A competitive Texas Hold’em poker player via automated
abstraction and real-time equilibrium computation

Andrew Gilpin Tuomas Sandholm
Computer Science Department Computer Science Department
Carnegie Mellon University Carnegie Mellon University
gi | pi n@s. cnu. edu sandhol m@&s. cnu. edu

March 31, 2006

Abstract

We present our game theory-based heads-up Texas Hold’em plalyer. To overcome the computational ob-
stacles stemming from Texas Hold’em’s gigantic game tree, our playglogsautomatedabstraction techniques to
reduce the complexity of the strategy computations. In addition to this state-spstraction, our player uses round-
based abstraction in conjunction with both offline and real-time equilibriumosgpation. Texas Hold’em consists
of four betting rounds. Our player solves a large linear program (ejfim compute strategies for the abstracted first
and second rounds. After the second betting round, our player thatprobability of each possible hand based on
the observed betting actions in the first two rounds as well as the revealtsl ¢Jsing these updated probabilities,
our player computes ireal-timean equilibrium approximation for the last two abstracted rounds. We dsinade
that our player, which does not directly incorporate any poker-spesifiert knowledge, is competitive with lead-
ing poker-playing programs which do incorporate such domain-spéciéiwledge, as well as with advanced human
players.

1 Introduction

In environments with more than one agent, the outcome of geatanay depend on the actions of the other agents.
Consequently, in determining what action to take, an agargtroonsider the possible actions of the other agents.
Game theory provides the mathematical foundation for éxiplg how rational agents should behave in such settings.
Unfortunately, even in settings where game theory provakdmitive guidance of an agent’s optimal behavior, the
computational problem of determining these strategiesanesndifficult. In this paper, we develop computational
methods for applying game theory-based solutions to a le@eworld game of imperfect information.

For sequential games with imperfect information, one carydo find an equilibrium using the normal (matrix)
form, where every contingency plan of the agent is a pureesjyafor the agent. Unfortunately (even if equivalent
strategies are replaced by a single strategy [13]) thisesgmtation is generally exponential in the size of the game
tree [24]. Thesequence forms an alternative that results in a more compact representfit8, 11, 24]. For two-
player zero-sum games, there is a polynomial-sized (in itee &f the game tree) linear programming formulation
based on the sequence form such that strategies for playerd 2 correspond to primal and dual variables. Thus, a
minimax solutior for reasonably-sized two-player zero-sum games can bew@upising this method [24, 11, 12].
That approach alone scales to games with around a millioes\px], but Texas Hold’em with it$0'® nodes is way
beyond the reach of that method. In this paper, we presemhigpees that allow us to approach the problem from a
game-theoretic point of view, while mitigating the compigaal problems faced.

IMinimax solutions are robust in that there is no equilibriuahestion problem: an agent’'s minimax strategy guaranteesast the agent’s
minimax value even if the opponent fails to play his minimax sggt Throughout this paper, we are referring to a minimax emiwwhen we use
the term equilibrium.

2Recently this approach was extended to handle compatiggential equilibriaas well [16].

1.1 Prior research on poker

Poker is an enormously popular card game played around tHd.wihe 2005 World Series of Poker had over $103
million in total prize money, including $56 million for theam event. Increasingly, poker players compete in online
casinos, and television stations regularly broadcast pmkgnaments. Poker has been identified as an important
research area in Al due to the uncertainty stemming from nepts’ cards, opponents’ future actions, and chance
moves, among other reasons [5]. In this paper, we develogewwiques for constructing a poker-playing program.

Almost since the field’s founding, game theory has been usaddlyze different aspects of poker [14, 17, 1, 23, pp.
186-219]. However, this work was limited to tiny games thaild be solved by hand. More recently, Al researchers
have been applying the computational power of modern hamlteacomputing game theory-based strategies for larger
games. Koller and Pfeffer (1997) determined solutions tkkepgames with up to 140,000 nodes using the sequence
form and linear programming. For a medium-sized (3.1 hillimdes) variant of poker called Rhode Island Hold’em,
game theory-based solutions have been developed usingydbstraction followed by linear programming [20],
and recently optimal strategies for this game were detexdhirsing lossless automated abstraction followed by linear
programming [7].

The problem of developing strong players for Texas Hold’emuch more challenging. The most notable game
theory-based player for Texas Hold’em used expert-dedigm@nual abstractions and is competitive with advanced
human players [4]. It is available in the commercial prodemiter Academy PrasSparbot

In addition to game theory-based research, there has atsorbeent work in the area opponent modellingn
which a poker-playing program attempts to identify and eipheaknesses in the opponents [22, 9, 3]. The most
successful Texas Hold’em program from that line of resear®exbot also available ifPoker Academy Pro

Our player differs from the above in two important aspecisstft does not directly incorporate any poker-specific
domain knowledge. Instead, it analyzes the structure oftmee tree and automatically determines appropriate ab-
stractions. Unlike the prior approaches, ours 1) does nptire expert effort, 2) does not suffer from errors that rhigh
stem from experts’ biases and inability to accurately esptheir knowledge (of course, the algorithmically geretat
abstractions are not perfect either), and 3) yields betidrkeetter poker players as computing speed increases over
time (because finer abstractions are automatically fouddiard; in the prior approaches an expert would have to be
enlisted again to develop finer abstractions). Second, layepperforms both offline and real-time equilibrium com-
putation.Sparbotonly performs offline computation, andxbotprimarily performs real-time computation. Detailed
offline computation allows our player to accurately evadusttategic situations early in the game, while the reaétim
computation enables our player to perform computationsatfeafocused on specific portions of the game tree, based
on observed events, and thus allows more refined abstrac¢tidre used in the later stages than if offline computation
were used for the later stages (where the game tree has egiotde enormously wide).

In our experimental results section, we present evidenchow that our player, which does not directly use
any poker-specific domain knowledge, and which does notnattéo identify and exploit weaknesses in opponents,
performs competitively againStparbot Vexbot and advanced human players.

2 Rules of Texas Hold’em poker

There are many different variations of Texas Hold’em. Oneupeeter is the number of players. As most prior work
on poker, we focus on the setting with two players, caltledds-up Another difference between variations is the
betting structure. Again, as most prior research, we focusw-limit poker, in which the betting amounts adhere to
a restricted format. (Other popular variants inclumbelimit, in which players may bet any amount up to their current
bankroll, andoot-limit, in which players may bet any amount up to the current sizhepbt.)

Before any cards are dealt, the first player, calledsthall blind contributes one chip to the pot; the second player
(big blind) contributes two chipd.Each player is dealt twhole cardsfrom a randomly shuffled standard deck of 52
cards. Following the deal, the players participate in the &if four betting rounds, called tlpee-flop The small blind
acts first; she may either call the big blind (contribute onip); raise (three chips), or fold (zero chips). The players
then alternate either calling the current bet, raising #tebly two chips, or folding. In the event of a fold, the folding

3The exact monetary value of a chip is irrelevant to our playerso we refer only to the quantity of chips.

player forfeits the game and the other player wins all of thipsin the pot. Once a player calls a bet, the betting
round finishes. The number of raises allowed is limited to foweach round.

The second round is called tiep. Threecommunity cardare dealt face-up, and a betting round takes place with
bets equal to two chips. The big blind player is the first tg aatl there are no blind bets placed in this round.

The third and fourth rounds are called thien and theriver. In each round, a single card is dealt face-up, and a
betting round similar to the flop betting round takes place viath bets equal to four chips.

If the betting in the river round ends with neither playeidiab, then theshowdownakes place. Each player uses
the seven cards available (their two hole cards along wilfitte community cards) to form the best five-card poker
hand, where the hands are ranked in the usual order. Therplétyethe best hand wins the pot; in the event of a tie,
the players split the pot.

3 Strategy computation for the pre-flop and flop

Our player computes the strategies for the pre-flop and flmef There are two distinct phases to the computa-
tion: the automated abstraction and the equilibrium appration. We discuss these in the following subsections,
respectively.

3.1 Automated abstraction for the pre-flop and flop

For automatically computing a state-space abstractiothfofirst and second rounds, we use GemeShrinlkalgo-
rithm [7] which is designed for situations where the game tsemuch too large for an equilibrium-finding algorithm
to handle. GameShrinkakes as input a description of the game, and outputs a smefieesentation that approxi-
mates the original game. By computing an equilibrium for shwaller, abstracted game, one obtains an equilibrium
approximation for the original game.

We control the coarseness of the abstraction@sheShrinkcomputes by a threshold parameter. The abstraction
can range from lossless (threshold = 0), which results ingailibrium for the original game, to complete abstraction
(threshold =oc), which treats all nodes of the game as the same. The origie#thod for using a threshold in
GameShrinkequired a weighted bipartite matching computation (farfsically determining whether two nodes are
strategically similar) in an inner loop. To avoid that cortgiional overhead, we use a faster heuristic. Lettingl;
andws, I3 be the expected numbers of wins and losses (against a itadf-euery combination of remaining cards) for
the two hands, we define two nodes to be in the same abstratagmif|w; — wq|+ |I; — 2| < threshold. We vary the
abstraction threshold in order to find the finest-grainedrabson for which we are able to compute an equilibrium.

In the first betting round, there a(%Q) = 1,326 distinct possible hands. However, there are only 169 sficety
different hands. For example, holdinghA& is no different (in the pre-flop phase) than holdingg A®. Thus, any
pair of Aces may be treated similaflyGameShrink automaticallfiscovers these abstractions.

In the second round, there af&) (%) = 25,989,600 distinct possible hands. Again, many of these hands are
strategically similar. However, applyifrgameShrinkvith the threshold set to zero results in a game which iststill
large for an equilibrium-finding (LP) algorithm to handlehds we use a positive threshold that yields an abstraction
that has 2,465 distinct hands.

The finest abstraction that we are able to handle depende@vdilable hardware. As hardware advances become
available, our algorithm will be able to immediately takeagtage of the new computing power simply by specifying
a different abstraction threshold as inpu@ameShrink(In contrast, expert-designed abstractions have to beatign
redesigned to get finer abstractions.)

To speed-uisameShrinkwe precomputed several databases. Firsgradval database was constructed. It has

(572) = 133,784,560 entries. Each entry corresponds to seven cards and stoeesading of the hand’s rank, enabling

4This observation is well-known in poker, and in fact optimahtegies for pre-flop (1-round) Texas Hold’'em have been agatbusing this
observation [19].

5In order for our player to be able to consider such a wide rarfgeands in the flop round, we limit (in our players model, but imothe
evaluation) the number of raises in the flop round to threeatsbf four. For a given abstraction, this results in a smbtiear program. Thus, we
are able to use an abstraction with a larger number of didtoghands. This restriction was also used in $parbotplayer and has been justified
by the observation that four raises rarely occurs in pradt

rapid comparisons to determine which of any two hands i€béfes are also possible). These comparisons are used
in many places by our algorithms.

To compute an index into theandval database, we need a way of mapping 7 integers between 0 ada51 t
unique integer between 0 ar@Ef) — 1. We do this using theolexicographical orderingf subsets of a fixed size [6]
as follows. Let{cy,...,c7}, ¢; € {0,...,51}, denote the 7 cards and assume that ¢;1. We compute a unique

index for this set of cards as follows: -
. C;
index(cy, ..., c7) = Z (z)

=1
We use similar techniques for computing unique indices éndather databases.

Another databaselb5, stores the expected number of wins and losses for five-eardsh(the number of draws is
inferred from this). This database h@ﬁ) (530) = 25,989,600 entries, each corresponding to a pair of hole cards along
with a triple of flop cards. In computing tlih5 database, our algorithm makes heavy use ohtiedval database.
The db5 database is used to quickly compare how strategically armailgiven pair of flop hands are. This enables
GameShrinko run much faster, which allows us to compute and evaluatrakdifferent levels of abstraction.

By using the above precomputed databases, we are able BammeShrinkn about four hours for a given ab-
straction threshold. Being able to quickly run the abstoactomputation allowed us to evaluate several different
abstraction levels before settling on the most accurateeaadt®on for which we could compute an equilibrium approx-
imation. After evaluating several abstraction thresholgs settled on one that yielded an abstraction that kephall t
169 pre-flop hands distinct and had 2,465 classes of flop hands

3.2 Equilibrium computation for the pre-flop and flop

Once we have computed an abstraction, we are ready to petfiereguilibrium computation for that abstracted game.
Two-person zero-sum games can be solved via linear progiagrusing the sequence form representation of games.
Building the linear program itself, however, is a non-mivtomputation. It is desirable to be able to quickly perform
this operation so that we can apply it to several differerstralotions (as described above) in order to evaluate the
capability of each abstraction, as well as to determine hiffiewt each of the resulting linear programs are to solve.

The difficulty in constructing the linear program lies pririain computing the expected payoffs at the leaf nodes.
Each leaf corresponds to two pairs of hole cards, three flafscas well as the betting history. Considering only the
card history (the betting history is irrelevant for the pasps of computing the expected number of wins and losses),
there arg%,) (%) (%) ~ 2.8-10'° different histories. Evaluating each leaf requires rgfiinut the(*?) = 990 possible
turn and river cards. Thus, we would have to examine abgut10'3 different combinations, which would make the
LP construction slow (a projected 36 days on a 1.65 GHz CPU).

To speed up this LP creation, we precomputed a databla®2 3, that stores for each pair of hole cards, and for
each flop, the expected number of wins for each player (lcamsésiraws can be inferred from this). This database

thus has 52) (50
% (438) — 14,047,378,800

entries. The compressed sizedif223 is 8.4 GB and it took about a month to compute. We store thebdatain
one file per flop combination, and we only load into memory oleedi a time, as needed. By using this database, our
player can quickly and exactly determine the payoffs at ésaffor any abstraction. Once the abstraction is computed
(as described in the previous subsection), we can build Ehédelf in about an hour. This approach determines the
payoffsexactly and does not rely on any randomized sampling.

Using the abstraction described above yields a linear progvith 243,938 rows, 244,107 columns, and 101,000,490
non-zeros. We solved the LP using the barrier method of ILORREX. This computation used 18.8 GB RAM and
took 7 days, 3 hours. Our player uses the strategy computtidsiway for the pre-flop and flop betting rounds.
(Because our approximation does not involve any lossy attitn on the pre-flop cards, we expect the resulting pre-
flop strategies to be almost optimal, and certainly a befppraimation than what has been provided in previous
computations that only consider pre-flop actions [19].)

4 Strategy computation for the turn and river

Once the turn card is revealed, there are two betting roumasining. At this point, there are a wide number of
histories that could have occurred in the first two roundser@&hare 7 possible betting sequences that could have
occurred in the pre-flop betting round, and 9 possible bgtquences that could have occurred in the flop betting
round. In addition to the different betting histories, #ere a number of different card histories that could have
occurred. In particular, there a(éf) = 270,725 different possibilities for the four community cards (tarieom the
flop and one from the turn). The large number of histories rmakenputing an accurate equilibrium approximation for
the final two rounds for every possible first and second roustty prohibitively hard. Instead, our player computes
in real-timean equilibrium approximation for the final two rounds basadtee observed history for the current hand.
This enables our player to perform computations that areded on the specific remaining portion of the game tree,
and thus allows more refined abstractions to be used in thedttges than if offline computation were used for the
later stages (where the game tree has exploded to be endymads).

There are two parts to this real-time computation. First,payer must compute an abstraction to be used in the
equilibrium approximation. Second, our player must adyuedmpute the equilibrium approximation. These steps
are similar to the two steps taken in the offline computatiothe pre-flop and flop strategies, but the real-time nature
of this computation poses additional challenges. We addrash of these computations and how we overcame the
challenges in the following two subsections.

4.1 Automated abstraction for the turn and river

The problem of computing abstractions for each of the ptessiistories is made easier by the following two obser-
vations: (1) the appropriate abstraction (even a the@idiissless one) does not depend on the betting history (but
does depend on the card history, of course); and (2) manyeafdmmunity card histories are equivalent due to suit
isomorphisms. For example, havindh2&4456 on the board is equivalent to havinge2&4&Sd as long as we
simply relabel the suits of the hole cards and the (as of yietownn) river card. Observation 2 reduces the number of
abstractions that we need to compute (in principle, onedohef the(f’f) flop and turn card histories, but reduced to
135,408).

Although GameShrinican compute one of these abstractifmrsa given abstraction thresholieh just a few sec-
onds, we perform these abstraction computations off-liméviio reasons. First, since we are going to be playing in
real-time, we want the strategy computation to be as fasbasilpe. Given a small fixed limit on deliberation time
(say, 15 seconds), saving even a few seconds could lead tanm@lative improvement in strategy quality. Second,
we can set the abstraction threshold differently for eachlipnation of community cards in order to capitalize on the
finest abstraction for which the equilibrium can still bevedl within a reasonable amount of time. One abstraction
threshold may lead to a very coarse abstraction for one amatibn of community cards, while leading to a very fine
abstraction for another combination. Thus, for each of 8408 cases, we perform several abstraction computations
with different abstraction parameters in order to find artralstion close to a target size (which we experimentally
know the real-time equilibrium solver (LP solver) can sofegactly or approximately) within a reasonable amount
of time). Specifically, our algorithm first conducts binasasch on the abstraction threshold for round 3 (the turn)
until GameShrinkyields an abstracted game with about 25 distinct hands fond@®. Our algorithm then conducts
binary search on the abstraction threshold for round 4 (treg)runtil GameShrinkyields an abstracted game with
about 125 distinct hands for round 4. Given faster hardwarsore deliberation time, we could easily increase these
two targets.

Using this procedure, we computed all 135,408 abstractiopabout one month using six general-purpose CPUs.

4.2 Real-time equilibrium computation for the turn and river

Before we can construct the linear program for the turn aret betting rounds, we need to determine the probabilities
of holding certain hands. At this point in the game the play®ave observed each other’s actions leading up to this
point. Each player action reveals some information abaitythe of hand the player might have.

Based on the strategies computed for the pre-flop and flopdspuand based on the observed history, we apply
Bayes’ rule to estimate the probabilities of the differeairp of hole cards that the players might be holding. Letting

h denote the history® denote the set of possible pairs of hole cards, grienote the strategy of playérwe can
derive the probability that playérholds hole card pai#; as follows:

Prh | 6;, s;]Pr[0;] _ Pr[h | 6;, s;]Pr[6;]

Pr[h | s4] - 92@ Pr[h | 0}, s;]
S

Pr[el | h, Si] =

Since we already knowr[h | 6;, s;] (we can simply look at the strategies, computed for the first two rounds), we
can compute the probabilities above. (Of course, the liagydtobabilities might not be exact because the stratégies
the pre-flop and flop rounds might not constitute an exactlibguim since, as discussed above, they were computed
without considering a fourth possible raise on the flop orlaetying in rounds 3 and 4, and abstraction was used.)

Once the turn card is dealt out, our program creates a sephraiad to construct and solve the linear problem
corresponding to the abstraction of the rest of that game. rnithis time for our player to act, the LP solve is
interrupted, and the current solution is accessed to gestth&egy to use at the current time. When the algorithm
is interrupted, we save the current basis which allows usitirue the LP solve from the point at which we were
interrupted. The solve then continues in the separatedtit has not already found the optimal solution). In this
way, our strategy (vector of probabilities) keeps impragyiim preparation for making future betting actions in rounds
3 and 4.

There are two different versions of the simplex algorithm dolving an LP:primal simplexanddual simplex
The primal simplex maintains primal feasibility, and séwe for dual feasibility. (Once the primal and dual are both
feasible, the solution is optimal.) Similarly, dual simphaaintains dual feasibility, and searches for primal fieidisy.
(Dual simplex can be thought of as running primal simplextwndual LP.) When our player is playing as player 1,
the dual variables correspond to our strategies. Thus,dorerthat at any point in the execution of the algorithm we
have a feasible solution, our player uses dual simplex ttoparthe equilibrium approximation when she is player
1. Similarly, she uses the primal simplex algorithm when ishglayer 2. If the player is given an arbitrarily long
time to deliberate, it would not matter which algorithm waed since at optimality both primal and dual solutions are
feasible. But since we are also interested in interim sohstiit is important to always have feasibility for the sant
vector in which we are interested. Our conditional choicthefprimal or dual simplex method ensures exactly this.

One subtle issue is that our player occasionally runs offettpgilibrium path. For example, suppose it is our
player’'s turn to act, and the current LP solution indicatest she should bet; thus our player bets, and the LP solve
continues. It is possible that as the LP solve continuegtérthines that the best thing to have done would have been
to check instead of betting. If the other player re-raiskentour player is in a precarious situation: the current LP
solution is stating that she should not have bet in the fiestggland consequently is not able to offer any guidance to
the player since she is in an information set that is reactiddpobability zero. It is also possible for our player to
determine during a hand whether the opponent has gone ditadduilibrium path, but this rarely happens because
their cards are hidden. In these situations, our playerlgicails the bet.

5 Experimental results

We tested our player against two of the strongest prior ppkasfing programs, as well as against a range of humans.

5.1 Computer opponents

The first computer opponent we tested our player againsBpagbot{4]. Sparbotis also based on game theory. The
main difference is thaBparbotconsiders three betting rounds at once (we consider twoyeluires a much coarser
abstraction. Also, all oEparbot’scomputations are performed offline and it is hard-wired teenéold in the pre-flop
betting round. Our results agairSparbotare illustrated in Figure 1 (left). When tested on 10,000 kamge won
0.007 small bets per hand on average.

A well-known challenge is that comparing poker strategespiires a large number of hands in order to mitigate
the role of luck. The variance of heads-up Texas Hold’em leesempirically observed to bt /+/N small bets per
hand whenV hands are played [#]So, our victory oveSparbotis within the estimated variance &f0.06.

60ne way to reduce the variance would be to play each hand {witite swapping the players in between), and to fix the cardsare dealt.

Our player vs Sparbot Our player vs Vexbot

500 500 ww

S 400 400 ‘

% 300 gk ﬂwJ‘uMN. 300 NVMM‘;' Mﬂ M\W\NA{M

£ 200 'vlv&“' e “w - 2004 A

‘=§ 100 A‘f V W "Ar MWW 100 »W W '\'l.vh

@ 0 ‘VM 0 H/W WW\
100 0 2500 5000 7500 10000 100 0 1250 2500 3750 5000

Hands played Hands played

Figure 1:0ur program versuSparbot(left) andVexbot(right).

The second computer opponent we played eadot3]. It searches the game tree, using a model of the opponent
to estimate the probabilities of certain actions as welhasexpected value of leaf nodes. It is designed to adapt to
the particular weaknesses of the opponent, and thus, whagfa fixed strategy such as the one used by our player,
it should gradually improve its strategy. Figure 1 (rightjlicates that our player wins initially, but ends up in a tie
after 5,000 hands. Itis possible théxbots learning an effective counter strategy to our playehalgh the learning
process appears to take a few thousand hands.

When playing against computer opponents, our player wasdihid 60 seconds of deliberation time, though it
only used about 9 seconds on average. The results preseatedha we had collected at submission time. We are
continually running experiments to get more statisticallganingful results.

5.2 Human opponents

We also conducted experiments against human players, éaghoon has considerable poker-playing experience.
Each participant was asked to describe themselves as &itteemediate” or “expert”. The experts play regularly and
have significantly positive winnings in competitive playaimly in online casinos. (In poker, unlike other compestiv
games such as chess, there is no ranking system for players.)

Our player was competitive with the humans (Table 1). Howelige to the large variance present in poker, there
does not appear to be strong evidence declaring it to be aalbwénner or an overall loser. With human opponents
it is difficult to play a large enough number of hands to makedsefinitive statements. Although our player ended up
losing an average of 0.02 small bets per hand, this is welliwthe variance£0.15 small bets per hand when 1,576
hands are played). Interestingly, our player won 0.01 shet# per hand on average against the expert players.

When playing against human opponents, our player was linitd® seconds of deliberation time, though it only
used about 4 seconds on average.

6 Other related research on abstraction

Abstraction techniques have been used in artificial ifetice research before. In contrast to our work, most (but
not all) research involving abstraction has been for siagjent problemse(g. [10, 15]). One of the first pieces of

This functionality is not available iRoker Academy Prand the opponent players are available only via that ptodoave have as yet been unable
to perform these experiments.

Even controlling for the deal of cards would not result in afirely fair experiment for several reasons. First, thetsges used by the players
are randomized, so even when the cards are held fixed, thenoeitwould possibly be different. Second, in the case where bile @pponents is
doing opponent modeling, it may be the case that certain dadisie the experiment lend themselves to much better learmihde cards later in
the experiment lend themselves to much better exploitations,Ttheorder in which the fixed hands are dealt matters. Third, controlforgcards
would not help in experiments against humans, because thelg kaw the cards that will be coming in the second repetitiba card sequence.

Player | small bets per hand | # hands |

Intermediate player 1 0.20 71
Intermediate player 2 -0.09 166
Intermediate player 3 -0.40 100
Intermediate player 4 0.09 86
Expert player 1 -0.35 429
Expert player 2 0.19 325
Expert player 3 0.33 251
Expert player 4 0.09 148
| Overall: | -0.02[1576

Table 1:Small bets per hand won by our player against humans.

research utilizing abstraction in multi-agent settings Wee development gfartition search which is the algorithm
behind GIB, the world’s first expert-level computer briddayer [8]. In contrast to other game tree search algorithms
which store a particular game position at each node of thelsdgee, partition search storggupsof positions that

it determines are similar. (Typically, the similarity of tvgame positions is computed by ignoring the less important
components of each game position and then checking whétbetistracted positions are similar—in some domain-
specific sense—to each other.) Partition search can leathstesuial speed improvements ovefs-search. However,

it is not game theory-based (it does not consider informagigts in the game tree), and thus does not solve for the
equilibrium of a game of imperfect information, such as poke

7 Conclusions

We presented a game theory-based heads-up Texas Hold'esn plalyer that was generated without any domain
knowledge. To overcome the computational challenges pogéte huge game tree, we combined automated abstrac-
tion and real-time equilibrium approximation to develop player. We compute strategies for the first two rounds
of the game in a massive offline computation with abstraditiowed by LP. For the last two rounds, our algorithm
precomputes abstracted games of different granularitthiodifferent card history equivalence classes. Also fer th
last two rounds, our algorithm deduces the probabilityritistion over the two players’ hands from the strategies
computed for the first two rounds and from both player’s hgttiistory. When round three actually begins, our algo-
rithm performs an anytime real-time equilibrium approxiioa (using LP) that is focused on the relevant portion of
the game tred €., on one of the abstracted games only) using the new prior.

Our program beat both of the prior state-of-the-art pokegmms (although not with great statistical significance
due to the variance in poker). This indicates that it is gaedb build a poker program without any domain knowledge
that is at least as strong as the best poker programs thabwidrasing extensive domain knowledge. Our program is
also competitive against experienced human players.

Future research includes developing additional techsiquetop of the ones presented here, with the goal of
developing even better programs for playing large seqakgdéimes of imperfect information.

References
[1] R. Bellman and D. Blackwell. Some two-person games involving blgffifProc. of the National Academy of Sciences
35:600-605, 1949.

[2] D. Billings. Web posting at Poker Academy Forums, Meerkat ARI ahDiscussion, December 2005. http://www.poker-
academy.com/forums/viewtopic.php?t=1872.

"Bridge is also a game of imperfect information, and partiticarsie does not find the equilibrium for that game either. Irgstpartition search
is used in conjunction with statistical sampling to simul&dncertainty in bridge. There are also other bridge progithat use search techniques
for perfect information games in conjunction with statistisampling and expert-defined abstraction [21]. Such (nanegtheoretic) techniques
are unlikely to be competitive in poker because of the greatportance of information hiding and bluffing.

[3] D. Billings, M. Bowling, N. Burch, A. Davidson, R. Holte, J. SchaaffT. Schauenberg, and D. Szafron. Game tree search
with adaptation in stochastic imperfect information game<Cdmputers and GameSpringer-Verlag, 2004.

[4] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Subnberg, and D. Szafron. Approximating game-theoretic
optimal strategies for full-scale poker. Rroceedings of the Eighteenth International Joint Conference on Artificielli-
gence (IJCAIl)Acapulco, Mexico, 2003.

[5] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. Thelleimge of poker. Artificial Intelligence 134(1-2):201-240,
2002.

[6] B. Bollobas.Combinatorics Cambridge University Press, 1986.

[7]1 A. Gilpin and T. Sandholm. Finding equilibria in large sequential ganiésperfect information. Technical Report CMU-
CS-05-158, Carnegie Mellon University, 2005.

[8] M. L. Ginsberg. GIB: Steps toward an expert-level bridge-playinggram. InProceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCABtockholm, Sweden, 1999.

[9] B. Hoehn, F. Southey, R. C. Holte, and V. Bulitko. Effective shterm opponent exploitation in simplified poker. fmo-
ceedings of the National Conference on Artificial Intelligence (AAgdpes 783—-788, July 2005.

[10] C. A. Knoblock. Automatically generating abstractions for plannifgificial Intelligence 68(2):243—-302, 1994.

[11] D. Koller, N. Megiddo, and B. von Stengel. Efficient computatioreqtilibria for extensive two-person gamésames and
Economic Behaviqrl4(2):247-259, 1996.

[12] D. Koller and A. Pfeffer. Representations and solutions for géimeretic problemsArtificial Intelligence 94(1):167-215,
July 1997.

[13] H.W. Kuhn. Extensive game®roc. of the National Academy of Sciencg8:570-576, 1950.

[14] H.W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. Wicker, editorsContributions to the Theory of Games
volume 1 ofAnnals of Mathematics Studies,, 2ages 97—-103. Princeton University Press, 1950.

[15] C.-L. Liu and M. Wellman. On state-space abstraction for anytinauetion of Bayesian networksSIGART Bulletin
7(2):50-57, 1996. Special issue on Anytime Algorithms and Deliberatitie@uling.

[16] P.B. Miltersen and T. B. Sgrensen. Computing sequential equifiarisvo-player games. IAnnual ACM-SIAM Symposium
on Discrete Algorithms (SODApages 107-116, 2006.

[17] J. F. Nash and L. S. Shapley. A simple three-person poker gamt¢. W. Kuhn and A. W. Tucker, editor§ontributions to
the Theory of Gamesolume 1, pages 105-116. Princeton University Press, 1950.

[18] I. Romanovskii. Reduction of a game with complete memory to a ma#imegSoviet Mathematic:678—681, 1962.
[19] A. Selby. Optimal heads-up preflop poker, 1999. http://www.dogle.demon.co.uk/simplex/.

[20] J. Shi and M. Littman. Abstraction methods for game theoretic pdke€omputers and Gamepages 333-345. Springer-
Verlag, 2001.

[21] S.J.J. Smith, D. S. Nau, and T. Throop. Computer bridge: A ligfar Al planning. Al Magazine 19(2):93-105, 1998.

[22] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Bilig) and C. Rayner. Bayes’ bluff: Opponent modelling
in poker. InProceedings of the 21st Annual Conference on Uncertainty in Artifintelligence (UAI) pages 550-558, July
2005.

[23] J. von Neumann and O. Morgensteiltheory of games and economic behavi@rinceton University Press, 1947.
[24] B. von Stengel. Efficient computation of behavior strategigsmes and Economic Behavjid#(2):220-246, 1996.

