = (Xi, Pi)i∈N be a game such that Xi is paracompact for

each i ∈ N and condition Anc is satisfied. Then there exists a pure strategy Nash

equilibrium.

7.3. Proof of Theorem 2.6. The intermediate steps with extensions of conditions

B and QB are analogous to the ones presented above, so we can go directly to the

general case. That is, conditions Cnc and Q imply condition Anc, so Theorem 2.6

follows directly from Corollary 7.13.

7.4. Proof of Proposition 4.8. For the case of generalized weak transfer continu-

ity the result follows immediately from the definitions.

For the case of generalized diagonal transfer continuity the result is almost imme-

diate, for if
∑N

i=1 ui(zi, y−i) >
∑N

i=1 ui(y) for all y ∈ Vx and all zi ∈ ϕi,x(y), then it

must be the case that for each y ∈ Vx there exists a player i with ui(zi, y−i) > ui(y)

for every zi ∈ ϕi,x(y) (if this is not true for some zi, we can shrink ϕi,x(y) accordingly

– it is surely true for at least one element of this image).

For the case of generalized better reply security, let x∗ not be an equilibrium,

and let L(x∗) = {u ∈ RN : u = limx′→x∗ u(x′) for some x′ → x∗} be the associated
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compact set of vectors of payoff limits.16 For each i ∈ N , let Li(x∗) = {u ∈ L(x∗) :

∃(ϕi, Vx∗ ∋ x∗, αi > ui) s.t. ui(zi, x−i) ≥ αi for every zi ∈ ϕi(x) and all x ∈ Vx∗}

be the set vectors of payoff limits associated with x∗ such that player i can secure

a better reply (by generalized better reply security, for each u ∈ L(x∗) there must

exist at least one player that can secure a better reply). Let Li
i(x

∗) = projiL
i(x∗).

Let u∗
i = sup{ui : ui ∈ Li

i(x
∗)} whenever Li

i(x
∗) 6= ∅, and N∗ = {i ∈ N :

u∗
i ∈ Li

i(x
∗) be the set of players for which the supremum u∗

i is achieved. For each

i ∈ N with Li(x
∗) 6= ∅ let {un

i }n>0 be a sequence in Li
i(x

∗) with un
i → u∗

i , where

un
i = u∗

i for all n > 0 whenever i ∈ N∗. Let (ϕn
i , V n

i,x∗ ∋ x∗, αn
i > un

i ) be the

associated securing triple ui(zi, x−i) ≥ αn
i for every zi ∈ ϕn

i (x) and all x ∈ V n
i,x∗ .

Let V n =
⋂

{i:Li(x∗) 6=∅} V n
i,x∗ , and for each i with Li(x

∗) = ∅, define ϕn
i (x) = x̄i, for

some arbitrary x̄i and all x ∈ V n .

Fix n > 0. If there exists an open neighborhood U ∋ x∗ such that for each y ∈ U

there exists i ∈ N with ui(zi, y−i) > ui(y) for every zi ∈ ϕn
i (y), then condition C is

obtained (using U and ϕn
i for all i ∈ N). Otherwise, we can find a directed system

of neighborhoods U of x∗ and a net {yn,U}U∈U with yn,U →U x∗ with the property

that ui(z
n,U
i , yn,U

−i ) ≤ ui(y
n,U ), for some zn,U

i ∈ ϕn
i (yn,U ) and every i ∈ N , along the

net.

Repeat the argument for each n > 0. If there is an n > 0 such that we are able to

find the open neighborhood U as above, then condition C is satisfied. If not, then

we can construct a diagonal sequence {yn,U(n)}n>0 such that yn,U(n) → x∗, and a

fortiori u(yn,U(n)) → u ∈ L(x∗). There must exist a player i such that u ∈ Li(x∗).

If i ∈ N∗, then

u∗
i < α∗

i ≤ ui(z
n,U(n)
i , y

n,U(n)
−i ) ≤ ui(y

n,U(n))

which is impossible because ui(y
n,U(n)) → ui ≤ u∗

i .

If i /∈ N∗, then

un
i < αn

i ≤ ui(z
n,U(n)
i , y

n,U(n)
−i ) ≤ ui(y

n,U(n))

which is again impossible because un
i → u∗

i and ui(y
n,U(n)) → ui < u∗

i (because

i /∈ N∗).

Summing up, it has to be that there exists n > 0, an open neighborhood U ∋ x∗

and well behaved correspondences ϕn
i : U ⇉ Xi such that for each y ∈ U there

exists i ∈ N with ϕn
i (y) ∈ Pi(y), so condition C is obtained.

16Without loss of generality, the payoff functions are assumed to be bounded. See Reny [28].
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7.5. Proof of Proposition 4.12. From Theorem 1 in Carmona [6] we know that

whenever a compact and metric game is weakly payoff secure and weakly upper

semicontinuous, the best reply correspondences are non empty and compact valued,

and upper hemicontinuous. Hence, picking any non equilibrium profile x ∈ X, there

exists a player i ∈ N for which x /∈ Gr(BRi), where BRi : X−i ⇉ Xi is given by

BRi(x−i) = arg maxyi∈Xi
ui(yi, x−i) and Gr(BRi) is its graph (Gr(BRi) = {x ∈ X :

xi ∈ BRi(x−i})). Since Gr(BRi) is closed, there exists an open neighborhood Vx

of x contained in X\Gr(BRi). Put ϕi,x : Vx ⇉ Xi as ϕi,x(y) = coBRi(y−i), a well

behaved correspondence. For the remaining players j 6= i, let ϕj,x be an arbitrary

well behaved correspondence. Then, by construction, ϕi,x(y) ∈ coPi(y) for every

y ∈ Vx, so condition C is verified.
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