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Abstract

A framework is proposed to analyze the sale of multiple licenses to use a cost-reducing

technology. Firms di¤er in their ability to reduce their costs by purchasing a license. A

purchaser imposes a negative externality on others. The payo¤ of each �rm depends on the

number and abilities of the licensees. The seller maximizes her revenue by optimally choosing

the licensees. The optimal mechanism is determined both when each �rm�s ability to reduce

its cost is publicly observable and when it is not. In the optimal mechanism, sometimes

non-licensees make a payment to the seller.



1 Introduction

This paper considers the problem of a seller who has developed a cost-reducing technology

and wants to earn revenue by selling multiple licenses to use the technology. The licenses are

identical in the sense that they endow the licensee with the right to use the same technology.

The buyers of the licenses are the �rms in the relevant industry that compete in the product

market.

The payo¤ of each �rm depends on the marginal costs of production of every �rm in the

industry; there is no �xed cost of production. Each �rm has access to an existing publicly

available technology that allows it to produce at a marginal cost of one. The marginal

cost of production of any �rm that uses the new technology is at most one. However, it is

assumed that di¤erent �rms in the industry have di¤erent abilities to exploit the technology

and, consequently, there is heterogeneity in the marginal costs of the �rms that use the

new technology. Each �rm receives a one-dimensional signal that is a measure of the cost

reduction that �rm can achieve by using the new technology. A �rm that receives a higher

signal than another �rm achieves a lower marginal cost than the other �rm and hence

has a higher payo¤. If a �rm cannot purchase a license to the new technology, it uses

the existing technology and achieves a marginal cost of one. Furthermore, the payo¤ of a

�rm also depends negatively on the signal of any other licensee of a license. This has the

implication that even though a �rm obtains the user rights to the technology by purchasing

just one license, it still has a positive value for the second license because, by purchasing the

second license, it prevents a competitor from acquiring a license. Moreover, the payo¤ of a

�rm depends on the signals of the �rms that purchase a license, not on how many licenses

each of these �rms has. Hence, given a pro�le of signals, the seller maximizes her revenue

by optimally choosing the number of licensees. I provide a framework for the analysis of

the optimal number of licensees. Because the payo¤ of a licensee depends on the nature

of the product market, I also analyze the role of di¤erent product market factors in the

determination of the optimal number of licensees.1

In the paper, I consider the simpli�ed problem of determining the seller�s revenue when

the seller sells two identical licenses and there are three �rms. The analysis can be extended

to the sale of k licenses to n �rms with its attendant combinatorial complexity. The payo¤s

of the �rms are taken to have the same properties as the payo¤s of �rms that compete in

quantities or prices using di¤erentiated products. First, I determine the seller�s revenue when

the signal of each �rm is publicly observable. I �nd that in the optimal selling mechanism

1Other situations in which special cases of the model apply are the sale of production rights in an industry
(as in Dana and Spier (1994)), the sale of airport takeo¤ and landing rights (as in Gale (1994)), and the sale
of franchise rights (as in Degraba and Postlewaite (1992)).
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when the signal of each �rm is publicly observable, the seller selects the allocation rule that

maximizes the industry (gross) payo¤. The optimal mechanism of the seller for the case in

which all licensees have the same signal was solved in Kamien ((1992), pp. 348-352) and in

Kamien, Oren, and Tauman (1992). I extend their analysis to the case in which licensees

can have di¤erent signals.

Next, I analyze the case wherein the signal of each �rm is its private information. In

order to analyze the problem, I de�ne an allocation rule as a speci�cation of the licensees,

and consider the allocation in a truth-telling equilibrium of a direct mechanism. The seller�s

problem is to choose the allocation rule that maximizes her revenue from the sale of two

licenses, provided the allocation rule satis�es the incentive compatibility and individual ra-

tionality constraints. Therefore, I �rst derive the necessary and su¢ cient conditions for

incentive compatibility. I then show that some well-known allocation rules satisfy the nec-

essary and su¢ cient conditions for incentive compatibility. Because of the assumption of

independence of signals, I prove that two selling procedures that have the same allocation

rule and the same payo¤ of a �rm with the worst possible signal yield the same revenue to

the seller. This is known as the revenue equivalence theorem, �rst established in a simpler

context by Riley and Samuelson (1981).

I then determine the seller�s revenue in an incentive compatible mechanism (that is, in a

mechanism in which the allocation rule satis�es the necessary and su¢ cient conditions for

incentive compatibility). In order to determine the seller�s revenue, I de�ne the concept of

industry virtual payo¤ , which is the analog, for the situation in which there are externalities,

of the concept of virtual value (Myerson (1981), Bulow and Roberts (1989), and Bulow and

Klemperer (1996)). The industry virtual payo¤ is the industry pro�t, less the information

rents of the licensees; hence, the industry virtual payo¤, given any pro�le of signals, depends

on the allocation rule. The revenue of the seller, given any allocation rule, is the expected

industry virtual payo¤, less the product of the payo¤ of a �rm with the lowest possible signal

and the number of �rms in the industry. In models of sales with externalities, the payo¤ of

the �rm with the lowest possible signal depends on the mechanism (Kamien (1992), Jehiel,

Moldovanu, and Stachetti (1996) and (1999)). If the seller can credibly commit to punish a

�rm that refuses to participate in the mechanism by allocating a license to the other �rms,

then the payo¤ of the �rm with the lowest possible signal is minimized and is independent of

the equilibrium allocation. Hence, in the optimal mechanism, the seller chooses the allocation

mechanism that maximizes the industry virtual payo¤ for any arbitrary pro�le of signals,

and threatens to punish a �rm that refuses to participate in the mechanism by allocating a

license to the other �rms. I determine the number of licensees in the optimal mechanism,

both when the signal of each �rm is publicly observable, and when the signal of each �rm is
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its private information.

I then illustrate the role of several product market factors in the determination of the

optimal number of licensees. First, I show that the presence of signi�cant externalities along

with private information may cause the seller to select a fewer number of licensees compared

to the situation in which the signal of each �rm was publicly observable. Next, I show that

an increase in the magnitude of externalities may lead to a decrease in the expected number

of licensees. Finally, I show that when the �rms are likely to be more e¢ cient users of the

technology, then the expected number of licensees increases.

1.1 Other Related Literature

This paper is closely related to the literature on sales with externalities. One of the

earliest analyses of sales of licenses in the presence of externalities is Katz and Shapiro

(1986). Their analysis assumes that the signal of a �rm is publicly observable, and that each

�rm can purchase at most one license. Another article in the same spirit is Hoppe, Jehiel,

and Moldovanu (2004). I relax both of the assumptions mentioned above. There has been

work on sale with externalities, in which the signal of each �rm is its private information.

Jehiel, Moldovanu, and Stachetti ((1996) and (1999)) show that the payo¤ of the �rm with

the worst signal is endogenous to the mechanism, when the licensee of the license imposes

an externality on the others. I �nd such a result in my model. Other examples of articles

that analyze sales with externalities are Jehiel and Moldovanu (2000), Moldovanu and Sela

(2003), DasVarma (2003), Katzman and Rhodes-Kropf (2002) and Goeree (2003). However,

unlike my paper, none of these papers consider multiple licenses.

There has also been some work on sales of multiple licenses in the presence of externali-

ties. Jehiel and Moldovanu (2001 and 2004) show the impossibility of implementing e¢ cient

allocations when the signals are multi-dimensional. In my paper, the signals are unidimen-

sional. My paper is also closely related to Dana and Spier (1994). In their article, Dana and

Spier consider the problem of auctioning production rights to �rms in an industry. Dana and

Spier assume that "a �rm earns zero pro�ts if it is not awarded a production right" ( Dana

and Spier (1994), p. 129) while I assume that if a �rm does not purchase a license, its payo¤

is lower (and depends on the signals of the other licensees) compared to its payo¤ before the

sale. In Dana and Spier, the seller (which is the government) maximizes social welfare which

is a function of the revenue from the sale, pro�ts of �rms, and consumer surplus, while in

my model, the seller maximizes her revenue from the sale.

Schmitz (2002) has analyzed revenue-maximizing allocations from a sale of multiple li-

censes when the signal of each �rm is its private information. He has shown that the optimal
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number of licensees under private information can be two even when the optimal number

of licensees under complete information is one. There are two major di¤erence between

Schmitz�s model and mine. First, in Schmitz�s model, each �rm can win at most one license

but I impose no such restriction. Second, Schmitz assumes that with positive probability

a licensee is not able to commercially exploit the technology whereas, in my model, this is

not the case. It can be shown that if this assumption is relaxed in Schmitz�s model, it is

always optimal for the seller to sell both licenses to one �rm. In contrast, I do not make such

an assumption but show that it can be optimal for the seller to choose multiple licensees.

Brocas (2005) also analyzes a model of sale of k licenses in which each �rm can win at most

one license but her payo¤ functions are not motivated by standard models of market compe-

tition. In simultaneous but independent work, Figueroa and Skreta (2005) have considered

a general model of sale of multiple objects in the presence of externalities whereas my model

deals only with the sale of licenses. They derive the optimal mechanism both when the

non-participation payo¤s are own-type dependent and when they are own-type independent;

I consider the optimal mechanism when the non-participation payo¤s are own-type indepen-

dent. In my model, the payo¤ function of �rms have the properties of payo¤ functions that

arise in equilibrium when �rms compete in quantities or in prices using di¤erentiated prod-

ucts; in Figueroa and Skreta the payo¤ functions are not derived from an oligopoly model.

Because I model the nature of competition in the product market more explicitly, I show the

relationship between the level of product di¤erentiation and the optimal number of licensees.

Moreover, because I assume that the marginal payo¤ of a �rm is decreasing in a competitor�s

signal (as in many oligopoly models), I derive a di¤erent regularity condition from the one

in Figueroa and Skreta. Further, I analyze the problem both when the signal of every �rm is

publicly observable and when they are private information. This allows me to highlight the

e¤ect of negative externalities alone and the e¤ect of both negative externalities and private

information.

There is another related literature that analyzes auctions of heterogeneous objects. Pal-

frey (1983), Armstrong (2000) and Avery and Hendershott (2000) analyze auctions of het-

erogeneous objects when buyers have an exogenously speci�ed private value for each object.

In contrast, in my model, the licenses are identical and the value of winning a license is

determined only after the sale. In Palfrey�s model, the seller, who is the owner of many het-

erogeneous objects, decides to partition the objects into separate bundles and sell each bundle

separately using auctions. In comparison, in my model, the seller makes the bundling deci-

sion ex post. Palfrey �nds that the desirability of selling all the objects as a bundle depends

on the number of bidders. Armstrong (2000) and Avery and Hendershott (2000) extend

Palfrey�s analysis to determine the revenue-maximizing auction, under di¤erent assumptions
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about the buyers.2

I determine the seller�s revenue when the signal of each �rm is publicly observable in

Section 2. In Sections 3 and 4, I describe the seller�s mechanism for the sale of two licenses

when the signal of each �rm is its private information, and use the mechanism to determine

the seller�s revenue. The �ndings have been summarized in Section 5. Most of the proofs

are in the Appendix (and the others are in the text).

2 Seller�s Revenue under Complete Information

2.1 Model

Consider a seller who wants to maximize revenue by selling two licenses to use a cost-

reducing technology (process innovation). There are three potential buyers for the licenses,

labelled �rms 1, 2, and 3. Initially, the �rms produce with a marginal cost of 1; there are

no �xed costs of production. Before the sale occurs, each �rm i (i = 1; 2; 3) receives a signal

si 2 [0; 1] that determines its marginal cost of production ci if it purchases a license to the
technology, in the following way:

ci = 1� si: (1)

Otherwise, the �rm continues to produce at a marginal cost of 1. It is assumed that no �rm

exits the industry after the sale of licenses to the new technology.

The signals are assumed to be identically and independently distributed across �rms,

with G (s) (resp., g (s)) as the distribution function (resp., density function). In this section,

it is assumed that the signal of each �rm is publicly observable. Let s3(k) be the kth highest

statistic from a sample of size 3 where the sample includes all the potential buyers for the

licenses and assume that s3(k) is distributed as F
3
k (�) with the associated density function

f 3k (�). A typical �rm has two competitors and the expected payo¤ of a �rm depends on the

signals of the two competitors. Therefore, when a sample refers to a �rm�s competitors, I

work with a sample size of 2 and in these cases, I replace 3 with 2 in the superscripts of

the expressions above. In such a case, the sample consists of all the competitors of �rm i. I

denote the joint density of sj(1); : : : ; s
j
(k) by f

j
1:::k

�
s(1); : : : ; s(k)

�
where j; k = 1; 2; 3 and k � j.

A �rm�s payo¤ depends upon its own signal as well as on the signals drawn by the other

�rms. If �rm i purchases a license and, if the �rm with signal s2(p) also purchases a license,

then �rm i �s payo¤ is given by �(si; s2(p); 0) where p is either 1 or 2. If �rm i does not

2In Armstrong (2000), all buyers gain a positive payo¤ from winning any object. In contrast, in Avery
and Hendershott (2000), only some buyers gain a positive payo¤ from winning any object, while the others
gain a positive payo¤ from winning only some of the objects.
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purchase a license and, if the �rms with signals s2(1) and s
2
(2) purchase one license each, then

�rm i�s payo¤ is �(0; s2(1); s
2
(2)). Finally, if �rm i is not a licensee and the �rm with signal

s2(p) purchases both licenses, then the payo¤ of �rm i is �(0; s2(p); 0); p = 1; 2. The payo¤

function � (�; �; �) is also assumed to be symmetric across �rms; that is, if the signals amongst
any two �rms are permuted, their payo¤s are permuted as well.

The exact speci�cation of the payo¤ function �(�; �; �) depends on the nature of competi-
tion among the �rms and other market parameters such as the demand function. However,

regardless of the functional form, I assume that the payo¤ function �(�; �; �) is twice contin-
uously di¤erentiable in all its arguments and has the following properties:

�1(si; �; �) > 0 , �11(si; �; �) � 0, (2)

�j(�; �; �) < 0, j = 2; 3, (3)

�12 (�; �; �) < 0, �13 (�; �; �) < 0, �1 (�; �; �) > ��2 (�; �; �) , (4)

where �j (�; �; �) refers to the partial derivative of � (�; �; �) with respect to the jth argument.
The inequalities in (2) imply that the payo¤of �rm i, when it purchases a license, is increasing

and convex in its own signal. The inequality in (3) captures the e¤ect of negative externalities

in this model because it implies that when a competitor of �rm i purchases a license, then

the payo¤of �rm i is strictly decreasing in that competitor�s signal. The �rst two inequalities

in (4) imply that the marginal payo¤ of a �rm�s signal is decreasing in another �rm�s signal,

while the third inequality in (4) implies that the payo¤ of a �rm is more sensitive to its own

signal than to another �rm�s signal.

Below, I illustrate the payo¤ function for di¤erent speci�cations about the nature of com-

petition and show that the payo¤ function in each of these examples satis�es the properties

described in (2), (3), and (4). In the �rst example, I consider a market in which the �rms

compete in quantities.

Example 1 (Sale of Licenses to use a Process Innovation): Suppose an independent research
lab wants to sell two licenses to use a cost-reducing technology. There are three potential

buyers, who are �rms that compete in quantites producing di¤erentiated products. The

inverse demand function for �rm i is given by:

pi = � � qi � �q2(1) � �q2(2); � 2 [0; 1] .

In this demand function, q2(j) is the output of the �rm with cost 1 � s2(j).3 Also, � is the
3Recall that s2(1) � s2(2).
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externality parameter that captures the e¤ect of the other �rms�decisions on �rm i�s payo¤.4

Given � 2 [0; 1], the payo¤ function is given by:

�
�
si; s

2
(1); s

2
(2)

�
=

24(� � 1) (2� �) + (2 + �) si � �
�
s2(1) + s

2
(2)

�
2 (1 + �) (2� �)

352 . (5)

Because I am considering the problem of allocating two licenses, at least one of si, s2(1), or

s2(2) is 0. It can be veri�ed that the payo¤ function (which is the reduced form equilibrium

pro�t function) satis�es (2), (3), and (4). �

Next, I consider another example in which the �rms compete in prices instead of in

quantities.

Example 2 This example is similar to the example above, except for the nature of compe-
tition. Suppose the three �rms compete in prices selling di¤erentiated products, and let the

demand function be given by

qi = � � pi + �p2(1) + �p2(2); � 2 [0; 0:5] .

Analogous to the example above, p2(j) is the price of the �rm with cost 1 � s2(j) and � is
the externality parameter. If all the �rms were able to use the new technology, the payo¤

function of �rm i would be given by

�
�
si; s

2
(1); s

2
(2)

�
=

24(� + 2�� 1) (2 + �) + (2� �� 2�2) si � �
�
s2(1) + s

2
(2)

�
2 (1 + �) (2 + �)

352 .
It can be veri�ed that the payo¤ function (which is the reduced form equilibrium pro�t

function) satis�es (2), (3), and (4). �

Dana and Spier (1994) consider the sale of production rights in an industry and their

problem has a similar �avor to my paper. One important way in which their paper is di¤erent

is the nature of the payo¤ function of �rm i when �rm i does not win a license. Dana and

Spier assume that

�2(0; �; �) = �3(0; �; �) = 0, (6)

while I assume that

�2(0; �; �) < 0 and �3(0; �; �) < 0. (7)

4Another interpretation of � is that it captures the level of product di¤erentiation in the industry.
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A payo¤ function that satis�es (6) is said to have �xed externalities, while a payo¤ function

that satis�es (7) is said to have signal-dependent externalities. The nature of the externality

depends on the context of the problem. In Dana and Spier, a �rm that does not win a

production right cannot enter the industry and has a payo¤ of 0, thereby implying that the

payo¤ function has �xed externalities. In my model, I assume that the number of �rms in

the industry is �xed and the seller can only determine the number of �rms that can use its

technology. Hence, in my model, I have signal-dependent externalities.

It is also important to note the relationship between �rm i�s payo¤ from purchasing a

license when it has a signal of 0, and its payo¤ from not purchasing a license. First, consider

the case that only one of �rm i�s competitors� the �rm with signal s2(p)� purchases a license.

Then �rm i�s payo¤ is �(0; s2(p); 0) when either it purchases a license or when the �rm with

signal s2(p) purchases both the licenses. Second, in the case when both of �rm i�s competitors

with signals s2(1) and s
2
(2) purchase a license, �rm i�s payo¤ is �(0; s2(1); s

2
(2)). However, if �rm

i instead purchases a license by displacing one of its rivals (say the �rm with signal s2(1)),

then its payo¤ is �(0; s2(2); 0) which is di¤erent from �(0; s2(1); s
2
(2)). It follows from (3) that

�rm i with signal 0 may be better o¤ by purchasing a license if it displaces a competitor;

even though it cannot obtain a reduction in its own marginal cost, it can prevent a rival

from doing so.

2.2 Revenue

In the rest of this section, I determine the revenue of the seller in the optimal mechanism,

when the signal of each �rm is publicly observable.5 In order to do so, I �x a pro�le of

signals
�
s3(1); s

3
(2); s

3
(3)

�
. Each allocation is denoted by the vector a = [a1; a2; a3] where ai is

the number of licenses that the �rm with signal s3(i) purchases in equilibrium; i = 1; 2; 3.6

Suppose the seller commits to allocate the two licenses according to a in exchange for a

payment of mc
i (a) from �rm i; i = 1; 2; 3. If �rm i does not accept the seller�s o¤er (that is,

if �rm i does not participate in the mechanism), the payo¤ of �rm i is denoted by �ci . Let

Ic (ai) be an indicator variable that takes a value 1 if ai > 0 and 0 otherwise. Therefore, the

seller�s problem is the following:

max
a

P3
i=1m

c
i (a)

s.t. � (Ic (ai) si; �; �)�mc
i (a) � �ci ; i = 1; 2; 3. (8)

5The mechanism is an extension of the "chutzpah mechanism" (described in Kamien ((1992), pp. 348-
352) or in Kamien, Oren, and Tauman (1992)) to the case in which licensees achieve di¤erent marginal costs
of production with the new technology.

6In any allocation, a1, a2 and a3 are integers that must sum to 2, because the seller sells two licenses.
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Observe that the seller can extract a higher payment from �rm i if she can reduce the

payo¤ of �rm i from not participating in the mechanism. In the lemma below, �ci has been

determined for every �rm i in the optimal mechanism.

Lemma 1 In the optimal mechanism,

�ci = �(0; s
2
(1); s

2
(2)) for i = 1; 2; 3, (9)

where s2(1) and s
2
(2)are the signals of �rm i�s competitors such that s2(1) � s2(2).

Proof. See the Appendix.
If a �rm does not participate in the mechanism, then its payo¤ depends on how the

licenses are allocated in such an eventuality. The maximum punishment that the seller can

credibly threaten to in�ict on a non-participating �rm is to allocate the licenses to both of

its competitors, and the payo¤ of �rm i in such a case is given by �(0; s2(1); s
2
(2)); note that

�(0; s2(1); s
2
(2)) is less than �(0; 0; 0) which is the pro�t a �rm makes before the innovation

is introduced. In the optimal mechanism, the seller makes each �rm indi¤erent between

participating and non-participating and hence we have the above lemma.

Under complete information, the seller can extract the entire surplus of the three �rms

and hence, in the optimal mechanism, all the constraints in (8) must be tight. Therefore,

the seller�s problem can be re-stated as

max
a

�P3
i=1 � (I

c (ai) si; �; �)�
P3

i=1 �
c
i

	
, (10)

and it follows from (9) that

P3
i=1 �

c
i = �(0; s

3
(2); s

3
(3)) + �(0; s

3
(1); s

3
(3)) + �(0; s

3
(1); s

3
(2)): (11)

Notice that
P3

i=1 � (I
c (ai) si; �; �) is the industry gross payo¤ from the mechanism. Hence,

the seller�s optimal allocation a� maximizes the industry gross payo¤. This is stated formally

in the following proposition.

Proposition 1 Suppose the signal of each �rm is publicly observable. Then, in the optimal

allocation a�, the seller maximizes the industry gross payo¤, that is,

a� 2 argmax
P3

i=1 � (I
c (ai) si; �; �) ,
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and the seller�s revenue in the optimal mechanism is

P3
i=1 � (I

c (ai�) si; �; �)�
P3

i=1 �
c
i ,

where
P3

i=1 �
c
i is given by (11).

Proof. Follows from the discussion above.

In later sections, I show that when the signal of each �rm is its private information, then

the seller cannot extract all the surplus of the �rms and hence the optimal allocation in such

a case may not be the allocation that maximizes the industry gross payo¤. In the presence

of private information, the seller sometimes sells licenses to a smaller number of licensees

compared to what she would have done if the signals were publicly observable. In order

to determine the seller�s revenue when the signal of each �rm is its private information, in

the section below I describe the seller�s problem when the signal of each �rm is its private

information.

3 The Mechanism under Incomplete Information

From now on, unless otherwise mentioned, the signal of each �rm is assumed to be

its private information and the seller is assumed to have the power to credibly commit

to a mechanism for the sale of two licenses. By the revelation principle, there is no loss of

generality in restricting our attention to direct mechanisms. In a direct mechanism, the seller

asks each �rm to give a report about its signal, and implements some outcome depending

on the pro�le of reports.

3.1 Direct Mechanism

Before I proceed to set up the direct mechanism, I de�ne its building blocks. The �rst

building block is the signal space of the �rms. I denote it by 
. Because the signal of each
�rm is distributed on the unit interval, 
 = [0; 1]� [0; 1]� [0; 1].
The second building block of a direct mechanism is the payment rule and it is de�ned

below:

A payment rule is a mapping that speci�es the payments of the �rms as a function of
the pro�le of reports. Let r = fr1; r2; r3g 2 
 be the reports of the three �rms about their
signals. Then, the payment rule M (r) is speci�ed by the following vector:

M (r) = (M1 (r) ; M2 (r) ; M3 (r)) ,

10



where Mj (r) is the payment of �rm j when the pro�le of reports is r. The third building

block of a direct mechanism is the allocation rule which is speci�ed below:

An (ex post) allocation rule is a mapping that prescribes the distribution of licenses
among the �rms as a function of the �rms�reports r = fr1; r2; r3g 2 
. Let qj (r) be the
number of licenses �rm j obtains when the reported pro�le is r, where j = 1; 2; or 3. The

allocation rule Q (r) is then de�ned to be the vector Q (r) = (q1 (r) ; q2 (r) ; q3 (r)). Because

the seller commits to sell two licenses, the following relations must also hold:

For all r 2 
, qj (r) 2 f0; 1; 2g and
3X
j=1

qj (r) = 2; j = 1; 2; 3.

I restrict consideration to allocation rules that are symmetric and with one exception, ex

post deterministic.7 The exception is when r1 = r2 = r3; in this case, because there are

only two licenses to be allocated, the seller can allocate them in any random way that does

not depend on the identites of the would-be licensees. The probability of such an event

occuring in a truth-telling equilibrium is zero. For all other report pro�les, the allocation

rule is deterministic and, if ri and rj are permuted in the report pro�le for i 6= j, then qi (�)
and qj (�) are permuted as well.8

I now de�ne the direct mechanism as follows:

A direct mechanism is the set � = f 
; Q (�) ; M (�)g.
I denote the ex ante expected revenue of the seller when she commits to implement

an allocation rule Q (�) by RQ. The seller�s problem is to choose the allocation rule that

maximizes her expected revenue. In a symmetric allocation rule, all that matters for the ex

post allocation is the signal of a �rm and not its identity. Hence, from now on, only the

non-decreasing permutation of the reports r̂ �
�
r3(1); r

3
(2); r

3
(3)

�
is considered, where r3(1) �

r3(2) � r3(3).

3.2 Expected Payo¤ of a Firm

A revenue-maximizing seller extracts the maximum possible amount from each �rm,

under the condition that each �rm�s signal is its private information and the seller has two

licenses to sell. The amount that the seller extracts from each �rm depends on the expected

payo¤ of each �rm, which in turn depends on the seller�s allocation rule. In the rest of this

section, I show the relationship between the seller�s allocation rule and the expected payo¤

7In other words, given any pro�le of reports, the allocation rule speci�es the number of licenses each �rm
obtains, with certainty, in all but one case.

8It is possible to analyze the problem with any arbitrary allocation rule. However, for the sake of
exposition, I have considered only symmetric allocation rules throughout the paper.
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of a �rm.

In order to do so, �rst notice that given any symmetric allocation rule Q, the signal space

can be partitioned into six (mutually exclusive and exhaustive) sets

A (r̂jQ) � fA1 (r̂jQ) ; A2 (r̂jQ) ; : : : ; A6 (r̂jQ)g

such that each set maps an ordered pro�le of reports r̂ to a particular ex post allocation of

licenses. The allocation corresponding to each set is presented in the table below. As an

example, suppose that under an allocation rule Q, a particular ordered pro�le of reports r̂

belongs to the set A6 (r̂jQ). Then, the �rm reporting r3(1) purchases two licenses and the

others purchase nothing. Similarly, depending on other pro�le of reports, a di¤erent ex post

allocation of licenses is obtained. Also notice that any allocation rule is associated with a

unique partition of the signal space and vice versa. It is assumed that the seller can commit

to allocate the licenses according to the allocation rule Q.

Set Allocation of r3(1) Allocation of r3(2) Allocation of r3(3)
A1 (r̂jQ) 0 2 0
A2 (r̂jQ) 0 0 2
A3 (r̂jQ) 0 1 1
A4 (r̂jQ) 1 1 0
A5 (r̂jQ) 1 0 1
A6 (r̂jQ) 2 0 0

Table 1: Partition of the report space induced by an allocation rule

Next, in order to relate the allocation rule to �rm i�s expected payo¤, I determine the

ex post distribution of licenses from �rm i�s perspective, when the seller commits to the

allocation rule Q, �rm i reports ri, and the other �rms report truthfully. Let s2(1) (resp., s
2
(2))

be the highest (resp., lowest) of the signals of �rm i�s competitors and denote

ŝ�i =
�
s2(1); s

2
(2)

�
as the non-decreasing permutation of the signals of �rm i�s competitors. Then, given the

pro�le of reports (ri, ŝ�i) and the partition A (r̂jQ), there also exists a partition

B (ri) � fB1 (ri) ; : : : ; B6 (ri)g

of the signal space of �rm i�s competitors, as a function of �rm i�s report ri. Each subset

of the partition B (ri), given ri, is the set of ordered signals of �rm i�s competitors ŝ�i that
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result in the same allocation. In the table below, I list the allocation corresponding to each

subset of the partition B (ri). For example, it follows from the table that B3 (ri) is de�ned

as follows:

B3 (ri) = fŝ�ij�rm i is not a licensee and its competitors purchase one license eachg .

Notice that there are six subsets of B (ri) because there are six ways of allocating the two

licenses.

Number of licenses allocated to each �rm
Set Firm i Firm with signal s2(1) Firm with signal s2(2)

B1 (ri) 0 2 0
B2 (ri) 0 0 2
B3 (ri) 0 1 1
B4 (ri) 1 1 0
B5 (ri) 1 0 1
B6 (ri) 2 0 0

Table 2: Allocation of Licenses as a function of �rm i�s report ri and the partition B(ri)

The relationship of the partition B (ri) and the partition A (r̂jQ) is explained in the
Appendix. The partition B (ri) can be used to determine the probability �k (ri) that �rm

i obtains k licenses (k = 0; 1; 2) and its expected payo¤ conditional on obtaining k licenses

�(ri; sijk) when �rm i reports ri and the others report truthfully. Hence, I can determine

the expected payo¤ of �rm i from reporting ri when its competitors report truthfully, and

this is discussed below.

Let �Bk (ri) be the probability that the ordered pro�le of signals of �rm i�s competitors

belong to the set Bk (ri) when �rm i reports its signal as ri, the rivals report truthfully, and

the seller commits to the allocation rule Q, that is,

�Bk (ri) � P fŝ�i 2 Bk (ri)g ; k = 1; : : : ; 6.

The expected payment of �rm i, denoted by mi (ri), can be similarly de�ned when �rm i

reports ri, the other �rms report truthfully, and the seller commits to the allocation rule Q.9

Therefore,

mi (ri) =

Z
ŝ�i

Mi (ri; ŝ�i) f
2
12 (�) dŝ�i.

Using the de�nitions of �Bk (ri) and mi (ri), the interim expected payo¤ of �rm i, denoted

9Note that, while I consider only symmetric allocation rules, I allow the payment rule to be asymmetric
across �rms.
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by ViQ (ri; si), is de�ned below, when �rm i with a signal of si reports ri, the others report

truthfully, and the seller chooses Q.

ViQ (ri; si) = �B1 (ri)E
�
�
�
0; s2(1); 0

�
jŝ�i 2 B1 (ri)

	
+ �B2 (ri)E

�
�
�
0; s2(2); 0

�
jŝ�i 2 B2 (ri)

	
+ �B3 (ri)E

�
�
�
0; s2(1); s

2
(2)

�
jŝ�i 2 B3 (ri)

	
+ �B4 (ri)E

�
�
�
si; s

2
(1); 0

�
jŝ�i 2 B4 (ri)

	
+ �B5 (ri)E

�
�
�
si; s

2
(2); 0

�
jŝ�i 2 B5 (ri)

	
+ �B6 (ri)� (si; 0; 0)�mi (ri) . (12)

As mentioned above, let �k (ri) be the probability that �rm i purchases k licenses when it

reports ri, the other �rms report truthfully, and the seller commits to the allocation rule Q.

In particular, the probabilities �k (ri) for k = 1; 2; 3 are related to the probabilities �Bj (ri)

for j = 1; 2; : : : ; 6 as follows:

�0 (ri) � �B1 (ri) + �B2 (ri) + �B3 (ri) ,

�1 (ri) � �B4 (ri) + �B5 (ri)

and �2 (ri) � �B6 (ri) . (13)

Observe that the probability of purchasing k licenses depends on �rm i�s reported signal ri
and not on its true signal si. Moreover, the expected gross payo¤ of �rm i from purchasing

k licenses (when its true signal is si and its reported signal is ri) denoted by �(ri; sijk) is
described below for k = 0; 1;and 2.

�(ri; sij0) � �B1 (ri)

�0 (ri)
E
�
�
�
0; s2(1); 0

�
jŝ�i 2 B1 (ri)

	
+
�B2 (ri)

�0 (ri)
E
�
�
�
0; s2(2); 0

�
jŝ�i 2 B2 (ri)

	
+
�B3 (ri)

�0 (ri)
E
�
�
�
0; s2(1); s

2
(2)

�
jŝ�i 2 B3 (ri)

	
, (14)

�(ri; sij1) � �B4 (ri)

�1 (ri)
E
�
�
�
si; s

2
(1); 0

�
jŝ�i 2 B4 (ri)

	
+
�B5 (ri)

�1 (ri)
E
�
�
�
si; s

2
(2); 0

�
jŝ�i 2 B5 (ri)

	
, (15)
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and

�(ri; sij2) � � (si; 0; 0) . (16)

Furthermore, �j (ri; sijk) denotes the partial derivative of �(ri; sijk) with respect to the jth
argument where j is either 1 or 2.

Remark: It is interesting to observe that, when the payo¤ function � (�; �; �) exhibits
�xed externalities, the expected gross payo¤ of �rm i, given that it has not won any license

(denoted by �(ri; sij0)), is a constant and does not depend on either its reported signal
or its true signal. However, in the presence of signal-dependent externalities, �(ri; sij0)
depends only on �rm i�s reported signal ri and not on its true signal si. Moreover, �rm i�s

expected gross payo¤ from purchasing one license (denoted by �(ri; sij1)), depends both
on its reported signal and on its true signal. Finally, �rm i�s expected gross payo¤ from

purchasing both licenses (denoted by �(ri; sij2)), depends only on its true signal si.

3.3 The Seller�s Problem

I now state the seller�s problem formally. In order to do so, I use (14), (15) and (16) to

rewrite the interim expected payo¤ of �rm i as given in (12) as follows:

ViQ (ri; si) = �0 (ri)� (ri; sij0) + �1 (ri)� (ri; sij1) + �2 (ri)� (ri; sij2)�mi (ri) . (17)

In the truth-telling equilibrium, it is a best response of �rm i to report its signal truthfully,

given that other �rms report truthfully. This is known as Bayesian Incentive Compatibility

and is de�ned formally below:10

The allocation and payment rule satisfy Bayesian Incentive Compatibility (hence-
forth BIC) if, for every �rm i,

ViQ (si; si) � ViQ (ri; si) for all ri and si 2 [0; 1] . (18)

Moreover, no �rm can be forced to participate in the mechanism. This can be ensured if no

�rm becomes worse o¤ participating in the mechanism than by staying out. This is known

as Individual Rationality. Suppose that if �rm i stays out of the mechanism, it gets a payo¤

of �i. Then, the Individual Rationality constraint is formally as follows.

The allocation and payment rule satisfy Individual Rationality (henceforth IR) if, for
every �rm i,

ViQ (si; si) � �i. (19)

10The term "Bayesian" has been used because the equilibrium concept used is Bayes-Nash. See Krishna
(2002, p. 280).
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I now de�ne the seller�s problem as follows:

Select fB1 (�) ; : : : ; B6 (�) ;m1 (�) ;m2 (�) ;m3 (�)g to (20)

Max

3X
i=1

Z 1

0

mi (si) g (si) dsi s.t. BIC and IR.

The optimal mechanism solves the problem for all possible fQ;Mig. In principle, this prob-
lem can be solved in two steps. First, �x the allocation rule Q (�) arbitrarily.11 Then,

determine mi (�) to satisfy BIC and IR and use this function to obtain RQ where

RQ =
3X
i=1

Z 1

0

mi (si) g (si) dsi. (21)

In the second step, select Q (�) to maximize RQ.
In the next section, I use incentive compatibility to narrow down the search to a subset of

all possible allocation and payment rules. Then, I show that the expected payment function

mi (�), in an incentive compatible direct mechanism, is a function of the allocation rule and
the equilibrium payo¤ of the �rm with signal 0, given by ViQ (0; 0). I then discuss how

ViQ (0; 0) is determined in the optimal mechanism.

4 Seller�s Revenue under Incomplete Information

In this section, I determine the seller�s revenue in an incentive compatible direct mech-

anism, as a function of the allocation rule. In order to do so, I �rst provide an alternative

characterization of incentive compatibility in the following proposition:

Proposition 2 The direct mechanism is incentive compatible if and only if

ViQ (si; si) = ViQ (0; 0) +

Z si

0

[�1 (s)�2 (s; sj1) + �2 (s)�2 (s; sj2)] ds, (22)

and

�1 (ri)�2 (ri; sij1) + �2 (ri)�2 (ri; sij2) is non-decreasing in ri for all ri 2 [0; 1] .
(23)

Proof. See the Extended Appendix.
11Recall that with a Q, we can associate a unique partition A and hence a resulting partition B (�).
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From (22) it follows that the marginal change in the equilibrium payo¤ ViQ (si; si) with

respect to the signal si is given by

�1 (si)�2 (si; sij1) + �2 (si)�2 (si; sij2) . (24)

Notice that under the assumptions of the model, the expression in (24) is positive. In

addition, I also show that, under the assumptions of the model, the expression in (24) is

non-decreasing in the signal si.

Corollary 1 Suppose the payo¤ of a �rm is strictly convex in its signal si.Then (23) implies
that the marginal change in the equilibrium payo¤ (given in (24)) with respect to si is non-

decreasing in si.

Proof. See the Extended Appendix.
The above corollary and (24) implies that, in my model, the equilibrium payo¤ function

ViQ (si; si) is positively sloped and convex in si. Hence, incentive compatibility ensures that

if the IR constraint is satis�ed for a �rm with signal 0, then it is satis�ed for a �rm with

any arbitrary signal.

4.1 Incentive Compatible Allocations

It is instructive at this point to consider the kind of allocations that satisfy (23) and

hence are implementable. First, I consider allocations in which the number of licensees is

known with certainty when the �rms report their types. There are six possible allocation

rules with such a feature and they are the following: (i) The �rm with the highest report

purchases both the licenses, (ii) the �rm with the second highest report purchases both the

licenses, (iii) the �rm with the third highest report purchases both the licenses, (iv) the

�rms with the highest and second highest reports purchase a license each, (v) the �rms with

the second highest and third highest reports purchase a license each, and (vi) the �rms with

the highest and third highest reports purchase a license each. Suppose the seller commits to

sell both the licenses to the �rm with the highest report, that is, it commits to implement

the �rst allocation rule mentioned above. In this case,

�1 (ri)�2 (ri; sij1) + �2 (ri)�2 (ri; sij2)

=

Z ri

0

�1 (si; 0; 0) f
2
1

�
s2(1)
�
ds2(1)

and the above expression is non-decreasing in the report ri. Hence, the allocation in which

the �rm with the highest report purchases both licenses is implementable. One can check
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that the allocations mentioned in (ii) and (iii) are not implementable. Next consider (iv),

that is, the allocation in which the seller commits to sell one license each to the �rms with

the highest two reports. In this case,

�1 (ri)�2 (ri; sij1) + �2 (ri)�2 (ri; sij2)

=

Z ri

0

Z 1

s2
(2)

�1
�
si; s

2
(1); 0

�
f 21
�
s2(1)js2(2)

�
f 22
�
s2(2)
�
ds2(1)ds

2
(2)

and this is also non-decreasing in ri. Hence, the allocation in which the two �rms with

the highest signals purchase one license each is implementable. One can check that the

allocations in (v) and (vi) are not implementable.

Next, I consider allocations that have the feature that the number of licensees is un-

certain before the sale. There are potentially many allocation rules that have this feature.

Below, I consider a particular class of such allocation rules. I call each rule in this class

the Non-decreasing cuto¤ (NDC) rule. These allocation rules have the feature that if the

reports r3(1) and r
3
(2) are "close" to each other, then the �rms with the reports r

3
(1) and r

3
(2)

purchase one license each; else, the �rm with the report r3(1) purchases both licenses. In par-

ticular, corresponding to each allocation Q, there is a non-decreasing function s (r;Q) � r,
such that if r3(2) � s

�
r3(1);Q

�
, then

�
r3(1); r

3
(2); r

3
(3)

�
2 A4 (r̂jQ) and the �rms with the high-

est and second highest reports purchase one license each, while if r3(2) < s
�
r3(1);Q

�
, then�

r3(1); r
3
(2); r

3
(3)

�
2 A6 (r̂jQ) and the �rm with the highest report purchases both licenses.12

Formally,

�
r3(1); r

3
(2); r

3
(3)

�
2

8<: A4 (r̂jQ) if 0 � max
n
r3(3), s

�
r3(1);Q

�o
� r3(2) � r3(1) � 1,

A6 (r̂jQ) if 0 � r3(3) � r3(2) < s
�
r3(1);Q

�
� r3(1) � 1.

(25)

I now determine the expected payo¤ of �rm i under the NDC rule, when it reports

ri. It follows from (25) that under any allocation rule that belongs to the NDC class, if

r2(1) < s (ri;Q), then �rm i purchases both licenses, and if s (ri;Q) � r2(1) < ri, �rm i

purchases one license.13 In order to specify �rm i�s allocation under the NDC rule in the

case that r2(1) is greater than ri, de�ne

s(ri;Q) � max
�
r2(1)js

�
r2(1);Q

�
� ri

	
.

12The optimal allocation rule for �xed externalities belongs to this class. See Dana and Spier (1994) and
Schmitz (2002).
13Observe that in this case �rm i has the highest of the three signals.
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Given �rm i�s report ri, s(ri;Q) is, by construction, the maximum value of r2(1) such that

�rm i can purchase a license. The above statement implies that if r2(2) < ri < r
2
(1) � s(ri;Q),

then �rm i can purchase exactly one license while, if either r2(2) > ri or if r
2
(1) > s(ri;Q), then

�rm i cannot purchase any license. Observe that s(ri;Q) is non-decreasing in ri because of

the fact that s (ri;Q) is non-decreasing in ri.

Suppose �rm i reports ri and the other �rms report truthfully. Under an allocation rule

that belongs to the NDC class described above,

�1 (ri)� (ri; sij1) =
Z s(ri;Q)

s(ri;Q)

Z minfri;s2(1)g

0

�
�
si; s

2
(1); 0

�
f 212
�
s2(1); s

2
(2)

�
ds2(2)ds

2
(1) (26)

and

�2 (ri)� (ri; sij2) = � (si; 0; 0)
Z s(ri;Q)

0

Z s2
(1)

0

f 212
�
s2(1); s

2
(2)

�
ds2(2)ds

2
(1). (27)

I now check whether this class of allocations satisfy (23). Notice that, from (26) and (27),

@

@ri
f�1 (ri)�2 (ri; sij1) + �2 (ri)�2 (ri; sij2)g

= s0 (ri;Q)�1 (si; s (ri;Q) ; 0)F
2
2

�
rijs2(1) = s (ri;Q)

�
f 21 (s (ri;Q))

+s0 (ri;Q)

(Z s(ri;Q)

0

��12 (si; s; 0) ds
)
f 21 (s (ri;Q)) . (28)

It follows that, given (2) and (4), an allocation rule in this class satis�es (23), and is hence

implementable.

4.2 Revenue

I now determine the expected payment of a �rm in an incentive compatible direct mech-

anism. Below, I prove a version of the revenue equivalence theorem by showing that the

expected payments of �rm i with signal si in two mechanisms that have the same allocation

rule14 and the same net payo¤ for a �rm with signal 0 are equal.

I de�ne �k (ri) for k = 1; 2; : : : ; 6 as follows:

�k (ri) =

(
E f� (�; �; �) jŝ�i 2 Bk (ri)g if ŝ�i 2 Bk (ri) ,
0 if ŝ�i =2 Bk (ri) .

In particular, �k (ri) is the expected gross payo¤ to �rm i when it reports a signal ri, the

14Recall that an allocation rule can be associated with one and only one partition fB1 (ri) ; : : : ; B6 (ri)g
of the signal space of buyer i�s competitors.
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others report truthfully and the pro�le of reports belong to the set Bk (ri) for k = 1; 2; : : : ; 6.

Observe that by construction, the following equality must hold:

ViQ (si; si) =
6X
k=1

�k (si)�mi (si) . (29)

Analogously, I de�ne �k (ri; si) for k = 4; 5;or 6 as follows:

�k (ri; si) =

(
E f�1 (�; �; �) jŝ�i 2 Bk (ri)g if ŝ�i 2 Bk (ri) ,
0 if ŝ�i =2 Bk (ri) .

It follows from the above de�nition that �k (ri; si) is the expected value of the marginal gross

payo¤ to �rm i when it reports ri, the others report truthfully and the pro�le of reports

belong to the set Bk (ri) for k = 1; 2; : : : ; 6. The explicit forms of �k (ri) and �k (ri; si)

are presented in the Appendix. The expected payment of a �rm in an incentive compatible

direct mechanism is presented in the following proposition.

Proposition 3 In the truth-telling equilibrium of an incentive compatible and individually

rational direct mechanism in which a �rm with signal 0 obtains a net payo¤ of VQ (0; 0), the

expected payment of �rm i with signal si is given by

m (si) =
6X
k=1

�
�k (si)�

Z si

0

�k (s; s) ds

�
� VQ (0; 0) provided VQ (0; 0) � �. (30)

Proof. See the Appendix.
The above proposition shows that the expected payment of a �rm in two mechanisms are

the same whenever these mechanisms have the same partition fBk (ri)g6k=1, and the same
net payo¤ of the �rm with signal 0. Also, notice that, under the condition that a �rm with

signal 0 earns a payo¤ of VQ (0; 0), the equilibrium payment function mi (�) is the same for
all the �rms. Consequently, the subscript i from the expected payment function mi (si) has

been dropped.

I now use Proposition 3 to determine the revenue of the seller in the truth-telling equi-

librium of an incentive compatible direct mechanism. Below, I de�ne the industry virtual

payo¤ and show that the ex ante expected revenue of the seller is the expected value of the

industry virtual payo¤. The industry virtual payo¤ depends on the ex post allocation rule

and hence, the seller maximizes her ex ante expected revenue by choosing the allocation rule

that maximizes the expected industry virtual payo¤.

De�nition: Given the pro�le of signals
�
s3(1); s

3
(2); s

3
(3)

�
and the allocation rule Q, such
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that �
s3(1); s

3
(2); s

3
(3)

�
2 Ak (r̂jQ) ; k = 1; : : : ; 6,

the industry virtual payo¤, denoted by �Ak(r̂jQ)
�
s3(1); s

3
(2); s

3
(3)

�
, is given by

�Ak(r̂jQ)
�
s3(1); s

3
(2); s

3
(3)

�
=

P3
j=0f� (�; �; �)� Iw

�
s3(j)
� 1�G�s3(j)�

g
�
s3(j)

� �1 (�; �; �) j
�
s3(1); s

3
(2); s

3
(3)

�
2 Ak (r̂jQ)g;

k = 1; : : : ; 6, (31)

where Iw
�
s3(j)

�
is an indicator variable that takes value 1 if the �rm with type s3(j) purchases

a license.

As an example, suppose the pro�le of signals
�
s3(1); s

3
(2); s

3
(3)

�
belongs to the set A4 (r̂jQ)

under the seller�s allocation rule. Then,

�A4(r̂jQ)
�
s3(1); s

3
(2); s

3
(3)

�
= �

�
s3(1); s

3
(2); 0

�
+ �

�
s3(2); s

3
(1); 0

�
+ �

�
0; s3(1); s

3
(2)

�
�
1�G

�
s3(1)

�
g
�
s3(1)

� �1
�
s3(1); s

3
(2); 0

�
�
1�G

�
s3(2)

�
g
�
s3(2)

� �1
�
s3(2); s

3
(1); 0

�
.

The industry virtual payo¤ is the gross industry payo¤ less the information rents of the

licensees. The information rent depends on the distribution function of the signals and the

signals of the licensees. It also follows from (4) that �12 (�; �; �) < 0 and hence, the information
rent of a licensee is non-increasing in the signal of another licensee. Below, I use (30) and

(31) to determine the revenue of the seller in the truth-telling equilibrium of any incentive

compatible direct mechanism.

Proposition 4 The ex ante expected revenue of the seller in the truth-telling equilibrium of

an incentive compatible direct mechanism is

RQ =

Z 1

0

Z s3
(1)

0

Z s3
(2)

0

�Ak(r̂jQ)
�
s3(1); s

3
(2); s

3
(3)

�
f 3123 (�) ds3(3)ds3(2)ds3(1) � 3VQ (0; 0) , (32)

where �
s3(1); s

3
(2); s

3
(3)

�
2 Ak (r̂jQ) ; k = 1; : : : ; 6.

Proof. See the Appendix.
This proposition states that the revenue of the seller in the truth-telling equilibrium of a
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direct mechanism is the expected industry virtual payo¤, less the product of the number of

�rms and the payo¤ of the �rm with signal zero. Notice that the industry virtual payo¤ in

(32) given any pro�le of signals depends on the seller�s allocation rule.

4.3 Optimal Allocation

The allocation rule that maximizes (32) is de�ned to be the optimal allocation rule and

the associated mechanism is said to be the optimal mechanism. Below, I use Proposition

4 to determine the optimal mechanism when the payo¤ function exhibits signal-dependent

externalities. It follows from (32) that in the optimal mechanism, the expected industry

virtual payo¤ is maximized and the payo¤ of the �rm with signal zero is minimized. In order

to describe the allocation that maximizes the expected industry virtual payo¤, I de�ne

��
�
s3(1); s

3
(2); s

3
(3)

�
= max

�
�A1(r̂jQ) (�) ; : : : ; �A6(r̂jQ) (�)

	
.

Further, one has to check that the allocation that maximizes the expected industry virtual

payo¤ satis�es the conditions for incentive compatibility given by (22) and (23). Notice that

the expression in (32) relies on (22) only and therefore, there is no guarantee that the optimal

allocation derived by maximizing the expression in (32) satis�es (23). In models of sales

without externalities, this problem is usually solved by assuming a regularity condition� in

such cases, the regularity condition states that the virtual value is an increasing function of

the signal.

In my model, I can solve the problem using an appropriate regularity condition and this

is described below. I de�ne a problem to be regular if the following conditions are true: (i)

Given any pro�le of signals
�
s3(1); s

3
(2); s

3
(3)

�
, either �� (�) = �A6(r̂jQ) (�) or �� (�) = �A4(r̂jQ) (�);

hence, in the optimal allocation, the seller either sells both the licenses to the �rm with the

highest signal (when �� (�) = �A6(r̂jQ) (�)) or to the two �rms with the two highest signals
(when �� (�) = �A4(r̂jQ) (�)), (ii) The allocation induced by �� (�) belongs to the NDC class.
Notice that if the design problem is regular, then the allocation that maximizes the industry

virtual payo¤ is incentive compatible, because allocations that belong to the NDC class

satisfy (23).15

In the proposition below, it has been assumed that if one of the �rms decides to stay out

of the mechanism, then the seller can credibly commit to allocate a license to each of the

�rms who participate in the mechanism.16 Under such a commitment, the payo¤ to a �rm

15Figueroa and Skreta (2005) have a di¤erent regularity condition because they do not assume that
�12 (�; �; �) < 0.
16Such a commitment is similar in spirit to Jehiel, Moldovanu, and Stachetti ((1996), p. 820) and in

Kamien, Oren, and Tauman (1992). A description of the mechanism by Kamien et al. is also available at
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that decides not to participate in the mechanism is

� =

Z 1

0

Z s2
(1)

0

�
�
0; s2(1); s

2
(2)

�
f 212 (�) ds2(2)ds2(1). (33)

The value of � in (33) is used in the description of the optimal mechanism in Proposition 5.

Proposition 5 Suppose that the design problem is regular, and if a �rm does not participate
in the mechanism, the seller can credibly commit to allocate one license each to the two other

�rms. Moreover, suppose that the payo¤ function exhibits signal-dependent externalities.

Then the revenue of the seller in the truth-telling equilibrium of the optimal mechanism is

given by

R�Q =

Z 1

0

Z s3
(1)

0

Z s3
(2)

0

��
�
s3(1); s

3
(2); s

3
(3)

�
f 3123 (�) ds3(3)ds3(2)ds3(1) � 3� (34)

where � is de�ned by (33).

Proof. See the Appendix.
The above proposition states that in a regular problem, the seller can achieve her optimal

revenue by choosing the allocation rule that maximizes the industry virtual payo¤ for every

pro�le of reports. It follows from the de�nition of the industry virtual payo¤ that the

following three factors a¤ect the seller�s revenue when she selects one licensee (the �rm with

the highest signal) instead of two licensees (the �rms with the two highest signals):

1. The industry gross pro�t may increase or decrease, and hence, the e¤ect of this factor

on the seller�s revenue is ambiguous. In the examples below, the industry gross pro�t

is always maximized by choosing two licensees.

2. If the seller selects only one licensee, then the �rm with the second highest signal

cannot earn any information rent and this increases the revenue of the seller. Notice

that this factor will be present even in a model with no externalities; however, the

magnitude of this e¤ect depends on the externality parameter. This factor reduces the

number of licensees.

3. If the seller selects only one licensee, then the information rent of the �rm with the

highest signal increases because �12 (�; �; �) < 0. This factor therefore reduces the rev-
enue of the seller. Notice that this factor emerges only in the presence of externalities.

The choice of the optimal number of licensees therefore depends on the relative strength

of each of the above-mentioned factors which in turn depends on the nature of the product

Kamien ((1992), p. 348).
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market. Below, I show the role of several channels through which the product market

in�uences the optimal number of licensees.

4.4 Role of the product market in determining the optimal allocation

In order to show the role of several product market factors in determining the optimal

number of licensees, I need to make more explicit assumptions about the product market.

For the purpose of the discussion below, I consider the scenario described in Example 1 when

� = 4. In the example, �rms compete in quantites and a winner imposes a higher level of

externalities on the others when the level of product di¤erentiation is low.

Remark 1 Signi�cant externalities may cause the seller to select a fewer number of licensees
in the presence of private information compared to what she would have done if �rms had

no private information.

Suppose the signals follow the uniform distribution. In the table below, I present the

optimal number of licensees when the pro�le of signals is

�
s3(1); s

3
(2); s

3
(3)

�
= (0:9; 0:8; 0:3) .

Externality Parameter
� = 0 � = 0:5 � = 1

Signals are Publicly Observable 2 2 2
The Signal of a Firm is its Private Information 2 2 1

Table 3: The optimal number of licensees when the pro�le of signals is 0.9, 0.8, and 0.3, as
a function of the externality parameter

Notice that the optimal number of licensees is always two when the signal of each �rm is

publicly observable. Furthermore, the optimal number of licensees remains at two even when

the signal of each �rm is its private information, as long as the externality parameter is 0 or

0:5. However, when the externality parameter is 1, the seller selects only one licensee in the

optimal allocation when the signal of each �rm is its private information. In this example,

private information by itself does not induce the seller to select a fewer number of licensees.

Instead, private information combined with the presence of signi�cant externalities induces

the seller to sell licenses to a fewer number of �rms.

Remark 2 When �rms have private information, a higher level of externality leads to a
decrease in the expected number of licensees.
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Consider the scenario described in the previous remark. For each possible pro�le of sig-

nals, I compute the optimal number of licensees and use this to compute the expected number

of licensees. In the table below, I show how the expected number of licensees vary with the

externality parameter (level of product di¤erentiation in the industry). Observe that an

Externality Parameter
� = 0 � = 0:5 � = 1

Expected number of licensees 1.47 1.27 1.1

Table 4: The expected number of licensees as a function of the externality parameter

increase in the externality parameter (or, a reduction in the level of product di¤erentiation)

leads to a decrease in the expected number of licensees.

In the model, I assume that the signals of �rms are independenly drawn from a common

distribution G (s). Below, I show that the nature of the distribution function G (s) is an

important determinant of the optimal number of licensees.

Remark 3 Suppose GA (s) and GB (s) are two di¤erent distributions of signals such that
GA (s) �rst-order stochastically dominates GB (s). Then, the expected number of licensees is

higher under GA (s).

To interpret the above remark, notice that when the signals are drawn fromGA (s) instead

of GB (s), each �rm has a greater likelihood of drawing a higher signal. In other words, when

signals are drawn fromGA (s) instead ofGB (s), each �rm has a greater likelihood of achieving

a lower cost of production. Therefore, when �rms are likely to be more e¢ cient users of the

technology, the expected number of licensees goes up.

For an illustration of the above remark, consider the Beta (2,1) distribution and the

Uniform distribution; the Beta (2,1) distribution �rst-order stochastically dominates the

Uniform distribution. In the table below, I present the expected number of licensees under

each of these distributions.

Distribution Externality Parameter
� = 0 � = 0:5 � = 1

Uniform 1.47 1.27 1.1
Beta (2,1) 1.71 1.50 1.25

Table 5: The expected number of licensees under the Uniform and the Beta(2,1) distributions

Notice that the expected number of licensees is higher under the Beta (2,1) distribution

than under the Uniform distribution, for every value of the externality parameter and the

question is why is this the case. It follows from the discussion above that when the seller
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increases the number of licensees from one to two, her revenue changes due to change in

three factors- the change in industry pro�t and the change in information rents of the �rms

with the highest and second highest signals. However, in this example, when the seller

increases the number of licensees from one to two, the changes in the information rents are

not substantially di¤erent across the two distributions. In contrast, when the seller selects

two licensees instead of one, the industry pro�t increases more substantially when the signals

are drawn from the Beta (2,1) distribution and this explains why the expected number of

licensees is higher when the signals are drawn from the Beta (2,1) distribution instead of the

Uniform distribution.

5 Conclusion

This paper analyzes the seller�s revenue from the sale of two identical licenses, both when

the signal of each �rm is publicly observable, and when the signal of each �rm is its private

information. It is assumed that if a �rm refuses to participate in the mechanism, then

the seller can credibly commit to allocate a license to its competitors. When the signal of

each �rm is publicly observable, the seller�s optimal allocation is the one that maximizes the

industry payo¤. In contrast, when the signal of each �rm is its private information, the seller

selects the allocation rule that maximizes the industry virtual payo¤. Such an allocation may

or may not be di¤erent from the allocation that maximizes the industry payo¤. We �nd that

the presence of private information leads the seller to sometimes sell licenses to a smaller

number of �rms.

An important assumption in this article is that the private information of each �rm is uni-

dimensional. It follows from Jehiel and Moldovanu (2001) that an e¢ cient allocation cannot

be implemented when the signals are multi-dimensional. An interesting extension of this

paper is to analyze revenue-maximizing allocations when the signals are multi-dimensional.
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Appendix

A Proof of Lemma 1

If �rm i does not participate in the mechanism, then its payo¤ �ci depends on how the

seller allocates the licenses in such an eventuality. Notice that, if �rm i does not participate

in the mechanism, then the seller can choose to allocate a license to each of its competitors,

or a license to one of its competitors, or to not sell any license. Hence, �rm i�s payo¤ if

it does not participate in the mechanism is either �(0; s2(1); s
2
(2)), �(0; s

2
(1); 0), �(0; s

2
(2); 0), or

�(0; 0; 0). Next, notice that it follows from (2)�(4) that

�(0; s2(1); s
2
(2)) = min

�
�(0; s2(1); s

2
(2)); �(0; s

2
(1); 0); �(0; s

2
(2); 0); �(0; 0; 0)

	
. (35)
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For example,

�(0; s2(1); s
2
(2))� �(0; s2(1); 0)

=

Z s2
(2)

0

�3
�
0; s2(1); s

�
ds

� 0 because �3 (�; �; �) < 0.

Notice that (35) holds regardless of the seller�s choice of the allocation rule a in the mech-

anism. It also follows from (8) that in the optimal mechanism, the payo¤ of every non-

participating �rm has to be minimized. Therefore, we obtain the result.

B Relationship between the Partition A (r̂jQ) and the Partition
B (ri)

Given a pro�le of reports, let a rank-set pair be the pair whose �rst element is the rank

of �rm i�s report in the pro�le of reports, and whose second element is the subset of A (r̂jQ)
that contains the pro�le of reports. For example, if �rm i�s report is the second highest

among the three reports (that is, if ri = r3(2)), and if the pro�le of reports
�
r3(1); r

3
(2); r

3
(3)

�
=�

s2(1); ri; s
2
(2)

�
2 A3 (r̂jQ), then the corresponding rank-set pair is (2; A3 (r̂jQ)). Notice that,

given a partition A (r̂jQ) = fA1 (r̂jQ) ; : : : ; A6 (r̂jQ)g and a pro�le of reports r̂, each rank-set
pair can be associated with a unique set Bk (ri); k = 1; : : : ; 6. However, each set Bk (ri);

k = 1; : : : ; 6, can result from several rank-set pairs. For example, one can check that the set

B1 (ri) can be generated by three rank-set pairs (1; A1 (r̂jQ)), (2; A6 (r̂jQ)) and (3; A6 (r̂jQ)).
In the following table, I associate each set Bk (ri) ; k = 1; : : : ; 6, with the rank-set pairs that

generate Bk (ri).

Subsets Corresponding Rank-Set Pairs
B1 (ri) (1; A1 (r̂jQ)) or (2; A6 (r̂jQ)) or (3; A6 (r̂jQ))
B2 (ri) (1; A2 (r̂jQ)) or (2; A2 (r̂jQ)) or (3; A1 (r̂jQ))
B3 (ri) (1; A3 (r̂jQ)) or (2; A5 (r̂jQ)) or (3; A4 (r̂jQ))
B4 (ri) (1; A4 (r̂jQ)) or (2; A4 (r̂jQ)) or (3; A5 (r̂jQ))
B5 (ri) (1; A5 (r̂jQ)) or (2; A3 (r̂jQ)) or (3; A3 (r̂jQ))
B6 (ri) (1; A6 (r̂jQ)) or (2; A1 (r̂jQ)) or (3; A2 (r̂jQ))

Table 6: Derivation of the partition B(ri) from the partition A
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B.1 The probability of the realization of the set Bk (ri); k = 1; 2; : : : ; 6

Let the indicator function IBk (ri; ŝ�i) take the value 1 if the pro�le of reports is an

element of Bk (ri), and let IBk (ri; ŝ�i) be 0 otherwise. Formally,

IBk (ri; ŝ�i) =

(
1 if ŝ�i 2 Bk (ri) ; k = 1; 2; : : : ; 6,
0 otherwise.

By de�nition, �Bk (ri) is the probability that the ordered pro�le of signals of �rm i�s competi-

tors belong to the set Bk (ri) when �rm i reports its signal as ri, the rivals report truthfully,

and the seller commits to the allocation rule Q. The function �Bk (ri) is related to the

indicator function IBk (ri; ŝ�i) as follows:

�Bk (ri) � P fŝ�i 2 Bk (ri)g ; k = 1; : : : ; 6

=

Z
ŝ�i

IBk (ri; ŝ�i) f
2
12 (�) dŝ�i.

C De�nitions of �k (si) and �k (ri; si)

The functions �k (si); k = 1; : : : ; 6, are de�ned as follows:

�1 (ri) =

Z
ŝ�i 2 B1(ri)

�
�
0; s2(1); 0

�
f 212 (�) dŝ�i,

�2 (ri) =

Z
ŝ�i 2 B2(ri)

�
�
0; s2(2); 0

�
f 212 (�) dŝ�i,

�3 (ri) =

Z
ŝ�i 2 B3(ri)

�
�
0; s2(1); s

2
(2)

�
f 212 (�) dŝ�i,

�4 (ri) =

Z
ŝ�i 2 B4(ri)

�
�
si; s

2
(1); 0

�
f 212 (�) dŝ�i,

�5 (ri) =

Z
ŝ�i 2 B5(ri)

�
�
si; s

2
(2); 0

�
f 212 (�) dŝ�i,

�6 (ri) =

Z
ŝ�i 2 B6(ri)

� (si; 0; 0) f
2
12 (�) dŝ�i.

Analogously, the functions �k (ri; si); k = 1; : : : ; 6, are de�ned as follows:

�1 (ri; si) = �2 (ri; si) = �3 (ri; si) = 0,
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�4 (ri; si) =

Z
ŝ�i 2 B4(ri)

�1
�
si; s

2
(1); 0

�
f 212 (�) dŝ�i ,

�5 (ri; si) =

Z
ŝ�i 2 B5(ri)

�1
�
si; s

2
(2); 0

�
f 212 (�) dŝ�i,

�6 (ri; si) =

Z
ŝ�i 2 B6(ri)

�1 (si; 0; 0) f
2
12 (�) dŝ�i.

D Proof of Proposition 3

From (22), it follows that:

ViQ (si; si) = ViQ (0; 0) +

Z si

0

6X
k=1

�k (s; s) ds. (36)

Combining (29) and (36), I obtain:

mi (si) =
6X
k=1

�
�k (si)�

Z si

0

�k (s; s) ds

�
� ViQ (0; 0) .

E Proof of Proposition 4

Substituting (30) in (21), I obtain the following relation:

RQ = 3

Z 1

0

6X
k=1

�
�k (si)�

Z si

0

�k (s; s) ds

�
g (si) dsi � 3VQ (0; 0)

= 3

6X
k=1

�Z 1

0

�k (si) g (si) dsi �
Z 1

0

Z si

0

�k (s; s) g (si) dsdsi

�
� 3VQ (0; 0) . (37)

Furthermore, I integrate by parts the second expression in the right hand side of (37), and

obtain the following expression for the seller�s revenue:

RQ = 3

6X
k=1

Z 1

0


k (si) g (si) dsi � 3VQ (0; 0) (38)

where 
k (s) � �k (s)� �k (s; s)
1�G (s)
g (s)

; k = 1; 2; : : : ; 6.

I now simplify the expression in (38). For the sake of exposition, I only present the simpli-

�cation for the case in which the seller commits to sell both the licenses to the �rm with
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the highest signal for all possible pro�le of reports; one can use the same technique for any

arbitrary allocation rule. Under such a commitment,

�
s3(1); s

3
(2); s

3
(3)

�
2 A6 (r̂jQ) for all possible values of

�
s3(1); s

3
(2); s

3
(3)

�
.

Pick any arbitrary si 2 [0; 1]. Notice that if �rm i with signal si has the highest signal among
the three �rms, then the set B6 (si) is realized. Moreover, if si = s3(2) or s

3
(3), then the set

B1 (si) is realized. From (38), it follows that

RQ = 3
6X
k=1

Z 1

0


k (si) g (si) dsi � 3VQ (0; 0) . (39)

Therefore, I �rst evaluate the expression

6X
k=1


k (si) = 
6 (si) + 
1 (si) + 
1 (si) . (40)

By expanding the expression in the right hand side of (39), I obtain the following:

6X
k=1


k (si) =

Z si

0

Z s2
(1)

0

�
� (si; 0:0)�

1�G (si)
g (si)

@� (si; 0:0)

@si

�
f 212 (�) ds2(2)ds2(1)

+

Z 1

si

Z si

0

�
�
0; s2(1); 0

�
f 212 (�) ds2(2)ds2(1)

+

Z 1

si

Z s2
(1)

si

�
�
0; s2(1); 0

�
f 212 (�) ds2(2)ds2(1). (41)

Notice that, in the �rst term on the right hand side of (41), si = s3(1), and hence,

s2(1) = s
3
(2) and s

2
(2) = s

3
(3).

Similarly, in the second term si = s
3
(2), and in the third term, si = s

3
(3). Also, the following

relation holds:

3g (si) f
2
12

�
s(1); s(2)

�
= f 3123

�
si; s(1); s(2)

�
.
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Therefore, I can re-write the �rst term (on the right hand side) of (41) as follows:

3

Z 1

0


6 (si) g (si) dsi

= 3

Z 1

0

Z si

0

Z s2
(1)

0

�
� (si; 0:0)�

1�G (si)
g (si)

@� (si; 0:0)

@si

�
g (si) f

2
12 (�) ds2(2)ds2(1)dsi

= 3

Z 1

0

Z s3
(1)

0

Z s3
(2)

0

8<:� �s3(1); 0:0�� 1�G
�
s3(1)

�
g
�
s3(1)

� @�
�
s3(1); 0:0

�
@s3(1)

9=; g �s3(1)� f 212 (�) ds3(3)ds3(2)ds3(1)
=

Z 1

0

Z s3
(1)

0

Z s3
(2)

0

8<:� �s3(1); 0:0�� 1�G
�
s3(1)

�
g
�
s3(1)

� @�
�
s3(1); 0:0

�
@s3(1)

9=; f 3123 (�) ds3(3)ds3(2)ds3(1).
Similarly, I can expand the other terms to obtain the seller�s revenue as follows:

RQ =

Z 1

0

Z s3
(1)

0

Z s3
(2)

0

8<:� �s3(1); 0; 0�+ 2� �0; s3(1); 0�� 1�G
�
s3(1)

�
g
�
s3(1)

� @�
�
s3(1); 0:0

�
@s3(1)

9=;
�f 3123 (�) ds3(3)ds3(2)ds3(1) � 3VQ (0; 0)

=

Z 1

0

Z s3
(1)

0

Z s3
(2)

0

�Ak(r̂jQ)
�
s3(1); s

3
(2); s

3
(3)

�
f 3123 (�) ds3(3)ds3(2)ds3(1) � 3VQ (0; 0) .

Analogously, the revenue of the seller under any arbitrary allocation rule can be determined.

F Proof of Proposition 5

It follows from inspection of (32) that in the optimal mechanism, the payo¤ of a �rm

with signal 0, given by VQ (0; 0), has to be minimized, subject to

VQ (0; 0) � �.

Hence, in the optimal mechanism, I must have

VQ (0; 0) = �

where � is de�ned in (33). Moreover, by construction, the maximum value of

Z 1

0

Z s3
(1)

0

Z s3
(2)

0

�Ak(r̂jQ)
�
s3(1); s

3
(2); s

3
(3)

�
f 3123 (�) ds3(3)ds3(2)ds3(1) (42)
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is given by Z 1

0

Z s3
(1)

0

Z s3
(2)

0

��
�
s3(1); s

3
(2); s

3
(3)

�
f 3123 (�) ds3(3)ds3(2)ds3(1). (43)

Notice that maximizing the expression in (42) and minimizing VQ (0; 0) are independent of

each other. Hence, I have the result.

34



EXTENDEDAPPENDIXNOTMEANTFORPUBLICATION

G Proof of Proposition 2

I denote the payo¤ of �rm i in the truth-telling equilibrium of the direct mechanism as

follows:

	iQ (si) = ViQ (si; si) .

First, I prove the necessity part. Note that incentive compatibility implies that

	iQ (si) � ViQ (ri; si) for all ri, si 2 [0; 1] . (44)

Moreover, I can re-write ViQ (ri; si) as follows:

ViQ (ri; si) = 	iQ (ri) +

2X
k=1

�k (ri) [� (ri; sijk)� �(ri; rijk)] (45)

= 	iQ (ri) +

Z si

ri

2X
k=1

�k (ri)�2 (ri; sjk) ds. (46)

Therefore, from (44) and (46), I �nd that incentive compatibility implies the following con-

dition:

	iQ (si)�	iQ (ri) �
Z si

ri

2X
k=1

�k (ri)�2 (ri; sjk) ds, (47)

and, by interchanging the variables, I �nd that,

	iQ (ri)�	iQ (si) �
Z si

ri

2X
k=1

�k (si)�2 (si; sjk) ds. (48)

Combining (47) and (48), I obtain the following inequality:

Z si

ri

2X
k=1

�k (si)�2 (si; sjk) ds � 	iQ (si)�	iQ (ri) �
Z si

ri

2X
k=1

�k (ri)�2 (ri; sjk) ds. (49)

Notice that, the above inequality implies (23). Next, I divide all the terms in (49) and let

ri ! si to obtain the result that

	0iQ (si) =
2X
k=1

�k (si)�2 (si; sijk) (50)

i



and hence,

	iQ (si) = 	iQ (0) +

Z si

0

2X
k=1

�k (s)�2 (s; sjk) ds, (51)

which is (22).

Next, I prove the su¢ ciency part. Suppose, (22) and (23) are satis�ed, but the mechanism

is not incentive compatible. Then, there exists si and ri such that

ViQ (ri; si) > 	iQ (si) , (52)

and substituting (46) in (52), I obtain that,

Z si

ri

2X
k=1

�k (ri)�2 (ri; sjk) ds > 	iQ (si)�	iQ (ri) . (53)

Furthermore, using (22) in (53), I obtain

Z si

ri

2X
k=1

�k (ri)�2 (ri; sjk) ds >
Z si

ri

2X
k=1

�k (s)�2 (s; sjk) ds. (54)

Notice that (54) contradicts (23).

H Proof of Corollary 1

Pick any two values of si, say s0i and s
00
i . Without loss of generality, let s

0
i < s

00
i . Using

(23), I obtain that

�1 (s
0
i)�2 (s

0
i; s

0
ij1) + �2 (s0i)�2 (s0i; s0ij2) � �1 (s00i )�2 (s00i ; s0ij1) + �2 (s00i )�2 (s00i ; s0ij2) . (55)

Further, because the payo¤s are convex in the signal s, therefore,

�2 (s
00
i ; s

0
ij1) � �2 (s00i ; s00i j1) (56)

and

�2 (s
00
i ; s

0
ij2) � �2 (s00i ; s00i j2) . (57)

Combining (55), (56) and (57), I obtain the result.
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I Proof of the claim that the allocation in which the �rm with

the second highest report purchases both the licenses is not

incentive compatible

Notice that for the allocation in which the �rm with the second highest report purchases

both the licenses,

�1 (ri)�2 (ri; sij1) + �2 (ri)�2 (ri; sij2)

= �1 (si; 0; 0)

Z 1

ri

Z ri

0

f 212 (�) ds2(2)ds2(1).

Therefore,

@

@ri
f�1 (ri)�2 (ri; sij1) + �2 (ri)�2 (ri; sij2)g

= �1 (si; 0; 0)

�
�
�
Z ri

0

f 212
�
ri; s

2
(2)

�
ds2(2) +

Z 1

ri

f 212
�
s2(1); ri

�
ds2(1)

�
(58)

Notice that the expression in (58) is negative for ri = 1. Moreover, this expression is also

continuous in ri. Hence, the expression in (58) is negative in the neighborhood of 1, and

violates the incentive compatibility condition (23).
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