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P.J. Šafáric University
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Abstract: We study the dynamics of stable marriage and stable roommates mar-
kets. Our main tool is the incremental algorithm of Roth and Vande Vate and its
generalization by Tan and Hsueh. Beyond proposing alternative proofs for known
results, we also generalize some of them to the nonbipartite case. In particular, we
show that the lastcomer gets his best stable partner in both of these incremental al-
gorithms. Consequently, we confirm that it is better to arrive later than earlier to a
stable roommates market. We also prove that when the equilibrium is restored after
the arrival of a new agent, some agents will be better off under any stable solution for
the new market than at any stable solution for the original market. We also propose
a procedure to find these agents.

Keywords: stable marriage problem, stable roommates problem, matching
mechanism

1 Introduction

The stable marriage problem was introduced and solved by Gale and Shapley [9]. In terms of
graphs, this is the bipartite case of the stable matching problem, where the two sets of agents are

1This research was supported by VEGA grant No. 1/3001/06.
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that of men and women. The solution obtained by the authors’ deferred-acceptance algorithm
was proven to be optimal for men if men make proposals. This means that each man gets his
best stable partner, so no man can have a better partner in some other stable matching.

The nonbipartite version, the stable roommates problem, is also defined in [9]. It is shown
by an example that a stable matching does not always exist. Irving [12] constructed the first
algorithm that finds a stable matching if one exists at all. Later, Tan [23] gave a compact
characterisation by a half-integer solution.

For the bipartite case, Knuth [15] asked whether it is possible to obtain a stable matching by
starting from an arbitrary matching and successively satisfying blocking edges. Roth and Vande
Vate [19] gave a positive answer by a decentralized algorithm, in which pairs or single vertices
enter the market in a random order, and stability is achieved by a natural proposal-rejection
process. Knuth’s question for the bipartite case was also answered by Abeledo and Rothblum [1]
by a common generalization of the Roth-Vande Vate and the Gale-Shapley algorithms. Later,
Diamantoudi et al. [8] solved the same problem for the roommates case. They proved that one
can always reach a stable matching by successively satisfying blocking edges from an arbitrary
matching if a stable matching exists.

Roth and Vande Vate modelled the dynamics of the two-sided matching market by consid-
ering the situation when a new agent enters the market and the stability is restored by that
natural process. This mechanism also yields an algorithm to find a stable matching for a market
by letting the agents enter the market in a random order. Independently, Tan and Hsueh [22]
constructed an algorithm, that finds a stable half-matching for general graphs by using a similar
incremental method. In the bipartite case, the Tan-Hsueh algorithm is equivalent to the Roth-
Vande Vate algorithm. The difficulty of the Tan-Hsueh algorithm is that infinite repetitions can
occur. These are handled by the introduction of cycles. These two algorithms are abbreviated
hereafter as “incremental algorithms”.

Blum, Roth and Rothblum [4] described the properties of a dynamic two-sided matching
market. They showed that their proposed algorithm is similar to the McVitie-Wilson’s version
[16] of the original deferred-acceptance algorithm. So, the output of the process is predictable: if
some men enter the market then each man either remains matched with the same partner (if it is
possible) or gets a worse (but his best) stable partner for the new market. Blum and Rothblum
[5] pointed out that these results imply that the lastcoming agent gets his best stable partner in
the Roth-Vande Vate algorithm. Moreover, an agent can only benefit from entering the market
later (we assume here that the others enter the market in the same order). Independently, Ma
[14] observed on an example of Knuth, that if agents enter the market successively then the Roth-
Vande Vate algorithm may not find all stable matchings in general. Cechlárová [7] sthrengtened
Ma’s result by justifying that in a stable matching output by the incremental algorithm for a
bipartite graph some agent gets his best stable partner. Here we give direct proofs for the above
results in the bipartite case, and we generalize most of them to general graphs with the help of
our Key Lemma.

Gale and Sotomayor [10] showed that if some man expand his preference-list then no man is
better off in the new men-optimal stable matching. This implies that the same statement is true
if a number of men enter the market. Roth and Sotomayor [18] proved that if a man arrives and
becomes matched, then certain women will be better off, and some man will be worse off under
any stable matching for the new market than at any stable matching for the original market.
We generalize this theorem by using an improved version of a result of Irving and Pittel [17] on
the core configuration.
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Our results have an economic interpretation. Matching markets are well-known applications
of the stable matching problem. A detailed description of two-sided markets can be found in the
book of Roth and Sotomayor [18]. An important example is job matching. Blum et al. [4] studied
the dynamics of the two-sided matching market in this context by analysing the formation of
the “vacancy chains”.

The dynamic formation of social and economic networks can be described by stable match-
ing models as Jackson and Watts considered in [13]. In the nonbipartite case, the connections
between individuals can model mutual “best friend” relationships. An other important new ap-
plication of the stable roommates problem, the pairwise kidney exhange was discovered by Roth
et al. [20] recently, however in this one-sided matching market the dynamic processes are not
typical.

This paper is organized as follows. In section 2, we define stable matchings and half-
matchings. In section 3, the Roth-Vande Vate and the Tan-Hsueh algorithm are described.
We prove our main results in section 4.

2 Stable matchings and half-matchings

Let us model the stable matching problem with a graph G, where the agents are represented
by vertices, and two vertices are linked with an edge if the agents are both acceptable to each
other. For every vertex v, let <v be a linear order on the edges incident with v. That is, every
agent has strict preferences on his possibles partnerships. We say that agent v prefers edge f
to e (in other words f dominates e at v) if e <v f holds. A matching M is a set of edges with
pairwise distinct vertices. If an edge e = {u, v} belongs to M , then u and v are matched 2 in M ,
so u and v are partners in the market. An agent remains single if his vertex is uncovered in M .

A matching M is called stable if every nonmatching edge e is dominated by some edge f of
M . Alternatively, a stable matching can be defined as a matching without a blocking edge: an
edge preferred by both of its vertices to the eventual matching edges. For a matching market,
this means that no pair of agents can benefit by leaving their actual partners and establishing
a new mutual partnership.

Alternatively, stable matchings can be described with compact formulas. If M is a set of
edges then let xM : E(G) −→ {0, 1}E(G) its characteristic function i.e.

xM (e) =

{
1 e ∈M
0 e /∈M

Subset M of E(G) is a stable matching if the following conditions hold:

(M) Matching:∑
v∈e

xM (e) ≤ 1 for every vertex v ∈ V (G)
(S) Stability:
for every edge e ∈ E there exists a vertex
v ∈ e such that

∑
v∈f,f≥ve

xM (f) = 1

We consider a stable marriage problem if the graph is bipartite, and the stable roommates
problem if the graph is general. Gale and Shapley [9] proved that stable matching always exists

2Equivalently, a matching can be described by an involution µ on the set of agents, where µ(u) = v implies
µ(v) = u, and means that u and v are matched. µ(w) = w corresponds to the case when w is unmatched. An
advantage of the graph terminology is that it can handle parallel edges that corresponds to the case where two
agents can make several types of partnership with each other.
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for the marriage problem but may not exists for the roommates problem. They gave the following
example to show the non-existence:

Example 1
Agents Preference-lists
A : [B,C,D]
B : [C,A,D]
C : [A,B,D]
D : arbitrary

Let us imagine that these agents are tennis-players, each is looking for a partner to play with
for one hour a week. For example Andy would like to play mostly with Bill, then with Cliff and
finally he prefers Daniel the least. (In fact, everybody tries to avoid Daniel.) There is no stable
solution. If a pair is formed from the first three players, say Andy plays with Bill, then the third,
Cliff must be matched with Daniel, but in this case Bill and Cliff block this matching.

Tan [23] discovered, that if the agents can create half-time partnerships then a stable solution
always exists in the sense that no pair of agents would like to increase the intensity of their
partnership mutually.

Considering the above example, we suppose that Andy, Bill and Cliff agree to meet once a
week and play half-time games in each formation. Thus, each of them play one hour in sum,
only Daniel remains without any tennis-partner. The stability in this case is that no pair of
tennis-players want to play more time mutually with each other. For example Andy plays with
Daniel no time at all, because Andy fills his one-hour by playing two half-hour games with better
partners. Andy and Bill will not play more than a half-hour, because Bill fills his rest of his time
(a half-hour) by playing with a better partner, Cliff.

A half-matching hM consists of matching edges M and half-weighted edges H, so that each
vertex is incident either with at most one matching edge or with at most two half-weighted edges.
In a matching market an agent can have at most one partner or at most two half-partners. A
half-matching is stable if for each edge not in hM there exists a vertex v, where e is dominated
either by one matching edge or by two half-weighted edges, and for every half-weighted edge
h there exists a vertex v, where h is dominated by an other half-weighted edge. So no pair of
agents wants to improve their partnership mutually, because for each pair of agents who are not
matched, one of them fills his capacities with better partnership(s).

If xhM : E(G) −→ {0, 1
2 , 1}E(G) is a weight-function that describes the set of matching edges,

M and the set of half-weighted edges, H so that hM = H ∪M and

xhM(e) =





1 e ∈M
1
2 e ∈ H
0 e /∈ hM

then the same (M) and (S) inequalities preserve the half-matching and the stability-property.
The fact, that every half-weighted edge must be dominated by an other half-weighted edge

at one of its endvertices imply that the half-weighted edges form cycles, where preferences are
cyclic. Tan [23] observed that an even-cycle can be separated into matched pairs, but if an
odd-cycle C occurs then C must belong to the H-part of any stable half-matching so no stable
matching exists. He characterized the stable half-matching3 in the following way:

3Originally, Tan called it stable partition . We have several reasons to use this new notion. The expression
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Theorem 2 (Tan) For a stable roommates problem there always exists a stable half-matching4

that consists of matched pairs and odd-cycles formed by half-weighted pairs. The set of agents
can be partitioned into:

a) unmatched (or single) agents,

b) cycle-agents and

c) matched agents.

Furthermore, for any instance the same agents remains unmatched and the same odd-cycles are
formed in each stable half-matching.

If for a half-matching hM = H ∪M an edge e = {u, v} is in M , then we say that the agents
u and v are partners. If two agents can be partners in a stable half-matching we call them stable
partners. If an edge e = {u, v} ∈ H is in an odd-cycle, then u and v are half-partners. If u prefers
v to his other half-partner, then v is the successor of u and u is the predecessor of v.

To consider the stable half-matchings of a matching market can have many motivations.
First of all, if the stable half-matching does not contain any odd-cycle, then we receive a stable
matching, otherwise we know the reason of the non-existence. Secondly, we can obtain a match-
ing, by leaving one agent from each odd-cycle and forming pairs from the rest of the cycles, that
is stable for the remaining agents. In other words every blocking edge is incident with one of the
removed agents, so by compensating them somehow we can reach a kind of stability for the mar-
ket.5 Thirdly, in some real applications (like in the case of the tennis-players) the half-solutions
are feasible in practice.

3 The incremental algorithms

In an equilibrium state matching market with a stable matching a natural question is how the
situation changes if a new player enters the game and the preferences over the former partnerships
are unchanged. Let the newcomer make proposals according to his preference order. If no one
accepts, then everybody has a better partner, so the former matching remains stable. If somebody
accepts a proposal, then a new pair is formed. The left alone partner, has to leave the market
and enter as a newcomer.

The Roth-Vande Vate algorithm for the stable marriage problem

Suppose, that a bipartite graph G is built up step by step in the algorithm by adding vertices
to the graph in some order. In a phase of the algorithm we add a new agent and restore the

“stable partition” is also used as a core-solution of a coalition formation game, that can be confusing. If we consider
more general models (where agents can have several partners, or multiple activities are possible) definition of
stable half-matching can be easily extended. Finally, the half-solution may interpret real partnerships with half-
intensities.

4Aharoni and Fleiner [3] showed, that the existence of the stable half-matching is the consequence of the
famous theorem of Scarf [21].

5This idea can be used as a heuristic to find a matching that contains as few blocking edges as possible. It
is reasonable to apply such a method, since even to approximate the minimal number of the blocking pairs for
general graphs is theoretically hard (see [2]).
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stability. To describe a phase, let us add a vertex v to G−v, where a stable matching Mv exists.
Our task is to find a stable matching M for G.

If v is not incident to any blocking edge, then Mv remains stable for G, too. In this case the
phase is called inactive.

A phase is active if the newcomer agent v is incident to some blocking pair, say {v, u} is
the blocking pair that v prefers the best. Let v = a0 and u = b1. If b1 was unmatched in
Ma0 , then Ma0 ∪ {a0, b1} is a stable matching for G. In the other case b1 had a partner a1

in Ma0 , whom he leaves after receiving a better proposal. In this case, the matching Ma1 =
Ma0 \ {a1, b1} ∪ {a0, b1} is stable for G− a1. So we have a similar situation as in the beginning:
a1 enters the market and makes proposals. Continuing the process, a proposal-rejection sequence,
S = (A|B) = a0, b1, a1, . . . is constructed with the following properties:

1. Mak = Mak−1
\ {ak, bk} ∪ {ak−1, bk} is a stable matching for G− ak.

2. ak−1 is a better partner for bk than ak and

3. bk+1 is a worse partner for ak than bk.

a1 a2 ak−1 ak ak+1

b2 bk bk+1

v = a0

u = b1

Mak

Figure 1: Proposal-rejection sequence in the Roth-Vande Vate algorithm

Observe that by this process, each ai ∈ A improves his situation and each bj ∈ B gets worse
off. Consequensly, the same vertices cannot occur as new pairs. So a phase terminates in O(m)
time, when m denotes the number of the edges in the graph. It has two possible outcomes: either
nobody accepts the proposals of some ai (then the size of the matching remains the same) or
the last bj was unmatched, hence the size of the matching increases by one.

We illustrate with an example the mechanism of the incremental algorithm and we introduce
briefly our results. The preferences of the agents on their possible partnerships in this two-sided
market are the following:

Example 3
a1 : e1 > d1 > f1 b1 : f3 > d2 > n1 > e1

a2 : e2 > d2 > f2 b2 : f2 > d1 > e3

a3 : e3 > d3 > f3 b3 : f1 > d3 > e2

a4 : s > t b4 : s > n2

a5 : m1 > m2 b5 : m2 > n3

a6 : n1 > n2 > n3 > n4 b6 : n4 > m1
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Let e = {e1, e2, e3}, d = {d1, d2, d3} f = {f1, f2, f3}. Suppose, that at the beginning a6 is
not present in the market. Partnerships {e, s,m1} form a stable matching in the market. (It is
the best for every agent ai.)

���
���
���
���d2

e, s,m1

d, s,m1

f, s,m1

e3

f3

f1

d1
m2

n2

e1
e2

f2

m1

n4

n1

d3

s

n3

a3

b3

b1 b5

a5b6

a2

b2
b4 a4

a6

a1

Figure 2: A stable matching and the lattice of the stable matchings before the arrival of a6

When agent a6 enters the market, four new possibles partnerships are created. The best one
is n1 for the newcomer, that is blocking the actual matching. Following the algorithm of Roth
and Vande Vate let us satisfy this blocking edge: b1 and a6 form a new pair, and partnership e1

terminates, so agent a1 has to find a new partner as a newcomer. Continuing this process, the
following edges will be satisfied and terminated in sequence: d1, e3; d3, e2; d2, n1. Here agent
a6 makes proposals again, that b1 and b4 refuse, because they have better partners than a6

actually. We will prove, that if a new partnership is not blocking, then it cannot be present in
any stable matching. In the last step of our example a single agent b5 receives finally the proposal
of a1, and {d, s,m1, n3} form a stable matching. This stable solution is the best possible for the
newcomer a6, since the better partnerships, that were refused by his possibles partners cannot
appear in any stable matching. This argument proves also that every agent that receives partner
by making proposal during the process gets his best stable partner.

d2

d, s,m1, n3

d, s,m2, n4 f, s,m1, n3

f, s,m2, n4

e3

f3

d1
m2

n2

n3

e1
e2

f2

s

m1

n4

n1

d3

f1

a3

b3

b1 b5

a5b6

a2

b2
b4 a4

a6

a1

Figure 3: The obtained stable matching, and the lattice of the stable matchings

Note, that if we would start with the stable matching {f, s,m1, n3}, then the process would
stop in one step, since b5 accepts first the proposal of a6. The obtained stable matching
{f, s,m1, n3} yields the best stable partner to the newcomer a6 again, but the other agents
ai dont get necessarily their best stable partners.
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The Tan-Hsueh algorithm for the stable roommates problem

Tan and Hsueh [22] proposed an incremental algorithm to find a stable half-matching. In this
more general setting we use the terminology of the Roth-Vande Vate algorithm. The only dif-
ference is that G is not bipartite, so instead of a matching, we maintain a half-matching hMv

for G− v.
If nobody accepts the newcomer’s proposal, then the phase is called inactive again and the

stable half-matching is unchanged.
If some agent u accepts the proposal of v then three cases are possible:

a) If u is unmatched in hMv , then hM = hMv ∪ {v, u} is a stable half-matching for G.

b) If u is a cycle-vertex in hMv , so u = c0 for some cycle C = (c0, c1, . . . , c2k−1, c2k), then
hM = hMv \ C ∪ {v, u} ∪ {c1, c2}∪, . . . ,∪{c2k−1, c2k} is a stable half-matching for G.

c) If u is matched with x in hMv , then hMx = hMv \ {u, x} ∪ {v, u} is a stable half-matching
for G− x.

The actual phase end in cases a) and b). Here, unlike in the bipartite case, it can happen that
an agent, that made a proposal earlier can receive a proposal later. So the proposal-rejection
sequence might never end. One result of Tan and Hsueh [22] was that repetition always occurs
along an odd-cycle.

Theorem 4 (Tan-Hsueh) If S = (A|B) = a0, b1, a1, . . . is a proposal-rejection sequence and
ai = bk is the first return, then this proposal-rejection sequence can be extended so it will return
to ak at bk+m+1, and the following properties are true: {ak, bk+1, . . . , bk+m, ak+m} are distinct
vertices, and in the same order they form an odd-cycle C, and hM = hMak \ {ak+1, bk+1} \ · · · \
{ak+m, bk+m} ∪C is a stable half-matching.

The following example illustrates the mechanisms of the Tan-Hsueh algorithm:

x

b

c1
c2

a

u

v

Figure 4: The Tan-Hsueh algorithm in an example

Here, vertex v enters. The first vertex accepting v’s proposal is u, and u’s previous partner
x is left alone. In this figure there is a stable half-matching hMx for G − x. In the next step
x makes proposals. If nobody accepts it x remains uncovered and hMx is stable for G, too. If
somebody accepts x’s proposal one of the following cases is true:
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a) an uncovered vertex accepts x’s proposal and they form a new pair.

b) a cycle-vertex accepts x’s proposal and they form a new pair. The rest of the cycle breaks
into stable pairs.

c) a matched vertex accepts x’s proposal. The process continues and finally x receives a proposal,
so the sequence returns in x. In this case the phase would never end, but by collecting the
repeating vertices into an odd-cycle, the following stable half-matching is reached:

xc1
c2

b a

u

v

Figure 5: The obtained stable half-matching

4 Properties of the dynamic solutions

In this section we prove our results.

Getting the best stable partner by making proposals

Key Lemma 5 If hMv is a stable half-matching for G−v, and edge {v, u} is not blocking hMv,
then v and u cannot be matched in a stable half-matching for G.

Proof: Let us suppose that {v, u} is not blocking hMv but there is a stable half-matching hM
of G, where v and u are matched. Let v = a0 and u = b1. First we consider the case where none
of hM and hMv contains an odd-cycle. Then b1 has a partner in hM (say a1), who is better than
a0. So {a0, b1} <b1 {a1, b1}, where {a0, b1} ∈ hM \ hMv. Since hM cannot dominate {a1, b1}
at b1, it must be dominated at a1 by some edge {a1, b2} of hM . As {a1, b2} is not in hMv,
it must be dominated at b2 by an edge {a2, b2} of hMv , and so on. The alternating sequence
(a0, b1, a1, b2, . . . ) has the following property: {ai−1, bi} ∈ hM \ hMv and {bi, ai} ∈ hMv \ hM ,
furthermore the domination is also in sequence: {ai−1, bi} <bi {ai, bi} and {ai, bi} <ai {ai, bi+1}
for every i. We call this sequence alternating preference sequence. Because a0 is not covered by
the stable matching hMv, the sequence can return neither to a0, nor to any other vertex, a
contradiction. (This part of the proof already confirms the bipartite case.)

The other case is, when hMv or hM may contain odd-cycles. The properties of the alternating
preference sequence remain the same, the diffefence is that the edges can be half-weighted edges
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as well. To avoid repetition, the idea is the following: when an edge {ai, bi} ∈ hMv is dominated
at ai in hM by two edges (so ai is in a cycle in hM), then we chose for bi+1 that neighbour in the
cycle which is less preferred by ai. Edge {ai, bi+1} is still not in hMv, so it must be dominated
at bi+1. But then the edge(s) that dominate(s) {ai, bi+1} is (are) better than either of the edges
that cover bi+1 in hM , so they are not in hM . This is why every new edge in this sequence will
be alternately in hM \ hMv and hMv \ hM .

a1 a2

b2

hM

v = a0

u = b1

hMv

Figure 6: Alternating preference sequence with half-weighted edges

Let us suppose that ak = ai for some k 6= i. This means that {bk, ai} and {bi, ai} are in the
same odd-cycle in hMv but the directions are opposite, because for bi and also for bk ai is the
less preferred neighbour in the cycle. In the other case, assume that ak = bi for some k 6= i. This
means that {bk, bi} and {bi, ai} are in the same odd-cycle in hMv but the directions are opposite
again. As ai is less prefered for bi in the cycle, and {bk, bi} ∈ hMv \ hM it must be dominated
at bi in hM , this means {bk, bi} <bi {ai−1, bi} <bi {ai, bi}, a contradiction.

By similar reasons, no repetition can occur at some bk, so the sequence would never end, a
contradiction. �

The following Lemma is well-known.

Lemma 6 If v is the best stable partner for u then u is the worst stable partner for v.

Proof: If indirectly, v and u are matched in a stable half-matching hM , but v has an even
worse partner u′ in a stable half-matching hM ′, then u would have some other partner v ′ worse
than v, because v was u’s best stable partner. So {u, v} would be a blocking edge for hM ′,
contradiction. �

To generalize the results of Blum et al. [4] we prove that a newcomer gets his best stable
partner in the output of the incremental algorithm in the graph case as well.

Theorem 7 Suppose that an agent v enters the market and the stability is restored by a proposal-
rejection process along the sequence S = (A|B) then each agent a ∈ A, who became matched
by making (accepting) proposal gets his best (worst) stable partner in the obtained stable half-
matching.
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Proof: If an agent a is matched in the output, and receives a partner by making a proposal,
then later he cannot accept any proposal because then he would be a cycle-agent. The last time
when agent a makes a proposal during the process he does not prefer his last partner only to
some agents that refused him. Because of the Key Lemma, no one of these agents can be a
partner of a in a stable solution, so obviously agent a received his best stable partner. Similarly,
each matched agent b ∈ B gets his worst stable partner by Lemma 6. �

Corollary 8 If an agent enters the market last and becomes matched, then he gets his best stable
partner. �

If a phase is inactive in an incremental algorithm, then each stable half-matching of the
extended graph is also a stable half-matching in the original. That is, if hM is a stable half-
matching for G not covering some vertex x, then hM is a stable half-matching for G − x, too.
Because after deleting x from G no blocking edge can appear. So, by using the Key Lemma, we
can confirm our main result:

Theorem 9 Each matched agent, that gets a partner in the last active phase by making (ac-
cepting) a proposal, receives his best (worst) stable partner in the stable solution output by the
incremental algorithm. �

Remark The vertices that remained uncovered in the last active phase or entered later in
an inactive phase, will still be uncovered at the end of the algorithm, just like they are in every
stable matching. The vertices that form an odd-cycle in the last active phase will form an odd-
cycle at the end of the algorithm, just like they do in every stable half-matching. Hence these
agents also get best stable partners in this sense.

Corollary 10 A stable matching, where no matched agent gets his best stable partner, cannot
be output by the incremental algorithm. �

Let us remark that we did not prove that any stable matching where somebody gets his best
stable partner or contains odd-cycle whether can be obtained with an incremental algorithm.
Our result gives only a necessary condition not a sufficient one.

Blum et al. [4] proved, that if a man m enters the market and another man m′ was matched
with w′ in Mm, then they remain matched in the obtained stable matching M for the new
market if and only if they are stable partners for the new market. Otherwise m ′ and w′ gets that
agents whom they are matched in the men-optimal stable matching of the new market. (So m ′

receives his best stable partner, and w′ receives her worst stable partner in this case.) Below,
we generalize this statement for the nonbipartite case.

Theorem 11 Suppose that w and u are matched in a stable half-matching hMv for G−v. They
remain matched in the stable half-matching hM , obtained by the proposal-rejection process if and
only if they are stable partners for G as well. Otherwise, if they are not involved in a cycle, then
one of them gets a better partner but receives his worst stable partner, the other one becomes
single or gets a worse partner but receives his best stable partner in hM .

Proof: If w and u are not involved in the proposal-rejection process, then obviously they remain
matched. Otherwise, if S = (A|B) is the proposal-rejection sequence, then some of them, w is in
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A and the other one must be in B. As they are not involved in a cycle, u improves his situation
and w gets worse off during the process, and finally (by Theorem 9) u gets his worst stable
partner (better than w) and w gets his best stable partner (worse than u), so u and w cannot
be stable partners in the output. �

Blum and Rothblum [5] realized that an agent can only benefit by arriving later to the
market in the Roth-Vande Vate algorithm. By a similar argument, we can generalize this result
for the nonbipartite case.

Lemma 12 Assume agent u prefers stable half-matching hMv to stable half-matching hM ′v, v
arrives. The outputs received by the proposal-rejection process are hM and hM ′ respectively.
Then u cannot prefers hM ′ to hM .

Proof: Indirectly, u should get better off in hM ′ than in hM ′v or get worse off in hM than in
hMv. By Theorem 11, u would receive his worst stable partner in hM ′ or receive his best stable
in hM respectively. A contradiction. �

Theorem 13 In the incremental algorithm if two arrival orders of the agents differs only for
one particular agent v, then v gets at least as good partner in the first output hM , where he
arrives later as in the second output hM ′, where he arrives earlier.

Proof: Assume that v arrives in the first proposal-rejection sequence. At that moment the same
agents are present in the market, and from the Theorem 9 v cannot be better off in the second
sequence. Afterwards the same agents arrive in each phase, so by the above Lemma v cannot be
better off any more during the incremental algorithm. �

Improving the situation by accepting proposals

Our next goal is to generalize the following result of Roth and Sotomayor [18] (Thm. 2.26.).

Theorem 14 (Roth-Sotomayor) Suppose a woman w is added to the market and let MW

be the woman-optimal stable matching for G and MM
w is the man-optimal stable matching for

G−w. If w is not single in MW , then there exists a nonempty subset of men, S, such that each
men in S are better off, and each women in S ′ are worse off under any stable matching for the
new market than at any stable matching for the original market, when S ′ denotes the partners
of men in S under matching MM

w .

Proof: After adding w to the market during the proposal-rejection process each man that gets
a partner by accepting a proposal gets his worst possible partner at the end of the process. But
this partner is strictly better than the best stable one for G − w. Similarly, each woman that
gets a new partner during the process by making proposal gets her best stable partner for G ,
that is strictly worse than the worst stable partner was for G− w. �

Pittel and Irving [17] considered the following situation. A new agent v enters the market,
and a perfect stable matching (i.e. a stable matching where no agent is single) is achieved in
such a way that the proposal-rejection sequence is as short as possible. They called this special
half-matching with the associated alternating sequence a core configuration relative to v. Irving
and Pittel [17] proved the following interesting property.
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Theorem 15 (Irving-Pittel) If hMv is a core configuration relative to v, then the associated
proposal-rejection sequence v = a0, b1, a1, . . . , ak−1, bk consists of 2k distinct person, it is uniquely
defined, and for every i = 1 . . . k − 1

1. bi is the worst stable partner of ai for G− v;

2. ai is the best stable partner of bi for G− v.

We generalize Theorem 15 by extending the notion of core configuration. A stable half-
matching hMv is a core configuration relative to v if after adding v to the graph the associated
proposal-rejection sequence, S(hMv) is as short as possible, by assuming that in case of cycling
the sequence is restricted till bk, where ai = bk is the first return.

Theorem 16 If hMv is a core configuration relative to v, and hM is the output by the proposal-
rejection process, then the associated proposal-rejection sequence S(hMv) = (A|B) = a0(=
v), b1, a1, . . . , ak−1, bk(, ak) consists of 2k (or 2k + 1) distinct person. It is uniquely defined,
and for every matched agent in the sequence the following properties are true:

a) bi is the worst stable partner of ai for G− v and bi+1 is the best stable partner of ai for G;

b) ai is the best stable partner of bi for G− v and ai−1 is the worst stable partner of bi for G.

Theorem 16 implies the following generalization of Theorem 14.

Theorem 17 Suppose that a new agent is added to the market and a new stable solution is
reached by the proposal-rejection process. There exists some agents that are better off, and some
other agents that are worse off under any stable half-matching for the new market than at any
stable half-matching for the original market. �

Remark We can find agents in Theorem 17 algorithmically, as in the proof of Theorem 16.

The increasing side gets worse off

Finally, we give alternative proofs for some special results that occurs only in the two-sided
matching markets.

Lemma 18 If a man enters the game then no man can have better partner in the new men-
optimal stable matching than in the former men-optimal stable matching.

Lemma 18 is a straightforward consequence of Theorem 2 in [10] by Gale and Sotomayor.
Here, we give an alternative proof.

Proof: Let m be the man that enters the game last. We shall prove that if a man m ′ in the
same side gets w′ in the men-optimal stable matching MM , then m′ cannot have a worse partner
in the former men-optimal stable matching MM

m for G − m. If m is unmatched in MM , then
MM is also stable for G−m. If {m,w} ∈MM , then MM \{m,w} is stable for G−{m,w}. After
w reenters the game, during the proposal-rejection process m′ either remains matched with w′

or receives a proposal from a better woman for him. �
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Theorem 19 If some men enter the game one after another then at the end of the proposal-
rejection processes they all get their best stable partners in the resulted stable matching.

Proof: Suppose that a man m′ is matched with his best stable partner w′ before a new man,
m enters. If m′ remains matched with w′ in the new obtained matching, then by the Lemma
18 w′ is still his best stable partner. If m′ gets a new partner during the phase, then he must
receive her by making a proposal, so the Theorem 9 proves that m′ gets his best stable partner
again. �

The following Theorem of Blum et al. [4] can be proved in the same way by using Theorem
11.

Theorem 20 If some men enter the market then any other man m either remain matched with
his original partner w if w is still stable partner for m or m receives his best stable partner in
the output. �

If the arrival order is such that women enter the game first and men follow after that, then
the output will be the same as the output of the deferred-acceptance algorithm by Gale and
Shapley [9]. Theorem 19 shows alternatively, that the received stable matching is optimal for
the men.

Conclusion and further questions

We have studied a matching market, where agents enter and leave one after the other, and they
are able to terminate and build new partnerships without restrictions. By this assumption, a new
stable state is created for the market by a natural decentralized process if such an equilibrium
exists. For a two-sided market a new stable matching, for a general market a new stable half-
matching can always be obtained this way.

The main lesson of our study is that an agent can benefit if he enters the market as late as
possible. This fact may encourage an agent to leave the market and enter again with the hope of
getting a better partner. We can avoid this kind of instability if and only if the stable solution
is unique.

Accepting a proposal always means an improvement for the agent. Moreover, among the
agents that accept proposals during the process, some are strictly better off under any stable
solution for the new market than at any stable solution for the former one. Finally, if in a
two-sided market the number of men increases then the best stable partner for each man gets
worse.

To generalize these results further, it is reasonable to consider the cases, where an agent can
be matched with more partners. Cantala [6] studied the many-to-one matching markets under q-
substitutable preferences and Ünver [24] considered the many-to-many matching markets under
categorywise-responsive preferences. Cantala used the idea of Blum et al. [4] to analyse the
restabiling mechanism of that market, Ünver proved that a pairwise stable matching can be
obtained by successively satisfying blocking edges by an algorithm similar to the Roth and
Vande Vate’s [19]. A natural question is the study of nonbipartite versions of these dynamic
matching markets.

14



References

[1] H. Abeledo, U. G. Rothblum, Paths to marriage stability. Discrete Applied Mathematics
(1995) 63
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Appendix

Proof:[Theorem 16] In our proof we construct a core configuration. Suppose that hM 0 is an
arbitrary stable half-matching for G. Let a new agent u enter the market such a way that u
is acceptable only for v and u is the most preferred partner for v. Let us denote the proposal-
rejection sequence by S(hM 0) and the output stable half-matching forG+u by hM 0

+u. Obviously,
u and v are partners in any stable half-matching hM ′+u for G + u, moreover hM ′+u is a stable
half-matching for G+u if and only if hM ′v = hM ′+u\{u, v} is a stable half-matching for G−v. So,
by deleting {u, v} from hM 0

+u we get a stable half-matching, say hMv for G− v. We prove that
hMv is a core configuration relative to v. (We denote the associated proposal-rejection sequence
by S(hMv) and the output stable half-matching for G by hM .)

To prove that S(hMv) is as short as possible we show that each agent that are involved
in S(hMv) must be involved in any other proposal-rejection sequence as well, and each agent
occurs exactly once in S(hMv) (unless a new odd-cycle is created, when ai = bk occurs twice.)

First, we prove that if x ∈ S(hMv) then x ∈ S(hM ′v) for any stable half-matching hM ′v for
G− v. We consider the cases according the status of x (unmatched, cycle-agent or matched) in
the stable half-matchings for G− v and G.
1-2. No agent can be unmatched for G − v and cycle-agent for G, similarly no agent can be
cycle-agent for G− v and unmatched for G.
3-4. If an agent is unmatched/cycle-agent for G − V and remains unmatched/cycle-agent for
G− v then he cannot be involved in any proposal-rejection sequence.
5. If x is matched for G − v and become unmatched for G then x = ak, so x is the last agent
in S(hMv) (nobody accepts his proposal) and obviously x must be the last agent in any other
S(hM ′v) as well.
6. If x is unmatched for G − v and become matched for G then x = bk, so x is the last agent
in S(hMv) (he accepts the last proposal) and obviously x must be the last agent in any other
S(hM ′v) as well.
7. If x is cycle-agent for G − v and become matched for G then x = bk, so x is the last agent
in S(hMv) (he accepts the last proposal). We prove that for any stable half-matching hM ′

v x is
the last agent in S(hM ′v) as well. Let C = (c0, c1, . . . c2k) be the cycle that eliminates when v
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enters the market. We suppose indirectly that two different cycle-agents x = c0 and ci accept
the last proposals, maked by y and y′ in S(hMv) and S(hM ′v) respectively. Obviously, the agent
who make the final proposal is better than the predecessor of that cycle-agent who accepts it,
(so y >c0 c2k and y′ >ci ci−1). From Theorem 9, we also know that c0 and ci get their worst
stable partners in hM and hM ′ respectively. This is a contradiction, because if i is even then ci
would be matched with ci−1 in hM and if i is odd then c0 would be matched with c2k in hM ′.
8. If x is matched for G− v and became a cycle-agent for G then x must occur in any proposal-
rejection sequence until the first return, since Tan and Hsueh [22] proved that no new agent
occurs in the sequence after the first return.
9. Finally we consider the case where x is matched for G − v and for G as well. Let us denote
x’s partners by y0, yv and y in hM 0, hMv and hM respectively.

a) If y <x yv, then x must receive y during S(hMv) by making a proposal, so from Theorem
9 y is the best stable partner of x for G. Thus, y0 ≤ y implies y0 <x yv, it means that x
must receive yv during S(hM 0) by accepting a proposal, so yv is the worst stable partner of
x for G−v. It is obvious now that x gets worse partner under any stable half-matching for G
than at any stable half-matching for G− v, so x must be involved in any proposal-rejection
sequence.

b) Similarly, if y >x yv, then x must receive y during S(hMv) by accepting a proposal, so from
Theorem 9 y is the worst stable partner of x for G. Thus, y0 ≥ y implies y0 >x yv, it means
that x must receive yv during S(hM 0) by making a proposal, so yv is the best stable partner
of x for G. It is obvious now that x gets better partner under any stable half-matching for G
than at any stable half-matching for G− v, so x must be involved in any proposal-rejection
sequence.

c) If y = yv, then x cannot be involved in S(hMv)

Now, we prove that each agent occurs exactly once in S(hMv). Let consider the above
sequence with an extra stopping rule: if aj looks for a new partner let choose the best one
among those that either form a blocking pair with aj or a bi for i < j such that bi prefers aj to
ai (and not to his actual partner ai−1). Assume that the first repetition (according to the extra
stopping rule) would occur at bj+1. .

Case 1. If bi = bj+1 for some i < j then let hMaj be the actual stable half-matching for
G− aj. We construct a new stable partition for G− v: hM ′v = hMaj ∪ {aj , bi} \ {{ap−1, bp}, 1 ≤
p ≤ i} ∪ {{ap, bp}, 1 ≤ p ≤ i − 1}. It is stable, because by compairing with hMv only the
agent {aq, i ≤ q ≤ j} get worse partners, but the extra stopping rule preserves that no edge
{{aq, bp}, 1 ≤ p < i ≤ q ≤ j} can block hM ′v (and obviously no other edge).

Since in hM ′v every agent {bq, i ≤ q ≤ j} gets better partner than in hMv , and every agent
{aq, i ≤ q ≤ j} gets worse partner than in hMv, if some of these agents is matched for G−v and
G as well, then it is a contradiction, because in hMv they are matched with their best/worst
stable partners respectively.

The last case that we have to consider, that all of these agents are matched for G − v and
become cycle-agent forG. These agents are obviously in the same cycle (let say (c0, c1, . . . , c2k)) in
hM0 as well. So, when S(hM 0) ends at c0 by eliminating this cycle, each of these agents become
matched in hMv to either with his successor or with his predecessor (so {c2i−1, c2i} ∈ hMv for
all 1 ≤ i ≤ k). We show that ai−1 must also be a cycle-agent for G. Otherwise ai−1 must receive
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a worse partner than bi in hM , and for bi his predecessor is also worse than ai−1 (that is why bi
accepted the proposal of ai−1), so ai−1 and bi would block hM . By continuing this argument, for
some p < i, ap must be c0, (the cycle-agent in hMv that accepted the last proposal in S(hM 0)).
But then bp+1 must be the predecessor of c0: c2k. Otherwise, if for some 1 ≤ r < 2k, cr = bp+1

then c2k <c0 cr (since c2k is matched with c2k−1 in hMv, so he would accept the proposal of
c0) and cr−1 <cr c0 (since cr accepted the proposal of c0), so c0 and cr would form a blocking
pair in hM . Similarly, we can prove that the sequence goes along this odd-cycle, so for each d
(0 < d < j−p) ap+d = c2(k−d)+1 and bp+d = c2(k−d). Finally, bi = bj+1 cannot be the predecessor
of aj in hM , a contradiction.

Case 2. If the first repetition is such that ai = bj+1, then the extra stopping rule was not
used. This proves that a new odd-cycle can be created, so hM = hMaj \ {{aq, bq+1}, i ≤ q ≤
j} ∪ (ai, aj , bj , aj−1, . . . , ai+1, bi+1) is the output stable half-matching for G.

�
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