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Abstract

Completely uncoupled dynamic is a repited play of a game, when
in every given time the action of every player depends only on his own
payo¤s in the past. In this paper we try to formulate the minimal
set of necessary conditions that guarantee a convergence to a Nash
equilibrium in completely uncoupled model.
The main results are:
1. The convergence to a Nash equilibrium cannot be guaranteed

with �nite memory strategies, in a generic game.
2. A convergence to an "-Nash equilibrium almost all the time can

be guaranteed with �nite memory strategies, in a generic game.

1 Introduction

Uncoupled dynamics is a process of a repeated play of a one shot game,
when strategy of every player does not depend on payo¤ functions of other
players. The problem of convergence of uncoupled dynamics to equilibrium
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is well studied and widely represented in the literature. There are several
reasonable uncoupled dynamics that lead the play to Nash equilibrium, for
example the hypothesis testing of Foster and Young [4], or the public learning
process introduced by Foster and Kakade [2].
Another strategy which can lead to Nash equilibrium is the exhaustive

search. The idea is to go through all the possible actions in some order (de-
terministic exhaustive search) or randomly (probabilistic exhaustive search),
until players get to some situation where they all are sure that they play a
Nash equilibrium, so they stay to play it forever. In [8] Hart and Mas Colell
showed among other results, that convergence to Nash equilibrium (pure or
"-equilibrium) can be guaranteed by using �nite memory exhaustive search
strategies.
Negative results (i.e., impossibility of convergence to Nash equilibrium)

for uncoupled dynamics have been studied by Hart and Mas Colell in [7] for
continuous time dynamics and in [8] for discrete time (see also Foster and
Young [3], and Young [9]).
Completely uncoupled dynamic1 is a repeated play of a game, when in

every given time the action of every player depends only on his own payo¤s
in the past. The assumption is that a player knows neither his payo¤ func-
tion nor the actions played in the history. Actually he doesn�t even know
how many players participate in the game. There are several completely
uncoupled dynamics that lead to Nash equilibrium:
Arslan, Marden,Shamma and Young [1] focused in acyclic games, and

showed several strategies that lead to Nash equilibrium in this class of games.
The regret testing strategies of Foster and Young [5] are �nite memory

strategies that guarantee a convergence to "-Nash equilibrium in 1 � " of
the time, in every two-players game. Germano and Lugosi [6] generalized
the regret testing strategies to multy-players games, but added the condition
that the game has to be generic. We can change the regret testing strategies
to search for "-Nash equilibrium for some constant time, then reduce " and
search for "-Nash equilibrium for some (larger) constant time. If " tends to
0, then we will get that the play converges to Nash equilibrium almost all
the time, but then the strategies are in�nite memory strategies.
Young�s iteractive trail and error learning [10], are �nite memory strate-

gies, that guarantee a convergence to pure Nash equilibrium for every generic

1The concept called in the lierature also radicaly uncoupled strategies, or payo¤ based
strategies.
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multi-player game in 1� " of the time.
We can see that there is a gap between the case of uncoupled dynamics

and completely uncoupled dynamics, which can be formulated as the follow-
ing questions:
1. In the uncoupled case, the convergence to Nash equilibrium can be

guaranteed by �nite memory strategies, whereas in the completely uncoupled
case only in�nite memory strategies that establish a convergence to Nash
equilibrium, are known. The question is, whether it can be done with �nite
memory.
2. In the uncoupled case, the convergence to "-Nash equilibrium can

be guaranteed for general game, whereas in the completely uncoupled case
only strategies that guarantee convergence for generic game are known. The
question is whether it can be done for general game.
3. Convergence almost all the time to "-Nash equilibrium can be guar-

anteed by �nite memory strategies in the uncoupled case, whereas in the
completely uncoupled case only strategies that guarantee the convergence in
1 � " of the time are known. The question is, whether we can improve the
convergence to almost all the time?
In this paper we are going to answer these questions. Moreover, the

goal is to formulate the minimal set of necessary conditions that guarantee
a convergence to a Nash equilibrium in completely uncoupled model. Trying
to answer the questions 1-3 formulated above, we show that:
1. The convergence to a Nash equilibrium cannot be guaranteed with

�nite memory strategies in a generic game (Corollary 2).
2. The assumption of the generic game is necessary for uncoupled dy-

namics to converge to an equilibrium (Theorem 9).
3. A convergence almost all the time to an "-Nash equilibrium can be

guaranteed with �nite memory strategies in a generic game (Corollary 12).
The paper organized as follows. In Section 2 we introduce the model

and notations. In Section 3 we study the question of convergence to pure
Nash equilibria, and in Section 4 �to the "-Nash equilibria, when the proofs
of the theorems in both sections 3 and 4 postponed to section 5 for more
transparent presentation. All the main proofs presented in Section 5.
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2 The Model

In this section we mainly describe our notations and de�ne the objects and
concepts which will used in the paper. Part of them are standard, but we
recall them for convenience of a reader.

2.1 The Game

A basic static (one-shot) game � is given in strategic form as follows. There
are n � 2 players, denoted by i = 1; 2; :::; n. N = f1; 2; :::; ng is the set of
all the players. C is a countable set of all the possible actions of the players.
Each player i has a �nite set of pure actions Ai = fai1; ai2; :::; aimig � C where
jAij = mi; let A := A1 � A2 � ::: � An be the set of action pro�les. Let B,
be the set of all actions for a single player, i.e., B is the set of all the �nite
subsets of C. Let A be the set of all the action pro�les sets, i.e. A = Bn.
The payo¤ function (or utility function) of player i is a real valued func-

tion ui : A ! R. In this paper we assume that all the utility functions are
bounded from above by some constant M big enough; i.e., jui(a)j < M for
every i 2 N , and every a 2 A. The set of mixed (or randomized) actions of
player i is probability simplex over Ai

�(Ai) = f(pij)j=1;:::;mij�mi

j=1p
i
j = 1 and p

i
j � 0 for j = 1; :::;mig

The payo¤ functions ui are multilinearly extended from A to �(A):

ui : �(A1)��(A2)� :::��(An)! R

Let U iA be the set of all the payo¤ functions of player i (bounded by M).
Let UA = U1A � U2A � :::� UnA be the set of all the payo¤ functions of all the
players when the action pro�le set is A. Let U be the set of all the games
with every possible action pro�le set A

U = [
A2A

UA

We denote all the games with n players by Un.
The actions of all the players except player i is a�i = (a1; :::; ai�1; ai+1; :::; an),

and the set of actions of all the players except player i is A�i = A1 � ::: �
Ai�1 � Ai+1 � :::� An. Let U�i

A�i be the set of all the payo¤ functions of all
the players except player i.
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An action ai 2 Ai will be called a best reply to a�i if ui(ai; a�i) �
ui(ai; a�i) for every ai 2 Ai. A pure Nash equilibrium is an action pro�le
a = (a1; a2; :::; an) 2 A, such that ai is a best reply to a�i for all i.

2.2 The Dynamic Setup

The dynamic setup consists of the repeated play, at discrete times t = 1; 2; :::,
of the static game UA. Let ai(t) 2 Ai denotes the action of player i at time
t, and put a(t) = (a1(t); a2(t); :::; an(t)) 2 A for the combination of actions
at time t.
We assume that at the end of time t each player i observes the action

that he played ai(t) and his own payo¤ ui(a(t)). At the time t player
i knows his previous acts and payo¤s which will be denoted by hi(t) =
((ai(t0))tt0=1; (u

i(a(t0))tt0=1). Let PHt;Ai be the set of all the histories of a
player with actions set Ai at time t.
The history of play in a game with action pro�le set A is HA(t) =

(a(1); a(2); :::; a(t)), where a(t0) 2 A for every t0 � t. Let Ht;A be the set

of all the histories of play of t steps, and H�
A :=

1
[
t=0
Ht;A.

Let PNE � A be the set of all the pure Nash equilibria of the game UA.
We will say that the play almost surely converges to PNE if

P ( lim
t!1

#ft0jt0 � t; a(t0) 2 PNEg
t

) = 1

i.e., the frequency of times when a pure Nash equilibrium was played, con-
verges to 1 when t!1, with probability 1.

2.3 Strategy Mappings

A completely uncoupled strategy of a player with actions set Ai, fAi, is a
sequence of functions (f1; f2; :::; ft; :::), where ft : PHt�1;Ai ! �(Ai). Denote
by FAi the set of all the completely uncoupled strategies of player i with
actions set Ai. The set of all the completely uncoupled strategies, for all the
actions sets is F . A mapping ' : B ! F , that assigns a completely uncoupled
strategy '(Ai) = fAi 2 FAi for every cations set Ai 2 B , will be called
completely uncoupled strategy mapping. For every given strategy mapping ',
in a game with action pro�le set A = A1�A2� :::�An, the strategies of the
players will be (fA1 ; fA2 ; :::; fAn). We denote by f = (fA1 ; fA2 ; :::; fAn) the

5



strategy pro�le. The strategy pro�le de�nes a probabilistic play of the game.
A strategy pro�le leads to Pure Nash equilibrium if the play almost surely
converges to PNE, in those games where such an equilibrium exists.
A strategy f is called a �nite memory strategy if it can be implemented

by a �nite automaton.
A history H(t) will be called realizable by a strategy pro�le f if after t

steps of play, according to the strategy pro�le f; there probability that the
history will be H(t) is positive.

2.4 Genericity

For every game u with n players and set of actions A, we can consider ui as
an element of RjAj, and u - as an element of RnjAj. Therefore we can de�ne
Lebesgue measure �(
) of games set 
 as a measure in RnjAj2. In the same
way we de�ne the measure of a set 
 � U i or 
 � U�i.
We will say that a certain property is valid in every generic game with

action pro�le set A, if the property holds for all games with action pro�le
set A except a subset of games with measure 0. We will say that a certain
property is valid in every generic game if for every A 2 A the property is
valid in every generic game with action pro�le set A.

3 Pure Nash equilibrium

We will mainly concentrate on the case of generic games in the next para-
graph. The case of not generic games will be considered separately below.

3.1 Generic Games

In generic games we are looking for strategies that will guarantee a conver-
gence to a pure Nash equilibrium in almost very game.
The considerations will be divided in two cases: �nite and in�nite memory

strategies.

2Below measure will be understood as Lebesgue measure.
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3.1.1 Finite Memory Strategies

The following negative result shows that using �nite memory strategies the
convergence of play to a pure Nash equilibrium cannot be guaranteed.

Theorem 1 Let A = A1 � A2 � ::: � An be an action pro�le set such that
A1 = A2. Then there is no completely uncoupled mapping into �nite mem-
ory strategies leading to a pure Nash equilibrium in every generic game with
action pro�le set A, and in every generic game with action pro�le set A�1.

>From this theorem immediately follows

Corollary 2 There is no completely uncoupled mapping into �nite memory
strategies that leads to a pure Nash equilibrium in every generic game.

If one would like to formulate a positive statement about convergence to
pure Nash equilibrium in the case of �nite memory strategies, there arises
a problem to save (to remember) some observation from the past, since the
payo¤s are real numbers, and it is impossible to save a general real number
in a �nite memory. An approach to avoid this problem is to consider a class
of games DPA;� where the payo¤s of a player are di¤erent one from another
by at least �:

DPA;� = fu 2 U : jui(a)�ui(a0)j � � for every i 2 N and every a 6= a0; with a; a0 2 Ag

We denote DP� = [
A2A

DPA;�.

In the classes of games DPA;� and DP� the player can save just the �rst
� log � digits after the decimal point, and still he could distinguish between
two di¤erent observations. The following Lemma shows that for � small
enough DPA;� is very close to UA.

Lemma 3 For every action pro�le set A, and for every " > 0 there exists
� > 0 such that �((DPA;�)C) < ".

Proof. By de�nition:

(DPA;�)
C = fu 2 U : 9i 2 N; 9a 6= a0; a; a0 2 A such that jui(a)�ui(a0)j < �g

For every player i 2 N , and for every pair of actions a; a0 2 A ,a 6= a0, let
E�;i;a;a0 = fu 2 U : jui(a) � ui(a0)j < �g. The measure of the set E�;i;a;a0 is
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�(E�;i;a;a0) = (2M)
njAj�1 � 2�, because all the payo¤s of all the players except

player i at the action a0 could be any number in the segment (�M;M), whilst
the payo¤ of player i at the action a0 is in the segment (ui(a)� �; ui(a) + �).
Clearly

(DPA;�)
C =

[
i2N; a;a02A a 6=a0

E�;i;a;a0

therefore

�((DPA;�)
C) �

X
i2N; a;a02A a 6=a0

�(E�;i;a;a0) = n �
�
jAj
2

�
� (2M)njAj�1 � 2�

so for every " > 0 there exists small enough � > 0 such that

n �
�
jAj
2

�
� (2M)njAj�1 � 2� < " (1)

and for this �: �((DPA;�)C) < " as required.
Let DA � U be the set of all the action pro�le sets in which all the

players have a di¤erent actions sets; i.e., Ai 6= Aj for all i 6= j.
In Theorem 1, we considered games with action pro�le set A = A1�A2�

::: � An, such that A1 = A2. Clearly the Theorem remains valid for action
pro�le set A with any two equal actions sets (Ai = Aj for i 6= j). On the
other hand, the following Theorem claims that for every game with di¤erent
actions sets (DA) in which the players could remember their payo¤s in a
�nite memory (DP�), the convergence to a pure Nash equilibrium, could be
guaranteed by �nite memory strategies.

Theorem 4 For every � > 0 there exists a completely uncoupled mapping
into �nite memory strategies which leads to a Pure Nash equilibrium in every
game � 2 DA \DP� where such an equilibrium exists.

Corollary 5 Assume that the number of players is bounded by P , and the
number of actions of every player is bounded by T . Then for every " > 0
there exists a completely uncoupled mapping into �nite memory strategies
that leads to a Pure Nash equilibrium in every game with di¤erent actions
sets, except a set of games with measure smaller than ".
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Proof of the Corollary. Let eA be an action pro�le set of P players,
where every player has T actions. For every " > 0 there exists e� > 0 such
that �((DP eA;e�)C) < ", by Lemma 3. For every action pro�le set A, with
number of players less then P and number of actions less then T one can see
by inequality (1) that the same e� > 0 guaranties that �((DPA;e�)C) < ". For
every actions pro�le set A, by Theorem 4 there exists a completely uncoupled
strategy mapping that guarantees a convergence to Nash equilibrium in every
game � 2 DA \ DPA;e�. Therefore the measure of the games for which the
convergence to a Nash equilibrium is not guarantied is �((DPA;e�)C) < ".
Complete uncoupledness with additional information There exists a
basic information of a strategy (a player) before the game starts- the domain
of the strategy mapping. Above the basic information of the players was
their action set only. Let us consider the case when there is some additional
information for every player. It makes changes in the model described above:
we now allow the strategies of the players dependent not only on the actions
set.
Let K be the set of all the possible values of information. For example,

if the information is the index number of the player, then K = N. Let
� = (�1; �2; :::; �n) : Un ! Kn be the information function, when �i(u)
is the information that of player i. In the example above �i(u) = i. An
information is called uncoupled information, if the information is not about
the payo¤ functions of the other players, or more formally, for every two
games u1 = (ui; u�i) and u2 = (ui; u�i) holds �i(u1) = �i(u2).
Till now we had ' : B ! F a strategy mapping. Now we want the

strategy mapping to be from B�K to F . Let ' : B�K ! F be a completely
uncoupled strategy mapping with additional information �. Given a strategy
mapping ', for every game u with action pro�le set A = A1�A2�:::�An, the
strategies of the players will be ('(A1; �1(u)); '(A2; �2(u)); :::; '(An; �n(u))).
In the following Theorem we show two examples of additional information

(one may say a reasonable information), that guarantee the convergence to a
pure Nash equilibrium. Like in Theorem 4 we restrict the games to the class
DP�, where the players could save their payo¤s in �nite memory.

Theorem 6 For every � > 0, if
1) for every player i 2 N , �i is the index of the player, or
2) for every player i 2 N , �i is the total number of the players in the game,
then there exists a completely uncoupled mapping with additional information
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� into �nite memory strategies that leads to a Pure Nash equilibrium in every
game � 2 DP�, where such an equilibrium exists.

Similar to Theorem 4, we can formulate the following corollary

Corollary 7 Assume that the number of players is bounded by P , and the
number of actions of every player is bounded by T . Then if
1) for every player i 2 N , �i is the index of the player, or
2) for every player i 2 N , �i is the total number of the players in the game,
then for every " > 0 there exists a completely uncoupled mapping with addi-
tional information � into �nite memory strategies that leads to a Pure Nash
equilibrium in every game where such an equilibrium exists except a set of
games with measure smaller than ".

And the proof of it is also similar to the proof of Corollary 5.

3.1.2 In�nite memory strategies

Unlike the �nite memory strategies, in the in�nite memory case, the con-
vergence to a pure Nash equilibrium can be guaranteed generically (i.e., for
almost all the games).

Theorem 8 There exists a strategy mapping ' = ffmg1m=2 into in�nite
memory strategies that leads to a Pure Nash equilibrium in almost every
game �, where such an equilibrium exists.

3.2 Not generic games

The case of not generic games is less interesting because of the following
strong negative statement.

Theorem 9 There are no completely uncoupled strategy mapping with addi-
tional uncoupled information, that leads to a pure Nash equilibrium, in every
game with more then 2 players, where such an equilibrium exists.

The Theorem claims, not only that there is no strategies that leads to
a pure Nash equilibrium in every game, but also if the players has some
uncoupled additional information about the game, still such a strategies do
not exist.
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Proof. Consider the following two 3-players games:

�1 :

a21 a22
a11 1; 1; 1 1; 1; 1
a12 1; 1; 1 1; 1; 1| {z }

a31

a21 a22
a11 1; 0; 1 0; 1; 1
a12 0; 1; 1 1; 0; 1| {z }

a32

�2 :

a21 a22
a11 1; 0; 1 0; 1; 1
a12 0; 1; 1 1; 0; 1| {z }

a31

a21 a22
a11 1; 1; 1 1; 1; 1
a12 1; 1; 1 1; 1; 1| {z }

a32

The Pure Nash equilibria of �1 are f(i; j; 1)g2i;j=1. The Pure Nash equi-
libria of �2 are f(i; j; 2)g2i;j=1.
The strategy of player 3, in both games is the same strategy, and the

histories of player 3 in both games are the same histories. So for one of the
actions 1 or 2, player 3 does not play it with frequency that converges to 1
with probability 1. If this action is action i (i = 1; 2), then at the game �i
the strategies will not lead to a pure Nash equilibrium.
For di¤erent number of actions or di¤erent number of players, one can

easily construct a similar example in which the leading to a pure Nash equi-
librium cannot be guaranteed.

4 "-Nash Equilibrium

In this section we assume that the number of players is bounded by P , and
the number of actions of every player is bounded by T .
Let x = (x1; x2; :::; xn), xi 2 �(Ai) be a mixed actions pro�le. xi is

an "-best reply to x�i if ui(xi; x�i) � ui(yi; x�i) � " for every yi 2 �(Ai).
x = (x1; x2; :::; xn) is an "-Nash equilibrium, if for every i 2 N , xi is an "-best
reply to x�i.
Given a strategy pro�le f we will say that the play converges to an "-Nash

equilibrium if the mixed actions of the players converge to "-Nash equilibrium
almost for every history3; i.e., for almost every history, for all player i 2 N
the limit lim

t!1
f i(H(t� 1)) exists and is equal to xi, and x = (x1; x2; :::; xn) is

an "-Nash equilibrium.
3This kind of convergence called also period by period behavior convergnce.
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Exactly by the same proof as for Theorem 1, we can show the following
version of Theorem 1 for the case of pure Nash equilibrium:

Claim 10 Let A = A1 � A2 � ::: � An be an action pro�le set such that
A1 = A2, then there is no completely uncoupled mapping into �nite memory
strategies that leads to a pure Nash equilibrium in every generic game � 2
DPA;�, and in every generic game � 2 DPA�1;�.

Unlike the case of pure Nash equilibrium, the following theorem claims
that the convergence to an "-Nash equilibrium can be guaranteed by �nite
memory strategies on the class of games DP�.

Theorem 11 For every " > 0, and � > 0 there exists a completely uncoupled
mapping into �nite memory strategies that leads to a "-Nash equilibrium in
every game � 2 DP�.

As in the other theorems about the class DP� we have the following
corollary.

Corollary 12 For every " > 0 there exists a completely uncoupled mapping
into �nite memory strategies that leads to an "-Nash equilibrium in every
game except a set of games with measure smaller than ".

Finally similar to the case of pure Nash equilibrium, the convergence to "-
Nash equilibrium can be guaranteed by in�nite memory strategies in generic
games.

Theorem 13 (Analog of "-Nash equilibrium to Theorem 9) For every
" > 0 there exists a completely uncoupled mapping into �nite memory strate-
gies that leads to an "-Nash equilibrium in every generic game.

Note that this theorem is not straightforwardly implied by Theorem 11
(or Corollary 12), because it states that there exist strategies that leads to
an "-Nash equilibrium not only for games in the class DP�, but for almost
all the games.
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5 Proofs

Proof of Theorem 1. Assume, by contradiction, that such a strategy
mapping ' exists. Note that A�1 = A�2, therefore ' leads to a pure Nash
equilibrium in every generic game with action pro�le sets A;A�1 and A�2.
By using the fact that ' leads to pure Nash equilibrium in generic game with
action pro�le set A�1 and A�2, we will prove that there exists a set of payo¤
functions P � UA with a positive measure such that
(i) for every � 2 P , � has a pure Nash equilibrium
(ii) the strategies (fAi)ni=1 do not lead to it.
It will show that the property of leading to Nash equilibrium doesn�t hold

for generic games.
Let SPNA�1 � UA�1 be the set of all the payo¤s which has a single pure

Nash equilibrium, and the payo¤s are bounded by M � 5, where M is the
bound for the payo¤s in all the games. Then �(SPNA�1) > 0, see Lemma
14. For every v 2 SPNA�1 let b(v) be the single pure Nash equilibrium. The
strategies (fmi)ni=2 of players 2; 3; :::; n lead to b(v) for almost every game v.
Let S � SPNA�1 be the set of the games for which (fmi)ni=2 leads to b(v),
then �(S) > 0. By Lemma 15 there exists t and an history HA�1(t) 2 H�

A�1,
realizable by (fmi)ni=2, such that from the time t+1 and on, the players play
b(v) with probability 1. For every HA�1(t) = HA�1 2 H�

A�1 let TH be the
subset of all the games v 2 UA�1 such that
- HA�1 is realizable by (fmi)ni=2
- if HA�1 = HA�1(t) is played, then from the time t+1 and on the players

play some action b 2 A�1 with probability 1.
Then

[
HA�12H�

A�1
THA�1 � S

There is a countable number of histories HA�1. S has a positive measure,
therefore there exists HA�1 = HA�1(t) such that THA�1

has a positive mea-
sure. Denote it by R := THA�1

: The action that played from the time t and

on is denoted by (a2; a3; :::; an).
One should note that A1 = A2, so fA1 = fA2 ; i.e., players 1 and 2 have

the same strategy. Therefore by the same reasons for the action pro�le set
A�2 for the same subset of R(n�1)jAj: R := THA�2

� U�2 holds
- HA�2 is realizable by (fmi)ni=1;i6=2

13



- if HA�2 is played, then from the time t+ 1 and on the players play the
action (a1; a3; a4; :::; an) 2 A�2 with probability 1.
Let us introduce a simplifying notation. For every u 2 UA and for every

subset of actions B � A, let ujB be the payo¤ function, de�ned just on the
subset B.
Here we de�ne our P � UA as the set of all the games with payo¤

function u = (u1; u2; :::; un) such that on the diagonal a1 = a2 the payo¤s
u�1jfa2Aja1=a2g and u�2jfa2Aja1=a2g are some payo¤s of the subset R. Out of
the diagonal we want that the payo¤s of all the players to be better then on
the diagonal. Furthermore, we want a12 to be a dominant

4 action for player
1, and ai1 be the dominant action of player i 6= 1. Put the following payo¤s:
For player 1

u1(a1; a2; :::; an) 2
�
[M � 2;M � 1] for a1 = a12
[M � 4;M � 3] for a1 6= a12

for a1 6= a2

For every player i 6= 1

ui(a1; a2; :::; an) 2
�
[M � 2;M � 1] for ai = ai1
[M � 4;M � 3] for ai 6= ai1

for a1 6= a2

Formally we de�ne P � U to be the set of all the payo¤ functions u =
(u1; u2; :::; un) 2 U such that:

(a) u�1(a2; a3; :::; an); u�2(a1; a3; a4; :::; an) 2 R for every action a =
(a1; a2; :::; an) 2 A such that a1 = a2.

(b) M � 4 < ui(a) � M � 3 for every action a such that a1 6= a2,
i 6= 1 and ai 6= ai1.

(c) M � 4 < ui(a) � M � 3 for every action a such that a1 6= a2,
i = 1 and ai 6= ai2.

(d) M � 2 < ui(a) � M � 1 for every action a such that a1 6= a2,
i 6= 1 and ai = ai1.

(e) M � 2 < ui(a) � M � 1 for every action a such that a1 6= a2,
i = 1 and ai = ai2.
We will show that P satis�es the following:

1. �(P ) > 0.
2. Every game u 2 P has a single pure Nash equilibrium.

4Note that the action is not a dominant action in the game, but just dominant for
actions out of the diagonal.
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3. For every game u 2 P there is a positive probability that the
strategies fA1 ; fA2 ; :::; fAn, will not lead to the pure Nash equilibrium.
which will complete the proof.

1. For every payo¤ function u that satis�es (a)-(e), conditions (b)-(e)
restrict the payo¤s out of the diagonal to be in some segment with length (or
measure) 1. So

�(P ) = �RnjA�1j(P jfa2Aja1=a2g)| {z }
on the diagonal

� 1
n(jAj�jA�1j)| {z }

out of the diagonal a1 6=a2
= �RnjA�1j(P jfa2Aja1=a2g)

(2)
Let B := fb = (u1; u2; u�f1;2g)j(u1; u�f1;2g) 2 R and (u2; u�f1;2g) 2 Rg.

One can see that B = P jfa2Aja1=a2g. By Lemma 16 with k = jA�1j, l =
(n�2)jA�1j, C = R we have �(P jfa2Aja1=a2g) > 0. Therefore by (2) �(P ) > 0.

2. If the players play some action on the diagonal, then for players 1
and 2 it is better to play some action out of the diagonal. If the players play
out of the diagonal, then the action�

ai1 for i 6= 1
a12 for i = 1

is the only best reply. So (a12; a
2
1; :::; a

n
1 ) is a single Pure Nash equilibrium.

3. The histories HA�1(t) and HA�2(t) are equal. Therefore players
3; 4; :::; n plays during all the history HA�1(t) the same actions as in the
history HA�2(t). Therefore we can denote by HA(t) the history in which
players 1 and 2 play the same actions as in the histories HA�1(t) and HA�2(t)
correspondingly, and players 3; 4; ::; n play the same actions as in both these
histories.
The history HA(t) is realizable by the strategies (fAi)ni=1 in every game

u 2 P , because we de�ned the payo¤s ui on the diagonal to be payo¤s from
the set R, so in every period t = 1; 2; :::; t there is a positive probability that
all the players i = 1; 2; :::; n, will continue to play ai(t) and then they will
stay on the diagonal (a1 = a2).
So the history HA(t) will occur with a positive probability, as a result the

action (a1; a2; a3; :::; an) will be played with probability 1, at all the periods
t + 1 and forward. But (a1; a2; a3; :::; an) is not a Nash equilibrium in the
game u (because a1 = a2), so the strategies do not lead to a pure Nash
equilibrium.

Lemma 14 For every A 2 A the subset SPN � UA of the games with a
single pure Nash equilibrium, has a positive measure.
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Proof. Consider the following n-players game:
-ui(a) = 1 for every a such that ai = ai1.
-ui(a) = 0 for every a such that ai 6= ai1.
The action ai = 1 is a dominant strategy for every player i, so the game

has a single pure Nash equilibrium (1; 1; :::; 1). Also every 1
3
-perturbation of

this game has the same single pure Nash equilibrium. Since environment of
size 1

3
of every game has a positive measure, we found a subset of games with

a positive measure as required.

Lemma 15 Let f = (f 1; :::; fn) be a strategy pro�le, where every f i is a
�nite memory strategy, that guarantees almost sure convergence of the play
to PNE in a game � that has a single pure Nash equilibrium a = (a1; :::; an).
Then there exists a history H(t) = (a(1); a(2); :::; a(t)) , realizable by f , such
that from period t + 1 and on, the players play the Nash equilibrium a with
probability 1.

Proof. Let �i be the set of all the possible memory states of player i; i.e.,
all the states of the strategy automaton. Let � = �1 � �2 � :::� �n.
The strategies f 1; :::; fn induce a Markov process on the �nite Markov

chain �. By Perron-Frobenius Theorem there is a stationary distribution �
over the Markov chain states �. Denote by 
 � � the support of �. For
every state ! 2 
 the played action is a (with probability one), because
otherwise there is some other action that played with frequency that does
not converges to zero. For every ! 2 
 the transition to the next state will be
to some states of 
. There exists a time t and a path (�1; �2; :::; �t) �i 2 �,
which is realized with a positive probability, such that �t 2 
. Let H(t) be
the history of play on the path (�1; �2; :::; �t), then H(t) realizable by the
strategy pro�le f , and from period t + 1 and on, the players play the Nash
equilibrium a with probability 1.

Lemma 16 For every k; l 2 N and for every set C � Rk+l with a positive
measure �(C) > 0, the set

B := fb = (x; y; z) 2 Rk � Rk � Rlj(x; z) 2 C and (y; z) 2 Cg � R2k+l

has a positive measure.

Proof. Let 1C ;1B be the characteristic functions of C;B. 1B(x; y; z) =
1C(x; z)1C(y; z) by the de�nition of B. For every z 2 Rl let g(z) := �(fx 2
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Rkj(x; z) 2 Cg). By Fubini Theorem

0 < �(C) =

Z
Rl

0@Z
Rk

1C(x; z)dx

1A dz = Z
Rl

g(z)dz (3)

also, by Fubini Theorem

�(B) =
R
Rl
(
R
Rk
(
R
Rk
1B(x; y; z)dx)dy)dz =

=
R
Rl
(
R
Rk
(
R
Rk
1C(x; z)1C(y; z)dx)dy)dz =

=
R
Rl
(
R
Rk
1C(x; z)dx)(

R
Rk
1C(y; z)dy)dz =

R
Rl
g(z)g(z)dz

(4)

By (3)
R
Rl
g(z)dz > 0, therefore by (4) �(B) =

R
Rl
g2(z)dz > 0.

Proof of Theorem 4. The set C of all the possible actions for all the
players is countable, therefore the set B of all the �nite subsets of C is also
countable. So there is an injective function 
 : B ! N. So for every game
� 2 DA the numbers 
(A1); 
(A2); :::; 
(An) are di¤erent.
For every game � 2 DP� the payo¤s of every player are di¤erent at least

in �, so given a payo¤ ui(a) for player i, the player could ascribe importance
just to the �rst 1� log10(�) digits after the decimal point of the payo¤. We
denote it by bui(a)c�. Then bui(a)c� 6= bui(a0)c�for every a; a0 2 A a 6= a0.
So when we say that a strategy of player i remembers the payo¤ ui(a), we
actually mean that the strategy remembers bui(a)c�, which could be saved
in a �nite memory.
Let ' be a mapping that assigns the strategy f(
(Ai)) for every actions

set Ai 2 B, where the strategy fAi(l) for l 2 N is de�ned below.
We start from formal descriptions of strategy fAi(l), and we will explain

later why the strategies f(
(A1)); f(
(A2)); :::; f(
(An)) lead to a pure Nash
equilibrium.
The strategy fAi(l) is composed from �ve main steps.
Step 1 is called the evaluation of index step:
Substep 1:1: The player plays ai1, and remembers his payo¤u

i(a11; a
2
1; :::; a

n
1 ),

denote it for short ui(1).
The player moves to the next substep 1:2.
Substep 1:2:k:1, for k 2 N: If l = k (i.e., 
(Ai) = k) the player plays ai1.

Otherwise he plays ai2. Anyway he remembers the payo¤.
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Substep 1:2:k:2: If l > k the player plays ai2. Otherwise he plays a
i
1. If

his payo¤ is ui(1) he evaluates his index j by

j = #fkjk < l and the player gets at step 1:2:k:1 di¤erent payo¤ from ui(1)g+1

and continues to step 2. Otherwise if his payo¤ is not ui(1) he continues to
substep 1:2:k + 1:1.
Step 2, is called the recognition of action pro�le set step:
Below we will show that the indexes of di¤erent players are di¤erent, so

the player with index j will be called player j.
Substep 2:k for k 6= j:

Substep 2:k:1 :The player plays ai1. If his payo¤ is u
i(1) he concludes

that there are k�1 players and he continues to step 3. Otherwise he continues
to substep 2:k:2.

Substep 2:k:l, for l � 2: The player plays ai1. If his payo¤ is u
i(1)

he concludes that player k has l actions and he continues to substep 2:k+1.
Otherwise he continues to substep 2:k:l + 1.
Substep 2:j:

The player plays his actions by the following order: ai2; a
i
3; :::; a

i
mi ; ai1

and then continues to substep 2:j + 1.
Step 3, is called the recognition of payo¤ function step:
Below we will show that after step 2, the player knows the pro�le action

set A.
The player goes through all the actions a 2 A by the lexicographic order

(the order is de�ned by their indexes j). For every a 2 A the player plays
his action ai and remembers the payo¤.
Step 4, is called the �nding a pure Nash equilibrium step:
The player knows his payo¤ function from step 3.
Looking through all the actions a = (ai; a�i) by the lexicographic order

the player plays ai1 if a
i is a best reply to a�i, otherwise he plays a12. If his

payo¤ is uj(1) then he remembers ai as the pure Nash equilibrium action and
moves to step 5. Otherwise he goes to the next, by the lexicographic order,
action.
Step 5 is called the playing the pure Nash equilibrium step, which

is just the repeated play if his action in the pure Nash equilibrium.
Each substep can be implemented by a �nite automata, so the strategies

are �nite automata strategies.
Let�s explain why the strategies f(
(A1)); f(
(A2)); :::; f(
(An)) lead to

a pure Nash equilibrium.
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At step 1: The players will go through all the natural numbers k =
1; 2; :::;max

i2N

(Ai). For every number k the players will know at step 1:2:k:1

whether there exists a player i with 
(Ai) = k, or not. When they will get
to k = max

i2N

(Ai), at the step 1:2:k:2 they will know that there is no player i

such that 
(Ai) > k. f
(Ai)gni=1 are di¤erent, so the indexes

j(i) = #fk 2 N j
(Ak) < 
(Ai)g+ 1

are also di¤erent. In addition fj(1); j(2); :::; j(n)g = f1; 2; :::; ng.
At step 2: First player i with index j(i) = 1 will play his actions

ai2; a
i
3; :::; a

i
mi ; ai1:When he will �nish this process, all the players will know it,

because their payo¤ will be ui(1). Hence the players will know the number
of actions of player 1. After that, the same will happen with player i0 who�s
index is j(i0) = 2, and so on, till player n. When it will be the turn of player
n+1, the players will see that player n+1, has only one action, and it means
that player n+ 1 does not exist. At the end of step 2, the players will know
the total number of players, and the number of actions of every player.
At step 3: The players will play all the possible actions a 2 A, by the

lexicographic order, so they will know their utility function.
At step 4: The players will look through all the possible actions a 2 A,

until there will be an action a 2 A in which their payo¤s will be ui(1). It
means that all the players make a best reply action at the action pro�le a.
Therefore a is a pure Nash equilibrium, and at step 5 the players will play it
all the time.
Given a game � 2 DA with a pure Nash equilibrium, all the players will

go through all the steps simultaneously, and eventually they will get to step
5, where they play a Nash equilibrium all the time, so the frequency of times
that the players play a Nash equilibrium converges to 1.
Proof of Theorem 6. As in the proof of Theorem 4, the players can save
every payo¤ in every game � 2 DP� in a �nite automata.
Let us prove that each one of the two conditions is su¢ cient:
Condition 1: If all the players have some di¤erent indexes from f1; 2; :::; ng,

then by Theorem 4, the chain of steps:
"recognition of action pro�le set" ! "recognition of payo¤ function" !

"�nding of pure Nash equilibrium" ! "playing the pure Nash equilibrium"
guarantees a convergence to a pure Nash equilibrium.
By the assumption, the players know their index i, so this four steps will

lead to a pure Nash equilibrium.
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Condition 2: The strategy mapping of every player i can depend on n,
so let us de�ne the strategy of player i in the following way:
The player randomizes uniformly a natural number 1 � ci � n. After-

wards he plays the step "recognition of action pro�le set", as if his index is
j = ci. If at the end of this step he concludes that there is n players, he
continues the steps chain "recognition of payo¤ function"! "�nding of pure
Nash equilibrium". Otherwise he randomizes again a number 1 � ci � n and
repeats the process. We call this strategy "�nding a pure Nash equilibrium
with n players". Finally when he found a pure Nash equilibrium, he plays
it.
When each player will use this strategy, the following will happen:
If (c1; c2; :::; cn) is a permutation of (1; 2; :::; n), then after the "recognition

of action pro�le set" all the players will conclude that there are n players,
and �nally �nd a pure Nash equilibrium.
If at least two of the players have randomized the same number, let j be

the smallest number such that j =2 fc1; c2; :::; cng. At the end of step 2 all
the players will conclude that there is j� 1 players, and they will randomize
their numbers again.
In every randomization the players randomize a permutation with prob-

ability n!
nn
, so eventually they will randomize a permutation and will reach a

pure Nash equilibrium.
After every randomization the strategy is �nite automata. There is a

�nite number of options in the randomization. Therefore the strategy is a
�nite automata strategy.
Proof of Theorem 8. We construct strategies that leads to a pure
Nash equilibrium in every game with di¤erent payo¤s (DP ). By Lemma
17 �(DPC) = 0, therefore these strategies lead to pure Nash equilibrium in
every generic game.
The strategies of the players can be with in�nite memory, so let assume

that the strategies can remember any real payo¤, and that the strategies
count the number of periods t.
There is a state of a strategy of a player:
State k:1: The player knows that there are at least k players, but he did

not �nd a pure Nash equilibrium with k players.
State k:2: The player knows that there are at least k players, he found a

pure Nash equilibrium with k players, and he remembers this equilibrium in
his memory.
A player starts his play at state 1:1.
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At the state k:1, a player will try to �nd an equilibrium when he assumes
that there are k players, by using the step "�nding a pure Nash equilibrium
with n players", (see the proof of Theorem 6)5. If at the end of the step the
player �nds a pure Nash equilibrium, he changes the state of the strategy to
k:2. Otherwise, he concludes that number of players is larger than k, and he
changes the strategy state to (k + 1):1.
At the state k:2, a player randomizes uniformly a natural number 1 �

ci � k + 1. Now he plays the "recognition of actions pro�le set" (see the
proof of Theorem 4). If he concludes that there are k + 1 players. It means
that actually there are k+1 players or more. Therefore he changes his state
to (k+1):1. Otherwise, if he concludes that there are less then k+1 players
he plays his action in the pure Nash equilibrium of the k players t times (t
is the number of periods till now), and stays at the state k:2.
One should note that if all the players use this strategy, then the states

of all the players remain permanently the same, because all their conclusions
after each step that was described, are identical for all the players.
Let n be the actual number of players. If all the players are at state k:1

for every k � n, then there is a positive probability that they will randomize
k di¤erent numbers, and then they all will move to one of the states k:2
or (k + 1):1 (all of them to the same one). If all the players are at state
k:2 for every k < n, there is a positive probability that k + 1 players will
randomize di¤erent numbers and then they all will move to the state (k+1):1.
So, �nally, the players will get to the state n:2. Arriving at the state n:2,
�rst the players try to �nd out if there are n + 1 players, and play actions
which are not an equilibrium. They play these actions a bounded by a
constant (independent on t) number of times. Afterwards they play t times
an equilibrium, when t ! 1. So the frequency of the times that they play
an equilibrium converges to 1.

Lemma 17 �(DPC) = 0.

Proof. Note that (DPA)C = fu 2 U : 9i 2 N , 9a 6= a0, a; a0 2 A such that
ui(a) = ui(a0)g. For every player i 2 N , and for every pair of actions a; a0 2 A
a 6= a0, let Ei;a;a0 = fu 2 U : ui(a) = ui(a0)g. Ei;a;a0 is a subspace of UA of

5In the proof of Theorem 7, when the strategy save some payo¤ it just save its � log �
digits after the decimal point. Now the strategies are with in�nite memory, so when a
strategy saves a payo¤, it saves the whole real number.
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dimension njAj � 1, therefore �(Ei;a;a0) = 0. (DPA)C =
S

i2N; a;a02A a 6=a0
Ei;a;a0

therefore �((DPA)C) = 0. DPC = [
A2A

DPA so �(DPC) = 0.

Proof of Theorem 11. We de�ne a state of a strategy of a player:
state k:1: The player knows that there are at least k players, but he did

not �nd an "
2
-Nash equilibrium with k players.

state k:2: The player knows that there are at least k players, and he found
an "

2
-Nash equilibrium with k players and he remembers his payo¤ function

and the equilibrium.
The player starts his play at state 1:1.
At state k:1, the player �nds an "

2
-Nash equilibrium when he assumes that

there is k players, by the strategy "�nding an "-Nash equilibrium" (see Claim
14). The player remembers the "

2
-Nash equilibrium (x1; x2; :::; xi; :::; xn), and

his payo¤ function euik in the game, where he found the equilibrium. The
player changes his state to k:2.
Let � be a number small enough6 such that for every "

2
-Nash equilibrium

x = (xi)ni=1 the mixed actions pro�le y = (y
i)ni=1 de�ned by y

i = (1� �)xi +
�( 1
mi ;

1
mi ; :::;

1
mi ), is an "-Nash equilibrium.

At state k:2, the player plays his mixed action in the "
2
-Nash equilibrium

(xi) with probability 1 � �, and he plays all his actions by the uniformly
distribution �with probability �. If his payo¤ is not one of the payo¤s in euik,
he changes his state to k + 1:1. Otherwise he stays at the state k:2.
The number of players is bounded by P , and the number of actions by

T , so every payo¤ function euik should be saved in T P cells of payo¤s. So the
automaton of the player is a �nite automaton.
If the playo¤ of player i is not in euik, that means that the action that was

played is not one of the actions in the game euk. Therefore, the other players
will get also some payo¤ that is not in their payo¤ function. Therefore if all
the players play with this strategy, then the updates of the states of all the
players occur simultaneously.
Let n be the actual number of players. If all the players are at state k:1

for every k � n, then there is a positive probability that they will randomize
k di¤erent numbers, and then they all will move to state k:2. If all the
players are at state k:2 for every k < n, there is a probability �n that all
the players will play all their actions with uniform distribution. Hence there
is a positive probability that the players will play some action which is not

6For example � = "
4M (when M is the bound of the payo¤s) guaranties the requirment.
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an action in euk, and then they will move to the state k + 1:1. So, �nally,
the players will get to the state n:2. In the state n:2, the players play (yi =
(1� �)xi + �( 1

mi ;
1
mi ; :::;

1
mi ))

n
i=1, which is an "-Nash equilibrium. The payo¤

function that every player save in his memory, is the actual payo¤ function
of the game, so the players will never get a payo¤which is not in their payo¤
function, and the players will stay at the state n:2 all the time.

Claim 18 (Analog of "-Nash equilibrium for Theorem 6) For every " >
0, if
(condition 1) for every player i 2 N , �i is the index of the player,or
(condition 2) for every player i 2 N , �i is the total number of the players in
the game,
then there exists a completely uncoupled mapping with additional information
� into �nite memory strategies that leads to a "-Nash equilibrium, except a
set of games with measure smaller than ".

Proof. Let � = �(") be a number small enough (For example one can take
� = "

2M
), such that for every game there exists an "-Nash equilibrium with

mixed actions which are integer multiplication of �. Such a � exists, because
every game has Nash equilibrium, and we can approximate it by integer
multiplications of �. Now we can make a discretization of �(Ai) for all i,
taking only the actions which are integer multiplication of �. Denote it bye�(Ai). Then e�(Ai) is a �nite set. So e�(A) = e�(A1)� e�(A2)� :::� e�(An)
is also a �nite set, and we can de�ne a lexicographic order on e�(A).
Let us prove that each one of the two conditions is su¢ cient:
Condition 1: The strategy of player i is the following: He uses the

following steps: "recognition of action pro�le set" ! "recognition of pay-
o¤ function" (see the proof of Theorem 4). At the end of these steps the
player knows the action pro�le set and his payo¤ function. Next he plays the
following way:
The player looks through all the mixed actions in e�(A) by the lexico-

graphic order. For every action x = (xi; x�i) 2 e�(A), player i plays ai1 if
xi is an "-best reply to x�i, otherwise he plays ai2. If his payo¤ is u

i(1), he
remembers xi as the "-Nash equilibrium mixed action and moves to the next
step. Otherwise he goes to the next action (by the lexicographic order).
Finally the player plays playing the "-Nash equilibrium xi all the time.
Similar to the proof of Theorem 6, if all the players play with this strategy,

then the play converges to an "-Nash equilibrium.
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Condition 2: Also similar to the proof of Theorem 6, a player random-
izes uniformly a natural number 1 � ci � n. If he found that there are n
players he �nds an "-Nash equilibrium and play it all the time. Otherwise he
randomizes ci again. Let us call this strategy "�nding of an "-Nash equilib-
rium". By the same considerations as in Theorem 6, if all the players play
by this strategy, then the play converges to an "-Nash equilibrium.
Proof of Theorem 13. The proof is similar to the proof of Theorem 8.
Only instead of using the step "�nding a pure Nash equilibrium", we use
"�nding an "-Nash equilibrium" (see Claim 14).
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