Stability of Mixed Equilibria*

Ziv Gorodeisky'

Abstract

We consider stability properties of equilibria in stochastic evolu-
tionary dynamics. In particular, we study the stability of mixed equi-
libria in strategic form games. In these games, when the populations
are small, all strategies may be stable. We prove that when the pop-
ulations are large, the unique stable outcome of best-reply dynamics
in 2 X 2 games with a unique Nash equilibrium that is completely
mixed is the mixed equilibrium. The proof of this result is based on
estimating transition times in Markov chains.

1 Introduction

In evolutionary game theory, game-theoretic methods are used to analyze
conflict and cooperation between plant or animal populations, and the sta-
bility properties of the system. The evolutionary model is a dynamic model,
and in a stochastic evolutionary model, the populations are finite and changes
are made in discrete time, which yields stochastic processes whose long-run
behavior defines the stability of the strategies.

Such stochastic dynamic models have been studied in various classes
of games, both in normal form games, starting with Kandori et al. [1993]
and Young [1993], and in extensive form games (see for instance Noldeke
and Samuelson [1993] and Hart [2002]). These models usually focus on the
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stability of pure Nash equilibria, like the risk-dominant or the subgame per-
fect equilibria. We try to extend the question of equilibrium selection to
cases where the “reasonable pick” is not a pure equilibrium.

Here we consider 2 x 2 games with a unique Nash equilibrium that is
completely mixed. Each such game is played by two distinct populations of
individuals. The individuals change their strategies over time according to
a best-reply dynamic, which yields a Markov chain on the space of mixed
strategies of the game, whose invariant distributions define the stability of
the strategies.

When the population sizes are fixed, all possible outcomes occur with
positive probability. However, we show that when the sizes increase, the
Nash equilibrium is the unique stable outcome.

Section 2 presents the model both as population dynamics and as dy-
namics on the space of mixed strategies. Section 3 states the Main Theorem.

Section 4 proves the Main Theorem using results on transition times.

2 The Model

2.1 The Populations Dynamics

Let GG be a 2 x 2 two-player strategic game with a unique Nash equilibrium
e = ((p,1—p),(¢,1 —q)), which is completely mixed. Let S* = {T, B} and
S? = {R, L} be the pure strategies of players 1 and 2 respectively. For each
population size m, two disjoint populations of size m are playing G between
them. Each individual in each population plays a pure strategy, and at each
period one randomly chosen individual of each population may change his
strategy according to a best-reply dynamics. The changes are conditionally
independent over the two populations.

The dynamics are discrete-time stationary Markov chains on the state
space Q,, = {T,B}" x {L, R}", where w = (W}, w?)1<iir<m € Qm is a
specification of the pure strategy of each individual. The one-step transition
probabilities of the process are given by a transition matrix @ = Q(m) =

(qw,@)w@ggm that satisfies:



e Conditional independence over the populations, i.e.,*
Q@!, ) |w] = Q0" |w] - Q* |w]. (2.1)

e For each population ¢ = 1,2, one individual 1 < ¢(i) < m is chosen,
such that

1
Qle(i) = q |w] = p” for each 1 < ¢ < m, and (2.2)

Q&) = w; |w] =1 for each ¢ # q(i). (2.3)

e For each population ¢ = 1,2 we have
Qi =b'(w) |w] = 1, (2.4)

where b’ is the best-reply strategy of player ¢ when there is a unique
such strategy, and b = Wé(z) otherwise, when both strategies yield the

same payoff.

2.2 Dynamics on the Space of Mixed Strategies

Each state w can be seen as a pair of mixed strategies of the game —
(z(wh),y(w?) = ((z,1—1x), (y,1 —y)) — according to the proportions of the
pure strategies played, where x is the proportion of individuals in population
1 that play 7', and y is the proportion of individuals in population 2 that play
L. Therefore, we have a natural map (z,y) : Q,, — [0,1] [0, 1]. As the tran-
sition probabilities ((2.1)-(2.4)) depend only on (z(w), y(w)), we can identify
2, as a subset of [0,1] x [0, 1], i.e., Q,, = {(k/m,l/m) : 0 < k,l < m}, with
the following transition probabilities.

Let b, = b,(y) be the “direction” of the best reply of player 1 according
to the strategy of player 2 (i.e., according to y), and let b, = b,(x) be the
best reply direction of player 2. Thus, b, = 1 (or b, = 1) when T (or L) is

For each w € Q,,, take Q[- |w] to be a probability distribution over ©,,, such that
QI |w] = ey Q.o for all Q' C Q,,.
w’'eN ,



the best reply, b, = —1 (b, = —1) when B (R) is the best-reply, and b, = 0
(by =0) when y = ¢ (x = p). With these notations we have

Q. 9) [(z,9)] = QlZ,") [(z,9)] - QI(, ) | (z, y)],
where?

Q[(z + (1/m)bs, ) | (z,y)] = (1 + b,)/2 — xb,, and

(2.5)
QL (v + (1/m)by) | (z,y)] = (1 +by)/2 — yby.

These transition probabilities yield a Markov chain on €, C [0, 1] x [0, 1].
As e (if at all a state in ©,,,) is a separate ergodic component of the system,?
we will use €, for Q,, \ {e}. Therefore, €2, contains one recurrent class,
and has a unique invariant distribution — m,, — that describes the long-run

behavior of the system.

3 The Results

We are interested in stable outcomes of the dynamics, i.e., strategies w =
(x,y) € Q such that m,(w) > 0.

For fixed m, all the recurrent states have positive probability, and hence
all such strategies are stable. Therefore, we are looking at the behavior of
the process when the populations are large, i.e., in the limit of the invariant
distribution 7,, as m — oo. As m — o0, the state space changes and
becomes infinite in the limit, and therefore we consider the probabilities of
neighborhoods rather than the probability of a single point. For every € >0
and w = (z,y), let w. be the e-neighborhood of w. Our result is that any
neighborhood of e is obtained in the limit with probability one.

Theorem 3.1 (Main Theorem). For every € > 0, lim,, o mpnlec] = 1.

21f, for example, the best reply of player 1 is T' (and hence b, = 1), then z will increase
(by 1/m) whenever a player not playing T is chosen, and there is a probability of 1 — x
that this will happen.

3Le., gee = 1 and ¢, = 0 for all states w # e.



Our proof is based on estimating transition times. Therefore, we also

learn about the number of periods it takes to reach any neighborhood of e.

Proposition 3.2. For every € > 0 and for any state w, the expected number

of periods to reach e. from w is* O(m).

4 The Proof

4.1 An Outline

We start with an outline of the proof of the Main Theorem. As mentioned,
we use transition times to and from some neighborhood of the equilibrium e.
We show that the expected number of periods to reach that neighborhood is
much smaller than the expected number of periods to leave it, and we obtain
our result as the ratio goes to zero as m goes to infinity.

For simplicity, assume that® p = ¢ = 1/2 and that m is odd. The system
is symmetric and can be divided into four quadrants around e. Therefore,
assume that each (x,y) € €, satisfies z > 1/2 and y > 1/2, and without
loss of generality, assume that T is the best reply for player 1 (and hence x
can only increase, with probability 1 — z), and R is the best reply for player
2 (and hence y can only decrease, with probability y).

To estimate the expected number of periods required to reach e., assume
that at time 0 we are at a state wy = (o, o), and let T be the first time we
reach the next quadrant (where the “direction” of the dynamics changes),
i.e., the minimum ¢ such that y, < 1/2. We show that with high probability,
the distance of wr from e is less than the distance of wy from e (as long as
wp is not too close to e), and the ratio of those distances is less than 1 — ¢,
for some constant ¢ (see Proposition 4.6). Repeating this for & times, the
distance from e is less than (1—4§)* times the distance from e of wy. Therefore,

there exists a constant kg such that the distance from e in the kg-th time is

4We use the “big-O” notation: f(m) = O(g(m)) if there exists a constant ¢ = ¢(T,¢)
that does not depend on m such that |f(m)| < c¢|g(m)| for all m > mg for some my.
5The same arguments hold for any p and ¢ with an appropriate normalization.



less than €. As the expectation of T' is less than 2m, the expected number
of periods to reach e. is less than ko2m = O(m).

To show that wy is closer to e than wy is, we use two propositions. In the
first we show that for small 7', with high probability,  cannot increase by
much (see Proposition 4.3), and hence the distance from e is small relative
to the distance at time 0. In the second proposition, we show that with high
probability, 7" is small (see Proposition 4.4).

After estimating the expected number of periods required to reach e, we
estimate the number of periods it takes to leave it. Let wy be a state in e..
As the distance of wy from e is less than e, the distance of wy from e must
be more than € in order to have 0 <t < T such that w; is outside e..® Using
similar arguments to those above, we show that with high probability the
distance of wy from e is less than” e, and we get that the expected number

of periods to leave e, is at least m?.

4.2 Notations

Without loss of generality, assume that for y > ¢, the best reply of player 1
is T'. Therefore, for z > p and y > ¢, (2.5) becomes

Qllx +1/m,-) [(z,y)] =1 — =, Qllz,) [(z,y)] = =,
Q[(?y_l/m) |($,y)] =Y, Q[(ay) |(Jf,y)] :1_y

We use the following notations:

e We divide 2,, into four quadrants. Let Q; = {(z,y) € Q: 2z > p,y > ¢},
Qo ={(x,y) €Q:x>py<q}, W ={(x,y) € Q: 2 <p,y<q}, and
Qy =A{(z,y) € Q:x <p,y > q}. Assume that m is large enough such
that €; # () for all 7.

e Define L1 = {(&,y) € 1} where & = min{z: 2 > p,am € IN}, Ly =

SForall 0 <t < T and wy = (2¢,y:) we have x; < xp and y; < y,, and therefore if the
lso distance of wg and wr from e is less than ¢ then so is the distance of w; from e.

TA distance of more than € from e at time 7' may by much larger than the distance at
time 0, and the probability of that is exponentially small.



{(@,m2) € Qu} where 1y = max{y : y < ¢,ym € IN}, Ly = {(&3,9) € Q)
where £3 = max{z : © < p,am € IN}, and Ly = {(z,n4) € Q4} where
ny = min{y : y > q,ym € IN}. L; is the “first line” of states in €,
according to the dynamics.® Let L = U}, L;.

e Define D : L — IR by D(w) = p(w,Qi+1) = p(w, Liy1) where ¢ + 1
is the next quadrant relative to w, and p(w, ) = ming e ||w —'[|;.

Le., D(w) is the distance between w and the next quadrant.

o Let dy =1/(1 —p),ds =1/q, ds = 1/p, and dy = 1/(1 — q), and let
77777 1 d;. Define® Z;(w) = D(w)/d; for each w € L;. Z; is the
normalized distance on L;. Let Z = UleZi L — IR.

d = max;—;

e Extend Z as a distance on all €2, by using the /., norm according to Z
on L. Le., forw = (z,y) € Qy we have Z(w) = max{Z(&,y), Z(z,n2)}.

e For every € > 0, define Q(e) = Z71([0,¢]). Q(¢) is an e-neighborhood
of e. Let L(e) = LN Q(e).

e Let iy = ig(e) € IN be minimal such that (1 —¢/33)* < ¢; i.e.,

Ine Ine Ine
< 1<—41= 1).
(i —c/33) Sm—cz) 1S ojms TTO0W

ioz[

For every i = 0,...,1, define G;(¢) = L((1 —¢/33)") = {w € L :
Z(w) < (1 —¢/33)%}; then Go(e) = L(1) = L, Gi41(e) C Gy(e), and
Gi0(€) C L(e’-j)

e For every € C (2, define T(§) = min{t > 0:w;, € Q'}. For every
O, Q" C Q, define!® U(QY, Q") = max ey E[T(Q") |w] and U(QY, Q") =
ming,eqr E[T(Q") |w].

e For an event A and a state w € 2 we use P,[A] for P[A |wy = w].

8L; is the set of states w in §2; such that there exists w’ ¢ €); that satisfies Qo' w > 0.

9As will be seen in the proofs, a distance of d; in L; is “equivalent” by the dynamics
to a distance of d; in Lj;.

07f O = {w'}, we will also use U(w', Q") = U({w'}, Q") = U{w'},Q").



e Let X and Y be random variables. We use X < Y if for every a we
have P[X > a] < PlY >a]. Weuse X =Y if X <Y and Y < X.

By the symmetry of the system, we will prove most of the results only
for €2;. We therefore introduce some more notations on €21, but they can be

naturally extended to all €2;.

e If x = p, there is no unique best reply for population 2. Therefore,
define Ty = min {t > 0 : x; > p}. For every 0 <t < Ty we have z; = p,
and therefore y;11 =y = yo, and yp, = yo > q > 1.

e Define T'=T(Qy) = min{t > 0: y, = n2}. For wy € y we have T" >
T, and for every T} <t < T we have x; > z;_1, and therefore, z7, 14 >

xp, > p. For every Th <t < T we have y; > q.
o Let TQZT—Tl.

e For every w = (z,y) € Q, let y(w) = m(2g + D(w)) — 1. For all w we
have y(w) < 2m.

e For every w € Qy, let!!

T(w) := domD(w)(1 — %), and
Z(w) = Z(w)(1 — %).

4.3 Proof of the Main Theorem

Lemma 4.1. Let {X;},~, be indicator random variables, and let S, =Y ;| X
form=1,2/... and Sy = 0. Let 0 < p < 1 such that for all t, P[X; =1 |
Si_1] < p. Then, for all n we have'? S,, < B(n,p).

Proof. We use induction on n. For n = 1 we have P[S,, > o] = P[X; > a] <
P[B(1,p) > al.

1T (w) is a bound on the “expected” time to reach s, starting in w, and Z(w) is a
bound on the distance of the expected reaching point in 2.
12B(n, p) is the binomial distribution.



Assume by induction for n — 1.
P[S, >a] =) P[Sy>a|S,1 =] P[Sy1 = f]

B
=> PlS=0+ > PlX,=1[S1=0] PlSu_1=0]

F>a a-1<p<a

< P[S,1>al+p-Pla—1< S, 1 <qa]
=p-P[Sp-1>a—1]+(1—p)- P[S—1 > q]
<p-P[Bln—1,p)za-1]+(1—-p)-P[B(n—1,p) =]

= P[B(n,p) > a. O

Lemma 4.2. Let w = (z,y) € .
1. [Ty |w] £ G(1/dy), where G is the geometric distribution.
2. Ifwg =w then T > Ty > mD(w).
3. [Ty |w] = 0 Gl + i /m).
4. E[Ty |w] < domD(w) < dym.
5. Let ' = (x,y') € Oy such that y' < y; then [T |w] 2 [Ty |&'].

6. For all a and T we have Plxr—xp, > a |w, Ty < 7] < P[B(|7],1/dy) >

mal.

Proof. 1. If x > p, then T} = 0. Otherwise, x = p, and for every t such that
xy = p we have Plxi > plw] =1—p=1/d;.

2. This is clear as y, — y;—1 < 1/m for all t < T and yr — yr, = D(w).

3. For every mmy < i < m, let T = min {t > T} : y; < i/m}. Thus, we
have 7% > T for all 4, T = T™2, and T; = T* for all i > my. For every
mny < i < my and n € IN we have P,[T"! — T" = n| = P[G(i/m) = n).
Therefore, for every mn, < i < my we have [T"' —T" |w] = G(i/m).

Thus, as 7' — T% and T~ — TV are independent for i # j, we have
T o] = [T =Ty ] = [T — T |o] = [S0% (T = TY) |u] ~
S Gl +i/m).



4. Follows from (3) and 7o +i/m > ¢ = 1/ds.

5. Using (3) we have [Ty |w]| = Z?ﬁf(w) G(my +i/m) 2 ZmD(w G(ne +
i/m) = [Ty |'].

6. Let x := xp —xp,. For every T} < t < T, we have x;_1 > p and
Yn—1 > q. Therefore, for every wy;_1 = (-1, y-1) € €2, we have Plx;— x4 =
Im |wa] =1 =20 <1—p. As x = D p yep(@ — 341), for all n we
have, using Lemma 4.1, [y |w,T — Ty =n] S (1/m)B(n,1 — p).

Therefore,

Plx > a|w, Ty < 7] :ZP[XZQ |lw, To =n]- P[Ty=n |w, Ty < 7]

n<t

<ZP (n,1—p) >ma]- Pl =n|w, T, <7

gP[B(m,l —p)=ma]-Y Py =nl|w,T <]
=P[B(|7],1—p) > mal. _ L

Proposition 4.3. Let w = (v,y) € Ly such that mZ(w)* > 128; then
PlZ(wr) > Z(w) |w, T < T(w)] = O(1/(mZ(w)?)).

Proof. As xp, < & +1/m < &+ 2/m, we have zp — & < xp — a1, + 2/m,

and therefore, for every ¢t we have

P[Z(WT) Z Z(CU) |W,T2 S t] = P[I'T — 53 Z ng(w) |(U,T2 S t]
S P[LL'T — I Z ng(w) — 2d2/m |w,T2 S t] (41)

Let p = E[B(|T],1/dy)] < (1/d1)dsmD(w)(1 — (mD(w) — 2)/(27(w)).
Using Lemma 4.2(6) and (4.1), we have

PlZ(wr) > Z |w, Ty < T] < P[B(|T],1/dy) > domZ — 2ds)

< P[B(|T],1/dy) > p+ (damZ — dymZ(w)(1 — %) — 2dy)]
— PIB(IT|,1/dy) > p+ (dng(u})% — 2dy).

10



Using mZ(w)? > 128 and ~(w) < 2m, we get

TmD(w) —12 2d, > dldng(w)2.

damZ (@) =55 =7 64

As VIB(|T],1/dy)] < 1/diT < dymZ(w), we have, using Chebyshev’s
inequality,

PlZ(wr) > Z |w, T, <T] < P[B(|T],1/dy) > pu+ %42(01)2]
< deZ(w)(W‘lz(w)z)g _ O(le(w)3>' -

Proposition 4.4. Letw = (z,y) € 4, then P,[Ty > T(w)] = O(1/(mZ(w)?)).

Proof. Let pn = E[T |w]; then by Lemma 4.2(3) and using the convexity of

1/z, we get
mD(w) . mD(w) 2
mny + 1 1 m*D(w)

=1 i=1 mD(@) 2wi=1 M2+ 1

B 2m?D(w) - 2m?D(w) _ 2m*D(w) (4.2)
m2n, + D(w)) +1 = m(2¢+ Dw)) —1  y(w) '
Let 0% = V[T |w]; then
mD(w) mD(w)
mD(w)(1 —
=3 viet+ < 3 Vi) - SO0

i=1

Therefore, using Chebyshev’s inequality together with (4.2) and (4.3),

P,[Ty > T] < P,[Ty > dymD(w)(1 — %ﬂ
< B[y 2 p+ dymD(w)(1 — mg(;gjj)_ 2) B 4271(1(;)>]
=P, > p+ %] < P[> p+ mD4(w) J= (mpl(w)ii) -

11



Corollary 4.5. For every w € Ly, such that mZ(w)? > 128, we have
Pu[Z(wr) = Z(w)] = O(1/(mZ(w)?)).

Proof. Using Proposition 4.3 and Proposition 4.4, we get

P.[Z(wr) > Z) = P|Z(wr) > Z |w, T < T| - P,|T; < T|

+P[D(WT) > 7 ]w,Tg >T] 'Pw[Tg >T]
1

< P[D(wr) 2 Z|w, Ty < T+ B[l > T] = O(_—

). O
Using the same methods, we can show the same result for all quadrants,
and obtain the following proposition:

Proposition 4.6. Let ¢ > 33/y/m. For all w € L such that Z(w) > €, we
have P,[Z(wr) > Z(wo)(1 —€/33)] < C/m, for some constant C' = C'(e).

Proof. For Z(w) > e > 33/y/m we have (mD(w)—4)/(16v(w)) > Z(w)/33 >
£/33. Therefore, using Corollary 4.5, we get

PulZ(wr) = Z(wo)(1 — %)] < P,[Z(wr) > Z(wo)(1 — %)]
1 1
= P,[Z(wr) > Z(w)] = O(W) —0(). O

Let € > 0 be fixed, and let C' = max{C(e),C(¢/2)} for the constants

from Proposition 4.6. Let m be large enough such that

1
vm m ~ 2ig
Proposition 4.7. For every'® i = 0,. .. io—1 we have U(G;, L(¢)) < 2dm+
U(Giga, L(e)) + U(Go, L(2)) / (2io).

DO ™

Proof. Let 0 < i <ip— 1, and let w = (z,y) € G; such that U(w, L(¢)) =
U(G;,L(g)). If Z(w) < e then w € L(¢) and therefore U(G;, L(¢)) = 0.
Otherwise ¢ < Z(w) < (1 —¢/33)*, and therefore, (1 —/33)""! > Z(w)(1 —

13As ¢ is fixed, we use ig and G; for ig(¢) and G;(e).

12



£/33). Therefore, using Proposition 4.6 and (4.4), we have

Pylwr ¢ Gipa] = Pu[Z(wr) > (1 — %)Hl]
< P[Z(wr) > Z(w)(1 — ;—3>] < % < 2%0

and therefore,

E[U(wr, L(¢)) |w] = E[U(wr, L(¢)) |w,wr € Giy1] - Polwr € Gyl
+ E[U(wr, L(€)) |w,wr  Gia] - Polwr ¢ Gi]
< U(Gigr, L(e)) + U(G, L(e)) / (2i0)-

Using the generalization of Lemma 4.2 (parts 1 and 4), we have

Uw, L(e)) = E[T(L(¢)) |w] < E[T"+ U(wr, L(¢)) |w]
= FE[T) |w] + E[T3 |w] + E[U(wr, L(¢)) |w]
<d-+dm+U(Gi, L) +U(G, L(g))/(2ig). O

We now use Proposition 4.7 to prove Proposition 3.2.
Proposition 3.2. There exists a constant Cy such that U(S2, L(g)) < Cym.

Proof. Using Proposition 4.7 and U(G;,, L(g)) = 0, we get U(G;, L(g)) <
(2dm + U(G, L(¢€))/(2i0))(ip — i) for all i = 0, ..., 4o, and in particular, for
i =0, we get U(Go, L(¢)) < 2dmio+U(Go, L(€))/2, or U(Gy, L(€)) < 4dmip.

Using Lemma 4.2 (parts 1 and 4) and Lemma A.1 of Gorodeisky [2003],
for every w € €, we have U(w, L(¢)) < U(w,L) + U(L, L(¢)) = E[T |w] +
U(Go, L(€)) < 2dm~+U(Gy, L(¢)). Therefore, U(Q2, L(¢)) < 2dm~+4dmiy. O

We now estimate the expected time required to leave e.. To do so, we
bound the probability that Z(wr) > e, both when Z(wg) > em/2 (using
Proposition 4.6) and when Z(wg) < em/2 (Corollary 4.10). Again, for sim-
plicity, we prove those results for L;, but they can be extended to all L.

Let S = (3/4)dsem.

Proposition 4.8. For all we L, we have P[Z(wr)>¢ |w, Th <S] < e™=m/%,

13



Proof. Let = E[B(|S],1/d;)] < S/d;. Using Lemma 4.2(6) together with
xr — & < mp — xp, + 2/m, and Theorem 1 of'* Hoeffding [1963], we have!®

P[Z(WT) Z 3 |Ld,T2 S S] S P[B(LSJ,I/dl) Z dg{fm—2d2]

dogem dogm

< P[B([S],1/d1) = p +( ]
< P[B(|S],1/dy) > p+ [S]/5] < e 281/% < emem/25 [

—2dy)] < P[B([S],1/d1) > pp +

Proposition 4.9. For allw€ Ly such that Z(w) <e/2, we have P,[Ty>S]|<

e—am/25

Proof. Let y = m + |em/2]/m. By Lemma 4.2(3) we have!'® [Ty | wy =

(€L y)] = S Gl +ifm) < S Glg) = NB(lem/2),1/dy).
Let u = E[B(|S],1/ds)] > (S — 1)/dy; then

PITy > § | = (€,9)] < PINB(lem/2), 1/ds) > §)
= PIB(8),1/d) < |G| < PIB(S), /o) < = (' = )

< P[B([S],1/dy) > pu— |S]/5] < e 2813 < gmem/25 ]

Using Lemma 4.2(5), for all w = (&,%/) such that v/ < y, we have P[T} >
S |wo = (£1,9)] < P[Ty > S |wy = (&1, )] < e/,

Corollary 4.10. For allw € Ly such that Z(w) < €/2, we have P,|Z(wr) >
5] < 2e—em/25_

Proof. The proof is the same as the proof of Corollary 4.5, using Proposi-
tions 4.8 and 4.9. O

Let W =Q~\ Q(¢), and L = L(e) \ L(g/2).

Proposition 4.11. U(L(¢/2), W) > (1 + U(L(g), W)(1 — 2e=m/%%),

14By Theorem 1 of Hoeffding [1963] we have P[B(t,1 —p) > (1 — p)t + §t] < e=2t8%
15(4.4) implies that doem/4 — 2dy > daem /5.
16 N B is the Negative Binomial distribution.
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Proof. Let we L(e/2) such that U(w, W) =U(L(¢/2),W). As 1 < mZ(w) <
em/2, we have, using Lemma 4.2(2), T > Ty > 1. Using Corollary 4.10, we
also have P, Jwr ¢ L(c)] = P,[Z(wr) > ¢] < 2e75m/2,

For wy = (20,v,) € L, and for every 0 < t < T and w; = (24, %),
we have z; < max {xg,zr} and y; < max {yo,yr}, and therefore Z(w;) <
max {Z(wy), Z(wr)}. fwr € L(e) (and wy € L(€)) , then for all 0 < ¢ < T
we have Z(w;) < e, or w; € Q(g). Therefore,

U(L(z/2),W) = E[T(W) |w] > E[T(W) |w,wr € L(¢)] - Plwre L(e)]
> E[T + U(wp, W) |w,wr € L()] - (1 — 2e75™/%)
> (1+ U(L(e), W(1 — 267/, s

Proposition 4.12. U(L, W) > (em/2 4+ U(L(g), W)(1 — C/m)).

Proof. Let w € L such that U(w, W) = U(L,W). As Z(w) > ¢/2, we have,
using Lemma 4.2(2), T > Ty > em/2, and, using Proposition 4.6 together
with Z(w)(1 — ¢/33) < Z(w) < ¢ and (4.4), we have P,jwr ¢ L(¢)] =
P, Z(wr) >¢| < P,[Z(wr) > Z(w)(1 —¢/33)] < C/m.

As in the proof of Proposition 4.11, we have

UL,W) > E[T + U(wr, W)) |w,wr € L(¢)] - P,Jwr € L(¢)]
> (em/2+ U(L(e), W))(1 — C/m). O

Corollary 4.13. There exists a constant Cy such that U(L(g), W) > Coym?.

Proof. As U(L(e), W) = min{U(L(¢/2), W), U(L, W}, then we either have
U(L(e), W) = U(L, W), or U(L(¢), W) = U(L(¢/2), W).

In the first case, using Proposition 4.12, we get U(L(¢), W) > (em/2 +
U(L(g), W))(1 — C/m), and therefore, U(L(g), W) > em?/(2C). In the sec-
ond case, using Proposition 4.11, we get U(L(g), W) > ((1+U(L(e), W))(1—

2e7°™/25) " and therefore, we get U(L(e), W) > (1 — 2e75/25)2¢5/25, O

We can now prove the Main Theorem:
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Proof of Theorem 3.1. Using Proposition A.5 of Gorodeisky [2003] with Propo-
sition 3.2 and Corollary 4.13, there are constants C; and C5 such that

1. [l

Cgm2
= >
Trm[eg] ﬂ—m[Q(g)] - Clm + CQ?’I’LQ m— 00
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