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We consider the problem of efficient mechanism design for multilateral trading of multiple goods with inde-
pendent private types for players and incomplete information among them. The problem is partly motivated
by an efficient resource allocation problem in communication networks where there are both buyers and sell-
ers. In such a setting, ex post budget balance and individual rationality are key requirements, while efficiency
and incentive compatibility are desirable goals. Such mechanisms are difficult if not impossible to design
[36]. We propose a combinatorial market mechanism which in the complete information case is efficient,
budget-balanced, ex post individual rational and “almost” dominant strategy incentive compatible. In the
incomplete information case, it is budget-balanced, ex post individual rational and asymptotically efficient
and Bayesian incentive compatible. Thus, we are able to achieve efficiency, budget-balance and individual
rationality by compromising on incentive compatibility, achieving only a weak version of it.
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1. Introduction

We study a multilateral trading problem with multiple indivisible goods and independent private
types in which ex post budget-balance is required. The problem is partly motivated by the need
to design mechanisms for efficient resource allocation exchange between strategic internet service
providers such as AOL and Comcast who lease transmission capacity (or bandwidth) to form desired
routes and networks and carriers such as Qwest and MCI who own capacity on individual links.
Bandwidth is traded in discrete amounts, say multiples of 100 Mbps, and hence is an indivisible
good. Thus, the buyers want bandwidth on combinations of several links available in multiples
of some indivisible unit. This makes the problem combinatorial. We consider the interaction in
several settings. (Similar problems also occur in other settings such as electricity markets [40] and
spectrum auctions [34])

We propose a ‘combinatorial sellers’ bid double auction’ (c-SeBiDA) mechanism for such settings
that achieves a socially desirable interaction among strategic agents. The mechanism is combina-
torial since buyers make bids on combinations of goods, such as several links that form a route.
However, each seller offers to sell only a single type of item (e.g., bandwidth on a single link).
The mechanism mimics a competitive market: it takes all buy and sell bids, solves a mixed-integer
program that matches bids to maximize the social surplus, and announces prices at which the
matched (i.e., accepted) bids are settled. The settlement price for an item is the highest price asked
by a matched seller (hence ‘sellers’ bid’ auction). As a result there is a uniform price for each item.

*This research was supported by the National Science Foundation grants ECS-042445 and CNS-0435480, and Fujitsu
Labs, USA.
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It is shown that in the c-SeBiDA auction game with complete information, a Nash equilibrium
exists; it is not generally a competitive equilibrium, nor is it unique. Nevertheless, there is an
allocatively efficient Nash equilibrium wherein it is a weakly dominant strategy for all buyers and
for all sellers except the matched seller with the highest-ask price to be truthful. Moreover, every
Nash equilibrium in weakly rationalizable strategies is efficient in the single good case. In the
combiantorial case, every Nash equilibrium with a non-zero trade for each good is efficient. Since in
an auction, players usually have incomplete information, following Harsanyi [15], we then consider
the Bayesian-Nash equilibrium of the auction game. We show that if the players use only ex post
individual rational (IR) strategies [32], the semi-symmetric Bayesian-Nash equilibrium strategies
(wherein all sellers selling the same item use the same strategy) converge to truth-telling as the
number of players becomes very large.

Previous Work and Our Contribution.

The k-double auction was introduced by Chatterjee and Samuelson [8] as a model of bilateral
bargaining. It was shown by Myerson and Satterthwaite [36] that when there is incomplete infor-
mation, there exists no bilateral mechanism which is Bayesian incentive compatible, individual
rational, budget-balanced and efficient. Thus, the notion of constrained incentive efficiency was con-
sidered by Wilson [50]. The k-double auction mechanism was further generalized to the single-item
multilateral case by Satterthwaite and Williams [45, 46]. In this paper, we consider a multilateral
trading mechanism for multiple objects. The mechanism may be considered to be a generalization
and modification of the k-double auction mechanism (please see remark 1 and example 2 in section
2 for similarities and differences).

A survey of the vast auction theory literature is provided in [26, 49]. Many are extensions
of Vickrey’s ideas [48]. Recently, [27] introduced a generalization of the VCG mechanism with
participation costs for multi-dimensional types and multiple objects. Also, [9] extends the VCG
mechanism to the case of common values, and shows it is constrained efficient. Some multi-round
ascending bid auctions [5, 39] achieve the same outcome as VCG. However, these are single-sided
auction mechanisms. A Vickrey double auction mechanism for single goods is proposed in [52] but
it is neither (ex post) budget-balanced nor individual rational. It appears very difficult to achieve
ex post budget balance (along with efficiency and individual rationality) in double-sided auction
mechanisms [38].

Our interest is in a double-sided auction mechanism for multiple goods with independent private
types (and quasi-linear utility functions). We propose a combinatorial double auction mechanism
which is individual rational and budget-balanced by design, makes a small compromise on incentive-
compatibility and yet is efficient. It is a non-VCG-type double-sided auction mechanism for multiple
goods. Like the proposal in [6], our mechanism is also NP-hard. But the mechanism’s mixed-integer
linear program structure makes the computation manageable for many practical applications [23].

The interplay between economic, game-theoretic and computational issues has sparked interest
in algorithmic mechanism design [42, 49]. The generalized Vickrey auction mechanisms for multiple
heterogeneous goods are not computationally tractable [37, 38]. Thus, mechanisms that rely on
approximation of the integer program [37, 44] or linear programming [7] have been proposed. The
results here also relate to the recent efforts in the network pricing literature [29]. There is an ongoing
effort to propose mechanisms for divisible resource allocation in networks through auctions [25]
and to understand the worst case Nash equilibrium efficiency loss of such mechanisms when users
act strategically [22]. Optimal mechanisms for single divisible goods that minimize this efficiency
loss have been proposed [51, 30] though not extended to the incomplete information case nor for
multiple goods. Most of this literature regards the good (in this case, bandwidth) as divisible, with
complete information for all players. The case of combinatorial bids on multiple indivisible goods
or incomplete information case is harder.
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The results in this paper are significant from several perspectives. It is well known that the
only known positive result in the mechanism design theory is the VCG class of mechanisms [32].
The generalized Vickrey auction (GVA) (with complete information) is ex post individual ratio-
nal, dominant strategy incentive compatible and efficient. It is however not budget-balanced. With
incomplete information, the expected version of GVA (dAGVA) [2, 4] is Bayesian incentive com-
patible, efficient and budget-balanced. It is, however, not ex post individual rational. Indeed, in
the complete information setting there can be no mechanism that is efficient, budget-balanced, ex
post individual rational and dominant strategy incentive compatible (Hurwicz impossibility theo-
rem) [16]. In the incomplete information setting there is no mechanism which is efficient, budget-
balanced, ex post individual rational and Bayesian incentive compatible (Myerson-Satterthwaite
impossibility theorem) [36].

In this paper, we provide a non-VCG combinatorial (market) mechanism which in the complete
information case is efficient, budget-balanced, ex post individual rational and “almost” dominant
strategy incentive compatible. In the incomplete information case, it is budget-balanced, ex post
individual rational and asymptotically efficient and Bayesian incentive compatible. Thus, we are
able to achieve efficiency, budget-balance and individual rationality by compromising on incentive
compatibility, achieving only a weak version of it. Moreover, we show that a Nash equilibrium
allocation (say of a network resource allocation game) is efficient (zero efficiency loss) and any
(semi-symmetric) Bayesian-Nash equilibrium allocation is asymptotically efficient.

This work can also be seen as a contribution to the bargaining games literature. The proposed
multilateral trading mechanism for multiple indivisible goods yields an asymptotically efficient
allocation even in the case of incomplete information. To our knowledge, this seems to be the
only known generalization of the Myerson-Satterthwaite [36] trading environment for multiple
heterogeneous goods. Moreover, we provide a positive result: While it is impossible to achieve
Bayesian incentive compatibility and efficiency along with ex post budget balance and individual
rationality, it is possible to achieve these properties asymptotically even in a multilateral, multiple
good trading environment.

The rest of this paper is organized as follows. In Section 2 we present the combinatorial seller’s
bid double auction (c-SeBiDA) mechanism. In Section 3 we consider Nash equilibrium of the
complete information auction game. In Section 4 we consider the Bayesian-Nash equilibrium of the
incomplete information auction game for multiple goods.

2. The Combinatorial Sellers’ Bid Double Auction

A buyer places buy bids for a bundle of items. A buyer’s bid is combinatorial: he must receive
all items in his bundle or nothing. A buy-bid consists of a buy-price per unit of the bundle and
maximum demand, the maximum number of units of the bundle that the buyer needs. On the other
hand, each seller makes non-combinatorial bids. A sell-bid consists of an ask-price and maximum
supply, the maximum number of units the seller offers for sale.

The mechanism collects all announced bids, matches a subset of these to maximize the ‘surplus’
(equation (1), below) and declares a settlement price for each item at which the matched buy and
ask bids—which we call the winning bids—are transacted. This constitutes the payment rule. As
will be seen, each matched buyer’s buy bid is larger, and each matched seller’s ask bid is smaller
than the settlement price, so the outcome respects individual rationality.

There is an asymmetry: buyers make multi-item combinatorial bids, but sellers only offer one
type of item. This yields uniform settlement prices for each item.

Players’ bids may not be truthful. They know how the mechanism works and formulate their
bids to maximize their individual returns.

In the combinatorial sellers’ bid double auction (c-SeBiDA), each player places only one bid.
c-SeBiDA is a ‘double’ auction because both buyers and sellers bid; it is a ‘sellers’ bid’ auction
because the settlement price depends only on the matched sellers’ bids.
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Formal mechanism.

There are L items l1, · · · , lL, m buyers and n sellers. Buyer i has (true) reservation value vi per
unit for a bundle of items Ri ⊆ {l1, · · · , lL}, and submits a buy bid of bi per unit and demands
up to δi units of the bundle Ri. Thus, the buyers have quasi-linear utility functions of the form
ub

i(x;ω,Ri) = v̄i(x)+ω where ω is money and

v̄i(x) =

{
x · vi, for x≤ δi,

δi · vi, for x > δi.

Seller j has (true) per unit cost cj and offers to sell up to σj units of lj at a unit price of aj. Note
that there may be many sellers j, j′, etc., selling the same good lj = lj′ = l, etc. Denote Lj = {lj}.
The sellers also have quasi-linear utility functions of the form us

j(x;ω,Lj) =−c̄j(x)+ω where ω is
money and

c̄j(x) =

{
x · cj, for x≤ σj,

∞, for x > σj.

The mechanism receives all these bids, and matches some buy and sell bids. The possible matches
are described by integers xi, yj: 0≤ xi ≤ δi is the number of units of bundle Ri allocated to buyer
i and 0≤ yj ≤ σj is the number of units of item lj sold by seller j.

The mechanism determines the allocation (x∗, y∗) as the solution of the surplus maximization
problem MIP:

max
x,y

∑
i bixi−

∑
j ajyj (1)

s.t.
∑

j yj11(l ∈Lj)−
∑

i xi11(l ∈Ri)≥ 0,∀l ∈ [1 : L],
xi ∈ {0,1, · · · , δi},∀i, yj ∈ [0, σj],∀j.

MIP is a mixed integer program: Buyer i’s bid is matched up to his maximum demand δi; Seller
j’s bid will also be matched up to his maximum supply σj. x∗i is constrained to be integral; y∗j will
be integral due to the demand less than equal to supply constraint.

The settlement price is the highest ask-price among matched sellers,

p̂l = max{aj : y∗j > 0, l ∈Lj}. (2)

The payments are determined by these prices. If no seller of item l is matched, i.e., item l is not
traded, the price of p̂l is unspecified. Matched buyers pay the sum of the prices of items in their
bundle; matched sellers receive a payment equal to the number of units sold times the price for
the item. Unmatched buyers and sellers do not get any allocation and do not make or receive any
payments. This completes the mechanism description.

If i is a matched buyer (x∗i > 0), it must be that his bid bi ≥
∑

l∈Ri
p̂l; for otherwise, the surplus

(1) can be increased by eliminating the corresponding matched bid. Similarly, if j is a matched
seller (y∗j > 0), and l ∈Lj, his bid aj ≤ p̂l, for otherwise the surplus can be increased by eliminating
his bid. Thus the outcome of the auction respects individual rationality.

It is easy to understand how the mechanism picks matched sellers. For each item j, a seller with
lower ask bid will be matched before one with a higher bid. So sellers with bid aj < p̂l sell all
their supply (y∗j = σj). At most one seller with ask bid aj = p̂l sells only a part of his total supply
(y∗j < σj). On the other hand, because their bids are combinatorial, the matched buyers are selected
only after solving the MIP.

Example 1. Consider one item, three buyers each of whom wants one unit and three sellers
each of whom has one unit to offer. Suppose buyers bid b1 = 3.1, b2 = 2.1, b3 = 1.1 and sellers bid
a1 = 1, a2 = 2, a3 = 3. Then, the revealed social surplus in MIP (1) is maximized when buyers 1 and
2, and sellers 1 and 2 are matched. The price then is p̂ = 2. Note that if bids of buyer 3 and seller
3 are also accepted, this will result in a lower revealed social surplus.
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Remarks. 1. We designed c-SeBiDA so that its outcome mimics a competitive equilibrium with
a particular interest in the combinatorial case. The single item version SeBiDA resembles the
k-double auction (a special case being called the buyer’s bid double auction [46, 45, 47]).

The k-DA is defined as follows: Sellers submit offers aj, j = 1, · · · , n and buyers bids bi, i =
1, · · · , n. To determine who trades, list these offers/bids as s(1) ≤ s(2) ≤ · · · ≤ s(2n) where s(l) denotes
the lth order-statistic. Thus, s(n) could either be a buy-bid or a sell-offer. Then, for given k ∈ [0,1],
pick price to be p(k) = (1−k)s(n) +ks(n+1). Sell-offers below p and buy-bids above p are accepted.
Others are not. For the special case of k = 1, the k-DA mechanism is the same as the buyer’s bid
double auction (BBDA) mechanism [45]. The “sell-side version” would take k = 0 with p = s(n).
But note that despite similar nomenclature and spirit, BBDA and c-SeBiDA determine prices
differently. We illustrate the difference through an example.

Example 2. Consider one item, three buyers each of whom wants one unit and three sellers
each of whom has one unit to offer. Suppose buyers bid b1 = 6.1, b2 = 3.1, b3 = 1.1 and sellers bid
a1 = 2, a2 = 4, a3 = 5. (i) BBDA: Then, s(3) = 3.1 and s(4) = 4, and the price determined by BBDA
is p = 4 with one trade between buyer 1 and seller 1. The “sell-side” version of BBDA would
determine a price p = 3.1 with a single trade. k-DA determines a price p ∈ [3.1,4]. (ii) c-SeBiDA:
The mechanism proposed in this paper, on the other hand, determines one trade between buyer 1
and seller 1 with price p = 2.

Thus, the mechanism proposed in this paper is distinct from BBDA [46]. It is also not clear what
a generalization of the k-double auction or BBDA would be to the combinatorial case.

2. The issue of computational complexity for such mechanisms becomes very important when
there are a large number of players. Similar concerns arise in [6] as well. However, the computa-
tional problem here involves solving a mixed linear program, for which computationally efficient
approximation algorithms have been devised. Developing an approximation algorithm for the par-
ticular MIP here will be undertaken in the future.
3. The ties between players will be broken by randomly picking the winners. This has no effect on
the auction’s outcome, or its properties unlike other mechanisms.

3. Complete Information Nash Equilibrium Analysis: c-SeBiDA is Efficient

We first focus on how strategic behavior of players affects price when they have complete informa-
tion. We will assume that players don’t strategize over the bundles Ri and the quantities (namely,
δi, σj), which will be considered fixed in the players’ bids. A strategy for buyer i is a buy bid bi,
a strategy for seller j is an ask bid aj. Let θ denote a collective strategy. Given θ, the mechanism
determines the allocation (x∗, y∗) and the prices {p̂l}. So the payoff to buyer i and seller j is,
respectively,

ub
i(θ) = v̄i(x∗i )−x∗i ·

∑
l∈Ri

p̂l, (3)

us
j(θ) = y∗j ·

∑
l∈Lj

p̂l− c̄j(y∗j ). (4)

The bids bi, aj may be different from the true valuations vi, cj, which however figure in the payoffs.
A collective strategy θ∗ is a Nash equilibrium if no player can increase his payoff by unilaterally

changing his strategy [11]. Define social welfare function for the auction game as

SW (x, y) =
∑

i

vixi−
∑

j

cjyj.
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where (x, y) satisfy the feasibility conditions of MIP (1). An auction mechanism is said to be
(allocatively) efficient if every Nash equilibrium allocation maximizes social welfare.

We say that a strategy b̃i is weakly dominated for player i if there exists a strategy bi of player i
such that

ui(bi, b−i)≥ ui(b̃i, b−i),∀b−i

with strict inequality for at least one b−i where b−i are the strategies of the other players. Such
strategies are considered unlikely to be played. Strategies which are not weakly dominated will be
called undominated.

Strategies which remain undominated after iterated elimination of weakly dominated strategies
will be called weakly rationalizable strategies [11]. They are so called because it is considered rational
for players to play only such strategies when it is common knowledge that all players are rational.

We now construct a Nash equilibrium and show it yields an efficient allocation (Theorem 1). We
then show that when players only play weakly rationalizable strategies, all resulting Nash equilibria
are efficient in the single good case.

For simplicity, we assume that each buyer bids for at most one unit, and each seller sells at most
one unit of the item (so δi, σj equal 1 in (3), (4)). Suppose there are m buyers and n sellers, whose
true valuations and costs lie in [0,1]. To avoid trivial cases of non-uniqueness, assume all buyers
have different valuations and all sellers have different costs.

Theorem 1. (i) A Nash equilibrium (b∗, a∗) exists in the c-SeBiDA game. (ii) There is a Nash
equilibrium wherein except for the matched seller with the highest bid on each item, each player bids
truthfully. (iii) Furthermore, in case of a single good, any Nash equilibrium in weakly rationalizable
strategies has an efficient allocation. (iv) In the combinatorial case, if there is a trade for each
good, then every Nash equilibrium is efficient.

Proof: Suppose buyer i demands the bundle Ri with reservation value vi and the seller (l, j) (the
j-th seller offering item l) has reservation cost cl,j. Assume without loss of generality that cl,1 ≤
· · · ≤ cl,nl

, in which nl is the number of sellers offering item l.
We will iteratively construct a set of strategies to consider as Nash equilibrium.
Consider the surplus maximization problem (1) with true valuations and costs. Let I be the set

of matched buyers and kl the number of matched sellers offering item l determined by the MIP.
Set b∗i = vi for all i; a0

l,j = cl,j; γt
i = b∗i −

∑
l∈Ri

at
l,kl

, the revealed surplus of a matched buyer i at
stage t≥ 0, and

l̂ ∈ argmin
l
{ min

i∈I:l∈Ri

γt
i : γt

i > 0}, (5)

the item with the smallest surplus among the matched buyers at stage t, with each l being picked
only once. Denote the corresponding surplus by γt

l̂
. We will denote the corresponding minima by

γt
l̂
. Now, define

at+1

l̂,k
l̂

:= min{at
l̂,k

l̂
+1

, at
l̂,k

l̂
+ γt

l̂
}, (6)

which is the strategy of seller (l̂, kl̂) at the t-th stage: His ask bid is increased to decrease the surplus
of the matched buyer with the smallest surplus up to the ask bid of the unmatched seller with the
lowest bid. For all other (l, j) 6= (l̂, kl̂), the ask bid remains the same, at+1

l,j = at
l,j. This procedure is

repeated until the strategies converge such that each l is picked only once. In fact, it is repeated at
most L times. Observe that at each stage, the matches and the allocations from the MIP using the
current bids (b∗, at) do not change. Let a∗ denote the seller ask bids when the procedure converges.

We prove that (b∗, a∗) is a Nash equilibrium, by showing that no player has an incentive to
deviate.

First, an unmatched seller offering item l has no incentive to bid lower than a∗l,kl
: Because his

reservation cost is higher than that, by bidding lower than his reservation cost, it may get matched
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but his payoff will be negative. Next, consider a matched seller (l, j) 6= (l, kl) offering item l. By
bidding higher or lower he cannot change the price of the item but may end up getting unmatched.
Thus, it is the dominant strategy of all sellers except the ‘marginal’ seller (l, kl) to bid truthfully.

Now, consider this marginal matched seller (l, kl). If he bids lower then a∗l,kl
, his payoff will

decrease. He could bid higher but because of (6), either there is an unmatched seller of the item
with the same ask bid, or there is a marginal buyer whose surplus has been made zero by (6).
So if he bids higher than a∗l,kl

, either he will become unmatched and the first unmatched seller of
the item will become matched, or the ‘marginal’ buyer with zero surplus will become unmatched
causing this marginal seller to be unmatched as well. Thus, a∗l,kl

is a Nash strategy of the marginal
seller given that all other players (except the marginal sellers of the other items) bid truthfully.

Now, let us consider the buyers. First, observe that due to our construction of the strategies
above, the payoff (and the surplus γi) of the ‘marginal’ buyer for each item is zero. Now, consider
an unmatched buyer i. Clearly, he has no incentive to bid lower than b∗i since he wouldn’t match
anyway. Further, it must be that b∗i (= vi) <

∑
l∈Ri

a∗l,kl
. For if not, then it would be possible to

increase the auction surplus (1) by accepting bid of i, and not accepting bids of ‘marginal’ buyers
with accepted bids on each of the links l ∈Ri (as also some other ‘marginal’ sellers with accepted
bids). But this would contradict the fact that the earlier allocation did not in fact maximize the
auction surplus (1). Now, if buyer i bids high enough, he will become matched but he will have
to pay prices a∗l,kl

on the links and since vi <
∑

l∈Ri
a∗l,kl

, his payoff will become negative. Next,
a matched buyer with a positive payoff has no incentive to bid lower since by bidding lower he
can lower the prices but only when he becomes unmatched. Also, he certainly has no incentive to
bid higher since by so doing he will not be able to lower the price. Lastly, consider the ‘marginal’
matched buyers with zero payoff: Clearly, if they bid higher, their payoff will not increase; and
if they bid lower, they will become unmatched. Thus, it is the best response of all buyers to bid
truthfully.

The Nash equilibrium allocation (x∗, y∗) as determined above is efficient since it maximizes (1)
with true valuations.

We now show that in case of a single good any Nash equilibrium allocation in weakly rational-
izable strategies is efficient. (We will drop the subscript l for sellers).

First, observe that a seller’s bid below his cost is weakly dominated by his bid at cost: Thus,
aj ≥ cj,∀j. Further, since this elimination of strategy space of the sellers is common knowledge, no
buyer will bid below cmin = minj cj.

Let B̃matched and S̃matched denote the set of buyers and sellers that are matched at a Nash
equilibrium (b̃, ã). It is worth noting that at an equilibrium, the transaction price p̃ = min{bi : i ∈
B̃matched}= max{aj : j ∈ S̃matched}.

Now suppose z̃ := (x̃, ỹ) is an allocation, corresponding to the Nash equilibrium (b̃, ã), which is
not efficient. There are two main cases:

(1) No Trade is Efficient Case: Suppose that the efficient allocation (z∗ := (x∗, y∗)) involves no
trade, but the allocation z̃ does. This implies that vi < cj, ∀i, j but there exists some buyer î and
seller ĵ such that bî ≥ cĵ. Then, either bî > vî or aĵ < cĵ. In both cases, one of the buyer î or the
seller ĵ has an incentive to deviate.

(2) Non-zero Trade is Efficient Case: (a) First, suppose that the efficient allocation z∗ involves
a trade but the allocation z̃ involves no trade. Let i∗ denote the buyer with highest value vi and
j∗ denote the seller with the least cost cj (c∗j = cmin). Then, vi∗ ≥ cj∗ but cmin ≤ bi∗ < aj∗ . But
then this cannot be a Nash equilibrium since either the buyer or the seller will have an incentive
to deviate.

(b) Now, suppose that the efficient allocation z∗ involves a trade and the allocation z̃ involves a
trade but is not efficient. Then, the two allocations must differ in one of the following ways as we
go from z∗ to z̃:
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(i) z∗ and z̃ differ only among sellers: A (non-empty) set of sellers Sout matched in z∗, is no
longer matched in z̃ and a (non-empty) set of sellers Sin are now matched;

(ii) z∗ and z̃ differ only among buyers: A (non-empty) set of buyers Bout matched in z∗, is no
longer matched in z̃ and a (non-empty) set of buyers Bin are now matched;

(iii) All buyers and sellers matched in z∗ remain matched in z̃, and some new buyers Bin and
some new sellers Sin now get matched;

(iv) No new buyers and sellers are matched in z̃ and some old buyers Bout and some old sellers
Sout are now not matched;

(v) (General Case ) A set of buyers Bout and a set of sellers Sout are no longer matched and a
set of buyers Bin and a set of sellers Sin are now matched in z̃.

Case (i) Suppose j1 ∈ Sin and j2 ∈ Sout. Then, it must be that cj1 > cj2 but ãj1 < ãj2 . But then
either j1’s payoff is negative or j2 can also bid just below j1’s bid. In either case z̃ cannot be a
Nash equilibrium allocation.

Case (ii) Suppose i1 ∈Bin and i2 ∈Bout. Then it must be that vi1 < vi2 and b̃i1 > b̃i2 . But then
either i1’s payoff is negative or i2 can also bid just above i1’s bid. In either case z̃ cannot be a Nash
equilibrium allocation.

Case (iii) Denote ĭ := argmaxi∈Bin
b̃i and j̆ := argminj∈Sin

ãj. Then, vĭ < cj̆ and b̃ĭ ≥ ãj̆. But then
at least one of the two has a negative payoff at (b̃, ã), and so will deviate, in which case it cannot
be a Nash equilibrium outcome.

Case (iv) Denote ǐ := argmaxi∈Bout vi and ǰ := argminj∈Sout cj. And denote the transaction price
with bids (b̃, ã) by p̃. Then, vǐ ≥ cǰ and b̃ǐ < ãǰ. Now, if ãǰ < vǐ, then clearly, buyer ǐ has an incentive
to bid just above ãǰ and match. Similarly, if b̃ǐ > cǰ, then seller ǰ has an incentive to bid just below
b̃ǐ and match. In either of these cases, the bids under consideration cannot be a Nash equilibrium.

Now, let us consider the case b̃ǐ ≤ cǰ ≤ vǐ ≤ ãǰ. There are three sub-cases: if p̃ ∈ (b̃ǐ, cǰ], then
buyer ǐ can raise his bid and match; if p̃∈ [vǐ, ãǰ), then seller ǰ can lower his bid and match; and if
p̃ ∈ (cǰ, ãǐ), then both the buyer ǐ and the seller ǰ have an incentive to deviate from their current
bids and match. Thus, in none of the above sub-cases can the bids under consideration be a Nash
equilibrium.

Case (v) Denote î := argmini∈Bin
b̃i and ĵ := argmaxj∈Sin

ãj, and ǐ := argmaxi∈Bout b̃i and ǰ :=
argminj∈Sout ãj. And denote the transaction price with bids (b̃, ã) by p̃. Then, b̃î ≥ p̃ ≥ ãĵ and
b̃ǐ ≤ p̃≤ ãǰ.

Now, observe that vǐ > vî and cǰ < cĵ since players ǐ and ǰ are matched in z∗, the efficient alloca-
tion but players î and ĵ are not. Further, bî ≥ p̃. So, either vî ≥ p̃, in which case vǐ ≥ p̃ as well and
so buyer ǐ can increase his bid to match; or vî < p̃, in which case buyer î has negative payoff and
so it will decrease his bid. Thus, in either case, the buyer has an incentive to deviate, and hence
the allocation z̃ cannot correspond to a Nash equilibrium. A similar argument can also be given
for sellers.

Thus, for every case above, the corresponding bids cannot be a Nash equilibrium. This proves
claim (iii) of the theorem.
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The proof of part (iv) is similar in some details to that for part (iii) and can be found in the
appendix.

Remarks. 1. It is obvious that if the minimum in step (5) is not unique, the efficient Nash
equilibrium will not be unique.
2. Parts (i) and (ii) of the above result still hold when buyers make multiple unit combinatorial
bids and sellers make single unit non-combinatorial bids.
3. Note that there are other Nash equilibria where buyers may not bid their true valuation. Consider
the setting of example 1.

Example 3. Consider the bids to be a1 = 2.05, a2 = 2.05, a3 = 3, b1 = 2.05, b2 = 2.05 and b3 = 1.1.
It is easy to check this is a Nash equilibrium with efficient allocation. But note that buyer 2 does
not bid true valuation. Thus, in c-SeBiDA it is not a dominant-strategy for buyers or sellers to be
truthful.

4. We have considered Nash equilibrium in weakly rationalizable strategies since it is not rational
for players to play weakly dominated strategies. However, if we do consider all strategies, there are
no-trade Nash equilibria which may not be efficient as the following examples show.

Example 4. Consider a buyer with v = 0.7 and a seller with c = 0.3. Clearly a trade is possible and
in fact any b∗ = a∗ ∈ [0.3,0.7] is a Nash equilibrium with an efficient outcome. However, consider
the bids b = 0 and a = 1. Clearly, this is a Nash equilibrium with no trade, which is inefficient. But,
these strategies are strictly dominated by other strategies, e.g., the buyer can bid anything above
0.3 and the seller anything below 0.7.

Example 5. Consider a two goods (A and B) case. There is one buyer with v = 0.7 for one unit
of both goods, and zero otherwise. There is one seller who offers good A and has c1 = 0.2 and
another seller who offers good B and has c2 = 0.3. Clearly, the efficient allocation involves an
exchange between these players. Now, consider b = 0.6, a1 = 0.4 and a2 = 0.5. It is a no-trade Nash
equilibrium. In fact, it is easy to check that there does not exist an efficient Nash equilibrium even
in weakly rationalizable strategies.

It is interesting to note that

Theorem 2. With multiple unit buy-bids and single unit sell-bids, i.e., σj = 1,∀j, the Nash equi-
librium allocation and prices ((x∗, y∗), p̂) is a competitive equilibrium.

Proof: Consider a matched seller. He supplies exactly one unit at prices p̂ while an unmatched,
non-marginal seller (l, j) for j > kl +1, supplies zero units. The unmatched marginal seller (l, kl) will
supply zero units since p̂l ≥ al,kl+1. Now, consider a matched buyer i. At prices p̂, he demands up to
δi units of its bundle. If it is the “marginal” matched buyer, its surplus is zero and it may receive
anything up to δi. If it is a “non-marginal” matched buyer, it receives δi units. An unmatched
buyer, on the other hand, has zero demand at prices p̂. Thus, total demand equals total supply,
and the market clears.

4. Asymptotic Bayesian Incentive Compatibility of c-SeBiDA

We now consider the incomplete information case for the combinatorial-SeBiDA. Analysis for
the simpler non-combinatorial setting can be found in [20]. We analyze the c-SeBiDA market
mechanism in the limit of a large number of players. Suppose there are nl sellers of good l, l =
1, · · · ,L and m buyers with ml buyers who want good l, i.e., have l in their bundle.

We will consider a Bayesian game to model incomplete information. Let cl,j and al,j denote
the cost and ask-bid of the jth seller of good l respectively, and vi and bi denote the valuation
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and buy-bid of the ith buyer with bundle Ri respectively. Suppose nature draws cl,1, · · · , cL,nL

independently from the probability distribution U [0,1] and draws v1, · · · , vm independently from
probability distributions, vi ∼U [0, |Ri|]. Each player is then revealed his own valuation or cost. It is
common information that the seller (l, j)’s costs are drawn from U [0,1] and a buyer i’s valuations
are drawn from U [0, |Ri|], his Ri being known to all. Let αl,j : [0,1]→ [0,1] denote the strategy of the
seller (l, j) and βi : [0, |Ri|]→ [0, |Ri|] denote the strategy of the buyer i. Then, the payoff received
by the buyers and sellers is as defined by equations (3) and (4). Let θ = (α1,1, · · · , αL,nL

, β1, · · · , βm)
denote the collective strategy of the buyers and the sellers. A buyer i chooses strategy βi to
maximize E[ub

i(θ);βi], the conditional expectation of the payoff given its strategy βi. The seller
(l, j) chooses strategy αl,j to maximize E[us

l,j(θ);αl,j], the conditional expectation of the payoff
given its strategy αl,j. The Bayesian-Nash equilibrium of the game is then the Nash equilibrium of
the Bayesian game defined above [11].

We consider semi-symmetric Bayesian-Nash equilibria, i.e., equilibria where all the sellers of
the same good use the same strategy αl while the buyers may use different strategies βi, since
they may demand bundles of different sizes. Let α̃l(c) := c and β̃i(v) := v denote the truth-telling
strategies. Under the strategy profile (α1, · · · , αL, β1, · · · , βm), we denote the distribution of ask-
bids al,· and buy-bids bi as Fl and Gi respectively. We denote [1− F (x)] by F̄ (x). Under α̃l and
β̃i, Fl = U [0,1] and Gi = U [0, |Ri|]. We will assume that players are risk-averse and consider only
those bid strategies which satisfy the ex post individual rationality constraint, i.e., αl(c) ≥ c and
βi(v)≤ v. Denote Xl = {αl : αl(c)≥ c}, X =X1× · · · ×XL, αn = (αn

1 , · · · , αn
L) and α̃ = (α̃1, · · · , α̃L)

when there are n sellers of each good. Also denote Yi = {βi : βi(v) ≤ v}, Y = Y1 × · · · × Ym and
βn = (βn

1 , · · · , βn
m) and β̃ = (β̃1, · · · , β̃m) when there are m buyers and n sellers for each good. Let

ml denote the number of buyers who want good l. We will assume that ml = O(n).
We consider single unit bids and assume that a semi-symmetric Bayesian-Nash equilibrium exists.

And following Wilson [50, 45, 46, 47, 43], we make the following assumption:

Assumption 1. There exist symmetric Bayesian-Nash equilibria which have seller’s strategies such
that α′

n(c) is uniformly bounded in n and c.

Theorem 3. Consider the c-SeBiDA auction game with (α,β) ∈ X × Y, i.e., both buyers and
sellers have ex post individual rationality constraint. Let (αn,βn) be a semi-symmetric Bayesian
Nash equilibrium with m buyers and n sellers of each good. Then, (i) βn

i (v) = β̃i(v) = v for i =
1, · · · ,m and ∀n ≥ 2, and (ii) (αn,βn) → (α̃, β̃) in the sup norm as n →∞, i.e., c-SeBiDA is
asymptotically Bayesian incentive compatible.

We proceed in three steps and first prove two lemmas.

Lemma 1. Consider the c-SeBiDA auction game with m buyers and nl sellers for item l. Suppose
the sellers use a bid strategy profile α = (α1, · · · , αL) with fl(a), the pdf of its ask-bid under strategy
αl. Then, the best-response strategy profile of the buyers βn satisfies βn

i (v)≥ v for i = 1, · · · ,m and
∀n≥ 2.

Remarks. 1. As we noted in the single good case as well, a buyer’s strategy is to bid more than
his true value. This at first glance seems surprising. However, intuitively it makes sense for this
mechanism since the prices are determined by the sellers’ bids alone, and by bidding higher, a
buyer only increases his probability of being matched. Of course, if he bids too high, he may end up
with a negative payoff. The result implies that under the ex post individual rationality constraint,
the buyers always use the strategy profile βn = β̃.
2. It is also worth noting that the result can be easily extended to the case when all the sellers
may use different strategies.

The next step is to look at the best response strategy of the sellers when the buyers bid truthfully.
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Lemma 2. Consider the c-SeBiDA auction game with nl = n sellers of good l and ml buyers who
want the good in their bundle, and suppose the buyers bid truthfully, i.e., βn

i = β̃i, and let αn be
the sellers’ best-response strategy. Then, (αn, β̃)→ (α̃, β̃) in the sup norm as n→∞.

The conclusion of this lemma is what we would expect intuitively. If all buyers bid truthfully,
then as the number of sellers increases, increased competition forces them to bid closer and closer
to their true costs.

We can use the above two lemmas to prove the main result of this section.
Proof: (Theorem 3) By Lemma 1, when the sellers use the strategy profile α = αn, the buyers
under the ex post individual rationality constraint use the strategy profile β̃. By Lemma 2, when
the buyers bid truthfully, sellers’ best-response is αn. Thus, (αn, β̃) is a Bayesian-Nash equilibrium
with n sellers on each good. Further, Lemma 2 shows that (αn,βn) = (αn, β̃)→ (α̃, β̃) as n→∞,
which is the conclusion we wanted to establish.

Thus, under the ex post individual rationality constraint, c-SeBiDA is ex ante budget balanced
(of course, ex post budget balanced as well), asymptotically Bayesian incentive compatible and
efficient. Unlike in the complete information case when the mechanism is not incentive compatible,
yet the outcome is efficient, in the incomplete information case, the mechanism is asymptotically
efficient.

Remarks. 1. The above result holds for any arbitrary m, the number of buyers, and in particular,
for the case where m increases with n to infinity. When m is finite, W∗ and W ∗ in proposition 1
both converge to zero in probability.
2. The result above depends on assuming Wilson’s hypothesis. Such an assumption has also been
made in [50, 47, 43]. In fact, we have been able to show that the seller strategies we consider
above are strictly increasing and uniformly continuous on [0,1] for every n. Assuming that the
strategies are monotonically decreasing in n (it might be possible to argue this using results from
monotone comparative statics [35]), we can conclude using Dini’s theorem [1] that the strategies
converge uniformly. This yields equicontinuity of the strategies and it might be possible then to
conclude existence of strategies that satisfy Wilson’s hypothesis. However, we have not been able
to completely resolve this open problem as of now.
3. Existence of semi-symmetric pure strategy Bayesian-Nash equilibria has been considered in the
literature. A very general result is obtained using fixed point theory on perturbed games [10]
(see also [39, 19]). They establish existence of monotone pure strategy equilibria in large enough
uniform-price double-sided auctions. In [24], existence of monotone pure strategy bayesian-nash
equilibrium in market mechanisms with general values has been studied using Lattice-theoretic
methods [35, 33]. While [47, 28] show existence for particular auctions by showing the existence of
solutions to the differential equations that describe the equilibria.
4. The mechanism proposed in this paper is related to the buyer’s bid double auction (BBDA)
mechanism [45, 47] and its generalization for single items, the k-double auction mechanism. For
the special case of k = 1, the k-DA mechanism is the same as BBDA. But note that despite similar
nomenclature and spirit, BBDA and SeBiDA determine prices differently. While the spirit of the
two mechanisms is the same (maximizing the efficiency of trading), the prices and the payments
are different. Please see remark 1 and example 2 in section 2 for more details on differences and
similarities. An example illustrating that in c-SeBiDA, neither the buyers nor the sellers have a
dominant strategy to be truthful was given in example 3 of section 3. This is also the case for
BBDA as proved by the following counterexample.

Example 6. Consider one item type with two buyers who have valuations v1 = 3.1, v2 = 2.1 and
two sellers who have costs c1 = 1, c2 = 2. Consider the bids b1 = 2.05, b2 = 2.05 and a1 = 2.05, a2 =
2.05. BBDA then determines a price of p = 2.05 with two trades. Moreover, this is a full information
Nash equilibrium. But note that neither the buyers nor the sellers are truthful.
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5. Finally, the ex post individual rationality constraint seems restrictive at first glance. However,
in two human subject experiments we have conducted using this mechanism [23], it was observed
that all subjects acted risk-averse and in fact always used strategies that were ex post individual
rational. Thus, the predictive power of the result does not seem diminished in real settings despite
the assumption made.

5. Conclusions

We have introduced a combinatorial, sellers’ bid, double auction (c-SeBiDA). The first result con-
cerned the Nash equilibria for c-SeBiDA with full information. In c-SeBiDA, settlement prices are
determined by sellers’ bids. We showed that the allocation of c-SeBiDA is efficient. Moreover, there
is a Nash equilibrium in undominated strategies wherein truth-telling is a dominant strategy for
all players except the highest matched seller for each item.

The second result concerned the Bayesian-Nash equilibrium of the mechanism under incom-
plete information. We showed that under the ex post individual rationality constraint, the semi-
symmetric Bayesian-Nash equilibrium strategies converge to truth-telling. Thus, the mechanism is
asymptotically Bayesian incentive compatible, and hence asymptotically efficient.

Thus, we have proposed an exchange mechanism for the multilateral Myerson-Satterthwaite [36]
trading environment with multiple goods. In such an environment it is impossible to achieve all
the four desirable properties of an auction mechanism. Nevertheless, we have shown that it is still
possible to achieve ex post budget balance and individual rationality, and asymptotic Bayesian
incentive compatibility and efficiency.

In [21], we considered a more general setting and showed that a competitive equilibrium exists
in a continuum model of an exchange economy with indivisible items and money (a divisible item).
There, using results from optimal control, we also showed that within the continuum model, c-
SeBiDA outcome is a competitive equilibrium. This again suggests that in the finite setting, the
auction outcome is close to efficient.

We have tested the proposed mechanism c-SeBiDA through human-subject experiments. Those
results can be found elsewhere [23].

Finally, while our work was primarily motivated by a market mechanism design problem, it
can also be considered as an indirect contribution to the strategic foundations of competitive
markets [12]. This body of literature relates Nash and Bayesian-Nash equilibrium with competitive
equilibrium. The basic idea is that as the economy gets large (in our context the number of buyers
and sellers and quantities of items all go to infinity), Nash equilibrium strategies should converge
to competitive equilibrium strategies, because the ‘market power’ diminishes.

The relationship is first investigated in [41]. In a later paper [14], it is shown that under cer-
tain regularity conditions, a sufficiently replicated economy has an allocation which is incentive-
compatible, individually-rational and ex-post ε-efficient. Similarly [17] shows that the demand
functions that an agent might consider based on strategic considerations converge to the compet-
itive demand functions. Further, [18] shows that under certain conditions on beliefs of individual
agents, not only do the strategic behaviors of individual agents converge to the competitive behav-
ior but the Nash equilibrium allocations also converge to the competitive equilibrium allocation.
The formulation in [50] is a buyer’s bid double auction with a single type of item that maximizes
surplus. It is shown that with Bayesian-Nash strategies, the mechanism is asymptotically “incentive
efficient,” the notion of incentive efficiency being different from that of incentive compatibility and
efficiency that we use here. Along a different line of investigation, [13, 46, 43] investigate the rate
of convergence of the Nash equilibria to the competitive equilibria for buyer’s bid double auction.
Finally, implementation and mechanism design in a setting with a continuum of players is discussed
in [31]. We have provided a market mechanism that asymptotically achieves competitive behavior
in multilateral, multiple good trading environment with incomplete information.
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Appendix A: Proof of Lemma 1

Proof: Set al,0 = cl,0 = 0 and b0 = v0 = L. Fix a buyer i with valuation v and bundle Ri. Suppose
the sellers use a fixed bidding strategy α and denote the buyers’ best-response strategy profile by
βn. Let θ−i denote the strategy of all the other players. Then, there is a level U∗, a function of θ−i

such that the bid b of i is accepted if b > U∗. It is easy to see that the allocation z(b) = (x(b), y(b))
is some z∗ = (x∗, y∗) for all b > U∗. Suppose not: Let z1 be the allocation for U∗ < U1 < b < U2 and
z2 be the allocation for b > U2. But clearly, the auction surplus, b− U1 > b− U2 for bids b > U2

as well. Thus, the allocation z1 will yield higher auction surplus than z2 for b > U2 as well. Thus,
z2 = z1 and the corresponding price Y ∗ is the same for all b > U∗. Note that Y ∗ ≤U∗.

Thus, buyer i’s payoff when he bids b is

π′
i(b) =

{
v−Y ∗, if b > U∗

0, otherwise.
(7)

The expected payoff denoted by π̄′
i then is given by

π̄′
i(b) =

∫ b

0

∫ u

0

(v− y)fY ∗,U∗(y,u) dydu (8)

and the buyer i’s best response satisfies the differential equation

dπ̄′
i

db
=
∫ b

0

(v− y)fY ∗,U∗(y, b) dy = 0 (9)

The boundary condition for the differential equation is π̄′
i(0) = 0. Since the left-hand side of the

equation above is always non-negative (and in fact positive) for all b≤ v, it is clear that the best
response b = βn

i (v)≥ v, ∀n≥ 2.

Appendix B: Proof of Lemma 2

Proof: Fix a good l (say =1). Set al,0 = cl,0 = 0, and b0 = v0 = L. Fix a seller (l, j) with cost c (in
the rest of the proof we will refer to this seller as seller j). Consider the auction game, denoted
G−(l,j), in which seller j bids very high and his bid is not accepted, and all buyers bid truthfully. Let
z = (x, y) denote the corresponding allocation. Denote the number of matched buyers and sellers
on good l by Kl, X = al(Kl), the bid of the highest matched seller, Y = al(Kl+1), the bid of the lowest
unmatched seller, and Z = al(Kl−1), the bid of the next highest matched seller. Suppose seller j
bids a and let z̃t = (x̃t, ỹt) be the corresponding allocation. Let the allocation z̃t differ from z in
the following way: There is a set of buyers Bt and a set of sellers St whose bids are accepted in
z but not in z̃t. And there is a set of buyers B̃t and a set of sellers S̃t (excluding j) whose bids
are accepted in z̃t but not in z. Then, the seller j’s bid a is accepted if the auction surplus now is
greater, i.e., if

v(B̃t)− a(S̃t)− a > v(Bt)− a(St), (10)

Thus, if a < Wt := (v(B̃t)− a(S̃t))− (v(Bt)− a(St)), the bids corresponding to allocation z̃t result
in higher auction surplus than the bids corresponding to the allocation z.

Now, for various levels of bid a, there may be many allocations z̃t, t = 0, · · · , T with corresponding
levels Wt, t = 0, · · · , T . Observe that one possible allocation is B̃t = Bt = ∅, S̃t = ∅, St = {(l, (Kl))}
with (say) W0 = X. This is the case when the only change is that the seller j displaces the highest
matched seller (l, (Kl)) on the good. Denote W := maxt≥1 Wt. Note that out of the various levels
Wt, only the maximum matters since the bid a is accepted as long as a < maxt≥0 Wt. Further, when
that is true, the resulting allocation will be the one corresponding to t∗ = argmaxt≥0 Wt.
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Thus, the payoff of the j-th seller when he bids a = α(c) is given by

πj(a) =



x− c, if a < Z < X < W, or
Z < a < X < W ;

a− c, if Z < X < a < W, or
Z < a < W < X, or
Z < W < a < X, or
W < Z < a < X;

z− c, if a < Z < W < X, or
a < W < Z < X, or
W < a < Z < X.

(11)

The payoff of the seller as his bid a varies is shown graphically in figure 2. The reader can
convince himself that the only relevant quantities for payoff calculation are X, Z and W . Thus,
there are three cases: (i) Z < X < W , (ii) Z < W < X and (iii) W < Z < X.

It is easy to verify that the expected payoff of seller j, denoted by π̄j satisfies the differential
equation

dπ̄j(a) = [P n(Aa)+P n(Ba)+P n(Ca)]da− (a− c)[dP n(Da)+ dP n(Ea)], (12)

with the boundary condition π̄j(1) = 0, where Aa denotes the event {X < a < W}. As a is increased
by da, the payoff to the seller increases by da since seller j is the price-determining seller. Similarly,
Ba denotes the event {Z < a < W < X} and seller j is the price-determining seller. In the same way,
Ca denotes the event {max(Z,W ) < a < X} and seller j is the price-determining seller. Da denotes
the event {X < a and W ∈ [a,a + da]}, so that the seller j becomes unmatched as it increases its
bid from a to a+da. Similarly, Ea is the event {W < a and X ∈ [a,a+da]}. And so, as he increases
his bid, he becomes unmatched.

Figure 2 shows these events graphically. Events Aa, Ba and Ca correspond to various cases when
the change in the bid from a to a+da, causes a change in payoff of da. Events Da and Ea correspond
to cases when the change in the bid a from a+ da, causes a change in payoff of −(a− c).

Given the strategy profile α used by the sellers, the strategy profile β̃ used by the buyers, let
the probability distribution of ask-bid of a seller on good l be F (with pdf f). Note that α and F
depends on n.

We first obtain asymptotic upper and lower bounds on W (here called Wn to stress its dependence
on n).

Proposition 1. Define W∗ := X1(K1) and W ∗ := X1(K1+1). Then, (i) W∗ ≤ Wn ≤ W ∗ in proba-
bility, i.e., P (Wn ≤ W ∗),P (W∗ ≤ Wn) → 1 as n →∞. (ii) For any ε > 0 and large enough n,
P (Wn > ε)≤ P (W ∗ > ε) and P (Wn ≤ ε)≤ P (W∗ ≤ ε).

Proof: (i) Let B1 denote the set of buyers who want good l = 1, and whose bids are not accepted
when seller “a” is not “present”. Consider any buyer t∈B1. Then,

Wt = [vt− a(S(L1t)∪S(L2t))] + [v(Bt)− a(S(L3t)∪S(L4t))]
− [v(Bt)− a(S(L1t)∪S(L3t)∪S(L5t))], (13)

where S(L) denotes the highest matched sellers on the set of goods L, S(L) denotes the lowest
unmatched sellers on goods L, a(S) denotes the sum of bids of the sellers S, Bt is the set of buyers
(excluding t) whose bids can get accepted at seller bid “a”, Bt is the set of buyers which become
unmatched at new seller bid “a”. Above, L1t is the set of goods also demanded by buyer t and on
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which highest matched sellers remain matched; L2t is the set of goods also demanded by buyer t
where formerly unmatched sellers become matched; L3t is the set of goods demanded by buyers
Bt where highest matched sellers remain matched; L4t is the set of goods demanded by buyers
Bt where formerly unmatched sellers become matched; and L5t is the set of goods demanded by
Bt which now become unmatched. The first term in square brackets in equation (13) represents
the contribution to the auction surplus when buyer t is matched; the third term represents the
contribution to the auction surplus by buyers Bt which is being lost when seller “a” is introduced;
the second term is the contribution to the auction surplus by buyers Bt whose acceptance becomes
possible since buyers Bt are now unmatched. Thus, the sets L1t, · · · ,L5t are disjoint and do not
include l = 1. Thus, bid “a” can be accepted if Wt > a for some t∈B1, i.e., if W := maxt∈B1

Wt > a.
Clearly, the third term in the square brackets of equation (13) is greater than the second term

in the square brackets, otherwise the bids of Bt, S(L3t), S(L4t) would have been accepted before
instead of bids of players Bt, S(L1t ∪L3t ∪L5t). Thus,

Wt ≤ vt− a(S(L1t)∪S(L2t))≤ vt− a(S(L1t)∪S(L2t)),

where the second inequality is obvious.
Suppose a buyer t wants only good l = 1. Then, Wt ≤ vt ≤ X1(K1+1), the bid of the lowest

unmatched seller of good 1, where K1 is the number of matches for good l = 1. Next consider a
buyer t who wants goods l = 1,2. Then, Wt ≤ vt −X2(K2) where K2 is the number of matches on
good 2. Further note that vt must be smaller than X1(K1+1) + X2(K2+1), otherwise buyer t could
have matched with the lowest unmatched sellers on the two goods. Thus, we have

Wt ≤X1(K1+1) +(X2(K2+1)−X2(K2)).

Defining ∆l(k) = (Xl(k+1)−Xl(k)), we see that in general for a buyer t who wants goods Rt (including
l = 1),

Wn := max
t∈B1

Wt ≤X1(K1+1) +
∑
l 6=1

∆l(Kl) =: W ∗
n a.s. (14)

Now, as n→∞, ∆l(Kl)
P→0 (convergence in probability) for every l. This implies that

W ∗
n

P→W ∗ := X1(K1+1).

Thus, for n→∞
P (Wn ≤W ∗) → 1.

Let us now consider equation (13) to obtain a lower bound.

Wt ≥ [vt− a(S(L1t ∪L2t))]− [a(S(L3t))− a(S(L3t))]

since v(Bt) < a(S(L1t∪L2t)∪S(L5t)) (otherwise the set of buyers Bt could still match). Also, note
that the second term in the square brackets is

∑
l∈L3t

∆l(Kl)
P→0 as n→∞.

Now, if buyer t wants only one good l = 1, then L1t,L2t = ∅ and Wt ≥ vt ≥ X1(K1) otherwise
it cannot match. If buyer wants two goods (say 1 and 2), then vt > X1(K1) + X2(K2) otherwise it
cannot match. Thus,

Wt ≥X1(K1)−∆2(K2)−
∑
l∈L3t

∆l(Kl).

And, in general, we have

Wn := max
t∈B1

Wt ≥X1(K1)−
∑
l 6=1

∆l(k)−
∑
l∈L3t

∆l(Kl) =: W n
∗ . (15)
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Since ∆l(Kl)
P→0 as n→∞ and for all l, we have

W n
∗

P→W∗ := X1(K1),

which implies for n→∞,
P (Wn ≥W∗) → 1.

(ii) We will prove only the first part. We know that Wn ≤W ∗
n a.s. and W ∗

n →W ∗ i.p. Thus, for
some n and 0 < δ < ε, we have

P (Wn > ε) = P (Wn > ε,W ∗
n ≥W ∗ + δ)+P (Wn > ε,W ∗

n < W ∗ + δ)
≤ P (W ∗

n ≥W ∗ + δ)+P (W ∗ > ε− δ)

and we get that
limsup

n
P (Wn > ε)≤ P (W ∗ > ε− δ)

since limsupn P (W ∗
n ≥W ∗ + δ) = 0. Since, the inequality above is valid for any 0 < δ < ε, we have

that for large enough n, P (Wn > ε)≤ P (W ∗ > ε).

Wt can be interpreted as the “effective bid” of an unmatched buyer t (who wants good 1) on good
1. W is the highest such “effective bid”. As long as a is smaller than W , bid a can be accepted. The
proposition above shows that W in fact lies between X = X1(K1) and Y = X1(K1+1) when n becomes
large (we will drop the subscript 1 for good l = 1 below). For a single good case, W = bK+1, the
highest unmatched buy-bid on the good, which is smaller than Y , and can only be accepted upon
introducing another seller with bid “a” if it is bigger than X.

Now, observe that

P n(Aa) =
∑

k

P (X < a|W > a,K = k)P (W > a,K = k)

≤
∑

k

P (X(k) < a < X(k+1))P (W ∗ > a,K = k)

/
∑

k

P (X(k) < a < X(k+1))P (X(k+1) > a)

=
n−1∑
k=0

(
n− 1

k

)
F k(a)F

n−1−k
(a)

k∑
i=0

(
n− 1

i

)
F i(a)F

n−1−i
(a) (16)

The first equality follows from conditioning and Bayes’ rule and uses proposition 1. The second
inequality holds asymptotically (for large n). The last equality is obtained using order statistics
arguments.

In the same way, we can obtain the following:

P n(Ba) /
∑

k

P (X(k−1) < a < X(k))P (X(k+1) > a)

=
∑

k

(
n− 1
k− 1

)
F k−1(a)F̄ n−k(a)

k∑
i=0

(
n− 1

i

)
F i(a)F

n−1−i
(a), (17)

P n(Ca) /
∑

k

P (X(k−1) < a < X(k))P (X(k−1) < a < X(k))

=
∑

k

(
n− 1
k− 1

)
F k−1(a)F̄ n−k(a)

(
n− 1

k

)
F k(a)F

n−1−k
, (18)

dP n(Da) '
∑

k

P (X(k) ∈ [a,a+ da))P (X(k) < a < X(k+1))

= (n− 1)f(a)
∑

k

(
n− 2
k− 1

)
F k−1(a)F̄ n−1−k(a)

(
n− 1

k

)
F k(a)F

n−k−1
(a)da. (19)
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Let a = αn(c) be the best-response strategy of the sellers on good l = 1. Further, f(αn(c)) =
1/α′

n(c) when the costs are uniformly distributed over [0,1]. Then, dπ̄i
da

= 0 at a = αn(c). Now, for
any a≤ c, dπ̄i

da
> 0 from (12). Thus,

a = αn(c)≥ c, ∀n≥ 2. (20)

If a > c, from (12) after some rearrangement, we get

αn(c)− c≤
∑

k[P
n(Aa)+P n(Ba)+P n(Ca)]

dP n(Da)/da

and using equations (16), (25), (26 and (27), we obtain that

[αn(c)− c] ≤ sup
0<x<1

α′
n(x) · sup

0<z<1
[

( ∑n−1

k=0

(
n−1

k

)
zk(1− z)n−1−k

∑k

i=0

(
n−1

i

)
zi(1− z)n−1−i

(n− 1)
∑n−1

k=1

(
n−2
k−1

)
zk−1(1− z)n−k−1

(
n−1

k

)
zk(1− z)n−k−1

)

+

( ∑n−1

k=1

(
n−1
k−1

)
zk−1(1− z)n−k

∑k

i=0

(
n−1

i

)
zi(1− z)n−1−i

(n− 1)
∑n−1

k=1

(
n−2
k−1

)
zk−1(1− z)n−k−1

(
n−1

k

)
zk(1− z)n−k−1

)

+

( ∑n−1

k=1

(
n−1
k−1

)
zk−1(1− z)n−k

(
n−1

k

)
zk(1− z)n−1−k

(n− 1)
∑n−1

k=1

(
n−2
k−1

)
zk−1(1− z)n−k−1

(
n−1

k

)
zk(1− z)n−k−1

)
]

It can be checked that each of the terms in the square brackets converges to zero for all 0 < z < 1
as n→∞. Thus, from assumption 1 and proposition 1, we get that (αn, β̃)→ (α̃, β̃).

Appendix C: Proof of Theorem 1(iv)

We now show that in case of a multiple goods any Nash equilibrium allocation with non-zero trade
for each good is efficient.

Let B̃matched and S̃matched denote the set of buyers and sellers that are matched at a Nash
equilibrium (b̃, ã).

Now suppose z̃ := (x̃, ỹ) is an allocation, corresponding to the Nash equilibrium (b̃, ã), which
is not efficient. Denote the efficient allocation that involves a trade for all goods by z∗ and the
allocation z̃ that also involves a trade for all goods but is not efficient. Then, the two allocations
must differ in one of the following ways as we go from z∗ to z̃:

(i) z∗ and z̃ differ only among sellers: A (non-empty) set of sellers Sout matched in z∗, is no
longer matched in z̃ and a (non-empty) set of sellers Sin are now matched;

(ii) z∗ and z̃ differ only among buyers: A (non-empty) set of buyers Bout matched in z∗, is no
longer matched in z̃ and a (non-empty) set of buyers Bin are now matched;

(iii) All buyers and sellers matched in z∗ remain matched in z̃, and some new buyers Bin and
some new sellers Sin now get matched;

(iv) No new buyers and sellers are matched in z̃ and some old buyers Bout and some old sellers
Sout are now not matched;

(v) (General Case ) A set of buyers Bout and a set of sellers Sout are no longer matched and a
set of buyers Bin and a set of sellers Sin are now matched in z̃.
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Case (i) Suppose (l, j1)∈ Sin and (l, j2)∈ Sout. Then, it must be that cl,j1 > cl,j2 but ãl,j1 < ãl,j2 .
But then either (l, j1)’s payoff is negative or (l, j2) can also bid just below (l, j1)’s bid. In either
case z̃ cannot be a Nash equilibrium allocation.

Case (ii) Now, given the sets of buyers Bin and Bout, let p̃l denote the set of prices on the links
at the allocation z̃. Then, it must be that∑

i1∈Bout

vi1 ≥
∑

i2∈Bin

vi2 ≥
∑

i∈Bin

∑
l∈Ri

p̃l.

The first inequality follows because the set of Buyers Bout match ahead of the buyers Bin at the
efficient allocation z∗. The second inequality follows because the buyers Bout are matched with
allocation z̃ and pay prices p̃l. Furthermore,∑

i2∈Bin

b̃i2 ≥
∑

i∈Bin

∑
l∈Ri

p̃l.

Now, clearly there exists an i1 ∈ Bin can bid just above
∑

i2∈Bin
b̃i2 and match, and still have a

positive payoff since the price it will at most have to pay is
∑

l∈Ri1
p̃l < vi1 . Thus, (b̃, ã) cannot be

a Nash equilibrium in this case.

Case (iii) For a fixed l, denote (l, j̆) := argmin(l,j)∈Sin
ãl,j and let ĭ ∈ Bin be any such buyer.

Then, vĭ <
∑

l∈R
ĭ
cl,j̆ since these bidders are not matched at z∗ and b̃ĭ ≥

∑
l∈R

ĭ
ãl,j̆ since they are

matched at z̃. But then either buyer ĭ or one of the sellers (l, j̆) with l ∈Rĭ has a negative payoff
at (b̃, ã), and so will deviate, in which case it cannot be a Nash equilibrium outcome.

Case (iv) Denote ǰ(l) := argmin(l,j)∈Sout cl,j and ǐ∈Bout, any such buyer. And denote the prices
with bids (b̃, ã) by p̃. Then, p̃l ≤ cl,ǰ(l) otherwise any seller (l, ǰ(l)) can outbid the highest matched
seller on l in the allocation z̃.

Furthermore, vǐ ≥
∑

l∈Rǐ
cl,ǰ(l) and b̃ǐ <

∑
l∈Rǐ

ãl,ǰ(l). Now, if
∑

l∈Rǐ
ãl,ǰ(l) ≤ vǐ, then clearly, buyer

ǐ has an incentive to bid just above
∑

l∈Rǐ
ãl,ǰ(l) and match. And if

∑
l∈Rǐ

ãl,ǰ(l) > vǐ ≥
∑

l∈Rǐ
cl,ǰ(l) ≥∑

l∈Rǐ
p̃l, then again the buyer ǐ can bid high enough to match and pay

∑
l∈Rǐ

p̃l. Thus, in either
of these cases, the bids under consideration cannot be a Nash equilibrium.

Case (v) Denote ĵ(l) := argmax(l,j)∈Sin
ãl,j and ǰ(l) := argmin(l,j)∈Sout ãl,j, and let î ∈ Bin and

ǐ ∈Bout be any buyers. Let Rǐ̂i := Rǐ ∩Rî be the set of common goods in the bundles of the two
buyers. Denote Rǐ̌i := Rǐ \Rǐ̂i and Rî̂i := Rî \Rǐ̂i. We shall use the shorthand p̃(R) to mean the
sum

∑
l∈R p̃l.

Now, suppose that there is a common good between sellers Sin and Sout. Then, clearly by case
(i), the bids under consideration cannot be a Nash equilibrium.

Thus, suppose that the sellers Sin and Sout do not have any good in common. Now, suppose
that no two buyers î∈Bin and ǐ∈Bout have a good in common, i.e., Rǐ̂i = ∅. Then, again this will
reduce to cases (iii) and (iv) above, and we can conclude that the bids under consideration cannot
be a Nash equilibrium.

Now, we are left with the case where sellers Sin and Sout do not have a good in common and
some buyers î and ǐ do, i.e., Rǐ̂i 6= ∅. Further, we are given that there is at least one trade for each
good. Thus, p̃l ≤ cl,ǰ(l) ≤ p∗l and p̃l ≥ cl,ĵ(l) ≥ p∗l for all relevant l otherwise some sellers would have
an incentive to deviate. Further note that

vǐ−
∑
l∈Rǐ

p∗l > vî−
∑
l∈R

î

p∗l .
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This implies that either
vǐ− p̃(Rǐ̌i)≥min{vî, bî}− p̃(Rî̂i)≥ p̃(Rǐ̂i)

and so buyer ǐ can outbid the buyer î, or

vî− p̃(Rî̂i) < p̃(Rǐ̂i)

and buyer î has a negative payoff.
In either case, the bids under consideration cannot be a Nash equilibrium.

Thus, for every case above, the corresponding bids cannot be a Nash equilibrium. This proves
claim (iv) of the theorem.
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Figure 1 The payoff of the buyer as a function of its bid b for various cases.
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Figure 2 The payoff of the seller as a function of its bid a for various cases.
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