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Abstract

We consider stability properties of equilibria in stochastic evolu-
tionary dynamics. In particular, we study the stability of mixed equi-
libria in strategic form games. In these games, when the populations
are small, all strategies may be stable. We prove that when the pop-
ulations are large, the unique stable outcome of best-reply dynamics
in 2 × 2 games with a unique Nash equilibrium that is completely
mixed is the mixed equilibrium. The proof of this result is based on
estimating transition times in Markov chains.

1 Introduction

In evolutionary game theory, game-theoretic methods are used to analyze

conflict and cooperation between plant or animal populations, and the sta-

bility properties of the system. The evolutionary model is a dynamic model,

and in a stochastic evolutionary model, the populations are finite and changes

are made in discrete time, which yields stochastic processes whose long-run

behavior defines the stability of the strategies.

Such stochastic dynamic models have been studied in various classes

of games, both in normal form games, starting with Kandori et al. [1993]

and Young [1993], and in extensive form games (see for instance Nöldeke

and Samuelson [1993] and Hart [2002]). These models usually focus on the
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stability of pure Nash equilibria, like the risk-dominant or the subgame per-

fect equilibria. We try to extend the question of equilibrium selection to

cases where the “reasonable pick” is not a pure equilibrium.

Here we consider 2 × 2 games with a unique Nash equilibrium that is

completely mixed. Each such game is played by two distinct populations of

individuals. The individuals change their strategies over time according to

a best-reply dynamic, which yields a Markov chain on the space of mixed

strategies of the game, whose invariant distributions define the stability of

the strategies.

When the population sizes are fixed, all possible outcomes occur with

positive probability. However, we show that when the sizes increase, the

Nash equilibrium is the unique stable outcome.

Section 2 presents the model both as population dynamics and as dy-

namics on the space of mixed strategies. Section 3 states the Main Theorem.

Section 4 proves the Main Theorem using results on transition times.

2 The Model

2.1 The Populations Dynamics

Let G be a 2× 2 two-player strategic game with a unique Nash equilibrium

e = ((p, 1− p), (q, 1− q)), which is completely mixed. Let S1 = {T, B} and

S2 = {R,L} be the pure strategies of players 1 and 2 respectively. For each

population size m, two disjoint populations of size m are playing G between

them. Each individual in each population plays a pure strategy, and at each

period one randomly chosen individual of each population may change his

strategy according to a best-reply dynamics. The changes are conditionally

independent over the two populations.

The dynamics are discrete-time stationary Markov chains on the state

space Ωm := {T,B}m × {L,R}m, where ω = (ω1
i , ω

2
i′)1≤i,i′≤m ∈ Ωm is a

specification of the pure strategy of each individual. The one-step transition

probabilities of the process are given by a transition matrix Q = Q(m) =

(qω,ω̃)ω,ω̃∈Ωm that satisfies:
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• Conditional independence over the populations, i.e.,1

Q[(ω̃1, ω̃2) |ω] = Q[ω̃1 |ω] ·Q[ω̃2 |ω]. (2.1)

• For each population i = 1, 2, one individual 1 ≤ q(i) ≤ m is chosen,

such that

Q[q(i) = q |ω] =
1

m
for each 1 ≤ q ≤ m, and (2.2)

Q[ω̃i
q = ωi

q |ω] = 1 for each q 6= q(i). (2.3)

• For each population i = 1, 2 we have

Q[ω̃i
q(i) = bi(ω) |ω] = 1, (2.4)

where bi is the best-reply strategy of player i when there is a unique

such strategy, and bi = ωi
q(i) otherwise, when both strategies yield the

same payoff.

2.2 Dynamics on the Space of Mixed Strategies

Each state ω can be seen as a pair of mixed strategies of the game —

(x(ω1), y(ω2)) = ((x, 1−x), (y, 1− y)) — according to the proportions of the

pure strategies played, where x is the proportion of individuals in population

1 that play T , and y is the proportion of individuals in population 2 that play

L. Therefore, we have a natural map (x, y) : Ωm → [0, 1]× [0, 1]. As the tran-

sition probabilities ((2.1)-(2.4)) depend only on (x(ω), y(ω)), we can identify

Ωm as a subset of [0, 1]× [0, 1], i.e., Ωm = {(k/m, l/m) : 0 ≤ k, l ≤ m}, with

the following transition probabilities.

Let bx = bx(y) be the “direction” of the best reply of player 1 according

to the strategy of player 2 (i.e., according to y), and let by = by(x) be the

best reply direction of player 2. Thus, bx = 1 (or by = 1) when T (or L) is

1For each ω ∈ Ωm, take Q[· | ω] to be a probability distribution over Ωm, such that
Q[Ω′ |ω] =

∑
ω′∈Ω′ qω,ω′ for all Ω′ ⊆ Ωm.
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the best reply, bx = −1 (by = −1) when B (R) is the best-reply, and bx = 0

(by = 0) when y = q (x = p). With these notations we have

Q[(x̃, ỹ) |(x, y)] = Q[(x̃, ·) |(x, y)] ·Q[(·, ỹ) |(x, y)],

where2

[Q[(x + (1/m)bx, ·) |(x, y)] = (1 + bx)/2− xbx, and

Q[·, (y + (1/m)by) |(x, y)] = (1 + by)/2− yby.
(2.5)

These transition probabilities yield a Markov chain on Ωm ⊂ [0, 1]× [0, 1].

As e (if at all a state in Ωm) is a separate ergodic component of the system,3

we will use Ωm for Ωm r {e}. Therefore, Ωm contains one recurrent class,

and has a unique invariant distribution — πm — that describes the long-run

behavior of the system.

3 The Results

We are interested in stable outcomes of the dynamics, i.e., strategies ω =

(x, y) ∈ Ωm such that πm(ω) > 0.

For fixed m, all the recurrent states have positive probability, and hence

all such strategies are stable. Therefore, we are looking at the behavior of

the process when the populations are large, i.e., in the limit of the invariant

distribution πm as m → ∞. As m → ∞, the state space changes and

becomes infinite in the limit, and therefore we consider the probabilities of

neighborhoods rather than the probability of a single point. For every ε>0

and ω = (x, y), let ωε be the ε-neighborhood of ω. Our result is that any

neighborhood of e is obtained in the limit with probability one.

Theorem 3.1 (Main Theorem). For every ε > 0, limm→∞ πm[eε] = 1.

2If, for example, the best reply of player 1 is T (and hence bx = 1), then x will increase
(by 1/m) whenever a player not playing T is chosen, and there is a probability of 1 − x
that this will happen.

3I.e., qe,e = 1 and qω,e = 0 for all states ω 6= e.
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Our proof is based on estimating transition times. Therefore, we also

learn about the number of periods it takes to reach any neighborhood of e.

Proposition 3.2. For every ε > 0 and for any state ω, the expected number

of periods to reach eε from ω is4 O(m).

4 The Proof

4.1 An Outline

We start with an outline of the proof of the Main Theorem. As mentioned,

we use transition times to and from some neighborhood of the equilibrium e.

We show that the expected number of periods to reach that neighborhood is

much smaller than the expected number of periods to leave it, and we obtain

our result as the ratio goes to zero as m goes to infinity.

For simplicity, assume that5 p = q = 1/2 and that m is odd. The system

is symmetric and can be divided into four quadrants around e. Therefore,

assume that each (x, y) ∈ Ωm satisfies x > 1/2 and y > 1/2, and without

loss of generality, assume that T is the best reply for player 1 (and hence x

can only increase, with probability 1− x), and R is the best reply for player

2 (and hence y can only decrease, with probability y).

To estimate the expected number of periods required to reach eε, assume

that at time 0 we are at a state ω0 = (x0, y0), and let T be the first time we

reach the next quadrant (where the “direction” of the dynamics changes),

i.e., the minimum t such that yt < 1/2. We show that with high probability,

the distance of ωT from e is less than the distance of ω0 from e (as long as

ω0 is not too close to e), and the ratio of those distances is less than 1 − δ,

for some constant δ (see Proposition 4.6). Repeating this for k times, the

distance from e is less than (1−δ)k times the distance from e of ω0. Therefore,

there exists a constant k0 such that the distance from e in the k0-th time is

4We use the “big-O” notation: f(m) = O(g(m)) if there exists a constant c = c(Γ, ε)
that does not depend on m such that |f(m)| ≤ c |g(m)| for all m > m0 for some m0.

5The same arguments hold for any p and q with an appropriate normalization.
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less than ε. As the expectation of T is less than 2m, the expected number

of periods to reach eε is less than k02m = O(m).

To show that ωT is closer to e than ω0 is, we use two propositions. In the

first we show that for small T , with high probability, x cannot increase by

much (see Proposition 4.3), and hence the distance from e is small relative

to the distance at time 0. In the second proposition, we show that with high

probability, T is small (see Proposition 4.4).

After estimating the expected number of periods required to reach eε, we

estimate the number of periods it takes to leave it. Let ω0 be a state in eε.

As the distance of ω0 from e is less than ε, the distance of ωT from e must

be more than ε in order to have 0<t ≤ T such that ωt is outside eε.
6 Using

similar arguments to those above, we show that with high probability the

distance of ωT from e is less than7 ε, and we get that the expected number

of periods to leave eε is at least m2.

4.2 Notations

Without loss of generality, assume that for y > q, the best reply of player 1

is T . Therefore, for x > p and y > q, (2.5) becomes

Q[(x + 1/m, ·) |(x, y)] = 1− x, Q[(x, ·) |(x, y)] = x,

Q[(·, y − 1/m) |(x, y)] = y, Q[(·, y) |(x, y)] = 1− y.

We use the following notations:

• We divide Ωm into four quadrants. Let Ω1 = {(x, y) ∈ Ω : x ≥ p, y > q},
Ω2 = {(x, y) ∈ Ω : x > p, y ≤ q}, Ω3 = {(x, y) ∈ Ω : x ≤ p, y < q}, and

Ω4 = {(x, y) ∈ Ω : x < p, y ≥ q}. Assume that m is large enough such

that Ωi 6= ∅ for all i.

• Define L1 = {(ξ1, y) ∈ Ω1} where ξ1 = min {x : x ≥ p, xm ∈ IN}, L2 =

6For all 0 < t ≤ T and ωt = (xt, yt) we have xt ≤ xT and yt ≤ yo, and therefore if the
l∞ distance of ω0 and ωT from e is less than ε then so is the distance of ωt from e.

7A distance of more than ε from e at time T may by much larger than the distance at
time 0, and the probability of that is exponentially small.
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{(x, η2) ∈ Ω2} where η2 = max{y : y ≤ q, ym ∈ IN}, L3 = {(ξ3, y) ∈ Ω3}
where ξ3 = max{x : x ≤ p, xm ∈ IN}, and L4 = {(x, η4) ∈ Ω4} where

η4 = min{y : y ≥ q, ym ∈ IN}. Li is the “first line” of states in Ωi,

according to the dynamics.8 Let L = ∪4
i=1Li.

• Define D : L → IR by D(ω) = ρ(ω, Ωi+1) = ρ(ω, Li+1) where i + 1

is the next quadrant relative to ω, and ρ(ω, Ω′) = minω′∈Ω′ ‖ω − ω′‖1.

I.e., D(ω) is the distance between ω and the next quadrant.

• Let d1 = 1/(1 − p), d2 = 1/q, d3 = 1/p, and d4 = 1/(1 − q), and let

d = maxi=1,...,4 di. Define9 Zi(ω) = D(ω)/di for each ω ∈ Li. Zi is the

normalized distance on Li. Let Z = ∪4
i=1Zi : L → IR.

• Extend Z as a distance on all Ω, by using the l∞ norm according to Z

on L. I.e., for ω = (x, y) ∈ Ω1 we have Z(ω) = max {Z(ξ1, y), Z(x, η2)}.

• For every ε > 0, define Ω(ε) = Z−1([0, ε]). Ω(ε) is an ε-neighborhood

of e. Let L(ε) = L ∩ Ω(ε).

• Let i0 = i0(ε) ∈ IN be minimal such that (1− ε/33)i0 ≤ ε; i.e.,

i0 = d ln ε

ln(1− ε/33)
e ≤ ln ε

ln(1− ε/33)
+ 1 ≤ ln ε

−ε/33
+ 1 = O(1).

For every i = 0, . . . , i0, define Gi(ε) = L((1 − ε/33)i) = {ω ∈ L :

Z(ω) ≤ (1 − ε/33)i}; then G0(ε) = L(1) = L, Gi+1(ε) ⊂ Gi(ε), and

Gi0(ε) ⊂ L(ε).

• For every Ω′ ⊂ Ω, define T (Ω′) = min {t ≥ 0 : ωt ∈ Ω′}. For every

Ω′, Ω′′ ⊂ Ω, define10 U(Ω′, Ω′′) = maxω∈Ω′ E[T (Ω′′) |ω] and U(Ω′, Ω′′) =

minω∈Ω′ E[T (Ω′′) |ω].

• For an event A and a state ω ∈ Ω we use Pω[A] for P [A |ω0 = ω].

8Li is the set of states ω in Ωi such that there exists ω′ /∈ Ωi that satisfies qω′,ω > 0.
9As will be seen in the proofs, a distance of d1 in L1 is “equivalent” by the dynamics

to a distance of di in Li.
10If Ω′ = {ω′}, we will also use U(ω′, Ω′′) = U({ω′} , Ω′′) = U({ω′} ,Ω′′).
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• Let X and Y be random variables. We use X . Y if for every α we

have P [X ≥ α] ≤ P [Y ≥ α]. We use X ≈ Y if X . Y and Y . X.

By the symmetry of the system, we will prove most of the results only

for Ω1. We therefore introduce some more notations on Ω1, but they can be

naturally extended to all Ωi.

• If x = p, there is no unique best reply for population 2. Therefore,

define T1 = min {t ≥ 0 : xt > p}. For every 0 ≤ t < T1 we have xt = p,

and therefore yt+1 = yt = y0, and yT1 = y0 > q ≥ η2.

• Define T = T (Ω2) = min {t ≥ 0 : yt = η2}. For ω0 ∈ Ω1 we have T >

T1, and for every T1 < t ≤ T we have xt ≥ xt−1, and therefore, xT1+t ≥
xT1 > p. For every T1 ≤ t < T we have yt > q.

• Let T2 = T − T1.

• For every ω = (x, y) ∈ Ω1, let γ(ω) = m(2q + D(ω))− 1. For all ω we

have γ(ω) < 2m.

• For every ω ∈ Ω1, let11

T(ω) := d2mD(ω)(1− mD(ω)− 2

2γ(ω)
), and

Z(ω) := Z(ω)(1− mD(ω)− 4

16γ(ω)
).

4.3 Proof of the Main Theorem

Lemma 4.1. Let {Xt}∞t=1 be indicator random variables, and let Sn =
∑n

t=1 Xt

for n = 1, 2, . . . and S0 = 0. Let 0 ≤ p ≤ 1 such that for all t, P [Xt = 1 |
St−1] ≤ p. Then, for all n we have12 Sn . B(n, p).

Proof. We use induction on n. For n = 1 we have P [Sn ≥ α] = P [X1 ≥ α] ≤
P [B(1, p) ≥ α].

11T(ω) is a bound on the “expected” time to reach Ω2, starting in ω, and Z(ω) is a
bound on the distance of the expected reaching point in Ω2.

12B(n, p) is the binomial distribution.
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Assume by induction for n− 1.

P [Sn ≥ α] =
∑

β

P [Sn ≥ α |Sn−1 = β] · P [Sn−1 = β]

=
∑

β≥α

P [Sn−1 =β] +
∑

α−1≤β<α

P [Xn = 1 |Sn−1 =β] · P [Sn−1 =β]

≤ P [Sn−1 ≥ α] + p · P [α− 1 ≤ Sn−1 < α]

= p · P [Sn−1 ≥ α− 1] + (1− p) · P [Sn−1 ≥ α]

≤ p · P [B(n− 1, p) ≥ α− 1] + (1− p) · P [B(n− 1, p) ≥ α]

= P [B(n, p) ≥ α].

Lemma 4.2. Let ω = (x, y) ∈ Ω1.

1. [T1 |ω] . G(1/d1), where G is the geometric distribution.

2. If ω0 = ω then T ≥ T2 ≥ mD(ω).

3. [T2 |ω] ≈
∑mD(ω)

i=1 G(η2 + i/m).

4. E[T2 |ω] ≤ d2mD(ω) ≤ d2m.

5. Let ω′ = (x, y′) ∈ Ω1 such that y′ ≤ y; then [T2 |ω] & [T2 |ω′].

6. For all α and τ we have P [xT−xT1 ≥ α |ω, T2 ≤ τ ] ≤ P [B(bτc, 1/d1) ≥
mα].

Proof. 1. If x > p, then T1 = 0. Otherwise, x = p, and for every t such that

xt = p we have P [xt+1 > p |ωt] = 1− p = 1/d1.

2. This is clear as yt − yt−1 ≤ 1/m for all t ≤ T and yT − yT1 = D(ω).

3. For every mη2 ≤ i ≤ m, let T i = min {t ≥ T1 : yt ≤ i/m}. Thus, we

have T i ≥ T i+1 for all i, T = Tmη2 , and T1 = T i for all i ≥ my. For every

mη2 < i ≤ my and n ∈ IN we have Pω[T i−1 − T i = n] = P [G(i/m) = n].

Therefore, for every mη2 < i ≤ my we have [T i−1 − T i |ω] ≈ G(i/m).

Thus, as T i−1 − T i and T j−1 − T j are independent for i 6= j, we have

[T2 | ω] = [T − T1 | ω] = [Tmη2 − Tmy | ω] = [
∑my

i=mη2
(T i−1 − T i) | ω] ≈∑mD(ω)

i=1 G(η2 + i/m).
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4. Follows from (3) and η2 + i/m ≥ q = 1/d2.

5. Using (3) we have [T2 |ω] ≈
∑mD(ω)

i=1 G(η2 + i/m) &
∑mD(ω′)

i=1 G(η2 +

i/m) ≈ [T2 |ω′].
6. Let χ := xT − xT1 . For every T1 < t ≤ T , we have xt−1 > p and

yn−1 > q. Therefore, for every ωt−1 = (xt−1, yt−1) ∈ Ω, we have P [xt−xt−1 =

1/m | ωt−1] = 1 − xt−1 ≤ 1 − p. As χ =
∑

T1<t≤T (xt − xt−1), for all n we

have, using Lemma 4.1, [χ |ω, T − T1 = n] . (1/m)B(n, 1− p).

Therefore,

P [χ ≥ α |ω, T2 ≤ τ ] =
∑
n≤τ

P [χ ≥ α |ω, T2 = n] · P [T2 = n |ω, T2 ≤ τ ]

≤
∑
n≤τ

P [B(n, 1− p) ≥ mα] · P [T2 = n |ω, T2 ≤ τ ]

≤P [B(bτc, 1− p) ≥ mα] ·
∑
n≤τ

P [T2 = n |ω, T2 ≤ τ ]

=P [B(bτc, 1− p) ≥ mα].

Proposition 4.3. Let ω = (x, y) ∈ L1 such that mZ(ω)2 ≥ 128; then

P [Z(ωT ) ≥ Z(ω) |ω, T2 ≤ T(ω)] = O(1/(mZ(ω)3)).

Proof. As xT1 ≤ ξ1 + 1/m ≤ ξ3 + 2/m, we have xT − ξ3 ≤ xT − xT1 + 2/m,

and therefore, for every t we have

P [Z(ωT ) ≥ Z(ω) |ω, T2 ≤ t] = P [xT − ξ3 ≥ d2Z(ω) |ω, T2 ≤ t]

≤ P [xT − xT1 ≥ d2Z(ω)− 2d2/m |ω, T2 ≤ t]. (4.1)

Let µ = E[B(bTc, 1/d1)] ≤ (1/d1)d2mD(ω)(1 − (mD(ω) − 2)/(2γ(ω)).

Using Lemma 4.2(6) and (4.1), we have

P [Z(ωT ) ≥ Z |ω, T2 ≤ T] ≤ P [B(bTc, 1/d1) ≥ d2mZ− 2d2]

≤ P [B(bTc, 1/d1) ≥ µ + (d2mZ− d2mZ(ω)(1− mD(ω)− 2

2γ(ω)
)− 2d2)]

= P [B(bTc, 1/d1) ≥ µ + (d2mZ(ω)
7mD(ω)− 12

16γ(ω)
− 2d2)].
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Using mZ(ω)2 ≥ 128 and γ(ω) < 2m, we get

d2mZ(ω)
7mD(ω)− 12

16γ(ω)
− 2d2 ≥ d1d2mZ(ω)2

64
.

As V [B(bTc, 1/d1)] ≤ 1/d1T ≤ d2mZ(ω), we have, using Chebyshev’s

inequality,

P [Z(ωT ) ≥ Z |ω, T2 ≤ T] ≤ P [B(bTc, 1/d1) ≥ µ +
d1d2mZ(ω)2

64
]

≤ d2mZ(ω)(
64

d1d2mZ(ω)2
)2 = O(

1

mZ(ω)3
).

Proposition 4.4. Let ω = (x, y) ∈ Ω1, then Pω[T2 > T(ω)] = O(1/(mZ(ω)3)).

Proof. Let µ = E[T2 |ω]; then by Lemma 4.2(3) and using the convexity of

1/x, we get

µ = E[

mD(ω)∑
i=1

G(
mη2 + i

m
)] = m

mD(ω)∑
i=1

1

mη2 + i
≤ m2D(ω)

1
mD(ω)

∑mD(ω)
i=1 mη2 + i

=
2m2D(ω)

m(2η2 + D(ω)) + 1
≤ 2m2D(ω)

m(2q + D(ω))− 1
=

2m2D(ω)

γ(ω)
. (4.2)

Let σ2 = V [T2 |ω]; then

σ2 =

mD(ω)∑
i=1

V [G(η2 +
i

m
)] ≤

mD(ω)∑
i=1

V [G(q)] =
mD(ω)(1− q)

q2
. (4.3)

Therefore, using Chebyshev’s inequality together with (4.2) and (4.3),

Pω[T2 > T] ≤ Pω[T2 ≥ d2mD(ω)(1− mD(ω)− 2

2γ(ω)
)]

≤ Pω[T2 ≥ µ + d2mD(ω)(1− mD(ω)− 2

2γ(ω)
)− 4m2D(ω)

2γ(ω)
]

= Pω[T2 ≥ µ +
(mD(ω))2

2qγ(ω)
] ≤ Pω[T2 ≥ µ +

mD(ω)2

4
] = O(

1

mD(ω)3
).
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Corollary 4.5. For every ω ∈ L1, such that mZ(ω)2 > 128, we have

Pω[Z(ωT ) ≥ Z(ω)] = O(1/(mZ(ω)3)).

Proof. Using Proposition 4.3 and Proposition 4.4, we get

Pω[Z(ωT ) ≥ Z] = P [Z(ωT ) ≥ Z |ω, T2 ≤ T] · Pω[T2 ≤ T]

+ P [D(ωT ) ≥ Z |ω, T2 > T] · Pω[T2 > T]

≤ P [D(ωT ) ≥ Z |ω, T2 ≤ T] + Pω[T2 > T] = O(
1

mZ(ω)3
).

Using the same methods, we can show the same result for all quadrants,

and obtain the following proposition:

Proposition 4.6. Let ε > 33/
√

m. For all ω ∈ L such that Z(ω) > ε, we

have Pω[Z(ωT ) ≥ Z(ω0)(1− ε/33)] ≤ C/m, for some constant C = C(ε).

Proof. For Z(ω) > ε > 33/
√

m we have (mD(ω)−4)/(16γ(ω)) ≥ Z(ω)/33 ≥
ε/33. Therefore, using Corollary 4.5, we get

Pω[Z(ωT ) ≥ Z(ω0)(1− ε

33
)] ≤ Pω[Z(ωT ) ≥ Z(ω0)(1− mD(ω)− 4

16γ(ω)
)]

= Pω[Z(ωT ) ≥ Z(ω)] = O(
1

mZ(ω)3
) = O(

1

m
).

Let ε > 0 be fixed, and let C = max {C(ε), C(ε/2)} for the constants

from Proposition 4.6. Let m be large enough such that

ε

2
>

33√
m

, and
C

m
≤ 1

2i0
. (4.4)

Proposition 4.7. For every13 i = 0, . . . , i0−1 we have U(Gi, L(ε)) ≤ 2dm+

U(Gi+1, L(ε)) + U(G0, L(ε))/(2i0).

Proof. Let 0 ≤ i ≤ i0 − 1, and let ω = (x, y) ∈ Gi such that U(ω,L(ε)) =

U(Gi, L(ε)). If Z(ω) ≤ ε then ω ∈ L(ε) and therefore U(Gi, L(ε)) = 0.

Otherwise ε < Z(ω) ≤ (1− ε/33)i, and therefore, (1− ε/33)i+1 ≥ Z(ω)(1−
13As ε is fixed, we use i0 and Gi for i0(ε) and Gi(ε).
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ε/33). Therefore, using Proposition 4.6 and (4.4), we have

Pω[ωT /∈ Gi+1] = Pω[Z(ωT ) > (1− ε

33
)i+1]

≤ Pω[Z(ωT ) ≥ Z(ω)(1− ε

33
)] ≤ C

m
≤ 1

2i0
,

and therefore,

E[U(ωT , L(ε)) |ω] = E[U(ωT , L(ε)) |ω, ωT ∈Gi+1] · Pω[ωT ∈Gi+1]

+ E[U(ωT , L(ε)) |ω, ωT /∈Gi+1] · Pω[ωT /∈Gi+1]

≤ U(Gi+1, L(ε)) + U(G, L(ε))/(2i0).

Using the generalization of Lemma 4.2 (parts 1 and 4), we have

U(ω,L(ε)) = E[T (L(ε)) |ω] ≤ E[T + U(ωT , L(ε)) |ω]

= E[T1 |ω] + E[T2 |ω] + E[U(ωT , L(ε)) |ω]

≤ d + dm + U(Gi+1, L(ε)) + U(G,L(ε))/(2i0).

We now use Proposition 4.7 to prove Proposition 3.2.

Proposition 3.2. There exists a constant C1 such that U(Ω, L(ε)) ≤ C1m.

Proof. Using Proposition 4.7 and U(Gi0 , L(ε)) = 0, we get U(Gi, L(ε)) ≤
(2dm + U(G0, L(ε))/(2i0))(i0 − i) for all i = 0, . . . , i0, and in particular, for

i = 0, we get U(G0, L(ε)) ≤ 2dmi0 +U(G0, L(ε))/2, or U(G0, L(ε)) ≤ 4dmi0.

Using Lemma 4.2 (parts 1 and 4) and Lemma A.1 of Gorodeisky [2003],

for every ω ∈ Ω, we have U(ω,L(ε)) ≤ U(ω, L) + U(L,L(ε)) = E[T | ω] +

U(G0, L(ε)) ≤ 2dm+U(G0, L(ε)). Therefore, U(Ω, L(ε)) ≤ 2dm+4dmi0.

We now estimate the expected time required to leave eε. To do so, we

bound the probability that Z(ωT ) ≥ ε, both when Z(ω0) > εm/2 (using

Proposition 4.6) and when Z(ω0) ≤ εm/2 (Corollary 4.10). Again, for sim-

plicity, we prove those results for L1, but they can be extended to all L.

Let S = (3/4)d2εm.

Proposition 4.8. For all ω∈L1 we have P [Z(ωT )≥ε |ω, T2≤S] ≤ e−εm/25.
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Proof. Let µ = E[B(bSc, 1/d1)] ≤ S/d1. Using Lemma 4.2(6) together with

xT − ξ3 ≤ xT − xT1 + 2/m, and Theorem 1 of14 Hoeffding [1963], we have15

P [Z(ωT ) ≥ ε |ω, T2 ≤ S] ≤ P [B(bSc, 1/d1) ≥ d2εm− 2d2]

≤ P [B(bSc, 1/d1) ≥ µ + (
d2εm

4
− 2d2)] ≤ P [B(bSc, 1/d1) ≥ µ +

d2εm

5
]

≤ P [B(bSc, 1/d1) ≥ µ + bSc/5] ≤ e−2bSc/25 ≤ e−εm/25.

Proposition 4.9. For all ω∈L1 such that Z(ω)≤ε/2, we have Pω[T2 >S]≤
e−εm/25.

Proof. Let y = η2 + bεm/2c/m. By Lemma 4.2(3) we have16 [T2 | ω0 =

(ξ1, y)] ≈
∑bεm/2c

i=1 G(η2 + i/m) .
∑bεm/2c

i=1 G(q) = NB(bεm/2c, 1/d2).

Let µ = E[B(bSc, 1/d2)] ≥ (S− 1)/d2; then

P [T2 > S |ω0 = (ξ1, y)] ≤ P [NB(bεm/2c, 1/d2) > S]

= P [B(bSc, 1/d2) < bεm
2
c] ≤ P [B(bSc, 1/d2) < µ− (

εm

4
− 1

d2

)]

≤ P [B(bSc, 1/d2) ≥ µ− bSc/5] ≤ e−2bSc/25 ≤ e−εm/25.

Using Lemma 4.2(5), for all ω = (ξ1, y
′) such that y′ ≤ y, we have P [T2 >

S |ω0 = (ξ1, y
′)] ≤ P [T2 > S |ω0 = (ξ1, y)] ≤ e−εm/25.

Corollary 4.10. For all ω ∈ L1 such that Z(ω) ≤ ε/2, we have Pω[Z(ωT ) ≥
ε] ≤ 2e−εm/25.

Proof. The proof is the same as the proof of Corollary 4.5, using Proposi-

tions 4.8 and 4.9.

Let W = Ωr Ω(ε), and L = L(ε)r L(ε/2).

Proposition 4.11. U(L(ε/2),W) ≥ (1 + U(L(ε),W)(1− 2e−εm/25).

14By Theorem 1 of Hoeffding [1963] we have P [B(t, 1− p) ≥ (1− p)t + δt] ≤ e−2tδ2
.

15(4.4) implies that d2εm/4− 2d2 ≥ d2εm/5.
16NB is the Negative Binomial distribution.
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Proof. Let ω∈L(ε/2) such that U(ω,W) = U(L(ε/2),W). As 1 ≤ mZ(ω)≤
εm/2, we have, using Lemma 4.2(2), T ≥ T2 ≥ 1. Using Corollary 4.10, we

also have Pω[ωT /∈ L(ε)] = Pω[Z(ωT ) > ε] ≤ 2e−εm/25.

For ω0 = (x0, yo) ∈ L, and for every 0 ≤ t ≤ T and ωt = (xt, yt),

we have xt ≤ max {x0, xT} and yt ≤ max {y0, yT}, and therefore Z(ωt) ≤
max {Z(ω0), Z(ωT )}. If ωT ∈ L(ε) (and ω0 ∈ L(ε)) , then for all 0 ≤ t ≤ T

we have Z(ωt) ≤ ε, or ωt ∈ Ω(ε). Therefore,

U(L(ε/2),W) = E[T (W) |ω] ≥ E[T (W) |ω, ωT ∈L(ε)] · Pω[ωT ∈L(ε)]

≥ E[T + U(ωT ,W) |ω, ωT ∈L(ε)] · (1− 2e−εm/25)

≥ (1 + U(L(ε),W)(1− 2e−εm/25).

Proposition 4.12. U(L,W) ≥ (εm/2 + U(L(ε),W)(1− C/m)).

Proof. Let ω ∈ L such that U(ω,W) = U(L,W). As Z(ω) > ε/2, we have,

using Lemma 4.2(2), T ≥ T2 > εm/2, and, using Proposition 4.6 together

with Z(ω)(1 − ε/33) ≤ Z(ω) ≤ ε and (4.4), we have Pω[ωT /∈ L(ε)] =

Pω[Z(ωT ) > ε] ≤ Pω[Z(ωT ) ≥ Z(ω)(1− ε/33)] ≤ C/m.

As in the proof of Proposition 4.11, we have

U(L,W) ≥ E[T + U(ωT ,W)) |ω, ωT ∈ L(ε)] · Pω[ωT ∈ L(ε)]

≥ (εm/2 + U(L(ε),W))(1− C/m).

Corollary 4.13. There exists a constant C2 such that U(L(ε),W) ≥ C2m
2.

Proof. As U(L(ε),W) = min{U(L(ε/2),W), U(L,W}, then we either have

U(L(ε),W) = U(L,W), or U(L(ε),W) = U(L(ε/2),W).

In the first case, using Proposition 4.12, we get U(L(ε),W) ≥ (εm/2 +

U(L(ε),W))(1−C/m), and therefore, U(L(ε),W) ≥ εm2/(2C). In the sec-

ond case, using Proposition 4.11, we get U(L(ε),W) ≥ ((1+U(L(ε),W))(1−
2e−εm/25), and therefore, we get U(L(ε),W) ≥ (1− 2e−εm/25)2eεm/25.

We can now prove the Main Theorem:
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Proof of Theorem 3.1. Using Proposition A.5 of Gorodeisky [2003] with Propo-

sition 3.2 and Corollary 4.13, there are constants C1 and C2 such that

πm[eε] = πm[Ω(ε)] ≥ C2m
2

C1m + C2m2
−−−→
m→∞

1.
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