
A competitive Texas Hold’em poker player via automated
abstraction and real-time equilibrium computation

Andrew Gilpin
Computer Science Department

Carnegie Mellon University
gilpin@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
sandholm@cs.cmu.edu

March 31, 2006

Abstract

We present our game theory-based heads-up Texas Hold’em pokerplayer. To overcome the computational ob-
stacles stemming from Texas Hold’em’s gigantic game tree, our player employsautomatedabstraction techniques to
reduce the complexity of the strategy computations. In addition to this state-space abstraction, our player uses round-
based abstraction in conjunction with both offline and real-time equilibrium approximation. Texas Hold’em consists
of four betting rounds. Our player solves a large linear program (offline) to compute strategies for the abstracted first
and second rounds. After the second betting round, our player updates the probability of each possible hand based on
the observed betting actions in the first two rounds as well as the revealed cards. Using these updated probabilities,
our player computes inreal-timean equilibrium approximation for the last two abstracted rounds. We demonstrate
that our player, which does not directly incorporate any poker-specific expert knowledge, is competitive with lead-
ing poker-playing programs which do incorporate such domain-specific knowledge, as well as with advanced human
players.

1 Introduction

In environments with more than one agent, the outcome of one agent may depend on the actions of the other agents.
Consequently, in determining what action to take, an agent must consider the possible actions of the other agents.
Game theory provides the mathematical foundation for explaining how rational agents should behave in such settings.
Unfortunately, even in settings where game theory providesdefinitive guidance of an agent’s optimal behavior, the
computational problem of determining these strategies remains difficult. In this paper, we develop computational
methods for applying game theory-based solutions to a largereal-world game of imperfect information.

For sequential games with imperfect information, one couldtry to find an equilibrium using the normal (matrix)
form, where every contingency plan of the agent is a pure strategy for the agent. Unfortunately (even if equivalent
strategies are replaced by a single strategy [13]) this representation is generally exponential in the size of the game
tree [24]. Thesequence formis an alternative that results in a more compact representation [18, 11, 24]. For two-
player zero-sum games, there is a polynomial-sized (in the size of the game tree) linear programming formulation
based on the sequence form such that strategies for players 1and 2 correspond to primal and dual variables. Thus, a
minimax solution1 for reasonably-sized two-player zero-sum games can be computed using this method [24, 11, 12].2

That approach alone scales to games with around a million nodes [7], but Texas Hold’em with its1018 nodes is way
beyond the reach of that method. In this paper, we present techniques that allow us to approach the problem from a
game-theoretic point of view, while mitigating the computational problems faced.

1Minimax solutions are robust in that there is no equilibrium selection problem: an agent’s minimax strategy guarantees at least the agent’s
minimax value even if the opponent fails to play his minimax strategy. Throughout this paper, we are referring to a minimax solution when we use
the term equilibrium.

2Recently this approach was extended to handle computingsequential equilibriaas well [16].

1

1.1 Prior research on poker

Poker is an enormously popular card game played around the world. The 2005 World Series of Poker had over $103
million in total prize money, including $56 million for the main event. Increasingly, poker players compete in online
casinos, and television stations regularly broadcast poker tournaments. Poker has been identified as an important
research area in AI due to the uncertainty stemming from opponents’ cards, opponents’ future actions, and chance
moves, among other reasons [5]. In this paper, we develop newtechniques for constructing a poker-playing program.

Almost since the field’s founding, game theory has been used to analyze different aspects of poker [14, 17, 1, 23, pp.
186–219]. However, this work was limited to tiny games that could be solved by hand. More recently, AI researchers
have been applying the computational power of modern hardware to computing game theory-based strategies for larger
games. Koller and Pfeffer (1997) determined solutions to poker games with up to 140,000 nodes using the sequence
form and linear programming. For a medium-sized (3.1 billion nodes) variant of poker called Rhode Island Hold’em,
game theory-based solutions have been developed using a lossy abstraction followed by linear programming [20],
and recently optimal strategies for this game were determined using lossless automated abstraction followed by linear
programming [7].

The problem of developing strong players for Texas Hold’em is much more challenging. The most notable game
theory-based player for Texas Hold’em used expert-designed manual abstractions and is competitive with advanced
human players [4]. It is available in the commercial productPoker Academy ProasSparbot.

In addition to game theory-based research, there has also been recent work in the area ofopponent modellingin
which a poker-playing program attempts to identify and exploit weaknesses in the opponents [22, 9, 3]. The most
successful Texas Hold’em program from that line of researchis Vexbot, also available inPoker Academy Pro.

Our player differs from the above in two important aspects. First, it does not directly incorporate any poker-specific
domain knowledge. Instead, it analyzes the structure of thegame tree and automatically determines appropriate ab-
stractions. Unlike the prior approaches, ours 1) does not require expert effort, 2) does not suffer from errors that might
stem from experts’ biases and inability to accurately express their knowledge (of course, the algorithmically generated
abstractions are not perfect either), and 3) yields better and better poker players as computing speed increases over
time (because finer abstractions are automatically found and used; in the prior approaches an expert would have to be
enlisted again to develop finer abstractions). Second, our player performs both offline and real-time equilibrium com-
putation.Sparbotonly performs offline computation, andVexbotprimarily performs real-time computation. Detailed
offline computation allows our player to accurately evaluate strategic situations early in the game, while the real-time
computation enables our player to perform computations that are focused on specific portions of the game tree, based
on observed events, and thus allows more refined abstractions to be used in the later stages than if offline computation
were used for the later stages (where the game tree has exploded to be enormously wide).

In our experimental results section, we present evidence toshow that our player, which does not directly use
any poker-specific domain knowledge, and which does not attempt to identify and exploit weaknesses in opponents,
performs competitively againstSparbot, Vexbot, and advanced human players.

2 Rules of Texas Hold’em poker

There are many different variations of Texas Hold’em. One parameter is the number of players. As most prior work
on poker, we focus on the setting with two players, calledheads-up. Another difference between variations is the
betting structure. Again, as most prior research, we focus on low-limit poker, in which the betting amounts adhere to
a restricted format. (Other popular variants includeno-limit, in which players may bet any amount up to their current
bankroll, andpot-limit, in which players may bet any amount up to the current size of the pot.)

Before any cards are dealt, the first player, called thesmall blind, contributes one chip to the pot; the second player
(big blind) contributes two chips.3 Each player is dealt twohole cardsfrom a randomly shuffled standard deck of 52
cards. Following the deal, the players participate in the first of four betting rounds, called thepre-flop. The small blind
acts first; she may either call the big blind (contribute one chip), raise (three chips), or fold (zero chips). The players
then alternate either calling the current bet, raising the bet by two chips, or folding. In the event of a fold, the folding

3The exact monetary value of a chip is irrelevant to our player and so we refer only to the quantity of chips.

2

player forfeits the game and the other player wins all of the chips in the pot. Once a player calls a bet, the betting
round finishes. The number of raises allowed is limited to four in each round.

The second round is called theflop. Threecommunity cardsare dealt face-up, and a betting round takes place with
bets equal to two chips. The big blind player is the first to act, and there are no blind bets placed in this round.

The third and fourth rounds are called theturn and theriver. In each round, a single card is dealt face-up, and a
betting round similar to the flop betting round takes place, but with bets equal to four chips.

If the betting in the river round ends with neither player folding, then theshowdowntakes place. Each player uses
the seven cards available (their two hole cards along with the five community cards) to form the best five-card poker
hand, where the hands are ranked in the usual order. The player with the best hand wins the pot; in the event of a tie,
the players split the pot.

3 Strategy computation for the pre-flop and flop

Our player computes the strategies for the pre-flop and flop offline. There are two distinct phases to the computa-
tion: the automated abstraction and the equilibrium approximation. We discuss these in the following subsections,
respectively.

3.1 Automated abstraction for the pre-flop and flop

For automatically computing a state-space abstraction forthe first and second rounds, we use theGameShrinkalgo-
rithm [7] which is designed for situations where the game tree is much too large for an equilibrium-finding algorithm
to handle.GameShrinktakes as input a description of the game, and outputs a smaller representation that approxi-
mates the original game. By computing an equilibrium for thesmaller, abstracted game, one obtains an equilibrium
approximation for the original game.

We control the coarseness of the abstraction thatGameShrinkcomputes by a threshold parameter. The abstraction
can range from lossless (threshold = 0), which results in an equilibrium for the original game, to complete abstraction
(threshold =∞), which treats all nodes of the game as the same. The originalmethod for using a threshold in
GameShrinkrequired a weighted bipartite matching computation (for heuristically determining whether two nodes are
strategically similar) in an inner loop. To avoid that computational overhead, we use a faster heuristic. Lettingw1, l1
andw2, l2 be the expected numbers of wins and losses (against a roll-out of every combination of remaining cards) for
the two hands, we define two nodes to be in the same abstractionclass if|w1−w2|+ |l1− l2| ≤ threshold. We vary the
abstraction threshold in order to find the finest-grained abstraction for which we are able to compute an equilibrium.

In the first betting round, there are
(

52

2

)

= 1,326 distinct possible hands. However, there are only 169 strategically
different hands. For example, holding A♠A♣ is no different (in the pre-flop phase) than holding A♦A♥. Thus, any
pair of Aces may be treated similarly.4 GameShrink automaticallydiscovers these abstractions.

In the second round, there are
(

52

2

)(

50

3

)

= 25,989,600 distinct possible hands. Again, many of these hands are
strategically similar. However, applyingGameShrinkwith the threshold set to zero results in a game which is stilltoo
large for an equilibrium-finding (LP) algorithm to handle. Thus we use a positive threshold that yields an abstraction
that has 2,465 distinct hands.5

The finest abstraction that we are able to handle depends on the available hardware. As hardware advances become
available, our algorithm will be able to immediately take advantage of the new computing power simply by specifying
a different abstraction threshold as input toGameShrink. (In contrast, expert-designed abstractions have to be manually
redesigned to get finer abstractions.)

To speed-upGameShrink, we precomputed several databases. First, ahandval database was constructed. It has
(

52

7

)

= 133,784,560 entries. Each entry corresponds to seven cards and stores anencoding of the hand’s rank, enabling

4This observation is well-known in poker, and in fact optimal strategies for pre-flop (1-round) Texas Hold’em have been computed using this
observation [19].

5In order for our player to be able to consider such a wide rangeof hands in the flop round, we limit (in our players model, but notin the
evaluation) the number of raises in the flop round to three instead of four. For a given abstraction, this results in a smallerlinear program. Thus, we
are able to use an abstraction with a larger number of distinctflop hands. This restriction was also used in theSparbotplayer and has been justified
by the observation that four raises rarely occurs in practice [4].

3

rapid comparisons to determine which of any two hands is better (ties are also possible). These comparisons are used
in many places by our algorithms.

To compute an index into thehandval database, we need a way of mapping 7 integers between 0 and 51 to a
unique integer between 0 and

(

52

7

)

− 1. We do this using thecolexicographical orderingof subsets of a fixed size [6]
as follows. Let{c1, . . . , c7}, ci ∈ {0, . . . , 51}, denote the 7 cards and assume thatci < ci+1. We compute a unique
index for this set of cards as follows:

index(c1, . . . , c7) =

7
∑

i=1

(

ci

i

)

.

We use similar techniques for computing unique indices in the other databases.
Another database,db5, stores the expected number of wins and losses for five-card hands (the number of draws is

inferred from this). This database has
(

52

2

)(

50

3

)

= 25,989,600 entries, each corresponding to a pair of hole cards along
with a triple of flop cards. In computing thedb5 database, our algorithm makes heavy use of thehandval database.
Thedb5 database is used to quickly compare how strategically similar a given pair of flop hands are. This enables
GameShrinkto run much faster, which allows us to compute and evaluate several different levels of abstraction.

By using the above precomputed databases, we are able to runGameShrinkin about four hours for a given ab-
straction threshold. Being able to quickly run the abstraction computation allowed us to evaluate several different
abstraction levels before settling on the most accurate abstraction for which we could compute an equilibrium approx-
imation. After evaluating several abstraction thresholds, we settled on one that yielded an abstraction that kept all the
169 pre-flop hands distinct and had 2,465 classes of flop hands.

3.2 Equilibrium computation for the pre-flop and flop
Once we have computed an abstraction, we are ready to performthe equilibrium computation for that abstracted game.
Two-person zero-sum games can be solved via linear programming using the sequence form representation of games.
Building the linear program itself, however, is a non-trivial computation. It is desirable to be able to quickly perform
this operation so that we can apply it to several different abstractions (as described above) in order to evaluate the
capability of each abstraction, as well as to determine how difficult each of the resulting linear programs are to solve.

The difficulty in constructing the linear program lies primarily in computing the expected payoffs at the leaf nodes.
Each leaf corresponds to two pairs of hole cards, three flop cards, as well as the betting history. Considering only the
card history (the betting history is irrelevant for the purposes of computing the expected number of wins and losses),
there are

(

52

2

)(

50

2

)(

48

3

)

≈ 2.8·1010 different histories. Evaluating each leaf requires rolling out the
(

45

2

)

= 990 possible
turn and river cards. Thus, we would have to examine about2.7 · 1013 different combinations, which would make the
LP construction slow (a projected 36 days on a 1.65 GHz CPU).

To speed up this LP creation, we precomputed a database,db223, that stores for each pair of hole cards, and for
each flop, the expected number of wins for each player (lossesand draws can be inferred from this). This database
thus has

(

52

2

)(

50

2

)

2

(

48

3

)

= 14,047,378,800

entries. The compressed size ofdb223 is 8.4 GB and it took about a month to compute. We store the database in
one file per flop combination, and we only load into memory one file at a time, as needed. By using this database, our
player can quickly and exactly determine the payoffs at eachleaf for any abstraction. Once the abstraction is computed
(as described in the previous subsection), we can build the LP itself in about an hour. This approach determines the
payoffsexactly, and does not rely on any randomized sampling.

Using the abstraction described above yields a linear program with 243,938 rows, 244,107 columns, and 101,000,490
non-zeros. We solved the LP using the barrier method of ILOG CPLEX. This computation used 18.8 GB RAM and
took 7 days, 3 hours. Our player uses the strategy computed inthis way for the pre-flop and flop betting rounds.
(Because our approximation does not involve any lossy abstraction on the pre-flop cards, we expect the resulting pre-
flop strategies to be almost optimal, and certainly a better approximation than what has been provided in previous
computations that only consider pre-flop actions [19].)

4

4 Strategy computation for the turn and river

Once the turn card is revealed, there are two betting rounds remaining. At this point, there are a wide number of
histories that could have occurred in the first two rounds. There are 7 possible betting sequences that could have
occurred in the pre-flop betting round, and 9 possible betting sequences that could have occurred in the flop betting
round. In addition to the different betting histories, there are a number of different card histories that could have
occurred. In particular, there are

(

52

4

)

= 270,725 different possibilities for the four community cards (three from the
flop and one from the turn). The large number of histories makes computing an accurate equilibrium approximation for
the final two rounds for every possible first and second round history prohibitively hard. Instead, our player computes
in real-timean equilibrium approximation for the final two rounds based on the observed history for the current hand.
This enables our player to perform computations that are focused on the specific remaining portion of the game tree,
and thus allows more refined abstractions to be used in the later stages than if offline computation were used for the
later stages (where the game tree has exploded to be enormously wide).

There are two parts to this real-time computation. First, our player must compute an abstraction to be used in the
equilibrium approximation. Second, our player must actually compute the equilibrium approximation. These steps
are similar to the two steps taken in the offline computation of the pre-flop and flop strategies, but the real-time nature
of this computation poses additional challenges. We address each of these computations and how we overcame the
challenges in the following two subsections.

4.1 Automated abstraction for the turn and river

The problem of computing abstractions for each of the possible histories is made easier by the following two obser-
vations: (1) the appropriate abstraction (even a theoretical lossless one) does not depend on the betting history (but
does depend on the card history, of course); and (2) many of the community card histories are equivalent due to suit
isomorphisms. For example, having 2♠3♠4♠5♠ on the board is equivalent to having 2♣3♣4♣5♣ as long as we
simply relabel the suits of the hole cards and the (as of yet unknown) river card. Observation 2 reduces the number of
abstractions that we need to compute (in principle, one for each of the

(

52

4

)

flop and turn card histories, but reduced to
135,408).

AlthoughGameShrinkcan compute one of these abstractionsfor a given abstraction thresholdin just a few sec-
onds, we perform these abstraction computations off-line for two reasons. First, since we are going to be playing in
real-time, we want the strategy computation to be as fast as possible. Given a small fixed limit on deliberation time
(say, 15 seconds), saving even a few seconds could lead to a major relative improvement in strategy quality. Second,
we can set the abstraction threshold differently for each combination of community cards in order to capitalize on the
finest abstraction for which the equilibrium can still be solved within a reasonable amount of time. One abstraction
threshold may lead to a very coarse abstraction for one combination of community cards, while leading to a very fine
abstraction for another combination. Thus, for each of the 135,408 cases, we perform several abstraction computations
with different abstraction parameters in order to find an abstraction close to a target size (which we experimentally
know the real-time equilibrium solver (LP solver) can solve(exactly or approximately) within a reasonable amount
of time). Specifically, our algorithm first conducts binary search on the abstraction threshold for round 3 (the turn)
until GameShrinkyields an abstracted game with about 25 distinct hands for round 3. Our algorithm then conducts
binary search on the abstraction threshold for round 4 (the river) until GameShrinkyields an abstracted game with
about 125 distinct hands for round 4. Given faster hardware,or more deliberation time, we could easily increase these
two targets.

Using this procedure, we computed all 135,408 abstractionsin about one month using six general-purpose CPUs.

4.2 Real-time equilibrium computation for the turn and rive r

Before we can construct the linear program for the turn and river betting rounds, we need to determine the probabilities
of holding certain hands. At this point in the game the players have observed each other’s actions leading up to this
point. Each player action reveals some information about the type of hand the player might have.

Based on the strategies computed for the pre-flop and flop rounds, and based on the observed history, we apply
Bayes’ rule to estimate the probabilities of the different pairs of hole cards that the players might be holding. Letting

5

h denote the history,Θ denote the set of possible pairs of hole cards, andsi denote the strategy of playeri, we can
derive the probability that playeri holds hole card pairθi as follows:

Pr[θi | h, si] =
Pr[h | θi, si]Pr[θi]

Pr[h | si]
=

Pr[h | θi, si]Pr[θi]
∑

θ′

i
∈Θ

Pr[h | θ′
i
, si]

Since we already knowPr[h | θi, si] (we can simply look at the strategies,si, computed for the first two rounds), we
can compute the probabilities above. (Of course, the resulting probabilities might not be exact because the strategiesfor
the pre-flop and flop rounds might not constitute an exact equilibrium since, as discussed above, they were computed
without considering a fourth possible raise on the flop or anybetting in rounds 3 and 4, and abstraction was used.)

Once the turn card is dealt out, our program creates a separate thread to construct and solve the linear problem
corresponding to the abstraction of the rest of that game. When it is time for our player to act, the LP solve is
interrupted, and the current solution is accessed to get thestrategy to use at the current time. When the algorithm
is interrupted, we save the current basis which allows us to continue the LP solve from the point at which we were
interrupted. The solve then continues in the separate thread (if it has not already found the optimal solution). In this
way, our strategy (vector of probabilities) keeps improving in preparation for making future betting actions in rounds
3 and 4.

There are two different versions of the simplex algorithm for solving an LP:primal simplexanddual simplex.
The primal simplex maintains primal feasibility, and searches for dual feasibility. (Once the primal and dual are both
feasible, the solution is optimal.) Similarly, dual simplex maintains dual feasibility, and searches for primal feasibility.
(Dual simplex can be thought of as running primal simplex on the dual LP.) When our player is playing as player 1,
the dual variables correspond to our strategies. Thus, to ensure that at any point in the execution of the algorithm we
have a feasible solution, our player uses dual simplex to perform the equilibrium approximation when she is player
1. Similarly, she uses the primal simplex algorithm when sheis player 2. If the player is given an arbitrarily long
time to deliberate, it would not matter which algorithm was used since at optimality both primal and dual solutions are
feasible. But since we are also interested in interim solutions, it is important to always have feasibility for the solution
vector in which we are interested. Our conditional choice ofthe primal or dual simplex method ensures exactly this.

One subtle issue is that our player occasionally runs off theequilibrium path. For example, suppose it is our
player’s turn to act, and the current LP solution indicates that she should bet; thus our player bets, and the LP solve
continues. It is possible that as the LP solve continues, it determines that the best thing to have done would have been
to check instead of betting. If the other player re-raises, then our player is in a precarious situation: the current LP
solution is stating that she should not have bet in the first place, and consequently is not able to offer any guidance to
the player since she is in an information set that is reached with probability zero. It is also possible for our player to
determine during a hand whether the opponent has gone off of the equilibrium path, but this rarely happens because
their cards are hidden. In these situations, our player simply calls the bet.

5 Experimental results

We tested our player against two of the strongest prior poker-playing programs, as well as against a range of humans.

5.1 Computer opponents

The first computer opponent we tested our player against wasSparbot[4]. Sparbotis also based on game theory. The
main difference is thatSparbotconsiders three betting rounds at once (we consider two), but requires a much coarser
abstraction. Also, all ofSparbot’scomputations are performed offline and it is hard-wired to never fold in the pre-flop
betting round. Our results againstSparbotare illustrated in Figure 1 (left). When tested on 10,000 hands, we won
0.007 small bets per hand on average.

A well-known challenge is that comparing poker strategies requires a large number of hands in order to mitigate
the role of luck. The variance of heads-up Texas Hold’em has been empirically observed to be±6/

√
N small bets per

hand whenN hands are played [2].6 So, our victory overSparbotis within the estimated variance of±0.06.

6One way to reduce the variance would be to play each hand twice(while swapping the players in between), and to fix the cards that are dealt.

6

-100

 0

 100

 200

 300

 400

 500

 0 2500 5000 7500 10000

S
m

al
l b

et
s

w
on

Hands played

Our player vs Sparbot

-100

 0

 100

 200

 300

 400

 500

 0 1250 2500 3750 5000

Hands played

Our player vs Vexbot

Figure 1:Our program versusSparbot(left) andVexbot(right).

The second computer opponent we played wasVexbot[3]. It searches the game tree, using a model of the opponent
to estimate the probabilities of certain actions as well as the expected value of leaf nodes. It is designed to adapt to
the particular weaknesses of the opponent, and thus, when facing a fixed strategy such as the one used by our player,
it should gradually improve its strategy. Figure 1 (right) indicates that our player wins initially, but ends up in a tie
after 5,000 hands. It is possible thatVexbotis learning an effective counter strategy to our player, although the learning
process appears to take a few thousand hands.

When playing against computer opponents, our player was limited to 60 seconds of deliberation time, though it
only used about 9 seconds on average. The results presented are what we had collected at submission time. We are
continually running experiments to get more statisticallymeaningful results.

5.2 Human opponents

We also conducted experiments against human players, each of whom has considerable poker-playing experience.
Each participant was asked to describe themselves as either“intermediate” or “expert”. The experts play regularly and
have significantly positive winnings in competitive play, mainly in online casinos. (In poker, unlike other competitive
games such as chess, there is no ranking system for players.)

Our player was competitive with the humans (Table 1). However, due to the large variance present in poker, there
does not appear to be strong evidence declaring it to be an overall winner or an overall loser. With human opponents
it is difficult to play a large enough number of hands to make any definitive statements. Although our player ended up
losing an average of 0.02 small bets per hand, this is well within the variance (±0.15 small bets per hand when 1,576
hands are played). Interestingly, our player won 0.01 smallbets per hand on average against the expert players.

When playing against human opponents, our player was limitedto 15 seconds of deliberation time, though it only
used about 4 seconds on average.

6 Other related research on abstraction

Abstraction techniques have been used in artificial intelligence research before. In contrast to our work, most (but
not all) research involving abstraction has been for single-agent problems (e.g. [10, 15]). One of the first pieces of

This functionality is not available inPoker Academy Pro, and the opponent players are available only via that product, so we have as yet been unable
to perform these experiments.

Even controlling for the deal of cards would not result in an entirely fair experiment for several reasons. First, the strategies used by the players
are randomized, so even when the cards are held fixed, the outcome could possibly be different. Second, in the case where one of the opponents is
doing opponent modeling, it may be the case that certain deals early in the experiment lend themselves to much better learning,while cards later in
the experiment lend themselves to much better exploitation. Thus, theorder in which the fixed hands are dealt matters. Third, controllingfor cards
would not help in experiments against humans, because they would know the cards that will be coming in the second repetition of a card sequence.

7

Player small bets per hand # hands

Intermediate player 1 0.20 71
Intermediate player 2 -0.09 166
Intermediate player 3 -0.40 100
Intermediate player 4 0.09 86

Expert player 1 -0.35 429
Expert player 2 0.19 325
Expert player 3 0.33 251
Expert player 4 0.09 148

Overall: -0.02 1576

Table 1:Small bets per hand won by our player against humans.

research utilizing abstraction in multi-agent settings was the development ofpartition search, which is the algorithm
behind GIB, the world’s first expert-level computer bridge player [8]. In contrast to other game tree search algorithms
which store a particular game position at each node of the search tree, partition search storesgroupsof positions that
it determines are similar. (Typically, the similarity of two game positions is computed by ignoring the less important
components of each game position and then checking whether the abstracted positions are similar—in some domain-
specific sense—to each other.) Partition search can lead to substantial speed improvements overα-β-search. However,
it is not game theory-based (it does not consider information sets in the game tree), and thus does not solve for the
equilibrium of a game of imperfect information, such as poker.7

7 Conclusions

We presented a game theory-based heads-up Texas Hold’em poker player that was generated without any domain
knowledge. To overcome the computational challenges posedby the huge game tree, we combined automated abstrac-
tion and real-time equilibrium approximation to develop our player. We compute strategies for the first two rounds
of the game in a massive offline computation with abstractionfollowed by LP. For the last two rounds, our algorithm
precomputes abstracted games of different granularity forthe different card history equivalence classes. Also for the
last two rounds, our algorithm deduces the probability distribution over the two players’ hands from the strategies
computed for the first two rounds and from both player’s betting history. When round three actually begins, our algo-
rithm performs an anytime real-time equilibrium approximation (using LP) that is focused on the relevant portion of
the game tree (i.e., on one of the abstracted games only) using the new prior.

Our program beat both of the prior state-of-the-art poker programs (although not with great statistical significance
due to the variance in poker). This indicates that it is possible to build a poker program without any domain knowledge
that is at least as strong as the best poker programs that werebuilt using extensive domain knowledge. Our program is
also competitive against experienced human players.

Future research includes developing additional techniques on top of the ones presented here, with the goal of
developing even better programs for playing large sequential games of imperfect information.

References
[1] R. Bellman and D. Blackwell. Some two-person games involving bluffing. Proc. of the National Academy of Sciences,

35:600–605, 1949.

[2] D. Billings. Web posting at Poker Academy Forums, Meerkat API and AI Discussion, December 2005. http://www.poker-
academy.com/forums/viewtopic.php?t=1872.

7Bridge is also a game of imperfect information, and partition search does not find the equilibrium for that game either. Instead, partition search
is used in conjunction with statistical sampling to simulate the uncertainty in bridge. There are also other bridge programs that use search techniques
for perfect information games in conjunction with statistical sampling and expert-defined abstraction [21]. Such (non-game-theoretic) techniques
are unlikely to be competitive in poker because of the greaterimportance of information hiding and bluffing.

8

[3] D. Billings, M. Bowling, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron. Game tree search
with adaptation in stochastic imperfect information games. InComputers and Games. Springer-Verlag, 2004.

[4] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron. Approximating game-theoretic
optimal strategies for full-scale poker. InProceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence (IJCAI), Acapulco, Mexico, 2003.

[5] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poker.Artificial Intelligence, 134(1-2):201–240,
2002.

[6] B. Bollobás.Combinatorics. Cambridge University Press, 1986.

[7] A. Gilpin and T. Sandholm. Finding equilibria in large sequential games of imperfect information. Technical Report CMU-
CS-05-158, Carnegie Mellon University, 2005.

[8] M. L. Ginsberg. GIB: Steps toward an expert-level bridge-playingprogram. InProceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 1999.

[9] B. Hoehn, F. Southey, R. C. Holte, and V. Bulitko. Effective short-term opponent exploitation in simplified poker. InPro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pages 783–788, July 2005.

[10] C. A. Knoblock. Automatically generating abstractions for planning.Artificial Intelligence, 68(2):243–302, 1994.

[11] D. Koller, N. Megiddo, and B. von Stengel. Efficient computation ofequilibria for extensive two-person games.Games and
Economic Behavior, 14(2):247–259, 1996.

[12] D. Koller and A. Pfeffer. Representations and solutions for game-theoretic problems.Artificial Intelligence, 94(1):167–215,
July 1997.

[13] H. W. Kuhn. Extensive games.Proc. of the National Academy of Sciences, 36:570–576, 1950.

[14] H. W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. W. Tucker, editors,Contributions to the Theory of Games,
volume 1 ofAnnals of Mathematics Studies, 24, pages 97–103. Princeton University Press, 1950.

[15] C.-L. Liu and M. Wellman. On state-space abstraction for anytime evaluation of Bayesian networks.SIGART Bulletin,
7(2):50–57, 1996. Special issue on Anytime Algorithms and Deliberation Scheduling.

[16] P. B. Miltersen and T. B. Sørensen. Computing sequential equilibriafor two-player games. InAnnual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 107–116, 2006.

[17] J. F. Nash and L. S. Shapley. A simple three-person poker game. In H. W. Kuhn and A. W. Tucker, editors,Contributions to
the Theory of Games, volume 1, pages 105–116. Princeton University Press, 1950.

[18] I. Romanovskii. Reduction of a game with complete memory to a matrix game.Soviet Mathematics, 3:678–681, 1962.

[19] A. Selby. Optimal heads-up preflop poker, 1999. http://www.archduke.demon.co.uk/simplex/.

[20] J. Shi and M. Littman. Abstraction methods for game theoretic poker. In Computers and Games, pages 333–345. Springer-
Verlag, 2001.

[21] S. J. J. Smith, D. S. Nau, and T. Throop. Computer bridge: A big win for AI planning. AI Magazine, 19(2):93–105, 1998.

[22] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, and C. Rayner. Bayes’ bluff: Opponent modelling
in poker. InProceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 550–558, July
2005.

[23] J. von Neumann and O. Morgenstern.Theory of games and economic behavior. Princeton University Press, 1947.

[24] B. von Stengel. Efficient computation of behavior strategies.Games and Economic Behavior, 14(2):220–246, 1996.

9

