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Abstract

We investigate situations in which agents can only communicate
to each other through a chain of intermediators, for example because
they have to obey institutionalized communication protocols. We as-
sume that all involved in the communication are strategic, and might
want to influence the action taken by the final receiver. The set of
outcomes that can be induced in pure strategy perfect Bayesian Nash
equilibrium is a subset of the equilibrium outcomes that can be in-
duced in direct communication, characterized by Crawford and Sobel
(1982). Moreover, the set of supportable outcomes in pure equilibria
is monotonic in each intermediator’s bias, and the intermediator with
the largest bias serves as a bottleneck for the information flow. On the
other hand, there can be mixed strategy equilibria of intermediated
communication that ex ante Pareto-dominate all equilibria in direct
communication, as mixing by an intermediator can relax the incentive
compatibility constraints on the sender. We provide a partial char-
acterization of mixed strategy equilibria, and show that the order of
intermediators matters with respect to mixed equilibria, as opposed
to pure strategy ones.
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1 Introduction

In many settings, physical, social, or institutional constraints prevent people
from communicating directly. In the US army, companies report to battal-
ions, which in turn report to brigades (companies are not allowed to report
directly to brigades). Similarly, in many organizations, there is a rigid hi-
erarchical structure for communication flow within the organization. Even
without explicit regulations, there are time and resource constraints pre-
venting all communication to be direct. The managing director of a large
company cannot give instructions to all workers of the company directly. In-
stead, she typically only talks directly to high level managers, who further
communicate with lower level managers, who in turn talk to the workers.
Finally, in traditional societies, the social network and various conventions
might prevent direct communication between two members of the society.
For example, a man might not be allowed to talk directly to a non-relative
woman; instead, he has to approach the woman’s parents or husband, and
ask them to transfer a piece of information.

There is a line of literature in organizational economics, starting with Sah
and Stiglitz (1986) and Radner (1992), investigating information transmis-
sion within organizations.® However, all the papers in this literature assume
homogeneity of preferences and hence abstract away from strategic issues in
communication. As opposed to this, in this paper we analyze information
transmission through agents who are strategic and interested in influencing
the outcome of the communication.

To achieve this, we extend the classic model of Crawford and Sobel (1982;
from now on CS), to investigate intermediated communication.? We inves-
tigate communication along a given chain: player 1 privately observes the
realization of a continuous random variable and sends a message to player
2, who then sends a message to player 3, and so on, until communication
reaches player n. We refer to player 1 as the sender, player n as the receiver,
and players 2,..,n — 1 as the intermediators. The receiver, after receiving
a message from the last intermediator, chooses an action on the real line,

'Radner (1992), Bolton and Dewatripont (1994), and van Zandt (1999) examine orga-
nizations in which different pieces of information have to get to the same member, but
any member can potentially process a task once having all pieces of information. Sah and
Stiglitz (1986) and Visser (2000) study the contrast between the performance of hierar-
chic and polyarchic organizations in a related setting. Garricano (2000) and Arenas et al.
(2008) consider networks in which individuals specialize to solve certain tasks, and it takes
a search procedure (through communication among agents) to find the right individual for
the right problem.

2For a more general class of sender-receiver games than the CS framework, see Green
and Stokey (2007).



which affects the well-being of all players. We assume that all intermediators
are strategic, and have preferences from the same class of preferences that
CS considers for senders.

First, we consider pure strategy perfect Bayesian Nash equilibria (PBNE)
of such indirect communication games, and show that any outcome that can
be induced in such equilibria can also be induced in the direct communication
game between the sender and the receiver (the equilibria of which are char-
acterized in CS). Hence, if one restricts attention to pure strategy equilibria,
intermediators can only filter out information, as opposed to facilitating more
efficient information transmission. We present a simple condition for check-
ing if a given equilibrium outcome of the direct communication game can
be achieved with a certain chain of intermediators. This condition reveals
that the order of intermediators does not matter in pure strategy PBNE. We
also show that the set of pure strategy PBNE outcomes is monotonic in each
of the intermediators’ biases: increasing an intermediator’s bias (in absolute
value) weakly decreases the set of PBNE outcomes. In the standard context
of state-independent biases and symmetric loss functions, only the interme-
diator with the largest bias (in absolute terms) matters: this intermediator
becomes a bottleneck in information transmission.

More surprisingly, we show that when allowing for mixed strategies, there
can be equilibria of the indirect communication game that can strictly im-
prove communication (resulting in higher ex ante expected payoff for both
the sender and the receiver) relative to all equilibria of the game with di-
rect communication. This has implications for organizational design, as the
result shows that hierarchical communication protocols can increase infor-
mation transmission in the organization, if communication is strategic.

At the core of this result is the observation first made by Myerson (1991,
p285-288), that noise can improve communication in sender-receiver games.
Myerson provides an example with two states of the world in which there
is no informative equilibrium with noiseless communication. However, when
player 1 has access to a messenger pigeon that only reaches its target with
probability 1/2, then there is an equilibrium of the game with communica-
tion in which the sender sends the pigeon in one state but not the other
one, and the receiver takes different actions depending on whether the pi-
geon arrives or not. Obviously, the same equilibrium can be induced with a
strategic intermediator (instead of a noisy communication device) if condi-
tional on the first state, the intermediator happens to be exactly indifferent
between inducing either of the two equilibrium actions. What we show in
the context of the CS model is that such indifferences, which are necessary to
induce strategic intermediators to randomize, can be created endogenously
in equilibrium, for an open set of environments. The intuition why such in-
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duced mixing can improve information revelation by the sender is similar to
the one in Myerson (1991) and in Blume et al. (2007): the induced noise
can relax the incentive compatibility constraints on the sender, by making
certain messages (low messages for a positively biased sender, high messages
for a negatively biased sender) relatively more attractive.

As a motivation for studying such mixed equilibria, we think that the idea
of purification (Harsdnyi (1973)) is particularly appealing in communication
games. In particular, one can view mixed equilibria in indirect communica-
tion games in which all players have a fixed known bias function as limits of
pure strategy equilibria of communication games in which players’ ex post
preferences have a small random component. This assumption makes the
model more realistic, as it is typically a strong assumption that the bias of
each player is perfectly known by others.

We provide a characterization of all mixed strategy equilibria of indirect
communication games. In particular, we show that there is a positive lower
bound on how close two actions induced in a PBNE can be to each other,
which depends on the last intermediator’s bias. This implies that there is a
finite upper bound on the number of actions induced in a PBNE. Further-
more, we show that all PBNE are outcome-equivalent to an equilibrium in
which: (i) almost all types of the sender send a pure message; (ii) the re-
ceiver plays a pure action after any message; (iii) for the sender and for all
intermediators, the distribution of actions induced by different equilibrium
messages can be ranked with respect to first-order stochastic dominance. We
establish additional results for the case of one intermediator, including that
the number of distinct messages sent by the sender is exactly equal to the
number of actions induced in equilibrium, and that the intermediator can
mix between at most two distinct messages. By example we show that, in
contrast to pure strategy PBNE, the order of multiple intermediators can
matter with respect to the set of possible mixed strategy PBNE outcomes.

We analytically solve for two types of mixed strategy PBNE in the broadly
studied uniform-quadratic specification of the model, for one intermediator,
and characterize the set of bias pairs for which these equilibria exist. We
show that both of these types of equilibria exist in a full-dimensional set of
parameters. As opposed to the case of pure strategies, the set of equilibria
is not monotonic in the intermediator’s bias. For certain specifications of
the sender bias, the only PBNE with an intermediator whose bias is close
enough to 0 is babbling, while there are informative equilibria with interme-
diators with larger biases. However, once the bias of the intermediator is too
large, again only the babbling equilibrium prevails. We find PBNE involving
nontrivial mixing both when the intermediator is biased in the opposite and
when she is biased in the same direction as the sender. Interestingly, the
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latter requires the intermediator to be strictly more biased than the sender.

We conclude the paper by providing a simple sufficient condition for the
existence of an intermediator that can facilitate nontrivial information trans-
mission in cases when the only equilibrium in the direct communication game
between the sender and the receiver is babbling.

Our paper is complementary to two recent working papers. Ivanov (2009)
considers a setting similar to ours, but with only one intermediator, and fo-
cusing on the uniform-quadratic specification of the CS framework. More-
over, the set of questions investigated by Ivanov differs from ours: the paper
does not investigate the set of equilibria of an indirect communication game
for a given set of players. Instead, the paper shows that when the intermedi-
ator can be freely selected by the receiver, there exists a strategic mediator
and a mixed strategy PBNE of the resulting indirect communication game in
which the receiver’s ex ante payoff is as high as the maximum payoff attain-
able by any mechanism. This is a sharp welfare improvement result, but it
only applies to the uniform-quadratic specification of the model. Galeotti et
al. (2009), a working paper concurrent with the first version of our paper, ex-
amines strategic communication on general networks, but in a setting where
the state space and therefore communication is much simpler than in the
CS model: players receive binary signals. Moreover, Galeotti et al. (2009)
restricts attention to equilibria in pure strategies.

There are other recent papers investigating the effect of nonstrategic noise
in communication in the CS framework. Blume et al. (2007) examine com-
munication in the CS model with an exogenously specified noise: with a
certain probability the receiver gets not the sender’s original message, but a
random message. Although some of the intuition for improved communica-
tion is similar to ours, the equilibria achieving welfare improvement are very
different than in our model: some sender types are required to mix among all
possible messages. Goltsman et al. (2008) characterize equilibrium payoffs
in the uniform-quadratic specification of the CS framework if players have
access to an impartial mediator.> They also investigate delegation, that is
when the receiver can ex ante commit to a message-contingent action plan.*

Also related to our paper is Krishna and Morgan (2004), which shows that
there exist mixed equilibria in multiple rounds of two-sided communication
(the uninformed player is required to be able to talk as well) that can improve
information transmission relative to the best equilibrium with only one round
of communication.’ Again, the structure of equilibria improving information

3See Forges (1986) and Myerson (1986) for earlier papers on general communication
devices.

4See also Kovac and Mylovanov (2008) for stochastic delegation.

®See also Aumann and Hart (2003) for cheap talk with multiple rounds of communica-
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transmission relative to the CS equilibria is very different than in our setting.
In particular, in Krishna and Morgan, high and low types of senders might
pool at some stage of the communication game in sending the same message,
while intermediate types send a separate message. Such non-monotonicities
cannot occur in equilibrium in our setting.

There is a line of literature investigating the possibility that the sender’s
preferences are private information, so that from the point of view of the
receiver, the sender’s action is a random variable even conditioning on the
state - analogously to the noise that intermediators can introduce in our
model. Olszewski (2004) and Chen et al. (2006) consider the possibility that
with some probability, the receiver is a nonstrategic type always telling the
truth.® Li and Madardsz (2008) consider a model in which all potential types
of the sender are from the original CS framework.

Niehaus (2008) considers chains of communication, as in our paper, but in
a setting with no conflict of interest among agents, and hence non-strategic
communication. Instead, Niehaus assumes an exogenous cost of communica-
tion and examines the welfare loss arising from agents not taking into account
positive externalities generated by communication.

2 The model

Here we formally extend the model in CS to chains of communication. In
particular, we impose the same assumptions as CS for all players involved in
the communication chain.

We consider the following sequential-move game with n > 3 players. In
stage 1, player 1 (the sender) observes the realization of a random variable
6 € © = [0,1], and sends a message m; € M; to player 2 (which only
player 2 observes, not the other players). From now on we will refer to
0 as the state. The c.d.f. of § is F (), and we assume it has a density
function f that is strictly positive and absolutely continuous on [0,1]. In
stage k € {2,...,n — 1} player k sends a message my € M}, to player k + 1
(which only player k + 1 observes). Note that the message choice of player
k in stage k can be conditional on the message she received in the previous
stage from player k£ — 1 (but not on the messages sent in earlier stages, since
she did not observe those). We assume that M is a Borel set that has
the cardinality of the continuum, for every k& € {1,....n — 1}. We refer to
players 2,....n — 1 as intermediators. In stage n of the game, player n (the
receiver) chooses an action y € R. This action choice can be conditional on

tion.
In Chen et al. (2006) the receiver has multiple types, as well.
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the message she received from player n — 1 in stage n — 1 (but none of the
messages sent in earlier stages).

More formally, the strategy of player 1 is defined by a probability distribu-
tion ! on the Borel-measurable subsets of [0, 1] x M; for which u*(Ax M) =
[ f for all measurable sets A, the strategy of player k € {2,...,n — 1} is a
A

probability distribution i* on the Borel-measurable subsets of M;_; x M,
and the strategy of player n is a probability distribution p™ on the Borel-
measurable subsets of M,,_; x R. Given the above probability distributions,
there exist regular conditional distributions p'(:|f) for every # € ©, and
pk(-|my_y) for every k € {2,...,n} and my,_; € Mj,_,.7

The payoff of player k € {1, ...,n} is given by u* (0, y), which we assume to
be twice continuously differentiable and strictly concave in y. Note that the
messages my, ..., m,_1 sent during the game do not enter the payoff functions
directly; hence the communication we assume is cheap talk.

We assume that for fixed 6, u" (0,y) reaches its maximum value 0 at
y*(0) = 0, while u* (0, y) reaches its maximum value 0 at y*(0) = 6 + b* (0)
for some b*(0) € R. We refer to y*(0) as the ideal point of player k at state
6, and to b* () as the bias of agent k at state §. Note that we normalize the
receiver’s bias to be 0 in every state.

As opposed to the original CS game, intermediators in our model might
need to condition their messages on a nondegenerate probability distribu-
tion over states. For this reason, it will be convenient for us to extend
the definition of a player’s bias from single states to probability distribu-
tions over states. Let {2 be the set of probability distributions over ©. Let
V¥ (1) = arg max f uk (0, 1) dy — arg max f u™ (0, y) du, for every probabil-

yeER  9cO yeR  9coO
ity distribution p € Q, and every k € {1,....,n — 1}. In words, b* (1) is the
difference between the optimal actions of player k£ and the receiver, condi-
tional on belief ;1. Note that the term is well-defined, since our assumptions
imply that both [ «*(0,y)dp and [ u™ (6,y) du are strictly concave in y.
0cO EE)

We adopt twoe more aussumptionsE of CS into our context. The first is
the single-crossing condition %(i,y) > 0, for every k € {1,...,n}. This in
particular implies that all players in the game would like to induce a higher
action at a higher state. The second one is that either b!(6) > 0 at every
6 € © or b'(0) < 0 at every § € O, and that either b*(u) > 0 at every
p € Qor b¥(u) < 0 for every k € {2,...,n — 1} and g € Q. In words,
players 1,...,n — 1 have well-defined directions of biases (either positive or

negative). The condition imposed on the sender is the same as in CS, while

"See Loeve (1955, p137-138).



the condition imposed on the intermediators is stronger in that their biases
with respect to any belief (as opposed to only single states) are required to
be of the same sign.

Finally, we assume that all parameters of the model are commonly known
to the players.

We refer to the above game as the indirect communication game. Oc-
casionally we will also refer to the direct communication game between the
sender and the receiver. This differs from the above game in that there are
only two stages, and two active players. In stage 1 the sender observes the
realization of § € © and sends message m; € M; to the receiver. In stage 2
the receiver chooses an action y € R.

The solution concept we use is perfect Bayesian Nash equilibrium (PBNE).
For the formal definition of PBNE we use in our context, see Appendix A.

Both in the context of the indirect and the direct communication game,
we will refer to the probability distribution on © x R induced by the PBNE
strategy profile as the outcome induced by a PBNE. Two PBNE are outcome-
equivalent if the above outcome distributions are the same.

3 Pure strategy equilibria

Our first result establishes that every pure strategy PBNE in the game of
indirect communication is outcome-equivalent to a PBNE of the direct com-
munication game between the sender and the receiver. That is, the set of
possible pure strategy equilibrium outcomes in any indirect communication
game is a subset of the set of possible equilibrium outcomes in the direct com-
munication game obtained by eliminating the intermediators. This makes
characterizing pure strategy PBNE in indirect communication games fairly
straightforward, since the characterization of PBNE in the direct communi-
cation game is well-known from CS. In particular, whenever the sender has
a nonzero bias, there is a finite number of distinct equilibrium outcomes.

For the formal proofs of all propositions, see Appendix B. The intuition
behind the proof is that in a pure strategy PBNE, every message of the sender
induces a message of the final intermediator and an action by the receiver
deterministically. Hence, the sender can effectively choose which action to
induce, among the ones that can be induced in equilibrium.

Proposition 1: For every pure strategy PBNE of the indirect commu-
nication game, there is an outcome-equivalent PBNE of the direct commu-
nication game.

Next we give a necessary and sufficient condition for a given PBNE of
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the direct communication game to have an outcome-equivalent PBNE in an
indirect communication game.

Let ©(y) be the set of states at which the induced outcome is y, for every
y € Y. Furthermore, for ease of exposition, we introduce the convention that

whenever O(y) is a singleton consisting of state ', then [ u*(y, 0) f(0)df >
0€O(y)
[ Ry, 0)f(0)do iff uF(y,0") > uF(y', 0'), although formally both integrals
0€0(y)
above are 0.

Proposition 2: Fix a PBNE of the direct communication game, and let
Y be the set of actions induced in equilibrium. Then there is an outcome-
equivalent PBNE of the indirect communication game if and only if

/ My, 0) 1 (0)d0 > / dM(y/,0)£(6)d0 (1)

0eO(y) 0€0(y)

for every y, v/ € Y and k € {2,...,n — 1}.

In words, the condition in the proposition requires that conditional on
the set of states in which a given equilibrium action is induced, none of the
intermediators would rather induce any of the other equilibrium actions. The
intuition behind the result is straightforward: if conditional on states in which
equilibrium action y is induced, an intermediator strictly prefers a different
equilibrium action 7/, then there has to be at least one equilibrium message
after which the equilibrium strategy prescribes the intermediator inducing
y even though given his conditional belief he prefers y’ - a contradiction.
The condition in Proposition 2 is convenient, since it can be checked for all
intermediators one by one.

An immediate corollary of the result is that the order of intermediators
is irrelevant with respect to the set of pure strategy PBNE outcomes, since
the necessary and sufficient condition in Proposition 2 is independent of the
sequencing of intermediators.

Another corollary of the result, stated formally below, is that the set of
equilibrium outcomes is monotonically decreasing in the bias of any inter-
mediator. For the intuition behind this, consider an intermediator with a
positive bias (the negative bias case is perfectly symmetric). Conditional on
the set of states inducing equilibrium action y, the set of actions that the
intermediator strictly prefers to y is an open interval with the left-endpoint
at y. Moreover, this interval gets strictly larger if the intermediator’s bias
increases, making it less likely that the condition in Proposition 2 holds for
a given PBNE of the direct communication game.
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In order to define increased bias for some player formally in the general
specification of the model, we need to introduce some new notation (the
definition is much simpler for state-independent biases, see below). Let k €
{2,...,n — 1}. Fix player k’s two payoff functions, u* and v*. We say that
v* is more positively (resp. negatively) biased than u®, if there exist affine
transformations of ©* and v*, u** and v** respectively, such that

kx kx ke kx
ov™(0,y) >3u (0,y) rosp. o™ (0,y) <(9u (6, y)
Jy Oy dy dy

(2)

for every 6 and y.

An example of v* being more positively biased than u* (equivalently, u*
being more positively biased than v*) is when v* is obtained by shifting u*
to the right, that is if there exists § > 0 such that u*(y,0) = v*(y + §,0) for
every y and 6.

Proposition 3: Let k € {2,...,n—1} and fix the preferences of all players
other than k. Let u* be a payoff function implying positive (respectively,
negative) bias. If v* is more positively (resp. negatively) biased than u*,
then for every pure strategy PBNE of the indirect communication game in
which player k’s payoff function is v*, there is an outcome-equivalent pure-
strategy PBNE of the indirect communication game in which player k’s payoff

function is u*.

The above results simplify considerably for the case where players have
state-independent biases and symmetric loss functions, that is when there
exist b',...,0" ! € Rand | : R — R, with [(0) = 0 such that u*(6,y) =
—I(Jy — 0 — b¥|) for every k € {1,...,n}. In this context, conditional on the
set of states that induce an equilibrium action y, the set of actions player k
(for k € {2,...,n—1}) strictly prefers to y is (y, y+2b%). Therefore, the condi-
tion in Proposition 2 simplifies to |y — 1| > 2|b*| for every two actions y # v/
induced in equilibrium, while Proposition 3 simplifies to stating that the set
of outcomes that can be supported in pure strategy PBNE is monotonically
decreasing in |b*|, for every k € {2,...,n — 1}. Note also that if for some
k* € {2,...,n — 1}, we have |[b*"| > [b¥| for every k € {2,...,n — 1} then
ly — 3| > 2|b*"| implies that |y — y/| > 2|b¥| for every k € {2,...,n — 1}, and
hence the condition in Proposition 2 holds. This means that only the inter-
mediator with the largest absolute value bias matters in determining which
pure strategy PBNE outcomes of the direct communication game can be sup-
ported as a PBNE outcome in indirect communication, as the intermediator
becomes a bottleneck in the strategic transmission flow of information.
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We conclude the section with a brief discussion of a limit case of our
model when player 1 is unbiased (from the point of view of the receiver),
since this case is not considered explicitly in CS. Propositions 1-3 above can
easily modified to cover this case. In particular, the direct communication
game in this case has an equilibrium with full information revelation, and
for every m € Z,, at least one partition equilibrium with m partition cells
(in the uniform-quadratic specification of CS, the unique such equilibrium
partition is when all cells have length %) With intermediators involved, in
pure strategy PBNE only a subset of the above outcomes can be supported,
the ones in which induced equilibrium actions are far enough from each other,
relative to the biases of the intermediators.

4 Mixed strategy equilibria

In this section, we analyze mixed strategy PBNE of indirect communication
games. We show that for some parameter values there can be mixed equi-
libria that ex ante Pareto-dominate all PBNE of the direct communication
game. That is, intermediators might facilitate better information transmis-
sion. However, as opposed to pure strategy PBNE, the set of mixed strategy
PBNE is a complicated nonmonotonic function of the intermediators’ biases.

In Subsection 4.1, we derive general properties of mixed strategy PBNE.
In Subsection 4.2, we provide two classes of examples of mixed strategy
PBNE in the uniform-quadratic specification of the model. In Subsection
4.3, we show that the order of intermediators matters for the set of possible
PBNE outcomes. Finally, in Subsection 4.4, we provide a condition for an
intermediator to be able to facilitate information transmission, in cases where
no information can be transmitted in a direct communication game.

4.1 General properties of mixed equilibria

Below we show that although there might be many different mixed strat-
egy PBNE of an indirect communication game, all of them are outcome-
equivalent to some equilibrium in which the following properties hold: (i)
the state space is partitioned to a finite number of intervals such that in the
interior of each partition cell, player 1 sends the same (pure) message; (ii) the
receiver plays a pure strategy after any message; (iii) the probability distrib-
ution over actions that different messages of a player i € {1,...,n — 1} induce
can be ordered with respect to first-order stochastic dominance. Moreover,
we show that there is a finite upper bound on the number of actions that can
be induced in a PBNE of a given indirect communication game.
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Before we state the above results formally, we first establish that the
assumptions we imposed on the preferences of players imply that for every
intermediator, there exists a minimal bias, that is there exists a belief over
states such that the intermediator’s bias is weakly smaller given this belief
than given any other belief.

Claim 1: There exists b* > 0 such that mig|bk(,u)\ = V", for every k €
ue
{2,..,n—1}.

We refer to b as the minimum absolute bias of player k. Next we show
that in any PBNE, the receiver plays a pure strategy, and any distinct actions
induced in equilibrium cannot be closer to each other than the minimum
absolute bias of player n — 1. The first result is an immediate consequence
of the strict concavity of the receiver’s payoff in the action choice, implying
that for any belief, there is a unique payoff-maximizing action. The intuition
behind the second result is that given that the receiver always chooses the
action maximizing his expected payoff conditional on the message he receives,
if two equilibrium actions y and 4 are closer to each other than the minimum
absolute bias of player n — 1, then along the equilibrium path, it has to be
that player n — 1 either sends a message inducing y although conditional
on his beliefs 3/ would yield him a higher expected payoff, or the other way
around.

Proposition 4: After any message, the receiver plays a pure strategy,
and if ¥,y € R are two distinct actions that are induced in a PBNE, then
the distance between them is weakly larger than 5" .

The result implies that b”%l +1 serves as an upper bound on the number of
distinct actions that can be induced in a PBNE. Note also that if player n— 1
has a state-independent loss function and constant bias b,_; (as assumed for
players in most of the literature) then Proposition 4 implies that equilibrium
actions have to be at least |b,_ ;| away from each other, since in this case
b1 (u) = b, for every u € Q.

The next result shows that just like in a direct communication game a
la CS, in every PBNE of an indirect communication game, the state space
is partitioned to a finite number of intervals such that at all states within
the interior of an interval, the sender sends essentially the same message.
Moreover, the distribution of actions induced by equilibrium messages of
both the sender and the intermediators can be ranked with respect to first-
order stochastic dominance. To get an intuition for this result, first note that
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given the strict concavity of the receiver’s utility function, given any belief,
he has a unique optimal action choice. Therefore, the distributions of actions
induced by equilibrium messages of player n — 1 can be trivially ordered with
respect to first-order stochastic dominance. Then strict concavity of the
utility function of player n—1 implies that in equilibrium he can mix between
at most two messages, and that if he mixes between two different messages,
then there cannot be a third message inducing an in-between action. This in
turn implies that the distributions of actions induced by equilibrium messages
of player n—1 can be ranked with respect to first-order stochastic dominance.
By an iterative argument we show that this result extends to players n — 2,
..., 1. Then the single-crossing property holding for player 1’s utility function
can be used to establish that the set of states from which player 1 sends a
given equilibrium message form an interval.

Proposition 5: Every PBNE is outcome-equivalent to a PBNE in which
© is partitioned into a finite number of intervals such that in the interior
of any interval, player 1 takes a pure action. Moreover, the distribution of
outcomes induced by different messages player i € {1,....,n — 1} sends in a
PBNE can be ranked with respect to first-order stochastic dominance.

If there is a single intermediator in the game, then some additional fea-
tures can be established for all PBNE. In particular, any PBNE is outcome-
equivalent to one in which the intermediator mixes between at most two
messages along any path of play. Moreover, PBNE are of a particular struc-
ture in that the state space is partitioned into components, where play within
a component is connected through mixing by the intermediator. More pre-
cisely, components are the smallest events such that, along the equilibrium
path, if the state is in the interior of a given component, then it is common
knowledge among players that the state is in the closure of the component,
while if the state is outside the closure of the given component, then it is
common knowledge among players that the state is outside the interior of the
component. The next subsection provides some examples of how strategic
interaction can be within a component.

Proposition 6: If n = 3, then for every PBNE there is an outcome-
equivalent PBNE, such that © can be partitioned into a finite number of
intervals By, ..., By, referred below as components, such that for any com-
ponent By, the following hold: (i) The interior of By can be partitioned into
a finite number of intervals IF, ..., T Jkk such that player 1 sends message ml"k

with probability 1 at any 6 € int(I;) and message m?* is not sent from
any state 6 ¢ cl(I}); (i) If the intermediator is positively biased, then for
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Jj € {l,....jr — 1} after message mi’k he mixes between messages mé’k and
m3™* and after message m?*"* he sends message m4* with probability 1;
(iii) If the intermediator is negatively biased, then for j € {2,...,j;} after
message m{"k he mixes between messages mé’k and mg_l’k, and after message
my* he sends message my" with probability 1; (iv) The receiver chooses a

different action after every message sent in equilibrium.

Proposition 6 implies that in a game with a single intermediator, the
number of distinct messages (messages that induce different distributions of
actions) sent in equilibrium, both by the sender and by the intermediator, is
equal to the number of actions induced in equilibrium.

Another special feature of an indirect communication game with a single
intermediator is that if the intermediator is biased in the same direction as
the sender, and his bias is more moderate than the sender’s, then all PBNE
are essentially in pure strategies. The only caveat is that at a finite number
of states, the sender might mix between two distinct messages. Hence, by
the results obtained in the previous section, such an intermediator cannot
improve the efficiency of communication. This point was also made by Ivanov
(2009), in the uniform-quadratic specification of the model.®

Proposition 7: Suppose n = 3 and both the sender and the intermedia-
tor have positive (respectively, negative) bias. If the sender is more positively
(respectively, negatively) biased than the intermediator, then every PBNE is
outcome-equivalent to a PBNE in which players play pure actions at almost
every state.

4.2 Examples of mixed equilibria

Below we investigate two types of single-component mixed PBNE with a
single intermediator, in the frequently studied uniform-quadratic specifica-
tion of the model: the one with two equilibrium actions, and the one with
three equilibrium actions in the component. We show that both types of
mixed equilibria exist for a full-dimensional set of biases, hence the existence
of nondegenerate mixed equilibria is not a knife-edge case in the indirect
communication game. The examples also demonstrate that, as opposed to
pure-strategy PBNE, the outcomes that can be supported in mixed-strategy
PBNE are not monotonic in the magnitude of the intermediator’s bias.
Throughout this subsection, we assume that n = 3. Moreover, we assume
that the state is distributed uniformly on [0, 1], and the utility functions are

8See Proposition 1 on pl3.
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given by: ‘ '
u'(0,y) = —(0+b" —y)*

for every i € {1,2,3} with v®> = 0. In words, players have fixed biases and
their loss functions are quadratic.

Note that due to the quadratic utility, player 3 must play the conditional
expectation of 6 given the message she receives. That is,

4.2.1 2-action mixed equilibria

From Proposition 6, we know that there is an outcome-equivalent PBNE in
which (i) player 1 sends message m} at any 0 € [0, z;) and message m? at any
6 € (x1,1] (at state 1, he can choose any mixture of mi and m?); (ii) if the
intermediator is negatively biased, then after receiving m}, he sends m3, and
after receiving m?, he mixes between mi and m2; (iii) if the intermediator
is positively biased, then after receiving m{, he mixes between mJ} and m32,

and after receiving m?, he sends m3. Figure 1 depicts such a mixed PBNE

1_ 3 2 __ 2
for b =35 and b* = -

1 — 1 — i —

1 /

0 —= 0 —— 0 ——

Player 1 Player 2 Player 3

Figure 1

In Appendix A we characterize the region where such equilibrium exist
and analytically compute equilibrium strategies. Figure 2 illustrates the
range of parameter values for which a 2-action mixed equilibrium exists, for
b* > 0. The horizontal axis represents the sender’s bias, while the vertical
axis represents the intermediator’s bias. Notice that the region with o' > 0
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and b?> > 0 can be obtained by rotating the region with b* < 0 and b < 0 in
a point-symmetric manner with respect to the origin.

Figure 2

The upper triangular region depicts the cases when the sender and the
intermediator are both positively biased and a 2-action mixed PBNE exists.
Note that in all these cases the intermediator is more biased than the sender.
The lower four-sided region represents the cases when the intermediator’s
bias is of the opposite sign of the sender and a 2-action mixed PBNE exists.
Recall from CS that if b* € (0.25,0.5), then the only PBNE in the game of
direct communication is babbling, while for each such b' there is a range of
b? (in the negative domain) such that there exists a 2-action mixed PBNE.

Notice that for any fixed b, if b is small enough in absolute value, then
there is no 2-action mixed PBNE. Hence, the set of mixed PBNE outcomes,
as opposed to pure strategy ones, is not monotonic in the magnitude of the
intermediator’s bias.

4.2.2 3-action mixed equilibria

Here, we show that within a component, mixed strategies can have a more
complicated structure than in a 2-action mixed equilibria above. In particu-
lar, there is a region of parameter values for which there is a single component
mixed PBNE with three actions induced in equilibrium. Figure 3 illustrates
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such an equilibrium when the sender’s bias is 1/48, while the intermediator’s
bias is 1/16.

1 -5 | L
i
s 0T L1 o |
_ 061
L VS
\ » 0 17 =
I 049
034 L
078
S — 021 | 021 L
92
[ - () —— 0 —_
Phyer1:b1=1/48 layer 2:b2=1/11 P hyer3
Figure 3

Suppose that b2 > 0. Then Proposition 6 implies that any 3-action mixed
PBNE is outcome-equivalent to a PBNE in which (i) if § € [0, ;) then player
1 sends message m}, if 0 € (z1,x7) then player 1 sends message m?, while
if 6 € (z2,1] then player 1 sends message m?; (ii) after receiving mi, player
2 mixes between mi and m3, after receiving m?, player 2 mixes between m3
and m3, and after receiving m3, player 2 sends ms3.

Like 2-action mixed PBNE, 3-action mixed PBNE are also unique for
any given pair of biases. But they are much more complicated to solve for
than 2-cell equilibria. The reason is that one of the equilibrium conditions
requires player 1 to be indifferent at state x; between two nontrivial lotteries.
Still, we are able to characterize 3-action mixed PBNE. In Appendix A we
derive a closed form solution for all the variables of interest describing a 3-
action mixed equilibrium, as a function of x;. The value z; is the solution
of a complicated cubic equation. The complexity of analytically solving for
this type of equilibrium, together with the result below that such equilibrium
does exist for a full-dimensional set of parameter values, suggests that a sharp
characterization of all mixed PBNE outcomes might be infeasible.

Figure 4 illustrates the regions of parameter values for which this type of
equilibrium exists, for b* > 0.
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Figure 4

As opposed to 2-action mixed equilibria, 3-action mixed equilibria can
exist when both b' and b? are close to 0. Hence, the existence of mixed
PBNE with £ number of actions for a given pair of biases is not monotonic
in k.

4.3 The order of intermediators in mixed equilibrium

In the previous section, we showed that the order of intermediators does not
matter in pure strategy PBNE. We conclude this section with an example
showing that the order of intermediators does matter with respect to mixed
strategy PBNE.

Consider 4 players, i, j, k, and h, with biases b; = 1%, b = 1%, b, = —1%,
and b, = 0, respectively. We consider two indirect communication games: In
game A,i=1,j=2, k=3, and h=4. Ingame B,i=1, j =3, k=2, and
h = 4. Notice that in both cases ¢ is the sender and h is the receiver. The
only difference is the order of the intermediators, j and k.

In game A, it is straightforward to see that the outcome that puts prob-
ability 1 on 1% conditional on states [0, 1%), probability 5—72 on = conditional
on states [2

10
2.1], and probability 22 on 3 conditional on states [=, 1], is a

PBNE outcome. To see this, notice that30i and j has exactly the same bias.
Thus, conditional on any event, if ¢ were j, he would like to induce what-
ever probability distribution on the state that j wants to induce for player
k. Hence, i fully revealing the state to j is always compatible with PBNE,
and analyzing such equilibria is equivalent to analyzing a 3-player indirect
communication game, where j is the sender, £ is the intermediator, and h is
the receiver. In the previous subsection, we showed that in this game it is
a PBNE that player j partitions the states into two components, [0, %), in
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which case k advises h to play % with probability 1, and [%, 1], in which case
k advises h to play % with probability 5—72 and to play é—g with probability %.

Now we show that this outcome cannot be achieved in any PBNE of
game B. Suppose the contrary, i.e. that this outcome is generated by some
PBNE in game B. Since (3 + 35) /2 — & = =, j advises h to play - with
probability one if the expectation of the state is strictly less than 12—5, and j
advises h to play é—g with probability one if the expectation of the state is
strictly more than 1% If the expectation of the state is 1—25, j is indifferent
between two choices. Now, suppose wlog (by Proposition 6) that in the
PBNE player ¢+ does not randomize, and that player j has the expectation
of % conditional on some player ¢’s message, m;, that is sent with positive
probability in the PBNE. This implies that m/ is sent by a positive measure
of types on [0, ). Since action - is taken with probability one conditional
on the state lying in [0, 1%) in the PBNE in consideration, this implies that
player j induces action 13—0 with probability one conditional on message m.
Thus, j cannot randomize in the PBNE of game B with positive probability.
But then the outcome of the PBNE in game B is no longer identical to that

of the original PBNE in game A, leading to a contradiction.

4.4 When can an intermediator facilitate information
transmission?

In the previous subsections, we presented examples showing that there can
be nontrivial information transmission in an indirect communication game,
improving the ex ante welfare of the receiver, even if in the corresponding
direct communication game, all equilibria involves babbling. A natural ques-
tion to ask is when this is the case. The following result provides a simple
sufficient condition for the existence of an intermediator being able to facili-
tate information transmission in equilibrium. We focus on the case when the
sender is positively biased (the case of a negatively biased sender is perfectly
symmetric).
Let y° = arg max fab u3(0,y) f(0)do.

Proposition 8: Let b*(6) > 0 for every 8 € ©. If u'(a,a) < u'(a,y!) for
each a € [0,1) and b'(0) < g4, then all PBNE of the direct communication
game involve babbling, while there exists an intermediator such that in the
resulting indirect communication game, there is a PBNE in which the ex
ante payoff of the receiver is higher than in a babbling PBNE.

It is easy to see that the condition u'(a,a) < u'(a,y!) for each a € [0, 1)
is necessary and sufficient for the direct communication game not to have
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any informative equilibria. Condition b'(0) < y} is an easy to check suffi-
cient condition for the existence of an informative equilibrium in an indirect
communication game, if the intermediator can be freely selected.

5 Discussion: Ex ante welfare

At the end of the previous section, we provided a sufficient condition for indi-
rect communication to be able to improve the ex ante welfare of the receiver,
in cases when direct communication cannot facilitate information transmis-
sion. Ivanov (2008) establishes a much stronger welfare-improvement result
for the uniform-quadratic specification of the model: he shows that whenever
by € (0, %), that is whenever there is a mechanism that can improve the ex
ante welfare of the parties, there is a strategic intermediator and a PBNE of
the resulting indirect communication game which attains the same ex ante
welfare as the optimal mechanism.” The ex ante welfare gains when using
an intermediator can be quite large, as Ivanov points out.

For general preferences and prior distributions on the state, welfare com-
parisons between pure and mixed PBNE in indirect communication games is
a hard problem. One difficulty is that unlike in the uniform-quadratic case,
the interests of the sender and the receiver are not aligned anymore ex ante.
Below we demonstrate this through an example of a mixed PBNE in which
ex ante the sender is strictly worse off than in the babbling equilibrium, that
is in the worst pure strategy PBNE.

Consider again the example in Figure 1, with the only modification that
the sender’s utility function is now u! (0, y) = —(0++—y)*", where r € Z. By
symmetry, the very same construction of the strategy profile as in Figure 1
constitutes a PBNE. It can be shown that, whenever » > 3, the mixed PBNE
gives a strictly lower payoff to the sender than in the babbling PBNE. This is
because in high states, in the mixed PBNE, there is a significant chance that
the induced action is very far from the ideal point of the sender, relative to
the maximal distance between the sender’s ideal point and the action induced
in babbling equilibrium. If the sender is risk-averse enough, this makes his
over all ex ante welfare worse than in the babbling equilibrium. Hence, in an
indirect communication game, the sender can be worse off than in the worst
PBNE of the corresponding direct communication game. By contrast, it is
easy to see that the receiver can never be worse off in any PBNE than in a
babbling equilibrium: one strategy that is always feasible for the sender is
choosing the babbling action independently of the messages received.

9The benchmark that is the maximum welfare that can be attained through a mecha-
nism was derived in the uniform-quadratic case by Goltsman et al. (2007).
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6 Conclusion

Our analysis of intermediated communication yields simple implications for
organizational design if one restricts attention to pure-strategy equilibria:
intermediators cannot facilitate transmission of information that cannot be
transmitted in equilibrium in direct communication between a sender and a
receiver, but they can invalidate informative equilibria of direct communica-
tion. The information loss relative to direct communication is smaller the
less intermediators are involved in the chain, and the less biased they are
relative to the receiver. We also show that the order of intermediators does
not matter for what information can be transmitted through the chain.

At the same time, our findings reveal that the implications are much
more complex with respect to mixed strategy equilibria. Different types of
nontrivial mixed equilibria exist for an open set of parameter values of the
model, and the existence of a given type of equilibrium is nonmonotonic in
the intermediators’ biases. By introducing noise in the information trans-
mission, intermediators in a mixed strategy equilibrium can improve infor-
mation transmission relative to direct communication. This can provide a
rationale for establishing hierarchical communication protocols in an organi-
zation, even if such protocols are not necessitated by capacity constraints.
Our investigations in the uniform-quadratic specification of the model sug-
gest that involving an intermediator can improve information transmission if
the intermediator’s bias (relative to the receiver) is more moderate than the
sender’s, and it is in the opposite direction.
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7 Appendix A

7.1 Formal definition of Perfect Bayesian Nash Equi-
librium

In order to define PBNE formally in our context, we need to introduce beliefs
of different players at different histories. We define a collection of beliefs
through a probability distribution S* on the Borel-measurable subsets of
M1 x Q for every k € {2,...,n}, as a collection of regular conditional
distributions 3%(my,_;) for every my_1 € My_; and k = {2,...,n} that are
consistent with the above probability distributions.

.....

(i) [oﬁ.f{mality of strategies given beliefs]
For every 6 € © and m; € supp(p'(-|#)), we have:

my € argmax
m’leMl

[ [ [ e imed ). d )

mo€Ma Mp—1€Mn_1 yeR

For every k € {2,...,n — 1}, mp_1 € M;_, and my € supp(p*(-|mi_1)),
we have:

my € arg max
meGMk

/ E*(0, y) ) A8 (0] my—)

0cO

where

E(u (0, y)|m}) =
/ / / (0, 9)dp" (51111 )" (s 1) (g ).

mEp1€Mg41  mp_1€EMp—1 yER
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And for every m,,_1 € M,,_1 and y € supp(p"(-|mn,_1)), we have:

Y € arg max
y'eER

/ (0,4 )AB" (Bl 1).

0cO

(ii) [consistency of beliefs with actions]

S*() constitutes a conditional distribution of the probability distribution
on © x M;,_; generated by strategies p!(), ..., p*1(), for every k € {2,...,n}.

(iii) [consistency of beliefs across players]

For any k € {2,...,n — 1}, if my € M, is sent along some path of
play consistent with (p*())x=1..n, then S¥1(my) is in co({B*(my_1)|ms_1 €
]/\/[\k,l(mk)}), where J/\/[\k,l(mk) is the set of messages my_1 in Mj_; such that
there is a path of play consistent with (p*())s=1..., in which player k — 1
sends message my_, and player k sends message my. Similarly, if m; € M;
is sent along some path of play consistent with (p*())g=1. , then 5%(my) is
in co({8'(9)|0 € O(mn1)}), where ©(my) is the set of states at which player
1 sends m;.

7.2 Complete characterization of 2-action and 3-action
single-component equilibria in the uniform-quadratic
case

To simplify notation, we will label each message such that
mi, = E(0)my, = m),).

With this notation we have that player 3’s strategy is just y = my, while the
set of messages sent by player 1 correspond to the midpoints of the partition
cells of the given equilibrium.

Wilog assume that b* < 0 (the case of b*> > 0 is perfectly symmetric).It
is convenient to do an analysis with a fixed signed b?, because the sign of
b* determines that after which messages player 2 mixes in a given type of
equilibrium.

7.2.1 2-action mixed equilibria

By Bayes’ rule, m; only depends on z;: we must have m} = z;/2 and
m? = 18 Also by Bayes’ rule, m3 = m? = 2. Because player 2 must
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be indifferent between her messages after receiving m?, we must also have
mj = m3 + 2b* = 128 4 202, Then, for player 1 to be indifferent between
both messages in state x; we must have

where A = b? — bt

So it must be that —1 < A < 0. Substituting this value of xl we can
solve for the messages mi = A +3,my =1+A+2b?, and mi =m3 = 1+A.
For the probability p(mi|m?), Wthh we denote simply by p, by Bayes’ rule
we have

l\D

1 (1440 (142A)
8 ZIN
For this to be feasible, p > 0, so —3 < b? (as 1 + 2A = z; has to be
nonnegative). From p < 1 we get A < —20? — % It is trivial to check that
these conditions together with the condition 0 < z; < 1 are also sufficient for

equilibrium. In terms of b' and b* the constraints become max{—1,b' — 1} <
b2 < 1 bl _ 1
>3 6

7.2.2 3-action mixed equilibria

As in the case of 2-action mixed PBNE, the messages sent in equilibrium
by player 1 are determined by x; and 2o: m}] = (x;_, + x;)/2 for every
j € {1,2,3}. By Bayes’ rule mi = mi = z,/2. Using player 2’s indifferences
between messages in which she mixes, we get that m2 = x1/2 + 20%, m3 =
T / 2+ ZI9.

Player 1’s indifference, when the state is x5, is equivalent to

To = T1 —|—2A

Denote the probabilities p(m3™

m3, we get

Im}) by p;. From Bayes’ rule applied to

(]_ — Ig) (]_ — L9 — ZEI)
IQA '
And using Bayes’ rule for m3 we get

1 (1’2 — 4b2) (2%2 — 1) (1 — Il)

pr= Z ZL’liL'QbQ

D2 =

This defines the equilibrium in terms of x;. Now, to actually calculate x1,
it is necessary to work with player 1’s indifferences between two non trivial
lotteries.

Assuming that 0 < z; < x5 we must have that
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o po > 0iff (1 +x9)/2=11+A < 1/2.

o py < 1iff my =y +2A > 1/2.

Notice that (assuming xo > 1/2, which follows from p; < 1)

o p1 > 0iff xg > 4by, or by < 5/4 =21 /4+ A/2.

o py < 1iff
223+(=3+4by — 8by) 2T+ (2by + 1 4+ 10by — 8by by + 8b7) 21 +8b5—2b,—2b;—8b7 > 0
this sounds complicated for now, but we will simplify it below.

The final equation we need is Pls indifference constraint when her type
is x1. This reduces to

625+ (12bp — 9 — 24 by) 23+ (=24 by by + 3+ 18by — 6 by + 24 b7) 1 +8b5—8b; —2b,—2b; =0
(3)
Unfortunately, the closed form Cardano solution of this equation is very
complicated and not very helpful. But we may use it to simplify the condition
that p; <1 to
(3x; +4A - 1)X >0,

where ¥ = by + by. Assuming py < 1, this reduces to
o p, <1iff ¥ >0.

Summing up, there is a solution iff we can find z; solving equation (3)
with:

e 1/2-2A <1 <1/2—A from 0 <p; <1.
e 0 <2¥ <z from from p; <1 and p; > 0.

Note that these imply 0 < z; < x1 + 2A =25 < 1.
Now we have to consider two cases.
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Case 1: b, <1/8
In this case, the binding constraints are:

e 1/2—-2A <1 <1/2—A from 0 < py <1.

e 0 <X from from p; < 1.

Notice that we must have A < 1/4.
Let f(z1) be the function defined by the left-hand side of (3). We have

F(1/2 = 2A) = (1 — 4A)(2A — by)

f1(1/2 =2A) = (6 +24b;)A —3/2<0
and

F(1/2—A) = —%(1 +2A)(1 — 6A)S

F(1/2—A) = —gu _9A2 <.

First notice that the leading coefficient of the cubic f(z) is positive. Be-
cause f’ is negative in both endpoints of the interval, there is no solution in
the interval if f has the same sign in the extremes. So there are two possible
cases:

(i) 2A — by < 0 and 1 — 6A < 0. This leads to a contradiction, as
1/6 <A <by/2<1/16.

(ii) The other case is 2A — by > 0 and 1 — 6A > 0. There are equilibria
in this case iff:

e 0<AL1/6
.b2§1/8
e >X>0

e 2A > by or by < by/2 (notice that this implies 0 < A).
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Case 2: b, >1/8
In this case, the binding constraints are:
e 0 <2 <um <1/2—-A.

Note that the binding ones are by > 1/8, by + by > 0 and 3by + by < 1/2.
And this implies that by < 1/4 and —1/4 < by < 1/8. Also, A < 1/2 and
¥ <1/4. We have

F(2(by + bg)) = 4(1 + 24b5 — 10by — 2b1)2

F(2%) = 3(1 — 4by)(1 — 10by — 6by) < 0.

If A < 1/6, then the right endpoint is negative, from the previous sub-
section. So there will be solutions in the area that satisfies the additional
constraints

e A<1/6
o 12452 — 10by — 2b; > 0

If A >1/6, f is positive on the right endpoint. It can be shown that the
left endpoint has positive f, so that there can be no solutions.

To summarize the above findings, there are two regions where the equi-
librium under consideration exists. These are:

e First region:

1. b < b' +1/6.

2. b* < 1/8.

3. b2 > —bh.

4. b? > 2bt.

e Second region:

1. A<1/6.

2. 1+ 24(b%)? — 106% — 20 > 0.
3. v*>1/8.

These regions are depicted in Figure 4.
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7.3 Appendix B: Proofs

Proof of Proposition 1:

Fix a pure strategy PBNE of the indirect communication game. Let
m1(6) be the message choice of player 1 in this equilibrium at state 6, and
let My = {m; € M]3 0 € © st my(f) = my}. Similarly, let M, ; be the
set of messages sent along the equilibrium path by player n — 1. Since the
PBNE at hand is in pure strategies, there is a partition {anil}mn_lem
of M, such that whenever player 1 sends message m; € M, in stage 1,
player n — 1 sends message m,_; in stage n — 1. Let O(DM; ") be the set
of states at which player 1 sends a message from M; .

Construct now the following strategy profile in the direct communication
game: choose exactly one m; € M; "' for every m,_; € M,_1, and let
the sender send message m; at every 6 € @(an*l). Furthermore, let the
action choice of the receiver after m; € M, ' be the same as her action
choice after m,,_; in the PBNE of the indirect communication game, for every
Mp_1 € M,_1. After any other message m; € M, (which are not used along
the induced play path), assume that the receiver chooses one of the actions
along the above-defined play path.

To show that this is a PBNE, first we point out that given the receiver’s
strategy, the sender does not have a profitable deviation at any state. This is
because in the given profile, at any state, the sender can induce the same ac-
tion choices as she can in the PBNE of the indirect communication game. Sec-
ond, the receiver gets equilibrium message m; € M; " ' in the above direct
communication profile at exactly the same states as she receives m,, 1 € M,
in the PBNE of the indirect communication game. Hence, after any message
sent along the induced play path, the action prescribed for the receiver is
sequentially rational, given the updated belief of the receiver regarding the
state after receiving m,.

Proof of Proposition 2:

(“If" part)

Supposing that (1) holds, we construct a PBNE of an indirect commu-
nication game that is outcome-equivalent to the original equilibrium in the
direct communication game: For each y and k, choose exactly one message
from My, my(y), so that my(y) # mi(y') if y # ¢/, where y, 3’ € Y. Let player
1 send message m4(y) conditional on ©(y) and let player k € {2,...,n — 1}
send message my(y) conditional on player k — 1’s message my_1(y). In the
off-path event that player & — 1 sends a message not in (J,cy{mx-1(y)}, let
player k send an arbitrary message in U,y {m(y)}. Finally, let player n
take an action y conditional on player n — 1’s message m,,_1(y). Again, in
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the off-path event that player n — 1 sends a message not in (J, ¢y {m,-1(y)},
let player n take an arbitrary action in Y.

Note that players 1 and n don’t have an incentive to deviate because
the constructed strategy profile specifies the same correspondence of mes-
sages/actions to states as in the original PBNE of the direct communication
game. Moreover, condition (1) implies that players k € {2,...,n — 1} don’t
have an incentive to deviate, given the beliefs induced by the strategy pro-
file described above. This concludes that the strategy profile constitutes a
PBNE.

(“Only if" part)

Suppose [ uF(y,0)f(0)dd < [ uF(y,0)f(0)dd for some y,y' €Y

0€BO(y) 0€B(y)

and k € {2,...,n — 1}, and that there exists a PBNE of the indirect commu-
nication game that is outcome-equivalent to the given PBNE of the direct
communication game. Let M _1(y) be the set of messages of player k — 1
along the equilibrium path that induce player k£ to send a message from M
that eventually induces y. Let ©(my_1) be the set of states at which message
my_1 is sent by player k — 1, for every my_; € My_1(y). By optimality of
strategies given beliefs in PBNE (see Appendix A for the formal definition
of PBNE),

/ u(y, 6)8" (my_r) (6)d0 > / 0B ) (O)d6. (4)

By consistency of beliefs with actions in PBNE, 3%() constitutes a condi-
tional distribution of the probability distribution on © x M}, generated by
the PBNE strategies, which together with (4) implies

/ i (y,0) 1 (9)d6 > / dH (., 6) £(6)do,
9O (y) 0€6(y)

contradicting the starting assumption. ll

Proof of Proposition 3: We will provide a proof for the case of positive
biases. The case of negative biases is perfectly symmetric.

Let G* and G" stand for the games where the utility function of player &
is u¥ and v*, respectively. Let s* constitute a PBNE G*. Then Proposition 1
implies that ©(y) is an interval (possibly degenerate) for every y € Y, where
Y is the set of actions induced by s*. Proposition 2 implies that there is an
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outcome-equivalent PBNE to s* in G" iff

/ My, 0) £ (9)d6 > / dH(y,0)£(6)d0 (5)
0€O(y) 0€0(y)

for every y,y’ € Y (recall our convention for the above inequality if O(y) is a
singleton). Also by Proposition 2, since s* constitutes a PBNE G, we have:

/ o (y.0)£(6)d6 > / o/, 0)£(6)d6 (6)

0€0(y) 0€0(y)

for every y,y' € Y.

Fix now 1,4 € Y. Since u* implies positive bias, (5) holds trivially if
Yy < y. Suppose now that y' > y.

Since v* is more positively biased than u*, condition (2), together with
f(0) > 0 for every 6 € ©, imply:

0 fyee V" (0,9)f(0)d0 - 9 [pee v (0,7)f(0)d0

5 5 (7)
for all ¥ € [y,v/]. This implies [ o*(y,0)f(0)d0 — [ v*(y/,0)f(0)d0
0€0(y) 0<0(y)
is strictly larger than [ u*(y,0)f(0)d0 — [ u*(y/,0)f(0)df. Then (6)
0€0(y) 0cO(y)

implies (5). W

Proof of Claim 1: Wlog assume that player k£ has a positive bias. Then
by assumption b*(u) > 0 for every p € €2, that is argmax [ «*(0,y)dp >

argmax [ u"(,y)du for every p € . Since u” aﬁ u” 06:1‘6 continuous

in y;Ran(ieH@ and, [ u*(0,y)du and [ w"(6,y)du are continuous in y and

in p (the latter evf/?t the weak topgleoegy). Then argmax [ u*(6,y)du —

arg n}%ax [ w™(0,y)dp is continuous in p. Moreover ye(? 1se(ezgmpact hence
ye 0co

there are 1 € Q2 and b > 0 such that

argmax/uk(ﬁ,y)du—argmax/u"(é’,y)duz

yeER yER
0ce 0ce
arg max / uF(0,y)dp — arg max / u™ (0, y)dpu = b*.
yeER - yER -
0ce 0ce
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Proof of Proposition 4: In PBNE, after any message m,,_1 € M,,_1, the
receiver plays a best response to belief 5"(m,,_1). Since the receiver’s payoff
is strictly concave in y and takes its maximum in [0, 1] for every § € ©, the
expected payoff is strictly concave in y and takes its maximum in [0, 1] for
any belief. Hence, there is a unique best response action for the receiver for
B (mp—1).

Fix now a PBNE, let m, 1 € M,_; be a message sent in equilibrium,
and let y(m,,_1) be the action chosen by the receiver after receiving message
mp—1. Wlog assume that player n — 1 has a positive bias (the negative
bias case is perfectly symmetric). Note that by our definition of PBNE,
S"(m,_1) is a convex combination of beliefs 3"~1(m,,_») for which m,,_; €
supp(p"~t(my,_s)). It cannot be that for every such belief 5"~ (m,,_»),

argmax [ '(6,9)d5" (m,-2) < ylim-s),
ye
0cO

since this would imply that argmax [ u*(0,y)dSB"(mn—1) < y(my,_1), con-
yeR  geco
tradicting that y(m,,_1) is an optimal choice for player n after receiving m,, ;.

Therefore, there is m,,_o € M,_5 such that argmax [ u"(0,y)dS" (my,_2) >
yeER  gco
y(my,_1). By Lemma 1,

argmax/u”_l(ﬁ,y)dﬁn_l(mn_g) >

yeR
0cO

arg max / (0, 5)dB () + B > y(ma ) + 5
yeER
0cO

Thus, given belief 5"~1(m,,_5), player n — 1 strictly prefers inducing any ac-

tion from (y(mu_1),y(mn_1) + ") to inducing y(m,_). Therefore, there

cannot be any message m!,_, € M,_; that induces an action from (y(m,_1), y(m,_1)+
b"1), since this would contradict the optimality of m,_; given m,_o. This

implies that the distance between any two equilibrium actions has to be at

least p" 1. W

Proof of Proposition 5: Fix a PBNE, and consider an outcome-
equivalent PBNE in which if two messages m;, m; € M; used in equilibrium
induce the same probability distribution over actions, then m; = m], for
every i € {1,...,n — 1}.
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For ease of exposition, if m; € M, first-order stochastically dominates
m;, € M; for some i € {1,...,n— 1}, then we will simply say that m; is higher
than m.

Proposition 4 implies that every m,_; induces a pure action by the re-
ceiver. Since different equilibrium messages induce different actions, it triv-
ially holds that the distribution of outcomes that different messages that
player n — 1 sends in PBNE can be ranked with respect to first-order sto-
chastic dominance. Moreover, since wu,_1(6,y) is strictly concave in y for
every 6 € O, there can be at most two optimal messages for player n— 1, and
in this case they have to induce actions such that there is no other equilib-
rium action in between them (otherwise inducing the latter action would be
strictly better than inducing the originally considered actions). This estab-
lishes that the distribution of actions induced by the equilibrium messages of
player n — 2 can be ranked with respect to first-order stochastic dominance:
they can be either degenerate distributions corresponding to one of the fi-
nite number of actions induced in equilibrium (which in turn corresponds to
one of the equilibrium messages of player n — 1), or mixtures between two
neighboring equilibrium actions (which correspond to mixtures between two
equilibrium messages of player n—1). Hence, we can partition the equilibrium
messages of player n — 2 into a finite number of sets S72, ..., 52;22 such that
each set consists of messages inducing a distribution of actions with the same
support, and the distribution of actions induced by messages in a set with a
higher index first-order stochastically dominates the distribution of actions
induced by messages in a set with a lower index. Moreover, the distribution
of outcomes induced by messages within set SJT-‘_Q, for any j € {1,...,k, 2},
can be ranked with respect to first-order stochastic dominance, too.

We will now make an inductive argument. Suppose that for some [ €
{2,...,m — 2}, it holds that the equilibrium messages of every player I’ €
{l,...,n — 2} can be partitioned into a finite number of sets S, ..., Sl'l, such
that each set consists of messages inducing a distribution of actions with the
same support, the distribution of actions induced by messages in a set with
a higher index first-order stochastically dominates the distribution of actions
induced by messages in a set with a lower index, and the distributions of
outcomes induced by messages in each set can be ordered with respect to
first-order stochastic dominance. Let m? and m? stand for the highest and
lowest message from Sjl.', whenever it exists.

Given that [ u'(0,y)dp is strictly concave in y for any belief 3, at any
0cO
history in which player [ moves, the set of optimal messages for player [

is either: (i) all elements of S! for some j € {1,...,k}; (ii) M, for some
j€{1,..., k}; (ili) m} for some j € {1,...,k}; or (iv) ™, and m),, for some
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Jj € {1,....k; — 1}. Therefore, any equilibrium message of player [ — 1 can
be partitioned into a finite number of sets Si*, ..., S,il’_l1 such that each set
consists of messages inducing a distribution of actions with the same support,
the distribution of actions induced by messages in a set with a higher index
first-order stochastically dominates the distribution of actions induced by
messages in a set with a lower index, and the distributions of outcomes
induced by messages in each set can be ordered with respect to first-order
stochastic dominance. By induction, for every I’ € {1, ...,n—2}, it holds that
the equilibrium messages of player I’ can be partitioned into a finite number of
sets S{', ey S l'l, such that each set consists of messages inducing a distribution
of messages of player I’ + 1 with the same support, the distribution of actions
induced by messages in a set with a higher index first-order stochastically
dominates the distribution of actions induced by messages in a set with a
lower index, and the distributions of outcomes induced by messages in each
set can be ordered with respect to first-order stochastic dominance.

Given the above result, the single-crossing condition imposed on wu; im-
plies that there is a finite set of states 6y, ...,0; such that 6,0" € (0;,6,.1)
implies that there is a message that is uniquely optimal for player 1 at both
0 and @', for every j € {1,....,t — 1}. Moreover, if there is a message sent in
equilibrium by player 1 at ¢, that differs from the uniquely optimal message
for player 1 at states in (6;_1,6;) and from the uniquely optimal message
for player 1 at states in (6;,6;41), then the above message is only sent in
equilibrium at state ;. W

Proof of Proposition 6: Given a PBNE, construct an outcome-equivalent
PBNE as we did in the proof of Proposition 5. This allows us to have a par-
tition of ©, P = (Py,..., Py). Any partition of ©, B = (By, ..., Bx), which
is coarser than this partition, P = (Py,..., Py), is consistent with part (i) of
Proposition 6, with the use of messages as specified in the proof of Proposi-
tion 5. This construction, together with the fact that player 3 always has a
unique optimal action, implies part (iv). Set m; = j if 0 € [;, and my =y if
p3(y|mz) > 0 (so y is given probability 1), without loss of generality.

Let partition B be such that each cell By is minimal with the property
that, if P; C By and p?*(y|j) > 0 where y is a PBNE action taken by player
3, then Py C By for all j/ with p*(y[j’) > 0. Fixing k, consider Bj and
the partition of By, I* = (If,. .. ,IJ’-“k), whose cells are also the cells of the
original partition, P = (Py,..., Py). By the construction of B, part (v) is
automatically satisfied. In the proof of Proposition 5, we have shown that
player 2 can mix between at most two messages in the outcome-equivalent
PBNE constructed there. This implies, together with the construction of B,
that the number of messages that player 2 sends in the PBNE is equal to
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or larger by 1 than that of player 1. The case where the number of player
2’s messages exceeds that of player 1 occurs only if player 2 mixes both
conditional on m! and conditional on mi*. But this cannot be the case by
(ii) and (iii), which we show below.

Now we prove part (iii). The proof for (ii) is perfectly symmetric, so we
provide a proof only for part (iii). To prove the claim, renumber the cells in
partition I¥ = (IF, ... ,Ij’?k) from left to right, i.e. if 6 € I;C and ¢’ € Ijk, with
0 < @', then j < j'. Let player 1 send a message m{ conditional on the state
lying in If. Also, let y',... y7(,y/**") be the PBNE actions induced by
states in By, (We already know that there are j; (or ji + 1) actions induced).
Rename them so that 37/ < 37" if j < j', and set mJ = 3.

Now suppose the contrary, i.e. that after message m} player 2 sends two
messages, m3 and m2 with positive probabilities. (We know from the proof of
Proposition 5 that player 2 mixes over at most two messages, and that there
is no message induced in equilibrium between these two messages; finally, m3
must have positive probability after mi by the construction of B; hence it
suffices to rule out the case in consideration.) For this to be an equilibrium,
conditional on mi, player 2 has to be indifferent between mi and m2:

/1 u(0,my) f(0)d6 = / u?(0, m2) f(6)do. 8)

k
Il

Next, note that player 3 is maximizing his payoff at mi, which is induced
only by m}, so we have:

my = argmax/ u?(0, ) f(0)do.
It

Y

Since player 2 is negatively biased, this implies:

mg > arg max /Ik u?(0,y) f(6)do.

Y

Hence, the first-order condition and the concavity of u? implies:

ou?(6,mi)
——=2f(0)dh < 0.
[, g e <

Now, recall that u? is strictly concave. This implies:

2y
/Ik %jy)f(e)de <0 forall g€ (mmi,
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which implies:

[0y > [ 0. 1000

Iy
This contradicts Equation (8), which completes the proof. B

Proof of Proposition 7: Wlog assume that both u! and u? imply
negative bias, and fix a PBNE. Suppose there is a component By, (as defined
in Proposition 6) in which player 2 mixes (Remember that this is the only
case in which players mix in the PBNE, except player 1’s possible mixing at a
finite number of states (the boundaries of the cells) that has zero probability
(hence never affects the outcome equivalence result)). Let (If,..., I} ) be
the partition of the states within the component corresponding to distinct
messages from player 1.

By Proposition 6, after receiving m!, player 2 puts probability 1 on mes-
sage m3. Since jj, > 2, the following two claims are true: Conditional on the
state lying in I¥, player 1 weakly prefers the action that player 3 plays after
receiving mi, call it y;, to the action that player 3 plays after receiving m3,
call it y (Recall from Proposition 4 that the receiver always plays a pure
strategy). Also, he weakly prefers y, to y; conditional on I%.

Thus, the continuity of ! implies that he is indifferent between 1; and
Yy, at the state 0 € cl(IF) N cl(1}):

u'(0,y1) = u' (0, 42). (9)

But since player 2 is mixing between m} and m3, he is indifferent between
1 and y, conditional on the state lying in I}:

[ #0500 = [ 0.0 5000 0)

I

By definition, § < @ for all § € I¥\ {#}. Thus the single-crossing condition

%gz > 0 implies that for all § € I\ {0},

U2(97y2) - U2<§a Yya) > u2(9791) - UZ(Q_a Y1)

This and Equation (10) imply:

[ Cnr @i > [ 0,500

k
]2

which implies:

u?(0,y1) > u*(0, ). (11)
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The assumption that player 1 is more negatively biased than player 2 implies
that there exist affine transformations of u! and u?, u'* and u?* respectively,

such that _ _
Oul*(0,y) _ 9u™(0,y)

dy Jy
for all y. Equation (9) implies:

V2 gut (0, )
o 9 Y) gy — 0.
/y Iy

(12)

1

This and Equation (12) implies:

/ 2 u (6, y)
Y

dy >0
Dy Y )

1

which implies: u?*(0,y1) < u*(0, ), hence u*(0,y;) < u?(0,y,). But this
contradicts condition (11). This concludes that there cannot be an equi-
librium component with more than 1 induced actions, which completes the
proof. B

Proof of Proposition 8: First, note that, by definition, y} is the optimal
choice of player 3 in the babbling PBNE. Next, note that the only pure
strategy PBNE is babbling. To see this, suppose that there are exactly two
actions induced in a pure PBNE. Then there exists x € (0, 1) such that these
two actions are y& and y!, and u!'(z,y¥) = u!'(z,y}). Thus, strict concavity
of u' and = € (y¢,y}) (by b3(z) = 0) implies u'(z,z) > u!(z,y!l). But this
contradicts our presumption that u'(a,a) < u'(a,y!) for each a € [0,1].
Thus, there exists no pure PBNE with two actions. But CS proved that
if there exists a PBNE with N actions, there also exists a PBNE with n
actions for 1 < n < N. Proposition 1 then implies that there cannot exist
pure PBNE with 2 or more actions.

Now we show that there exists a mixed PBNE with 2 actions. Consider
the following strategy profile with parameter ¢ > 0: Player 1 sends message
my € My if 0 € [0,€) and m) € M if § € [e,1]. If player 2 receives m;y, he
sends message ma, and if he receives m}, he sends my with probability p and
m/, with probability 1 — p. Conditional on off-path messages M \ {m,m]},
he sends a message from {mgy, m,}. Player 3 plays action y* if he receives my
and y! if he receives m}. Conditional on off-path messages My \ {ma, mb},
he plays an action from {y*,y!}.

It is easy to see that there exists an intermediator indifferent between in-
ducing y* or inducing y!, conditional on 6 € [¢, 1]. This would hold for exam-
ple for an intermediator with quadratic loss function and state-independent
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bias £ +yf — E(0]0 € [¢,1]). Hence, below we only need to check whether the
Strategles of the sender and the receiver are compatible with PBNE.

We show that there exists € such that if € < €, there exists p € (0,1) and
y* such that this is indeed a PBNE.

To see this, we need to establish the followings: If € < €, (i) u'(e, y*) =
ul(e,yl), (i) y5 < y* < vy, and (iii) y* is a best response conditional on
players 1 and 2’s strategies. (i) ensures that player 1 takes a best response to
the opponents’ strategies. (ii) ensures that p € (0,1). Player 3 takes a best
response to the opponents’ strategies conditional on mb, by definition of ..
Since given any on-path messages players put probability 0 on off-path events,
and conditional on any off-path messages, players can have arbitrary beliefs
that make their choices optimal, (i), (ii), and (iii) are enough to establish
that the strategy profile constitutes a PBNE.

Note that if we have u' (e, y5) < u'(e,y!) < u'(e,4}), then we have (i) and
(i), ignoring (iii). To see this, notice that this inequality ensures that there
exists ¥’ € (y5,y!) such that u'(e,y) = u'(e,yl). To see that y §Z lye,yl),

recall that we have assumed that b'(0) < 3}, which implies that 2 (y,yo) < 0.

By continuity, there exists € such that for all € < ¢, ﬁ < 0. Hence ¢/
cannot be contained in [y, y!) if € < €.

Now we show that u'(e,y5) < u'(e,yl) < ul(e,yd). Since u'(a,a) <
ul(a,yl) for each a € [0,1], in particular we have u'(0,0) < u!(0,9). By
continuity, there exists € such that for all € < €”, u'(e,y5) < u'(e, yl). Also,
we have shown that for all € < €, %’—;’y%) < 0. Thus we have u'(e,y!) <
ul(e,y) if e < €.

Finally we prove (iii). Fix € < min{¢, ¢’} := & Then y* is uniquely
determined by condition (i). We prove that there exists p such that player 3
takes a best response at y*. Let §(p) be the best response when the mixing
probability is p. Notice that ¢(p) is continuous in p. Because of strict con-
cavity, the best response is uniquely determined conditional on any event,
hence § is a function. Note that 7(0) = y§ and 7(1) = y§. This implies that
there exists p € (0,1) such that §(p) = y*, since we know that y§ < y* < 3.
Thus we have proved (iii).

Overall, we have found that there exists € such that if € < €, there exists
p € (0,1) and y* such that this is indeed a PBNE.

Notice that player 3 has an option to play 3}, conditioning on any mes-
sages. Since strict concavity implies the uniqueness of the best response con-
ditional on any event, this implies that, given the conditions in this proposi-
tion, the PBNE we constructed gives a strictly higher ex ante payoff to player
3 than in any pure strategy PBNE. This completes the proof. l
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