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Abstract

This paper presents a question of topological dynamics and demonstrates
that its affirmation would establish the existence of approximate equilibria
in all quitting games. A quitting game is an un-discounted stochastic game
with finitely many players where every player has only two moves, to end the
game with certainty or to allow the game to continue. If nobody ever acts
to end the game, all players receive payoffs of 0.
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1 Introduction and Background

A stochastic game is played in stages. At every stage the game is in some
state of the world, known by all players. The action combination that was
chosen by all the players, together with the current state, determine the stage
payoff that each player receives and the probability distribution according to
which the new state of the game is chosen. The past history of moves and
states is known by all players.

For any ε ≥ 0, an ε-equilibrium in a game is a set of strategies, one
for each player, such that no player can gain in payoff by more than ε by
choosing a different strategy, given that all the other players do not change
their strategies. An equilibrium is an ε-equilibrium for ε = 0. We say that
approximate equilibria exist if for every ε there exists an ε-equilibrium.

An outstanding open question of game theory is whether all stochastic
games with finitely many players, states and moves have approximate equi-
libria. The interest in this question has been made acute by the proof by
N. Vieille (2000 a,b,c) of the existence of approximate equilibria for all two-
person stochastic games with finitely many states and moves.

In this paper, we consider a special class of stochastic games called quitting
games, and introduced in full generality by Solan and Vieille (2001). In a
quitting game each player has only two moves, c for continue and q for quit.
As soon as one or more of the players at any stage chooses q, the game stops
and the players receive their payoffs, which are determined by the subset of
players that choose simultaneously the move q. As long as no player has
stopped the game, all players receive a payoff of zero.

Examples of quitting games were studied first by Flesch, Thuijsman, and
Vrieze (1997). Interest in quitting games is due largely to their discovery of
a game with cyclic symmetry with respect to the players such that for all
sufficiently small ε > 0 and all ε equilibria the future expected payoffs condi-
tioned by the event that nobody has ended the game yet change dramatically
with the progression of stages, even when restricting to those stages which
are reached with a probability of at least one-half.

It is not clear why quitting games should have approximate equilibria,
and the existing results concerning this question are limited.

E. Solan (1999) proved that all three player quitting games have approxi-
mate equilibria (and this proof concerns a broader class of stochastic games).
There is a proof of approximate equilibria by Solan and Vieille (2001) for a
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subclass of quitting games involving very restricted conditions on the payoffs.
There are proofs by Solan and Vieille (2002) and by Solan and Vohra

(2001, 2002) of the existence of approximate correlated equilibria for quit-
ting games. The Solan and Vieille proof is for all stochastic games with
finitely many states and moves, and the Solan and Vohra proof is for an
intermediate class of games, however showing a special type of approximate
correlated equilibrium. Correlated equilibria are equilibria with respect to
an extended game (including a correlation device) and therefore these results
do not pertain directly to the existence of equilibria of the original quitting
game.

There is a four player example by Solan and Vieille (2001) with approx-
imate equilibria and with the same property mentioned above pertaining to
the Flesch, Thuijsman, and Vrieze example (1997) but with the additional
property that there is some triple ε > 0, δ > 0 and γ > 0 such that every
ε-equilibrium has a stage reached with a probability of at least γ where some
player quits the game with a probability of at least ρ.

The complexity of quitting games lies in the potentially large number of
players. Even with four players, it is not clear why all quitting games should
have approximate equilibria. We describe a simple four player quitting game.
The players are represented modulo 4. They are paired in two teams, Player
1 with Player 3, Player 2 with Player 4. If Player i quits alone he gives
himself a payoff of 1, gives his partner Player i + 2 a payoff of 100, and gives
the other two players payoffs of 0. If Player i+2 quits and his partner Player
i doesn’t quit then Player i receives 100, regardless of who else might quit.
Whenever Players i and i + 2 do not quit but one or both of the other two
players quits then Players i and i + 2 receive 0. If both Players i and i + 1
quit, then Player i receives a payoff of −1 no matter who else might quit. If
Player i quits, Player i + 1 does not quit and either Player i − 1 or Player
i + 2 quits, then Player i receives 99 (also if both i − 1 and i + 2 quit).
This exhausts all cases. For any proposed ε-equilibrium one must ask why
the player partnered with the one who stops with the highest probability
(with respect to the start of the game) would ever wish to stop the game.
If the answer is indeed that he should never choose the move q, then his
partner who stops with the highest probability should either stop the game
immediately or he should be the only player who stops the game. Neither
behavior would describe an ε equilibrium for any positive ε between 0 and
1/2. On the other hand we think this game belongs to a class of quitting
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games whose existence of approximate equilibria can be proven similarly to
Theorem 3 below.

Our study of quitting games brought us to what could be considered a
relatively new topic of dynamic systems. For want of a better term, we call it
“Discrete-Time Viability Theory”. Conventional Viability Theory concerns
continuous-time dynamic processes with some control mechanism and the
ability of these processes to stay within given sets; see Aubin (1991). First
we give a general description of Discrete-Time Viability Theory, and then
present the question that relates this topic to quitting games.

Assume that E is an Euclidean space and F is a correspondence from E
to E, meaning that it can be represented as a subset of E × E (where the
projection of F to the first copy of E can be perceived to be the domain and
the projection of F to the second copy can be perceived to be the range).
For every x ∈ E define F (x) := {y | (x, y) ∈ F}. A forward orbit of the
correspondence F is a sequence (x0, x1, . . .) of points of E such that for every
non-negative integer n ≥ 0 we have (xn, xn+1) ∈ F . An extended forward
orbit is a sequence ((xj,0, xj,1, . . .) | 0 ≤ j < Q) of forward orbits, possibly
with Q = ∞, such that for every j with j + 1 < Q we have limk→∞ xj,k =
xj+1,0. The extended forward orbit has bounded variation if

∑
j<Q

∑∞
i=0 ||xj,i−

xj,i−1|| < ∞, and otherwise it has unbounded variation. By the cluster points
of an extended orbit we mean the cluster points of the last orbit (if it exists)
or the limit of some subsequence of points where the first index goes to
infinity. An extended forward orbit converges to a point if this point is the
only cluster point of the orbit. Bounded variation implies convergence, but
the converse doesn’t hold.

If X is defined as a subset of a Euclidean space E, ∂X will stand for the
boundary of X relative to E. The distance in Euclidean space will be the
Euclidean distance.

We assume two types of conditions on a correspondence F .

1) There is a subset C ⊆ E with a property that from every point in ∂C
the correspondence F contains a motion back into the set C (meaning that
for every x ∈ ∂C there is a y ∈ C with (x, y) ∈ F ),

2) There is some kind of continuity in the definition of F (giving F closure
and relating its definition on the interior of C to its definition on the boundary
of C).
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The topic concerns under what explicit conditions does there exist a for-
ward orbit or an extended forward orbit (possibly with additional properties)
for F . With most existing literature on discrete-time dynamic systems the
iterations are well defined for trivial reasons and the main questions concern
their properties or behavior. Our concerns may have a closer relation to alge-
braic topology and fixed point theory, though explicitly they are problems of
dynamics. A good reference on iterating correspondences is McGehee (1992).

Two examples are given in the last section that demonstrate how there
can be no orbits in some contexts if one does not require that some of the
motions from the boundary of the set C are small.

A homeomorphism between two topological spaces X and Y is a bijec-
tive map that demonstrates that X and Y are topologically equivalent. This
means additionally that the collection of open sets of X are mapped bijec-
tively to the collection of open sets of Y .

A homotopy is a continuous map h : X × [0, 1] → Y , where X and Y are
topological spaces. Two functions f : X → Y and g : X → Y are homotopic
if f and g both can be represented as ht := h(·, t) for some t ∈ [0, 1] (and some
homotopy h). If Y can be embedded in a convex space then the homotopy
h : X× [0, 1] → Y is a straight line homotopy if for every x ∈ X and t ∈ [0, 1]
h(x, t) = th(x, 1) + (1− t)h(x, 0).

A set X is contractible if there is a homotopy h : X × [0, 1] → X and a
point y ∈ X such that for all x ∈ X h(x, 1) = y and h(x, 0) = x.

For any finite set A by RA we mean the real vector space of dimension
|A| whose coordinates are in the set A. For any r ∈ RA and a ∈ A by ra

we mean the a coordinate of r. Let 0 stand for the origin of any Euclidean
space. For every non-negative integer n define Sn := {r ∈ Rn+1 | ||r|| = 1}.
Given any subset B of Sn we define the convex cone generated by B to be
the set {r ∈ Rn+1 | r =

∑k
i=1 λibi, for every 1 ≤ i ≤ k bi ∈ B and λi ≥ 0}.

In this paper we show (Theorem 2) that all quitting games have approx-
imate equilibria if the following question can be affirmed:

Question 1: Let C ⊆ Rn be a union of finitely many compact and convex
polytopes (intersections of finitely many half-spaces) C1, C2, . . . Ck, each of
dimension n. Let J : C × [0, 1] → Rn ×Rn be a homotopy such that
1) for every x ∈ ∂C and all t ∈ [0, 1] J(x, t) = (x, x) and for all x ∈ C
J(x, 0) = (x, x), and
2) conversely (x, x) ∈ J(C, 1) implies that x ∈ ∂C.
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Let V be a compact neighborhood of ∂C, and let G be a compact subset
of V × Rn. Let F be a compact subset of Rn × Rn and define Fδ ⊆ F by
(x, y) ∈ Fδ if and only if (x, y) ∈ F and ||y − x|| ≤ δ. Assume that
3) F contains both J(C, 1) and G, and
that there is a γ > 0 such that
4) Fγ ⊆ G.
Furthermore assume that
5) for every x ∈ V the set G(x) is contractible and contains x,
6) if the distance between x ∈ V and ∂C ∩ Ci is no more than γ then there
is a y ∈ G(x) with dist (y, Ci) ≤dist (x,Ci) such that ||y − x|| ≥ γ and the
closed line segment from x to y is in G(x),
7) if limi→∞

yi−xi

||yi−xi|| = s ∈ Sn−1 for some pair of sequences xi and yi both

converging to a point x ∈ ∂C with (xi, yi) ∈ J(C, 1) and yi 6= xi for every
i then the direction s is in the convex cone generated by directions y−x

||y−x||
satisfying (x, y) ∈ G, ||y − x|| ≥ γ and that the entire closed line segment
from x to y is in C, and
8) C is contractible.
Does there exist an extended forward orbit of F with unbounded
variation?

What is the connection between quitting games and the topological ques-
tion?

There is a strong connection between quitting games and another area
of game theory usually not associated with stochastic games – structure
theorems used to establish stability properties of one-shot games. We remind
the readers of the main theorem of Kohlberg and Mertens, (1986). Let N be
a finite player set, (Aj | j ∈ N) the finite sets of actions for the players, X the
space of all |A1|×. . .×|A|N ||matrices with vector payoff entries from RN . For
any x ∈ X let Γx be the one stage game defined by the matrices determined
by x. Let Ã be

∏
j∈N ∆(Aj), the strategy space, (where ∆(Aj) is the simplex

of probability distributions on Aj). Let E ⊆ X × Ã be the correspondence
defined by E(x) := {y ∈ Ã | y is an equilibrium of the game Γx}. Let π :
X× Ã → X be the canonical projection. The structure theorem of Kohlberg
and Mertens states that there is a straight line homotopy H(·, ·) from X ×
[0, 1] to X × Ã such that π ◦H(x, 0) = x for all x ∈ X, the image of H(·, 1)
is exactly the graph of the correspondence E, and the function H can be
extended continuously to the one-point compactification of X (meaning that
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for every compact set C ⊆ X there is an R > 0 large enough that if the
norm ||x|| exceed R then for all t ∈ [0, 1] the point H(x, t) does not lie over
C). Here we have slightly modified the statement of the structure theorem,
using the fact that Ã is convex.

For a quitting game, we can consider the following matrix: in all posi-
tions where at least someone has chosen q the corresponding payoff vector is
placed. Where all players choose the move c we place a variable vector payoff
x ∈ RN that represents the future expected payoff on the next stage given
that nobody chose to quit. We could consider what the Kohlberg-Mertens
structure theorem could say about the equilibrium correspondence that lies
over this subspace isomorphic to RN , in particular what happens when this
correspondence is iterated indefinitely.

There are two problems with applying the Kohlberg-Mertens structure
theorem as suggested above. First, we must understand how the equilibrium
correspondence (described by the structure theorem) behaves on such sub-
spaces of X. More critical is how the equilibrium correspondence behaves on
subsets of vectors that are realized through long term play. Second, if some
player can receive more than a payoff of zero by stopping the game alone then
the part of the equilibrium correspondence where every player chooses c with
certainty is useless to the construction of an approximate equilibrium. Re-
moving these parts of the equilibrium correspondence may destroy important
topological properties.

To overcome the two above mentioned problems of applying the Kohlberg-
Mertens structure theorem, we prove a new version of the structure theorem
that is especially suited to quitting games. In particular, we marginalize
those points of the equilibrium correspondence that involve zero probability
for the move q. This marginalization is the key step in proving that an
affirmation of Question 1 implies the existence of approximate equilibria.

We are agnostic concerning both Question 1 and the existence of ap-
proximate equilibria in quitting games. At the present, we tend to think
that there are counter-examples to both, however that a game theoretical
counter-example is very difficult to find due precisely to its connection to
this question and its topological contents. We present the topological ques-
tion with the hope that it will be the key to understanding approximate
equilibria in quitting games – that the existence of approximate equilibria
would be proven best by an affirmation of the topological question (and fur-
thermore that a generalization of the topological question could be central
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to proving approximate equilibrium existence for all multi-player stochastic
games) or that the topological question would be refuted best by a quitting
game counter-example.

The rest of this paper is organized as follows. The next section presents
the formal model of quitting games and defines more precisely the challenge
of proving the existence of approximate equilibria. The third section proves
our version of the structure theorem. The fourth section establishes the
connection between Question 1 and the existence of approximate equilibria.
The fifth section considers questions related to Question 1.

2 The Model and the Challenge

In this section we formulate the problem of equilibrium existence as a problem
of dynamic systems. Primarily we discuss the work of Solan and Vieille
(2001), re-formulating their work in the context of what will follow.

If φ is a function taking values in RA, by φa we mean the function πa ◦φ,
where πa stands for the projection to the a-coordinate.

2.1 Players, strategies and payoffs

Let N be the set of players. Due to the above mentioned result of E. Solan,
we could assume that |N | ≥ 4; however, for the sake of completeness we will
assume only that |N | ≥ 2. Each player has exactly two moves, q and c, q for
“quit” and c for “continue”.

For every player let [0, 1] stand for her strategy space in a one stage game,
with the quantity p ∈ [0, 1] representing the probability that she chooses to
end the game (with the move q). N is the set of players, and [0, 1]N stands
for the product of the strategy spaces of all the players in a one stage game.
Since 0 ∈ RN stand for the origin, 0 ∈ [0, 1]N means that all players choose
the move c with certainty.

A strategy profile for the players is a sequence of probability vectors
(pi | i = 0, 1, 2, . . .) such that for every stage i pi ∈ [0, 1]N . pj

i stands for the
probability that Player j will stop the game (with the move q) at stage i.

The payoffs are defined as follows. For every non-empty subset A ⊆ N of
players there is a payoff vector v(A) ∈ RN . At the first stage that any player
chooses the move q and A is the non-empty subset of players that choose q, the
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players receive the payoff v(A). This means that Player i receives v(A)i ∈ R.
If nobody plays the move q throughout all stages of play, then all players
receive 0. The quantity M is defined to be 40 + 3 max i∈N , ∅6=A⊆N |v(A)i|.

Define χ ∈ RN to be that vector such that for every j ∈ N χj is the
min-max value for Player j (the upper bound for what Player j can obtain
in response to all strategy choices of the other players). The importance
of the min-max value χj is that it represents the ability of the players to
punish Player j with pre-determined strategies (for example as part of an
approximate equilibrium). Because the other players are limited in their
ability to coordinate their moves, this min-max value could be strictly greater
than the max-min value when there are at least two other players.

2.2 Equilibrium correspondences

For every r ∈ RN let Γr be the one stage game where Player j ∈ N receives
the payoff rj if all players choose the move c.

For every r ∈ RN and p ∈ [0, 1]N , let aj(p) be the expected payoff for
Player j if he chooses q against the strategies (pk |k 6= j) and let bj(p, r) be
the expected payoff for Player j from the move c, given that the other players
choose the strategies (pk |k 6= j) and he will receive the payoff rj if everyone
chooses the move c (meaning that the game Γr is played. One can calculate
aj(p) and bj(p, r) easily. We have

aj(p) =
∑

A⊆N\{j}
v(A ∪ {j})j

∏

k∈A

pk
∏

k 6=j, k 6∈A

(1− pk)

and

bj(p, r) = rj
∏

k 6=j

(1− pk) +
∑

∅6=A⊆N\{j}
v(A)j

∏

k∈A

pk
∏

k 6=j, k 6∈A

(1− pk).

Every strategy profile p = (pi | i = 0, 1, 2, . . .) defines payoff vectors
(ri ∈ RN | i = 0, 1, 2, . . .) for the players. rj

i is the future expected payoff
for player j before the moves are made at the stage i, conditioned on the
fact that all players chose c at all stages before i. This means that ri is the
expected payoff vector for the quitting game that begins at stage i.

Define a function q : [0, 1]N → [0, 1] by q(p) := 1 − ∏
j∈N(1 − pj). The

function q is the total probability that at least one player chooses the move
q.
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A strategy profile p = (pi | i = 0, 1, 2, . . .) is a sequence of perfect one-shot
ε equilibria if for every stage i and every player j the following holds:
i) if pj

i > 0, then aj(pi) ≥ bj(pi, ri+1(p))− ε,
ii) if pj

i < 1 then bj(pi, ri+1(p)) ≥ aj(pi)− ε,
iii) for every i ≥ 0 rj

i (p) ≥ χj − ε.
The strategy profile is absorbing if
iv)

∑∞
i=0 q(pi) = ∞.

We want to consider correspondences generated by moving backward from
stage i + 1 to stage i through an approximate equilibrium of the one-shot
game. For any ε, ρ ≥ 0 we construct correspondences Eε,ρ ⊆ RN × [0, 1]N

and Fε,ρ ⊆ RN ×RN in the following way. We set

Eε,ρ(r) := {p ∈ [0, 1]N | pj > 0 ⇒ aj(p) ≥ bj(p, r)− ε,

pj < 1 ⇒ bj(p, r) ≥ aj(p)− ε, q(p) ≥ ρ}.
For every r ∈ RN and p ∈ [0, 1]N define a new member of RN , namely

f(r, p) := r
∏

j∈N

(1− pj) +
∑

∅6=A⊂N

v(A)
∏

j∈A

pj
∏

j 6∈A

(1− pj).

We define F ε,ρ(r) := {f(r, p) | p ∈ Eε,ρ(r)}. For every r ∈ RN Eε,ρ(r) is a
subset of the ε equilibria of the game Γr with at least a ρ probability that
somebody chooses to quit; F ε,ρ(r) are their corresponding payoffs.

2.3 Basic results

Lemma A: An absorbing sequence of perfect one-shot ε equilibria generates
a γ equilibrium for the relation ε = cγ6 for some c > 0 that is determined by
the number of players and a bound on the absolute value of all payoffs.

Proof: Solan and Vieille (2001) proved this result without Condition iii)
but with the condition that every player quitting alone receives a positive
payoff, (meaning vj > 0 for all j ∈ N). However their additional condition
is used in their proof only to demonstrate that rj

i > χj − γ for all i ≥ 0 and
j ∈ N . 2

The underlying justification for Lemma A (explicit in Solan and Vieille
2001) is the following: either over some long period of near certain quitting
this is due almost exclusively to the actions of a single player, or over all
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long periods of near certain quitting this is due to the actions of at least two
players. If the former is true, then there will an approximate equilibrium
resulting from the quitting behavior of this one actor, and enforced by pun-
ishment in the event that this player refuses to end the game. If the latter is
true, then the passivity of any player cannot prevent an end to the game and
the stage for stage equilibrium property will imply a sufficient cumulative
equilibrium property.

Remark 1: For the sake of proving that there is a sequence of perfect
one-shot 2ε equilibria we can assume that ||x − y|| > 0, (x, y) ∈ F ε,0 and x
in {z | ∀j zj

i ≤ χj − ε} imply that ε q(p) ≤ ||x − y|| for the corresponding

strategies p ∈ [0, 1]N . If this were not true then q(p) ≥ ||x−y||
ε

would result
in expected payoffs conditioned on quitting within a Euclidean distance of
ε from x. Since x is in {z | ∀j zj

i ≥ χj − ε}, the stationary strategy profile
generated by p would be a sequence of perfect one-shot 2ε equilibria.

The next three propositions are useful for proving that an affirmation of
Question 1 implies the existence of approximate equilibria. The argument
of the following proposition is similar to one in Solan and Vieille (2001)
concerning cyclic orbits.

Proposition A If for all positive ε > 0 the correspondence Fε,0 has an
extended forward orbit in {x | ∀j xj

i ≥ χj − ε} with unbounded variation
then the quitting game has approximate equilibria.

Proof: We assume the existence of an extended forward orbit ((xl,0, xl,1, . . .)
| 0 ≤ l < Q) of Fε/3,0 with unbounded variation in {x | ∀j xj

i ≥ χj − ε/3}.
Let (pl,i| | i = 1, 2, . . .) be the corresponding strategies in [0, 1]N) (such that
xl,i+1 = f(xl,i, pl,i)).

Case 1; There is a sequence (xl,0, xl,1, . . .) such that
∑∞

i=0 ||xl,i −
xl,i+1|| = ∞:

Let x be any cluster point of this sequence.
∑∞

i=0 q(pl,i) < ∞ would imply∑∞
i=0 ||xl,i − xl,i+1|| < ∞, so assume

∑∞
i=0 q(pl,i) = ∞ , which implies that∏∞

i=0(1 − q(pl,i)) = 0. Let xl,m and xl,n be any two points in this sequence
with m < n such that both vectors are within ε/8 of x and

∏
m≤i<n(1 −

q(pl,i)) < ε
8M

. Observe what happens by reversing the order of the strategies
between xl,m and xl,n and repeating them cyclically and infinitely, meaning
(p̃0 = pl,n−1, p̃1 = pl,n−2, . . . , p̃n−m−1 = pl,m, p̃n−m = pl,n−1, . . .), and define
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(r̃i | i = 0, 1, . . .) to be the vectors representing the expected payoffs as
generated above. For every k = 0, 1, . . . r̃k(n−m) will be within ε/8 of xl,n,
since the probability of quitting from the deleted part of the sequences does
not exceed ε

8M
. But then for ever k = 0, 1, . . . and 0 ≤ i < n−m ||r̃k(n−m)+i−

xl,n−i|| ≤ ε/2, since ||xl,m − xl,n|| ≤ ε/4. After discarding the stages where 0
was the corresponding strategy we have a cyclic orbit of Fε,δ for some positive
δ. The rest follows by Lemma A.

Case 2;
∑∞

i=0 ||xl,i − xl,i+1|| < ∞ for every l < ∞:
Let x be any cluster point of the sequence (x0,0, x0,1, . . .). As with Case

1 let xm,0 and xn,0 be any two points in this sequence such that both are
within ε/5 of x and

∏
m<l<n

∏∞
i=0(1 − q(pl,i)) < ε

30M
. By Remark 1 we can

assume without loss of generality that
∑∞

i=0 q(pl,i) < ∞ for all l < ∞. For
every m ≤ l < n with

∑∞
i=0 ||xl,i − xl,i+1|| > 0 let nl be a positive integer

large enough so that
∏nl

i=0(1− q(pl,i)) < (1 + ε
30M

)
∏∞

i=0(1− q(pl,i)). Exactly
as with Case 1, reversing the order of the corresponding strategies (pl,i | m ≤
l < n, 0 ≤ i ≤ nl), and dropping the ones with zero probability of quitting,
will generate a cyclic orbit of Fε,δ for some positive δ. 2.

Proposition B: Assume that each payoff in (v(A) | ∅ 6= A ⊆ N) has
been changed by no more than δ > 0. For every ε ≥ 0 an absorbing sequence
of perfect one-shot ε equilibria for the resulting game is also an absorbing
sequence of perfect one-shot ε + δ equilibria for the original game.

Proof: Because each rj
i determined by the strategy profile cannot change

by more than δ, it follows directly from the conditions defining the perfect
one-shot ε + δ equilibria. 2.

Proposition C: If for any x ∈ RN with xj ≥ χj − ε for all j ∈ N there
is a member p of Eε,1(x) (with q(p) = 1), then there is an ε′-equilibrium for
any ε′ > 2ε.

Proof: The players are requested to play p, following by the punishment
of any player j with pj = 1 who did not choose q. 2

If there is a one stage equilibrium as described in Proposition C we say
that it is an instant ε+-equilibrium.

11



3 The Structure Theorem for Quitting Games

3.1 The Theorem

Define Ẽ0,0 to be the subset of E0,0 such that the p ∈ [0, 1]N probability
vector obeys q(p) < 1.

The vector v ∈ RN is defined by vi := v({i})i for every i ∈ N . For every
Player j ∈ N define the set Wj := {r | rj ≤ vj}. Define W := ∪j∈NWj =
{r | rj ≤ vj for some j ∈ N} = RN\{r | rj > vj for all j ∈ N}. ∂W will be
W ∩ {x | ∀j ∈ N xj ≥ vj}, also an unbounded set. ∂W is the set where for
at least one j ∈ N xj = vj and otherwise xk ≥ vk for all k 6= j.

The main goal of this section is to prove the following structure theorem
for quitting games.

Theorem 1: There is a straight line homotopy H(·, ·) from RN × [0, 1]
to RN × [0, 1]N such that for all x ∈ X
1)H(x, 0) = (x, 0),
2) the image of H(·, 1) is the set Ẽ0,0,
3) for all x in the closure of the complement of W and for all t ∈ [0, 1] we
have H(x, t) = (x, 0).
If there is no instant δ+ equilibrium for some δ > 0 then
4) there exists an R > 0 such that for any x 6∈ [−R,R]N and t ∈ [0, 1] we
have that H(x, t) 6∈ {x ∈ RN | χj − 99δ

100
≤ xj ≤ |N |M + 1} × [0, 1]N .

The part of the equilibrium correspondence that is useless for under-
standing the approximate equilibria of quitting games is that coming from
the complement of W . Its topological marginalization is the third property.
The fourth property is analogous to the property in Kohlberg and Mertens
(1986) that the homotopy can be extended continuously to the one-point
compactification, and it plays a critical role in this paper.

3.2 The map φ

We fix any ε with 0 < ε ≤ 1. (Although ε plays no significant role in this
section, its use as a variable will be important later.) We define a map φ
from Ẽ0,0 to RN in the following way. Given any (x, p) ∈ Ẽ0,0 ⊆ RN× [0, 1]N ,
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we define for every j ∈ N

φj(x, p) := f j(x, p)− 5|N |2M3

ε2

pj

(1− pj)|N |
+ M

∑

k 6=j

pk.

Because we consider only those equilibria with q(p) < 1, the map φ is well
defined and continuous. The most dramatic aspect of the definition of φ is
the reduction in the value of φj for a player j who chooses q with significant
probability. On the other hand, the dominance of M over all the payoffs from
the game implies that if a player j chooses c with certainty then increasing
the probabilities that the other players choose q will increase the value of φj.

3.3 The bijectivity of φ

Lemma 1: φ is injective. Furthermore (x, 0) ∈ Ẽ0,0 if and only if x ∈ {y ∈
RN | yj ≥ vj ∀j ∈ N}, (the closure of the complement of W ), and if so then
φ(x, 0) = x.

Proof: Let (x, p) and (x̂, p̂) be two distinct equilibria in Ẽ0,0. Clearly
if p = p̂ then q(p) 6= 1 implies that φ(x, p) = φ(x̂, p̂) if and only if x = x̂.
Therefore we assume that p 6= p̂, and we assume that j ∈ N is a player such
that |pj − p̂j| = maxk∈N |pk − p̂k|. Without loss of generality we assume that
p̂j > pj, and let t := p̂j − pj. Supposing that φ(x, p) = φ(x̂, p̂), we will show
that Player j with (x, p) has a clear preference for choosing q, a contradiction.

First, we compare what happens when Player j in both situations chooses
the move q. We get f j(x, p) ≥ aj(p) > aj(p̂) − (1 − (1 − t)|N |−1)M =
f j(x̂, p̂) − (1 − (1 − t)|N |−1)M . The first inequality follows because with
(x, p) Player j does not choose q with certainty; the second inequality follows
because t is the largest difference in probability used by any player and all
differences in payoffs are less than 2M/3; the equality at the end follows
because with (x̂, p̂) Player j chooses q with some positive probability less
than one.

Look at the consequences of φj(x, p) = φj(x̂, p̂) from the definition of

map φ and the quantity t = p̂j−pj > 0. Looking at the 5|N |2M3

ε2
pj

(1−pj)|N| term

defining φj(x, p) we have

5|N |2M3

ε2

p̂j

(1− p̂j)|N |
− 5|N |2M3

ε2

pj

(1− pj)|N |
≥ 5|N |2M3

ε2

t

(1− t)|N |
.
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After ignoring the ε ≤ 1 we have from the definition of φj and the equality
φj(x, p) = φj(x̂, p̂) that f j(x̂, p̂)− f j(x, p) ≥ 5|N |2M3 t

(1−t)|N| −M
∑

k 6=j |p̂k −
pk| ≥ 5|N |2M3 t

(1−t)|N| −M(|N | − 1)t. Together with the last paragraph we

have M(|N | − 1)t + (1− (1− t)|N |−1)M > 5|N |2M3 t
(1−t)|N| . From |N |

(1−t)|N| >

|N | − 1 and dropping a power of M and |N | we conclude that (1 − (1 −
t)|N |−1) > 4|N |M t

(1−t)|N| .

For a contradiction we need only show that 4|N |t + (1 − t)2|N |−1 − (1 −
t)|N | > 0 for all 0 < t ≤ 1. If t = 0 there is an equality. We get our
claim by taking the derivative in t of this function and showing that this
derivative must be positive for all the values 0 ≤ t ≤ 1. The derivative is
4|N |−2|N |(1− t)2|N |−2 +(1− t)2|N |−2 + |N |(1− t)|N |−1, which is at least 2|N |
for all 0 ≤ t ≤ 1. Injectivity is proven.

If xj ≥ vj for all j ∈ N , then there exists at least one equilibrium in
Ẽ0,0(x), namely the strategy 0; by the definition of φ we have that φ(x, 0) = x.
If xj < vj for some j ∈ N , then (x, 0) cannot be in Ẽ0,0, since Player j would
prefer choosing q over the move c. 2

Now the term
∑

k 6=j pkM in the definition of φ will play a critical role in
proving that φ is surjective.

Lemma 2: φ is surjective, meaning that it is onto RN . Furthermore,
φ−1 is continuous, (meaning with the injectivity and continuity of φ that it
is a homeomorphism).

Proof: Let x ∈ RN be arbitrary, and let ζ := 1 + max{0,−vj,−xj | j ∈
N}. Take any 0 < t < 1 such that tε2

5M3|N |2(1−t)|N| > 2ζ + 2|N |M .

Next consider the set Yt := {(x, p) | p ∈ [0, t]N , ∀j ∈ N aj(p) = bj(p, x)}.
Because t < 1, given any p ∈ [0, t]N we have a well defined and unique x with
(x, p) ∈ Yt. (For a fixed p and any player j one knows from t < 1 that there
is a value x̂j ∈ R high enough and a value x̃j ∈ R low enough so that if the
other players acted according to p in the game Γx̂ then Player j would prefer
c but Player j would prefer to choose q in the game Γx̃j . Between x̃j and x̂j

we find our unique xj.) Define for all p ∈ [0, t]N x(p) to be that x such that
(x(p), p) ∈ Yt. We see also from t < 1 that x(p) is continuous in p. Consider
what happens when φ is applied to the set Yt. We define φ̃ : [0, t]N → RN

by φ̃(p) := φ(x(p), p).
The definition of t assures with any p ∈ [0, t]N that pj = t implies φ̃(p)j <
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−ζ − 1. This follows from the definition of φj and the fact that aj(p) =
bj(p, x(p)) = f j(x(p), p) must be within −M/3 and M/3.

Assuming that x is not already in φ̃([0, t]N) to show that x is in the image
of φ it suffices to find a y ∈ φ̃([0, t]N) such that xj ≥ yj for all j ∈ N and
xj > yj implies that (φ̃−1(y))j = 0. Setting p̂ = φ̃−1(y) we would have (x, p̂)
in Ẽ0,0 since any player j satisfying xj > yj would choose the move c with
certainty.

For every p ∈ [0, t]N define support (p) := {j ∈ N | pj > 0}.
Claim A: For every p ∈ [0, t]N and every vector s ∈ R support(p) with

sj ≥ 0 for all j ∈ support(p) and sj 6= 0 there is a point p̂ ∈ [0, t]N with
support(p̂) ⊆ support(p) such that the vector φ̃(p̂)− φ̃(p) when restricted to
the support(p) coordinates is a multiple of s by some scaler λ with 0 < λ ≤ 1,
and furthermore if j 6∈ support(p) then the jth coordinate of φ̃(p̂) − φ̃(p) is
negative.

Claim B: For every y ∈ φ̃([0, t]N) and z ∈ [−ζ,∞)N such that zj ≤ yj

for all j ∈ N it follows that z is also in φ̃([0, t]N).

Claim C: φ̃ is a homeomorphism from [0, t]N to its image.

Proof of the Claims: Notice from the polynomial functions aj : [0, 1]N →
R that the function φ̃ is rational, hence smooth (continuous partial deriva-
tives of all degrees). By considering maximal changes in the payoffs relative

to changes in probability vectors we have M/3 < ∂j φ̃
∂pi < 5M/3 for all i 6= j

and ∂j φ̃
∂pj < −4|N |2M3 for all j ∈ N . These bounds on the partial derivatives

confirm all three claims. Claims A follows from arbitrary small decreases in
the values of the coordinates in the support of p and the fact that the desired
direction of the vector s lies in the interior of the convex cone generated by
the directions defined by the partial derivatives. Claim B results from the
same argument and small increases in all coordinates of p. Claim C follows
from Lemma 1 and the fact, easy to confirm, that the Jacobian determinant
is bounded uniformly far away from zero (on the negative side if |N | is odd).

We assume without loss of generality that x 6∈ φ̃([0, t]N). Define a function
w from φ̃([0, t]N) ∩ ∏

j∈N [−ζ, xj] to R by w(z) := max j∈N , zj<xj(φ̃−1(z))j.

By Claim B, we know that (−ζ,−ζ, . . . ,−ζ) is in φ̃([0, t]N), and therefore
the domain of w is not empty. By Claim C φ̃−1 is a continuous function,
therefore w is a lower-semi-continuous function and a minimum value w̃ ≥ 0
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is obtained. If w̃ = 0, then we are done. For the sake of contradiction,
we suppose that w̃ is positive. From Claim A we can find another ẑ in the
domain with an even smaller value for w, a contradiction. 2

3.4 The Homotopy

Lemma 3: Let φ be defined by some 0 < ε ≤ 1. For any 0 < δ ≤ 1 if there is

no instant δ+-equilibrium then there is an R > 200M4|N |3
ε2

such that if |xj| ≥ R
for some player j, x = φ(y, p) and z = ty + (1− t)x for some 0 ≤ t ≤ 1 then
z 6∈ {ξ ∈ RN | ∀j ∈ N χj − 99ε

100
≤ ξj ≤ M |N | + 1}. Furthermore if xj ≥ R

for some player j then yj > R−M |N | > M |N |+ 1 and pj = 0.

Proof: By the compactness of E0,0 ∩ {y ∈ RN | ∀j ∈ N χj − ε ≤ yj ≤
2M |N |}×[0, 1]N and the continuity of φ−1 the [0, 1] coordinates for all players
must obtain a maximum value. Since there is no instant δ+ equilibrium this
value must be strictly less than one. If the difference between this value and
one is less than 1

20
( δ

2M |N |)
|N |, then let w equal this difference. If not, then let

w equal 1
20

( δ
2M |N |)

|N |. Let R equal 10M4|N |3
ε2w|N| .

Case 1; xj ≥ R for some player j: By the definition of φ f j(y, p) ≥
R − (|N | − 1)M > |N |M + 1. Since all payoffs of the game are below M/3
it follows that pj = 0 and yj > |N |M + 1.

Case 2; xj ≤ −R and yk ≤ χk−δ for a pair of players j and k (with
j = k ok): The definition of φ implies that xk < (|N | − 1)M + yk < |N |M .
By the very large size of R we have either zk < χk − 99δ

100
or zj < χj − 99δ

100
.

Case 3; xj ≤ −R for some player j, yk > χk − δ for all players k
and yl ≤ 2|N |M for all players l satisfying pl ≤ 1− δ

2|N |M :

By the definition of R we know that pj > 1 − w. Let A be the set of
players who quit with a probability of at least 1− δ

2|N |M , (with j belonging to

A). Consider a new probability tuple p̂ ∈ [0, 1]N defined by p̂m = pm if m 6∈ A
and p̂m = 1 if m ∈ A. With χ̂ ∈ RN defined by χ̂m := χm − δ we claim that
(χ̂, p̂) is an instant δ+ equilibrium (and therefore Case 3 is not possible). For
any player m in A the payoff from quitting does not change by more than
(|N |−1)δ

3|N | . Since Player m should quit with certainty with p̂ the assumption
ym > χ̂m is sufficient to assure that there is no advantage from not quitting
of more than (|N |−1)δ

3|N | < δ/3 over quitting. On the other hand if m is not in
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A then we have assumed that ym ≤ 2|N |M . By the same argument as above

|am(p̂) − am(p)| ≤ (|N |−1)δ
3|N | . On the other hand χm − δ < ym ≤ 2|N |M and

pj > 1− w imply that |bm(χ̂, p̂)− bm(y, p)| ≤ (|N |−1)δ
3|N | + 2|N |Mw < δ/2.

Case 4; xj ≤ −R for some player j, yk > χk − δ for all players k
and yl > 2|N |M for some player l satisfying pl ≤ 1− δ

2|N |M :
Let 1 − ξ be the largest probability with which any player chooses the

move q, and let m be a player who chooses q with probability 1 − ξ. By

the definition of φ we have xm ≤ |N |M − 5M3|N |2
ε2ξ|N| . On the other hand

ym < M + M
ξ|N|−1 , since otherwise Player m would prefer not to choose q. Due

to the definition of φ we have xm < −R + M |N | and ξ ≤ w. Due to the
above comparison between xm and ym to avoid zm < χm− 99ε

100
it is necessary

for t to be at least 1− ε2ξ
3M2|N |2 , meaning that t must be at least 1− ε2w

3M2|N |2 .

By looking at the l coordinate we have xl ≥ 2|N |M− 5M3|N |2pl

ε2(1−pl)|N| and therefore

with our assumption on t being at least 1 − ε2ξ
3M2|N |2 and pl ≤ 1 − δ

2|N |M we

have zl ≥ 2|N |M − 5M3|N |2
ε2( δ

2|N|M )|N|
ε2w

3M2|N |2 . But with w less than or equal to

1
20

( δ
2M |N |)

|N | we get zl ≥ 2|N |M −M/4.

The last part of the lemma was proven in Case 1. 2

Proof of Theorem 1: We define the map H : RN×[0, 1] → RN×[0, 1]N

by H(x, t) := (1− t)(x, 0) + t(φ−1(x)). The continuity of H follows from the
continuity of φ−1, proven in Lemma 2. The first two properties follow from
the definition of H. The third property follows from Lemma 1. The fourth
property follows from Lemma 3. q.e.d.

3.5 More properties of φ

The following proposition is helpful to understanding the correspondence φ.
From the continuity of φ and φ−1 and from Theorem 1 if α ∈ W maps by
φ−1 to (β, p) ∈ Ẽ0,0 and p is very close to but not equal to 0 then we know
that α is close to but not in ∂W , and vice versa. Now we quantify these
relations, (which we will need later).

For any p ∈ [0, 1]N and j ∈ N define p−j ∈ [0, 1]N by pj
−j = 0 and

pk
−j = pk for k 6= j.

Proposition 1: Let φ be defined by 0 < ε ≤ 1. Assume that there is no
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instant δ+ equilibrium and let R be large enough to satisfy Theorem 1. Let
w > 0 be small enough so that φ−1([−R − 1, R + 1]N) ⊆ RN × [0, 1 − w]N .
Assume that α is in W ∩ [−R − 1, R + 1]N\∂W with α = φ(β, p) and c =
f(β, p). It follows that
1) αj ≤ vj implies that Player j chooses q with positive probability and

pj ≥ ε2w|N|−1

5|N |2M3 (M
3

∑
k 6=j pk + vj − αj) ≥ ε2w|N|−1

5|N |2M3 (q(p−j)
M
3

+ vj − αj),

2) αj ≤ βj implies that Player j chooses q with positive probability and

pj ≥ ε2w|N|−1

5|N |2M3 (M
3

∑
k 6=j pk + βj − αj) ≥ ε2w|N|−1

5|N |2M3 (q(p−j)
M
3

+ βj − αj),

3) pj > 0 and αj ≥ vj implies that q(p−j) > 0 with
∑

k 6=j pk ≥ (αj−vj)/(2M),
4) αj ≥ βj implies that q(p−j) > 0 with

∑
k 6=j pk ≥ (αj − βj)/(2M),

5) if α is within γ > 0 of ∂W then q(p) < γε2

4|N |M3 .

Proof: 1) Because the difference between any two payoffs is less than
2M/3, the payoff for Player j if she chooses q is at least vj− 2M

3

∑
k 6=j pk. Since

cj cannot be less than this quantity we have cj +M
∑

k 6=j pk ≥ vj + M
3

∑
k 6=j pk.

Since 1−w is an upper bound for the probability that any player quits, the

definition of φ(β, p) = α implies that αj ≥ vj + M
3

∑
k 6=j pk − pj 5|N |2M3

ε2w|N|−1 .

Furthermore, pj = 0 would imply with Theorem 1 that
∑

k 6=j pk > 0, and
therefore also αj > vj.

2) Because the difference between any two payoffs is less than 2M/3,
the payoff for Player j if she chooses c is at least βj − 2M

3

∑
k 6=j pk, and so

cj+M
∑

k 6=j pk ≥ βj+ M
3

∑
k 6=j pk. The rest of the argument follows identically

to that of 1), but with β replacing v.
3) Because the difference between any two payoffs is less than 2M/3,

the payoff for Player j if she chooses q is no more than vj + 2M
3

∑
k 6=j pk,

which implies that cj + M
∑

k 6=j pk ≤ vj + 5M
3

∑
k 6=j pk. This implies that

αj ≤ vj + 5M
3

∑
k 6=j pk. Furthermore q(p−j) = 0 would imply with Theorem 1

that pj > 0 and αj < cj = vj.
4) The payoff for Player j if she chooses c is no more than βj+ 2M

3

∑
k 6=j pk.

The rest of the argument follows identically to that of 3), but with β replacing
v.

5) Let t be maxj∈N pj, and let k be a player such that pk = t. By the initial

assumption we have αk ≥ vk − γ. αk ≤ ck − 5|N |2M3t

ε2(1−t)|N| + (|N | − 1)Mt follows

from the definition of t and φ. We have ak(p) = ck < vk + 2
3
(|N |−1)Mt from

considering what happens when Player k chooses q. But all three inequalities
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together imply that 5|N |2M3t

ε2(1−t)|N| < γ+ 5
3
(|N |−1)Mt and 4|N |2M3t

ε2
< 4|N |2M3t

ε2(1−t)|N| < γ.

The rest follows by the definition of t. 2

4 From Topological Question to Approximate

Equilibrium Existence

4.1 The set-up

There are two main problems with the correspondence F0,0.
First, in most interesting cases of quitting games (where there are no 0

equilibria) all extended forward orbits of F0,0 will have bounded variation
and converge to points in ∂W . To get around this problem we glue to F0,0

a correspondence contained within Fδ,0 for some small δ > 0 and defined on
points near to ∂W . This new correspondence will involve only very small
motions but enough to allow, either sometimes or always, for the existence
of unbounded variation extended forward orbits. The same idea was con-
tained in Solan and Vieille (2001), but without the application of a structure
theorem.

Second, we need a theoretical context, that of correspondences defined
on compact sets, and the relevant set W is unbounded. We intersect W with
a set whose boundary is far enough away from the origin that the vectors
of this boundary cannot have anything to do with payoffs associated with
the quitting game, (here the quantity R from Lemma 3 is used). We extend
our sub-correspondence of Fδ,0 to these distant points in a way so that all
extended forward orbits of unbounded variation must move toward and stay
with vectors that are relevant to the quitting game. Also we want all relevant
properties of the correspondence found on ∂W to hold on the new boundary
that includes points far away from ∂W .

The only serious problem with this approach concerns a player who would
never choose to quit alone in the quitting game. Recall the definition of the
vectors v, χ ∈ RN . Assume that vj < χj for some player j and assume that
the vector x satisfies xj = vj and xk > vk for all players k 6= j. There will be
a small positive δ > 0 such that Player j quitting alone with probability δ
would represent an equilibrium in E0,δ. However, in a quitting game Player
j would never be motivated to act in this way, since this player would be
opting for a payoff below what she could guarantee herself! Therefore we
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must avoid applying F0,δ to such vectors x, and this is our main complication.
Even worse, let v({j})k ≥ vk for all k 6= j. Then Player j quitting alone on
each stage with some small δ > 0 would satisfy all Properties but iii of a
sequence of perfect one-shot δM equilibria.

For any positive δ > 0 define a player j ∈ N to be a δ-normal player
when χj < vj + δ. A δ-normal player j can be punished effectively (relative
to the quantity δ) for not ending the game alone. A normal player is a δ-
normal player for all positive δ > 0, and define N̂ to be the set of normal
players. A player is normal if and only if by quitting alone he receives at
least his min-max payoff. A player that is not normal will be called an
abnormal player. Keep in mind that almost everything that follows would
be significantly simpler if there were only normal players.

Remark 2: For any non δ-normal player j we know that vj ≤ −δ, since
otherwise the other players could try to punish j by never ending the game,
and we would have χj ≤ max{0, vj}, a contradiction. As a consequence, if
no player was normal then all players choosing c at all stages would be an
equilibrium.

For every subset Q of the player set N with |Q| ≥ 2 consider the |Q|×|Q|
matrix AQ defined by the entries AQ(i, j) := v({j})i−vi (where the diagonal
entries are zero because vj = v({j})j).

The Assumptions:

From now on we assume that ε > 0 is fixed. Until we reach the conclusion
of this section, we proceed with the following Assumptions 1 through 5. These
assumptions will be justified by the conclusion where we will prove (Theorem
2) that an affirmation of Question 1 implies that all quitting games have
approximate equilibria.
Assumption 1: there is at least one normal player.
Assumption 2: the determinants of all the matrices AQ (with |Q| ≥ 2) are
not zero.
Assumption 3: all ε-normal players are normal players.
Assumption 4: ||x−y|| > 0, x ∈ {z | ∀j zj ≥ χj−ε} and (x, y) ∈ Fε,0 imply
that ε q(p) ≤ ||x− y|| for the corresponding p ∈ [0, 1]N with y = f(x, p).
Assumption 5: there is no ε+ instant equilibrium.

We need a game in generic form (Assumption 2) to satisfy Property 5 of
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Question 1. We fix a positive quantity ρ that is less than ε
20|N |M and small

enough so that for every choice of Q (with |Q| ≥ 2) and any choice of real
numbers di,j with |di,j| ≤ 2ρM |N | (and with i = j allowed) the determinants
of the matrices B defined by B(i, j) := v({j})i − vi + di,j are not zero and
for every r ∈ SQ−1 := {v ∈ RQ | |v| = 1} and for all such matrices B the
Euclidean norm of the vector Br is at least ρ. (This is possible from the
continuity of the determinant function, the compactness of SQ−1, and that
Br = 0 for any r in the sphere SQ−1 implies that the determinant of B is
zero.)

Define the map φ according to the choice of ε. Define the positive quantity
R according to Lemma 3 (justified by Assumption 5), define w > 0 according

to Proposition 1, and define ŵ to be ε2w|N|
5M3|N |2 .

4.2 Two lemmatta concerning χ

Lemma 4:
1) For any abnormal player j v({k})j ≥ χj for every k 6= j.
2) If p is in [0, ρ]N then the probability that at least two players choose q

simultaneously is no more than ρ(|N |−1) times the probability that at least
some player chooses q.

3) For any abnormal player j the payoff to Player j conditioned on quit-
ting from any p ∈ [0, ρ]N with pj = 0 is at least χj−M(|N |−1)ρ ≥ χj−ε/20.

Proof:
1) Consider the stationary strategy where Player k chooses q with prob-

ability ρ and all other players (other than k) choose c with certainty. By
choosing q Player j would receive no more than vj + ρM < χj (by the ab-
normality of j). By the definition of χ it must follow that v({k})j ≥ χj.

2) By the definition of ρ ≤ 1
2|N | we have (1−ρ)|N | ≥ 1/2. The probability

that some player chooses q alone is
∑

j pj ∏
k 6=j(1− pk). The probability that

two players choose q together is no more than
∑

j 6=k pjpk = 1
2

∑
j pj ∑

k 6=j pk

(because in the second summation each distinct pair appears twice). Com-
paring

∑
k 6=j pk with

∏
k 6=j(1−pk) for each fixed j we have

∑
k 6=j pk ≤ (|N |−1)ρ

and
∏

k 6=j(1− pk) ≥ 1/2.
3) It follows directly from Parts 1) and 2). 2.

Recall the definition of p−j from the third section.
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Lemma 5: Assume that (x, y) ∈ F0,0. xj ≥ χj implies that yj ≥ χj.
Given that y = f(x, p) with (x, p) ∈ E0,0 then xj < χj implies that yj −xj ≥
q(p−j)(χ

j − xj).

Proof: The first part follows directly from the definition of χ. If the
second part were not true, then the payoff to Player j conditioned by the other
players quitting (according to p−j) would be strictly less than χj. yj < χj

and p ∈ E0,0 would imply that Player j gets strictly less than χj by quitting
against p−j. p−j would be a way to hold Player j down to a payoff below χj,
a contradiction. 2

4.3 The set C

For any player j define Cj to be the set Cj := Wj ∩ [−R − 1, R + 1]N . For
any pair j, k of abnormal players define Cj,k := Cj ∩Ck. Define the set C to
be

C :=
⋃

j∈N̂

Cj

⋃

j 6=k, j,k∈N\N̂
Cj,k.

We cannot exclude quitting behavior involving only abnormal players,
since all equilibrium behavior could involve some stages where two or more
abnormal players choose q with positive probability and all normal play-
ers choose c with certainty. On the other hand, we must exclude quitting
behavior involving only one abnormal player. This is behind the special
construction Cj,k for pairs of abnormal players.

For every abnormal player j define the open set Dj := {x ∈ R | xk > vk

for all k 6= j}. Define the subset Ŵ ⊆ W to be {x | xj = vj for some normal
player j, ∀k 6= j xk ≥ vk}, (and equal to W if all players are normal). Define
the set D to be the closure of ∂C\(∂W∩Ŵ ) and define U to be ∂C∩∂W∩Ŵ ,
so that ∂C = U ∪D. Define Ĉ to be ∪j∈NCj and define D̂ to be ∪k∈N\N̂Dj.

The following three lemmatta are useful for understanding the geometry
of the set C.

Lemma 6: The set C is equal to Ĉ\D̂. The set ∂D̂ is the union of the
two sets

∂D̂1 := ∪
j∈N\N̂ abnormal {x | xk = vk for some normal k, ∀l 6∈ {j, k} xl ≥ vl}

and ∂D̂2 := {x | xj ≤ vj, xk = vk for some distinct abnormal pair
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j, k ∈ N\N̂ and ∀l 6∈ {j, k} xl ≥ vl}.

Proof: 1) Let x be in Cj for a normal j. xj ≤ vj implies that x 6∈ D̂.
Let x be in Cj,k for a pair j, k of abnormal players. xj ≤ vj and xk ≤ vk

imply that x cannot be in Dl for any l.
Let x be in Ĉ. If xl ≤ vl for some normal l then x is in Cl\D̂. If xl > vl

for all normal l then the only way to avoid D̂ if for xj ≤ vj and xk ≤ vk for
some abnormal pair j, k (and then x is in Cj,k).

2) ∂Dj = {x | xk = vk for some k 6= j, xl ≥ vl for all l 6∈ {j, k}}, and

any point in ∂D̂ must be in ∂Dj for some abnormal j. By increasing all
coordinates we enter the interior of Dj. The only question is whether there
is a sufficiently small δ so that by changing all coordinates by no more than
δ we must stay inside of D̂. Consider five cases for a point in Dj:

Case 1; k is normal: By decreasing the coordinate xk we leave the set
D̂.

Case 2; k is abnormal and xj ≤ vj: By decreasing both coordinates
xj and xk we leave the set D̂.

Case 3; k is abnormal, xj > vj, and xl = vl for some normal l:
This is equivalent to Case 1, but with l replacing k.

Case 4; k is abnormal, xj > vj, xl > vl for all normal l, and
xm = vm for at least two distinct abnormal m = m1,m2: By decreasing
the coordinates of m1 and m2 we leave the set D̂.

Case 5; k is abnormal, xj > vj, xl > vl for all normal l, and
xm = vm for at most one abnormal m: If such an m exists then by
choosing δ := 1

2
minn6=m |xn − vn| and by changing every coordinate by no

more than δ one remains in the set Dm. If such an m does not exist the same
holds true for Dm for all abnormal m.

Notice that Cases 1 through 4 define the set ∂D̂1∪∂D̂2. A point satisfying
Case 5 is in the interior of D̂. 2

Lemma 7: ∂C is the union of the following sets:
B1

j := {x | xj = vj,∀k 6= j vk ≤ xk ≤ R + 1}, j normal,
B2

j := {x | xj = −R− 1,∀k 6= j −R− 1 ≤ xk ≤ R + 1}, j normal,
B3

j,k := {x | xj = −R − 1, −R − 1 ≤ xk ≤ vk, ∀l 6∈ {j, k} − R − 1 ≤ xl ≤
R + 1}, j abnormal, k ∈ N either normal or abnormal, k 6= j,
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B4
j,k := {x | − R − 1 ≤ xj ≤ vj, xk = vk, ∀l 6∈ {j, k} vl ≤ xl ≤ R + 1}, j

abnormal, k ∈ N either normal or abnormal, k 6= j,
B5

j,k := {x | xj = R+1, −R−1 ≤ xk ≤ vk, ∀l 6∈ {j, k} −R−1 ≤ xl ≤ R+1},
j either normal or abnormal, k normal, k 6= j,
B6

j,k,l := {x | xj = R+1, −R−1 ≤ xk ≤ vk, xl ≤ vl, ∀m 6∈ {j, k, l} −R−1 ≤
xm ≤ R + 1}, j either normal or abnormal, k, l abnormal, j, k, l distinct.
Furthermore every point of ∂C is in the closure of the interior of C.

Proof: First we show that all the listed sets are in ∂C and that any point
of any of these sets is arbitrarily close to a point in the interior of C.

Let x be any point in B1
j for a normal j. By increasing all coordinates of

x one leaves C and by decreasing slightly all the coordinates one enters the
interior of Cj.

Let x be any point in B2
j for a normal j. By decreasing the xj coordinate

one leaves C and by increasing the xj coordinate slightly and (if necessary)
moving the other coordinates one enters the interior of Cj.

Let x be any point in B3
j,k for a distinct pair j, k with j abnormal. By

decreasing the xj coordinate one leaves C and by increasing the xj coordinate
slightly, and, if necessary, moving the xk coordinate away from either −R−1
or vk and moving the other coordinates, if necessary, one enters the interior
of Cj,k if k is abnormal or the interior of Ck if k is normal.

Let x be any point in B4
j,k for a distinct pair j, k ∈ N with j abnormal.

By increasing the coordinates of all players other than j one leaves the set C.
By decreasing the xk coordinate slightly, and moving, if necessary, xj away
from −R− 1 or vj (in the direction of the average) and moving, if necessary,
the other coordinates one enters the interior of Cj,k if k is abnormal or the
interior of Ck if k is normal.

Let x be any point in B5
j,k for a distinct pair j, k ∈ N with k normal.

By increasing the xj coordinate one leaves the set C. By decreasing the xj

coordinate slightly, moving, if necessary, the xk coordinate away from −R or
vk, and moving the other coordinates, if necessary, one enters the interior of
Ck.

Let x be any point in B6
j,k,l for a mutually distinct triple j, k, l ∈ N with

k and l abnormal. By increasing the xj coordinate one leaves the set C.
By increasing the xj coordinate slightly, moving, if necessary, the xk and xl

coordinates away from −R or either vk or vl, and moving, if necessary, the
other coordinates, one enters the interior of Ck,l.
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Next we show that the boundary of C is contained in the union of these
sets.

Recognize ∂Ĉ as the union of

∂Ĉ1 := {x | xj = vj for some j ∈ N, ∀l 6= j vl ≤ xl ≤ R + 1},

∂Ĉ2 := {x | xj = −R− 1 for some j ∈ N, ∀l 6= j −R− 1 ≤ xl ≤ R + 1}
and ∂Ĉ3 := {x | for some j ∈ N xj = R + 1,

for some k 6= j −R− 1 ≤ xk ≤ vk,∀l 6∈ {j, k} −R− 1 ≤ xl ≤ R + 1}.
With C = Ĉ\D̂ from Lemma 6 and D̂ an open set we have ∂C = (∂Ĉ\D̂)∪
(∂D̂ ∩ Ĉ). First we look at ∂Ĉ\D̂.

If j is normal then {x | xj = vj ∀l 6= j vl ≤ xl ≤ R + 1}, the appropriate
part of ∂C̃1, contains nothing of D̂, and it is equal to B1

j .

If j is abnormal then x ∈ {x | xj = vj ∀l 6= j vl ≤ xl ≤ R + 1} avoids D̂
if and only if there is a second player k with xk = vk. This places x in B4

j,k

if k is abnormal and in B1
k if k is normal.

If j is normal then {x | xj = −R− 1, ∀l 6= j −R− 1 ≤ xl ≤ R + 1}, the
appropriate part of ∂Ĉ2, has no intersection with D̂, and is equal to the set
B2

j .
If j is abnormal then {x | xj = −R−1, ∀l 6= j −R−1 ≤ xl ≤ R+1} has

an intersection only with Dj. To remove Dj we need at least one k, normal
or abnormal, such that xk ≤ vk. This yields the set B3

j,k.
Let j, k be any pair of distinct players with k abnormal. The set {x | xj =

R+1, −R−1 ≤ xk ≤ vk, ∀l 6∈ {j, k} −R−1 ≤ xl ≤ R+1} has no intersection
with ∪l 6=kDl. If x is a member of this set then x 6∈ Dk if and only if xl ≤ vl

for some l 6∈ {j, k}. If l is normal then x is in B5
j,l. If l is abnormal then x is

in B6
j,k,l.

Let j, k be any pair of distinct players with k normal. The set {x | xj =
R + 1, −R − 1 ≤ xk ≤ vk, ∀l 6∈ {j, k} − R − 1 ≤ xl ≤ R + 1} has no
intersection with D̂ and it defines the set B5

j,k.

Next we look at ∂D̂ ∩ Ĉ and use Lemma 6.
For every abnormal j and normal k look at {x | xk = vk ∀l 6∈ {j, k} xl ≥

vl}∩Ĉ, the appropriate part of ∂D̂1. Its intersection with Ĉ is {x | −R−1 ≤
xj ≤ R + 1, xk = vk ∀l 6= j vl ≤ xl ≤ R + 1}. A point x in this set is in B4

j,k

if xj ≤ vj and is in B1
k if xj ≥ vj.
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For any pair j, k of abnormal players look at {x | xj ≤ vj, xk = vk ∀l 6∈
{j, k} xl ≥ vl}, the appropriate part of ∂D̂2. Its intersection with Ĉ is B4

j,k.
2

Lemma 8: For every pair j, k of abnormal players ∂Cj,k ∩ ∂C ⊆ D and
U = ∪

j normal B1
j .

Proof: U = ∪
j normal B1

j follows directly from the definition of U . Next
we confirm that all the other sets of Lemma 7 are already in D.

For trivial reasons all the sets B2
l and B3

l are contained already in the set
D. Likewise for the other sets (other than the B1

j ) there is some player n
such that xn < vn already or xn = vn and xn can be decreased slightly while
staying in the set.

For any pair j, k of abnormal players we have ∂Cj,k equal to the union
of the three sets ∂C1

j,k := {x ∈ [−R − 1, R + 1]N | xj ≤ vj, xk = vk},
∂C2

j,k := {x ∈ [−R−1, R+1]N | xk ≤ vk, xj = vj}, and ∂C3
j,k := ∂Cj,k∩{x ∈

[−R − 1, R + 1]N | |xl| = R + 1 for some l ∈ N}. We confirm that the
intersection of these sets with U is always in the set D. By the above, we
need only check the intersection with the sets B1

j .

Let x be a point in ∂Cj,k that is also in B1
l for some normal l ∈ N̂ . We

must have xj = vj and xk = vk. By adding any δ > 0 to the coordinates for
all players other than j or k we get a point in ∂C that is not in Ŵ ∩ ∂W . 2

4.4 The centering function, the homotopy, γ, and F

Define a special function z : RN → RN by
zj(x) = vj − ε/2 if j is normal,
zj(x) = vj if j is abnormal and xj ≤ vj,
zj(x) = xj if j is abnormal and vj ≤ xj ≤ |N |M ,
zj(x) = |N |M if j is abnormal and vj ≥ |N |M .
We call z the centering function.

Define a correspondence Z ⊆ RN × RN by Z(x) := {y | zj(x) ≤ yj ≤
M |N | for all abnormal j and |yk − zk(x)| ≤ |N |Mρ for all normal k}. We
call Z the centering correspondence.

Define the functions bD : C → [0, 1] and bU : C → [0, 1] by bD(x) =

max{0, 1− 1
2ρ

dist (x,D)} and bU(x) = max{0, 1− 10|N |
ρ

dist (x, U)}. Define

the functions λ : C → [0, 1], b1 : C → [0, 1] and b2 : C → [0, 1] by λ(x) :=
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max{0, 1−2bD(x)}, b1(x) := 2(1−bU(x)) min{bD(x), 1−bD(x)} and b2(x) :=
1− b1(x)− λ(x). Notice that max{0, 1− 2bD(x)}+ 2 min{bD(x), 1− bD(x)}
is equal to 1 if bD(x) ≤ 1/2 and equal to 2 − 2bD(x) ≤ 1 if bD(x) ≥ 1/2, so
that b2 is well defined.

Define π1 : RN × [0, 1]N → RN and π2 : RN × [0, 1]N → [0, 1]N to be the
canonical projections. Define the functions ψ1 : C → RN and ψ2 : C → RN

by ψ1(x) := π1 ◦ φ−1(x) and ψ2(x) := f(π1 ◦ φ−1(x), π2 ◦ φ−1(x)).
Define J : C × [0, 1] → E × E by

J(x, t) := (1− t)(x, x) + tλ(x)(ψ1(x), ψ2(x)) + tb1(x)(x, z(x)) + tb2(x)(x, x).

Next we must define the correspondence G. For every normal j ∈ N̂
define Vj to be the set {x ∈ [−M,R + 1 + ρ]N | for every k ∈ N xk ≥ vk − ρ
and xj ≤ vj +ρ}. Similarly define the sets VO = ∪j∈N̂Vj, VD := {x | distance

(x,D) ≤ 3ρ} and V := VD ∪VO. Define a correspondence GO ⊆ VO×RN by
GO(x) = {f(x, p) | pj = 0 if x 6∈ Vj and otherwise 0 ≤ pj ≤ ρ if x ∈ Vj}. If
x ∈ VO\VD then G(x) := GO(x).

More complicated is to define G on VD. For every normal player j define
the vector uj ∈ RN by uk

j := v({j})k. For every subset A of normal players
define the set GA := {x | dist (x, convex hull ({uk

j | j ∈ A})) ≤ M |N |ρ},
a convex set. For every x ∈ V0 define A(x) = {j | x ∈ Vj}. Define a
correspondence G∗ ⊆ VO ×RN by G∗(x) = {(1− ξ)x + ξy | y ∈ GA(x), 0 ≤
ξ ≤ ρ|A(x)|}. If x ∈ VD\VO then G(x) is convex hull (Z(x) ∪ {x}). If
x ∈ VD ∩ VO then define G(x) to be convex hull (Z(x) ∪G∗(x)).

We need to show that G is compact. It suffices to show that if x ∈ V0∩VD

then GO(x) ⊆ G∗(x). This follows directly from Lemma 4.
With Assumption 5 and the small positive quantity w defined from Propo-

sition 1 (with δ = ε), we define ŵ to be ε2w|N|
5|N |2M3 and define γ to be ερ

10|N |ŵ
2.

Define the correspondence F to be J(C, 1) ∪G.
That points near the boundary of [−R − 1, R + 1]N will not be relevant

to defining the correspondence F near to cluster points of any unbounded
variation extended forward orbit is easy to believe. Harder to believe is that
the same will be true for points near to the set D (either from J(C, 1) or
from G). Indeed that is what we will show. By truncating the orbit so that it
starts at a point near to a cluster point we will get an extended forward orbit
of unbounded variation defined entirely by F0,0 and GO. The connection to
Proposition A will be established by the following lemma.
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Lemma 9: If (x, y) ∈ G and the distance from x to D is more than
3δ or (x, y) = J(α, 1) and the distance from α to D is at least 2ρ then
(x, y) ∈ Fε/3,0.

Proof: If (x, y) = J(α, 1) then by the definition of J and φ we have
(x, y) ∈ E0,0. Otherwise assume that (x, y) ∈ GO. Since xj ≥ vj − ρ for all
players j, by not quitting player j receives at least vj − ρ−M |N |ρ. On the
other hand, any player j who quits will receive a value within ρ + M |N |ρ of
vj. The rest follows by ρ + M |N |ρ < ε/6 and the definition of Vj. 2

4.5 Satisfaction

We must show that F as defined above satisfies all the conditions of Question
1. First we prove three simple lemmatta.

Until the end of this paper, if J(α, 1) = (x, y) and there is no ambiguity
then we will use the notations λ := λ(α), b1 := b1(α), b2 := b2(α), x =
(1 − λ)α + λβ with φ(β, p) = α, c = f(β, p), and y = b1z(x) + b2x + λc. If
q(p) > 0 then define d := d(α) ∈ RN by c = (1− q(p))β + q(p)d.

Lemma 10: Assume that (x, y) = J(α, 1) with ρ < dist (α, D) < 2ρ. If
βj ≥ χj − ε/2 for all abnormal players then |αk| > R for some player k.

Proof:
For the sake of contradiction, assume that |αm| ≤ R for all players m,

which means by the definition of D and Lemma 8 that αj ≤ vj +2ρ for some
abnormal player j. Due to βj ≥ χj−ε/2 ≥ vj +ε/2 and Proposition 1 Player
j chose q with positive probability and there must be some other player k
such that pk ≥ ε

2M |N | and therefore αk < vk − 2ρ. This is possible only if k

is also abnormal, (otherwise x is too deep in the interior of C). But then by
switching roles, we have αl < vl − 2ρ for some player l 6= k, a contradiction
to dist (α, ∂C) < 2ρ. 2

Lemma 11: Assume that (x, p) ∈ E0,0 and φ(x, p) = α ∈ C. If pj > 0
for an abnormal j then there is a player k such that pk ≥ ŵMpj/3.

Proof: By the definition of C αk ≤ vk for at least one k 6= j. pk > 0
follows by Part 1 of Proposition 1, and also pk ≥ ŵM

3

∑
l 6=k pl ≥ ŵM

3
pj. 2

Lemma 12: If (x, y) = J(α, 1), −M/3 ≤ xl ≤ M |N | + 1 for all players
l, then |αk| > R for some player k is possible only if αk < −R and then
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λ ≥ 1− ε2

4|N |M2 .

Proof: If αk > R for some k then from Lemma 3 pk = 0 and xk ≥
R− |N |M , a contradiction.

Next consider the possibility that αk < −R for some player k. Let t equal
maxj∈N pj, and let l be such a player obtaining this maximum. We defined R

so large that t must be at least 9/10. We have that αl ≤ −5tM3|N |2
(1−t)N ε2

+ (|N | −
1)Mt+M/3 ≤ −4M3|N |2t

(1−t)N ε2
, but also αl ≤ −R+ |N |M , since otherwise it would

be impossible for αk ≤ −R for some other player k. On the other hand we
have βl ≤ vl + 2(|N |−1)Mt

3(1−t)N−1 + M/3, since otherwise Player l would prefer to

choose the move c. With xl ≥ −M/3 and λβl + (1− λ)αl = xl we are done.
2

Proposition 2: The correspondence F satisfies all the conditions of
Question 1.

Proof: J is continuous because all functions defining it are continuous.

Property 1: J(x, 0) = (x, x) for all x ∈ C follows by definition. x ∈ ∂C
implies that x ∈ D or x ∈ U . If x ∈ D J(x, t) = (x, x) follows because
b2 = 1. If x ∈ U then b1 = 0, and then regardless of the values of b2 and λ
J(x, t) = (x, x) follows by Lemma 1.

Property 3: It follows by definition.

Property 4 G ⊆ F is by definition, so we need only to prove that if
(x, y) = J(α, 1) and ||x− y|| ≤ γ then (x, y) is also in G.

Case 1; dist (α,D) ≥ 2ρ and βj > χj − ε/2 for all players j: We
have x = β and (x, y) ∈ F0,0. By Assumption 4 the p with (x, p) ∈ E0,0 and

y = f(x, p) satisfies q(p) ≤ ||y−x||
ε

≤ γ
ε

< ρ/(|N |M). It is not possible for
xj ≤ vj − ρ for any player, since otherwise from q(p) ≤ γ

ε
Player j would

prefer to choose q. Likewise from the size of q(p) if j is any player who
chooses q with positive probability then xj < vj + ρ. We have xj − vj ≥ ε/2
for all abnormal players j, and therefore every abnormal player chooses c
with certainty.

Case 2; dist (α,D) ≥ 2ρ, βj ≥ χj − ε/2 for all abnormal j, and
βk < χk − ε/2 for some normal k: Since χk ≤ vk we have βk < vk − ε/2.
q(p−k) > ε

2M
is necessary to prevent Player k from preferring the move q.
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But then by Lemma 5 yk ≥ xk + ε2

4M
, a contradiction.

Case 3; dist (α, D) ≤ ρ: By definition x = α and y = b1z(x) + b2x is in
G.

Case 4; ρ < dist (α, D) < 2ρ and b1 ≥ 1/10: If |αk| > R for some
player k then with b1 ≥ 1/10 it would follow that |yk − xk| > R/30. So
we continue with the assumption that |αk| ≤ R for all players k. This
implies that αk ≥ vk − 2ρ for all normal players k. Since zk(α) = vk − ε/2
for every normal player k, b1 ≥ 1/10 and ||x − y|| ≤ γ would imply that
ck ≥ βk + ε/20 − 20ρ for all normal players k. This is possible only if
q(p) ≥ ε

20M
. From our assumption that |αk| ≤ R for all players k, at most

only one player, an abnormal player j, can satisfy αj < vj− 2ρ. This implies

that αj ≤ vj − M2|N |
6ε

< vj − 10M
ε

. But to prevent yj − xj > γ we must have
cj < βj−M/ε. If βj ≤ χj this would mean that by quitting Player j receives
a payoff far less than any payoff defining the game, a contradiction. On the
other hand, if βj ≥ χj then q(p−j) ≥ ε/M and there must be a second player
l with αl < vl − 2ρ, also a contradiction.

Case 5; dist (α, D) > ρ, b1 ≤ 1/10, and dist (α,U) ≤ ρ
10|N | .

dist (α, U) ≤ ρ
10|N | implies that there is a normal player k such that

|αk − vk| ≤ ρ
10|N | and that αj ≥ vj − ρ

10|N | for all j ∈ N . But then by

Lemma 7 dist (α, D) ≥ ρ implies that αj ≥ vj + 9ρ/10 for all abnormal
j. By Part 5 of Proposition 1 and the containment of U in ∂W we have
q(p) ≤ ε2ρ

40M3|N |2 . By Part 3 or Part 4 of Proposition 1 pj = 0 follows if αj or

βj is at least vj + ε2ρ
10|N |2M2 (including the case of j abnormal). Therefore from

q(p) ≤ ε2ρ
40M3|N |2 and αj ≥ vj− ρ

10|N | for all j ∈ N we have |βj−αj| ≤ ρ/(5|N |)
for all j (if pj = 0 then it follows directly from the definition of φ and if pj > 0

then it follows indirectly, from βj ≤ vj + ε2ρ
10|N |2M2 ). Furthermore pj = 0 for

any abnormal player j implies that βj ≤ αj, meaning also that xj ≤ αj.
If λ = 1 then y = f(x, p) and we are done. Otherwise with the formula

y = λq(p)d+ b1z(α)+ b2α+λ(1− q(p))β we need to represent y as λq(p)d′+
b1z

′ + (b2 + λ(1 − q(p))x for some d′ ∈ GA(x) and z′ ∈ Z(x). With x =
λβ + (1 − λ)α and λ + b1 + b2 = 1 re-write y as y = λq(p)(d + x − β) +
b1(z(α) + x − α) + (b2 + λ(1 − q(p)))x. ||β − α|| no more than ρ/5 implies
the same for ||β− x|| and ||α− x||. By Lemma 4 we have d + x− β in GA(x).
Since xj ≤ αj for every abnormal j we have z(α) + x− α in Z(x).
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Case 6; ρ < dist (α, D), βj ≤ χj − ε/2 for some abnormal j, b1 ≤
1/10, and dist (α, U) ≥ ρ

10|N | : It follows that b2 = 0 and λ ≥ 9/10. With

U ⊆ ∂W by Proposition 1 we have q(p) ≥ ρŵ
10|N | . But then by Lemma 11

we have also q(p−j) ≥ ρŵ2M
30|N | . With βj ≤ χj − ε/2 Lemma 5 implies that

yj > xj + γ, a contradiction.

Case 7; ρ < dist (α,D) < 2ρ, βj > χj − ε/2 for all abnormal j, and
dist (α, U) ≥ ρ

10|N | : Part 1 of Proposition 1 implies that q(p) ≥ ŵρ/(10|N |).
By Lemma 10 we must assume that |αk| > R for some player k.

First assume that xl is not between −M/3 and |N |M +1 for some player
l. The centering function and all payoffs for Player l in the game give values
between 1 −M/3 and |N |M . dist (α, U) ≥ ρ

10|N | and ρ < dist (α, D) would

imply that b2 = 0 and therefore |yl − xl| ≥ ŵρ/(10|N |), a contradiction.
Next assume that x ∈ [−M/3, |N |M + 1]N . By Lemma 12 we know

that αk < −R, q(p) ≥ 9/10 and λ ≥ 1 − ε2

4|N |M2 . If there is some player l

with βl ≥ 2|N |M then clearly yl − xl < M/2. Otherwise by Assumption 5
and the definition of R βl < χl − ε follows for some player l, who by our
assumption must be a normal player. But then by Lemma 5 cl > βl + ε/2
and zl(α) > αl + 1 with b2 = 0 implies that yl > xl + ε/2, a contradiction.

Property 2 With Property 4 proven, (x, x) ∈ J(C, 1) is possible only if
(x, x) ∈ G, as y = x is included in the assumption ||y − x|| < γ. Cases 2,4,
6 and 7 of the proof of Property 4 led to contradictions. Therefore we need
only consider Cases 1,3, and 5 of the above proof of Property 4.

Case 1: By Assumption 4 the corresponding p ∈ [0, 1]N must be p = 0.
Theorem 1 implies x ∈ ∂C.

Case 3: If suffices to show that x 6= z(x) for all such x. zk(x) = vk− ε/2
for any normal player k and therefore the only possibility for z(x) = x is if
xj ≤ −R for some player j. But then xj is not equal to zj(x).

Case 5: Assuming x 6∈ ∂C and dist (α, D) > ρ we have λq(p) > 0. If
there is an abnormal player j with βj < χj − ε/20 then by Lemma 4 and
||α−β|| < ρ yj > xj cannot be avoided. On the other hand if βj ≥ χj− ε/20
for all abnormal j then by Lemma 10 |αk| ≥ R for some player k. By the
assumption that α is close to U we have αk ≥ R and then yk < xk holds.

Property 5 (x, x) ∈ G for all x ∈ V follows by the definition of G, so we
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need only check that G(x) is always contractible.
If x ∈ VD then it follows because all convex sets are contractible.
If x ∈ VO\VD then demonstrating Property 5 is more difficult. Let A be

the set of normal players j satisfying |xj − vj| ≤ ρ and assume that |A| ≥ 2.
Let PA

ρ be the subset of [0, ρ]N defined by PA
ρ := {p | pj = 0 if j 6∈ A and

0 ≤ pj ≤ ρ if j ∈ A}. Define the map φx : PA
ρ → RN by φx(p) := f(x, p), and

notice that G(x) is equal to the image of φx. If there is an positive quantity
ξ > 0 such that for all pairs p1, p2 ∈ PA

ρ |φx(p1) − φx(p2)| ≥ ξ|p1 − p2|
then one shows that G(x), the image of φx, is contractible to x with the
homotopy h(y, t) := φx((1 − t)φ−1

x (y)) (as then this function is well defined
and continuous). The above inequality works with ξ = ρ, and follows by
elementary calculus, as we demonstrate now. Assume that r ∈ SQ−1 is
defined by r := φx(p1)−φx(p2)

|φx(p1)−φx(p2)| . For every i ∈ A the difference φi
x(p1)− φi

x(p2)

must equal wi · r for some vector wi ∈ RA satisfying wj
i = ∂iφx

∂j
(p) for some

p on the straight path between p1 and p2. Because the probability of any
player other than i ∈ A quitting is never more than (|N | − 1)ρ, the partial

derivative ∂iφx

∂j
throughout the domain PA

ρ is never further than |N |Mρ from

v({j})i−vi (an additional quantity ρ comes from the fact that |xi−vi| ≤ ρ).
The wj

i form a matrix W (i, j) with φx(p1) − φx(p2) = |p1 − p2|Wr, and by
Assumption 2 (and the choice of ρ) we have ||φx(p1)− φx(p2)|| ≥ ρ||p1− p2||
as desired. Finally if |A| = 1 then G(x) is a line segment.

Property 6: We will define an appropriate pair (x, y) ∈ G.

Case 1; x is within γ of U ∩Cj for some normal j and xl ≥ χl− ε/2
for all abnormal l: x is in Vj and we let Player j quit alone with probability
ρ. Since xj ≥ vj − γ for all players j, by Assumption 4 ||y − x|| is at least
ρε. If xj ≤ vj then yj ≤ vj. If xj > vj then yj < xj. Furthermore if |xk| > R
for any player k then |yk| < |xk|.

Case 2; x is within γ of U ∩Cj for some normal j, and xl < χl−ε/2
for some abnormal l: x is in Vj and we let Player j quit alone with
probability ρ. By Lemma 5 yl − xl ≥ ρε/2. The rest of the argument is
identical to Case 1.

Case 3; x is within γ of D∩Cj for some normal j, and xl < χl−ε/2
for some l: If x ∈ Vj then one could proceed as in Case 2, letting Player j
quit alone with probability ρ. Otherwise if x 6∈ Vj then we define y := z(x).
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Since zj(x) = vj − ε/2 (and the other coordinates for z are within −M and
M |N |) y = z(x) is a point of the interior of Cj at least a distance of ε/2 from
∂Cj.

Case 4; x is within γ of ∂C ∩ ∂Ck,l for some pair k, l of abnormal
players: By Lemma 8 we can replace ∂C ∩ ∂Ck,l by D ∩ ∂Ck,l and therefore
x ∈ VD. We define y := z(x). If xk ≤ vk and xl ≤ vl then y = z(x) is also in
Ck,l. If xk > vk and xl ≤ vl then γ ≥ dist (x,Ck,l) ≥ |xk−vk| = dist (y, Ck,l).

If xk > vk and xl > vl then γ ≥ dist (x, Ck,l) ≥
√

(xk − vk)2 + (xl − vl)2 =

dist (y, Ck,l). |xj| ≥ R for any j implies |yj − xj| > M . Otherwise we have
|yj − xj| ≥ ε/3 for any normal player j.

Property 7: Let xi = (1− λi)αi + λiβi, with αi = φ(βi, pi).

Claim D: The αi converge to x.

Proof of Claim D: Due to the compactness of C, by taking a convergent
subsequence we can assume that the sequence αi converges to an α not equal
to x and that the λi converge to a λ > 0. With α = φ(β, p) by the continuity
of φ−1 we have that the βi converge to β and that the pi converge to p. Given
the proof of Property 4, we can assume further (by taking a subsequence)
that either Cases 1, 3, and 5 of the proof of Property 4 applies to the entire
sequence. We can ignore Case 3, since for this case αi = xi by definition.

If Case 1 is valid for the sequence then Assumption 4 and Theorem 1
imply that the αi converge to x.

By taking a further subsequence we can assume that Case 5 but not Case
1 applies for the entire sequence, meaning that for all i ρ < dist (αi, D) < 2ρ.
Supposing that α 6= β, by Theorem 1 we can assume that p is not equal to
0. With λq(p) > 0, Lemma 5 and Lemma 11 we know that βj ≥ χj − ε/2 for
all abnormal j, since otherwise yi would be at least xi + λεŵq(p)/4 for every
large enough i. But then by Lemma 10 and the distance to U we have αk > R
for some k. This would imply that the yk

i would be less than xk
i − λq(p)M

for all sufficiently large i, a contradiction. Claim D is proven.

Notice that if x ∈ ∂C then ||z(x)− x|| ≥ ε/3 and the closed line segment
between x and z(x) is inside of Cj for a normal j if x ∈ Cj and is inside of
Cj,k for a distinct pair of abnormal j, k if x ∈ Cj,k.

With Claim D proven, consider the two cases of 1) dist (x,D) < ρ or 2)
x ∈ U and dist (x,D) ≥ ρ. In the former case for large enough i the yi−xi

||yi−xi||
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must be defined by the line segment between x and z(x). For the latter case
if all the λi are zero for sufficiently large i then the same argument applies.
Otherwise by Claim D, U ⊆ ∂W and Theorem 1 the pi converge to 0. Define
B(x) := {j | xj = vj}; by Claim D and Proposition 1 for large enough i
pj

i = 0 for all j 6∈ B(x). dist (x,D) ≥ ρ implies that xj ≥ vj + ρ for all
abnormal players j, so B(x) contains only normal players. According to the
proof of Case 1 or Case 2 of Property 6 to define a y ∈ G(x) every member
of B(x) can choose to quit alone with probability ρ and the resulting vector
will be in C with a distance of at least γ from x. Whether or not x is in VD

convergence to a member of the convex cone follows from the pi converging
to 0 and the second part of Lemma 4.

Property 8: It follows because the set C is contractible to the point
(−R,−R, . . . ,−R) ∈ RN . 2

4.6 Application

If all players were normal then one could skip Steps i through v of the fol-
lowing proposition. First we prove two more lemmatta.

Lemma 13; If (x, y) = J(α, 1), for at least one abnormal player j
βj ≥ χj − ε/2 and αj < βj, |αk| ≤ R for all players k, and xl ≥ vl − γ
for all abnormal players l, then λ ≥ 1− ε2

6M2|N | :

Proof: Since αj < βj, by Proposition 1 Player j must have chosen q
with positive probability. But with βj ≥ χj − ε/2 ≥ vj + ε/2, this is possible
only if q(p−j) ≥ ε/(2M). dist (α, D) ≥ 2ρ would imply λ = 1. To avoid
dist (α, D) ≥ 2ρ we need an abnormal player k such that pk ≥ q(p) − ε

4M

and βk ≤ vk + ε/7 (since otherwise there would be another player n with

αn < vn − 2ρ). This implies that αk < vk − M2|N |
ε

. With xk ≥ vk − γ and
xk = λβk + (1− λ)αk we are done. 2

Lemma 14: If (x, y) = J(α, 1), xl ≥ vl − γ for all abnormal players l
and xj < χj− ε/5 for an abnormal j then yj−xj ≥ λ (χj−xj− ε/10)q(p−j).

Proof:
Case 1; βj < χj − ε/10: It follows by Lemma 5 and αk ≤ |N |M .

Case 2; βj ≥ χj − ε/10 and αj < βj: By Lemma 5 with either Lemma
12 or Lemma 13 it follows that xj ≥ χj − ε/6. 2.
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Proposition 3: Any extended forward orbit of unbounded variation of
the correspondence F reaches and stays with points (x, y) ∈ F satisfying
xj ≥ χj− ε for all players j ∈ N and if J(α, 1) = (x, y) then dist (α,D) ≥ 2ρ
and if (x, y) ∈ G then x ∈ VO\VD.

Proof: By observing the second (image) part of F we know that for
every abnormal player the coordinates of the cluster points of any orbit of
unbounded variation are between 1−M/3 and M |N |, while for normal players
they are between 1−M/3 and −1 + M/3. Let (xl,i | l < Q, i = 0, 1, . . .) be
the extended forward orbit. Define the set T to be the cluster points of the
orbit, and define T ′ to be the subset of points in the orbit that are within a
distance of γ from T .

Step i; Show that if j is an abnormal player and x ∈ T then
xj ≥ vj:

Assume that (x, y) ∈ F . It suffices to show that if xj ≥ vj then yj ≥ vj

and if xj < vj then yj − xj ≥ γ(vj − xj)||y− x||. From Lemma 4 this is true
for the case of (x, y) ∈ G. Next we consider the case that (x, y) = J(α, 1).
If dist (α, D) ≤ ρ then it follows by the definition of z. So for what follows
assume that dist (α,D) > ρ.

Case 1; αj ≥ vj and xj ≥ vj: If βj ≥ χj then cj ≥ χj > vj and yj ≥ vj.
If βj < χj then cj < M/3 and αj < cj + (|N | − 1)M < |N |M and cj ≥ βj

would imply that yj ≥ xj.

Case 2; αj ≥ vj and xj < vj: It follows that βj ≤ xj and from
cj ≤ βj + 2M/3 we have that αj ≤ |N |M . Furthermore λ(vj − βj) ≥ vj − xj

holds from the equality xj = (1 − λ)αj + λβj. With βj < vj something
must prevent Player j from preferring to choose the move q, and therefore
q(p−j) ≥ vj−βj

M
. From Lemma 5 we have cj−βj ≥ q(p−j)(χ

j−βj) ≥ q(p−j)ε.
Putting everything together we get yj − xj ≥ λ(cj − βj) ≥ λq(p−j)ε ≥
ελvj−βj

M
≥ ε

M
(vj − xj).

Case 3; αj < vj and βj < χj: It follows by Lemma 5, zj(α) = vj and
Lemma 11.

Case 4; αj < vj and βj ≥ χj: If dist (α, D) ≥ 2ρ then β = x and
y = f(x, p), and the claim follows directly from Lemma 5. So now we assume
that dist (α,D) < 2ρ. By Part 2 of Proposition 1 pj > 0 and by βj ≥ vj + ε
we have q(p−j) ≥ ε/M . This implies that αk < vk − 3M2

ε
for some player
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k, of course with pk > 0. If βk ≤ M then λ ≥ 1 − ε
3M

follows and Lemma
5 implies that yj ≥ χj − ε/3 > vj. If βk ≥ M then q(p−k) ≥ 1/2 and
αl < vl −M for another l 6= k; with dist (α, D) < 2ρ we have |αm| > R for
some m ∈ N . Lemma 12 applies with αm < −R, b2 = 0, and λ ≥ 1− ε2

4|N |M2 .

yj ≥ χj − ε/3 > vj follows also by Lemma 5. Step i is proven.

Step ii; Show that if j is an abnormal player and xj ≥ χj − ε/5
for some x ∈ T ′ then all points following x in the orbit also satisfy
the same condition:

Case 1; (x, y) ∈ G: It follows by Lemma 4 and the definition of z.

Case 2; (x, y) = J(α, 1), ρ < dist (α,D) and βj ≤ χj: First notice that
βj ≤ χj implies that cj ≤ M/3 and αj ≤ N |M |. cj ≥ βj follows by Lemma
5 and then also yj ≥ xj from zj(α) = αj.

Case 3; (x, y) = J(α, 1), ρ < dist (α,D), βj ≥ χj and αj ≥ βj: cj ≥ χj

follows by Lemma 5 and then also yj ≥ χj from zj(α) ≥ αj ≥ χj.

Case 4; (x, y) = J(α, 1), ρ < dist (α,D), αj < βj, βj ≥ χj and
|αk| > R for some player k: By Lemma 5 cj ≥ βj and then yj ≥ χj − ε/5
follows by Lemma 12 and Step i.

Case 5; (x, y) = J(α, 1), ρ < dist (α,D), αj < βj, βj ≥ χj and
|αk| ≤ R for all players k: It follows by Lemma 13, Lemma 5 and Step i.

Case 6; (x, y) = J(α, 1) and dist (α, D) ≤ ρ: It follows by the definition
of the centering function, and this completes the proof of Step ii.

Step iii; Show for all x ∈ T ′ that xj ≥ χj − ε/5 for all abnormal j

If (xl,i, xl,i+1) ∈ F is defined by J(αl,i, 1) then let λl,i := λ(αl,i) be the
weight given to the strategies pl,i, should they exist. If (xl,i, xl,i) ∈ F is
defined by G then let 1−λl,i be the weight given to the centering correspon-
dence, with ql,i ∈ [0, 1] the quantity with 0 ≤ ql,i ≤ ρ|A(xl,i)| such that ql,iλl,i

is the weight given to the GA(xl,i) correspondence. If (xl,i, xl,i+1) ∈ J(C, 1)
then define (ql,i)−j to be q((pl,i)−j). Otherwise if (xl,i, xl,i+1) ∈ G define
(ql,i)−j to be ql,i (as the correspondence G uses the quitting behavior of only
normal players).

With Lemma 4, Lemma 14 and Step ii it suffices to show for every ab-
normal j that

∑
0≤l<N

∑∞
i=1 λl,i(ql,i)−j = ∞. But by Lemma 11 it suffices to

show that
∑

0≤l<N

∑∞
i=1 λl,iql,i = ∞.
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If
∑

0≤l<N

∑∞
i=1 λl,iql,i < ∞, then by unbounded variation there would

be a stage l, i after which the orbit would be defined almost entirely by
the centering function z or the centering correspondence Z. But zk(x) is
vk − ε/2 for all normal players k and all vectors x – therefore unbounded
variation would imply that after some stage l0, i0 all x in the orbit would
satisfy xk ≤ vk− ε

3
for all normal k with −M ≤ xj ≤ |N |M +ρ for all players

j. The distance from D implies that from this stage onward J(C, 1) defines
the orbit. For the stages after l0, i0 there are three cases:
Case 1) αj < −R for some player j,
Case 2) αj ≥ −R for all players j and λ < 1, or
Case 3) αj ≥ −R for all players j and λ = 1.
For Case 1) we have q(p) ≥ 9/10. For Case 2) αk ≥ vk − 2ρ and βk ≤ vk − ε

3

(from xk ≤ vk− ε/3) for all normal players k implies (by Proposition 1) that
q(p) ≥ ε/3M (to prevent any normal player from preferring the move q). For
Case 3) we have also q(p) ≥ ε/(3M) for the same reason (since β = x). In all
three cases our assumption of a finite sum implies that the λl,i must converge
to zero as l goes to infinity, so that after some stage Case 3 is not possible. It
is not possible that there is an infinite subsequence satisfying Case 1), since
−M ≤ xl ≤ M |N |+ρ for all players l and x ∈ T ′ implies that λ > 9/10. But
also an infinite subsequence satisfying Case 2) is not possible, since the λi

converging to zero would imply that there is some stage l1, i1 after l0, i0 such
that the xk

l,i stay above vk − 3ρ for all normal players k. Step iii is proven.

Since D∩{x | xj ≥ χj − ε/2 ≥ vj + ε/2 for all abnormal j}∩ [−R, R]N is
empty, we conclude that x ∈ T ′ and (x, y) ∈ G imply that dist (x,D) > 5ρ
and (x, y) ∈ GO.

Step iv; Show that if (x, y) = J(α, 1) with x ∈ T ′ and ρ < dist
(α, D) < 2ρ then that there is some j ∈ N with αj < −R:

By Lemma 3 αk ≥ R for any player k is not possible. If βj ≥ χj − ε/2
for all abnormal j then αj < −R for some player j follows by Lemma 10.
Otherwise by Step iii we must assume that αj > χj − ε/5 and βj < χj − ε/2
for some abnormal j. By Proposition 1 we have q(p−j) > ε

10M
. To avoid

αk < vk− 2ρ for some normal player k or the same for at least two abnormal
players we must assume that some abnormal player k other than j chooses
q with probability at least ε

20M
. But then we can switch roles: whether

βk ≥ χk − ε/2 or αk > χk − ε/5 there is a player other than k choosing q
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with probability at least ε
20M

, meaning that indeed αl < vl − 2ρ for at least
two distinct players l.

Step v; For every normal player j and every x ∈ T ′ show that
xj > χj − 4ε/5.

As with Step i, given a normal player j, an x ∈ T ′ and y following x in
this orbit, we will show that either xj ≥ χj−4ε/5 implies that yj ≥ χj−4ε/5
or that yj − xj ≥ γ||y − x||.

As before, this follows easily if (x, y) ∈ G and x ∈ VO, since vj ≥ χj,
the probability of someone else quitting does not exceed (|N | − 1)ρ, zj(x) =
vj − ε/2, and we must assume that xj ≥ vj − ρ. Likewise if (x, y) ∈ G and
x ∈ VD\VO then it follows by zj(x) = vj− ε/2 ≥ χj− ε/2. Likewise it follows
if (x, y) = J(α, 1) and dist (α, D) ≤ ρ. Also if (x, y) = J(α, 1) and dist
(α, D) ≥ 2ρ then β = x and it follows by Lemma 5 and vj ≥ χj.

Finally consider (x, y) = J(α, 1) and ρ <dist (α, D) < 2ρ. By Part v
αk < −R for some k, meaning that b2 = 0. λ ≥ 1− ε2

4|N |M2 follows by Lemma
12.

Case 1; βj ≤ χj − 3ε/5 and αj ≤ χj − 3ε/5: With χj ≤ vj to prevent
Player j from preferring to quit q(p−j) must be at least 9ε

10M
. yj − xj ≥

ε2/(2M) follows by b2 = 0, λ ≥ 1 − ε2

4|N |M2 , Lemma 5 and the definition of

zj(x).
Case 2; βj ≤ χj − 3ε/5 and αj > χj − 3ε/5: By the definition of φ

pj < ε2

5M2|N | . But by xk < −R for some player k we have q(p−j) ≥ 9/10. This

implies that cj ≥ βj + ε/2. βj ≤ χj − 3ε/5 implies that αj − zj(α) < |N |M
and then yj > xj + ε/4 follows from λ ≥ 1− ε2

4|N |M2 .

Case 3; βj ≥ χj − 3ε/5: Lemma 5 implies that cj ≥ χj − 3ε/5. zj(α) =
vj − ε/2 and b2 = 0 suffice for yj ≥ χj − 3ε/5.

Step vi; Show that dist (α, D) ≥ 2ρ for all α ∈ C with (x, y) =
J(α, 1) and x ∈ T ′.

For the sake of contradiction, suppose that it is not true for some α ∈ C.
By Step iv there is some player k with αk < −R. With x = (1 − λ)α + λβ
and x ∈ [−M, M |N |+1]N Lemma 3 implies that xj ≤ χj−99ε/100 for some
player j. This would be a contradiction to either Step iii or Step v. 2
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4.7 Conclusion

Theorem 2: An affirmation of Question 1 also affirms the existence of
approximate equilibria in quitting games.

Proof: We start with any quitting game with at least two players.
First, is there at least one normal player? If there are no normal players,

by Remark 2 there is an ε equilibrium of the game for every positive ε.
Otherwise, we can make Assumption 1, that there is at least one normal
player.

Second, we choose any δ > 0 and change no payoff by more than δ to
satisfy Assumption 2.

Third, we choose an ε > 0 smaller than δ and also small enough so
that all ε-normal players are normal players, namely Assumption 3. By
Proposition B and either Proposition A and Lemma A it suffices to show
with the altered game either that there exists an extended forward orbit of
Fε,0 with unbounded variation in {x | xj ≥ χj − ε for all players j} or that
there is an absorbing sequence of perfect one-shot 2ε equilibria.

Fourth, is there an absorbing sequence of perfect one-shot 2ε equilibria
generated by a stationary strategy profile? If so then we are done. Otherwise
by Remark 1 we can proceed with Assumption 4.

Fourth, is there an instant ε+ equilibrium? If so, by Proposition C the
game has a 3ε equilibrium (and also an absorbing sequence of 2ε perfect
equilibria generated by stationary strategies). Otherwise, we proceed with
Assumption 5.

With all five assumptions, the map φ, the set C (with its composing sets
Cj and Cj,k), the homotopy J , the closed neighborhood V , and the quantity
γ are defined as above. By Proposition 2 (and the affirmation of Question
1) there is an extended forward orbit of F with unbounded variation.

We can restrict ourselves to that part of the orbit that starts within a
distance of γ from a cluster point of the orbit, and the remaining part will
still be of unbounded variation. By Proposition 3 and Lemma 9 this orbit is
also an orbit of Fε,0(x) with the desired property with regard to the values
χj for all players j ∈ N . q.e.d.
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5 Related Questions

The following theorem demonstrates the intuitive basis for believing in an
affirmation of Question 1.

Theorem 3: Assume Properties 1, 2,3, and 6 of Question 1 (not neces-
sarily assuming Properties 4,5,7 and 8) and assume additionally that J(C, 1)
is the graph of a continuous function from C to Rn. The conclusion of
Question 1 is affirmed.

Proof: By Property 1 we can extend our continuous function whose
graph is J(C, 1) to a continuous function g : Rn → Rn with g(x) = x for all
x 6∈ C. Let Q be the compact set defined by the union of ∂C with the points
outside of C that are within a distance of γ from C. Let x be any member
of Q. If y ∈ F (x) ∩Q satisfying Property 6 is also in Q, then we could start
again at the point y. Otherwise, let the y in G(x) satisfying Property 6 be
in the interior of C. We look at the continuum from x to y in G(x).

Case 1; gk(y) is in C for all k ≥ 0 and gk(y) does not converge to
any point: This case is obvious.

Case 2; gk(y) is in C for all k ≥ 0 and gk(y) converges: By Property
2 it must converge to a point in ∂C, and then we can continue from this
point. A variation of γ is obtained in the motion from x to y.

Case 3; gk(y) is not in C for some k > 0:
If gk(y) is in Q, then we can continue with y (with a variation of γ from

x to y). Otherwise, assuming that gk(y) is not in Q∪C, by the continuity of
gk there is some z in the line segment from x to y such that gk(z) ∈ ∂Q\C.
We can continue with gk(z). By Property 6 either an unbounded variation
is obtained from motions to other points in Q or a variation of γ is obtained
from a motion back to the set C. 2

We believe that this proof can be generalized quite far, at least to the case
of J(C, 1) lying entirely in C ×Rn. It is the multi-dimensional complexity
of motions taking place outside of C × R which causes us to doubt that
Question 1 can be affirmed. Properties 4,5, and 7 could be very important to
affirming Question 1, as they connect G to J(C, 1). The potential importance
of Property 8 is suggested by Question 2.

With respect to Question 1, motion from points outside of C back into C

40



are problematic. It suggests that a set larger than the original contractible
C should be used to formulate an appropriate question of Discrete-Time
Viability Theory.

Question 2: Let C be any connected and compact subset of an Euclidean
space E. Let f : C → E be a continuous function such that f and the identity
map on C are homotopic and such that all the functions ft in the homotopy
(with f0 the identity, f1 = f) have the property that ft(∂C) ⊆ C.
Does there exist a forward orbit for the function f?

First consider the following example, which is not a counter-example to
Question 2. This example was shown to me by Tamas Wiandt.

Example 1: Let E be the circle and let C be the compact set of angles
between 0 and 6π

5
. Let f : C → C be the rotation by the angle 4π

5
, (namely

2/5 of the way around the circle). The function f takes both end points of C
back into C, and yet from any start in C four or less iterations of the function
f result in entering the compliment of C. Of course E is not a Euclidean
space, and the problem with translating this example to one dimensional
space is that a “point at infinity” is not allowed in an Euclidean space.

The following counter-example to Question 1 was shown to me by Mas-
simo Gobbino.

Example 2: Let (r, θ) be polar coordinates in R2, the Euclidean plane.
Let the sets A1, A2 be defined by
A1 := {(r, θ) | 1 ≤ r ≤ 2},
A2 := {(r, θ) | 2 ≤ r ≤ 3, 0 ≤ θ ≤ 6π

5
}.

Let C = A1∪A2 and define g(r) := r+3
2

if r is between 1 and 2 and g(r) := 7−r
2

if r is between 2 and 3. Define f(r, θ) := (g(r), θ + 4π
5

).
After a few iterations all points of an orbit of f will have a radius strictly

between 2 and 3. With regard to the angle we have the identical situation of
Example 1, implying that there can be no forward orbit. Lastly it is easy to
confirm the desired homotopy property through the level of radius 2.

Example 2 contrast strongly with the well know context of fixed point
theory. If C = Dn := {x ∈ Rn | ||x|| ≤ 1} and f : C → Rn is a continuous
function such that f(∂C) ⊆ C then there is a simple proof for the existence
of a fixed point of f . Let r : Rn → Dn be the nearest point retraction defined
by r(x) = x if x ∈ Dn and otherwise r(x) = x

||x|| . Let Q > 1 be so large that
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the image of f lies entirely in DQ := {x | ||x|| ≤ Q}. Consider the function
f ◦ r : DQ → DQ. By Brouwer’s Fixed Point Theorem f ◦ r has a fixed point
x. x 6∈ Dn is a contradiction, since r(x) ∈ ∂Dn = Sn−1 and f(Sn−1) ⊆ Dn.
And with x ∈ Dn we have x = f ◦ r(x) = f(x).

It would be tempting to define a correspondence F based on a quitting
game and a choice of ε > 0 so that all forward orbits must have unbounded
variation and the existence of a forward orbit implies that there is a sequence
of perfect one-shot ε equilibrium. Perhaps there is a way to do this, but the
following question and counter-example generate some doubt concerning this
approach.

Question 3: Let E be a Euclidean space and C a contractible subset of
E of the same dimension. Let G ⊆ C × E be a compact set such that
1) for every c ∈ C {y ∈ E | (c, y) ∈ G} is a non-empty convex set, and
2) for every c ∈ C all of the extremal points of G(c) := {y | (c, y) ∈ G} are
in C.
Let J : G× [0, 1] → E × E be a homotopy such that
3) for every c ∈ ∂C and (c, y) ∈ G J((c, y), t) = (c, y) for all t ∈ [0, 1] and
4) J((c, y), 0) = (c, y) for all (c, y) ∈ G.
Define F := J(G, 1) ⊆ E × E.
Does there exist a forward orbit of F?

The following example was constructed by Massimo Gobbino and myself.

Example 3: Let E be R2. Let W1 be [−10, 0]× [−10, 10] and let W2 be
[−10, 10] × [−10, 0]. Let C be W1 ∪W2. Let d : C → [0, 1] be the function
defined by d(x, y) = min{1, Euclidean distance((x, y), ∂C)}. For the set W1

define the function f1(x, y) = d(x, y)(8, 8) + (1 − d(x, y))(8,−2). Define
the correspondence F such that F (x, y) = {f1(x, y)} if (x, y) ∈ W1\W2,
F (x, y) = {(−2, 8)} if (x, y) ∈ W2\W1, and otherwise F (x, y) = convex hull
({f1(x, y), (−2, 8)}) if (x, y) ∈ W1 ∩W2.

Starting at (−2, 8), we move outside of C to (8, 8) in one step. Starting in
W2\W1, we move to (−2, 8). Starting at W1\W2, we move to W2 or outside
of C in one step. Finally, from any point of C in one step we move to either
W1\W2, W2\W1, or to the compliment of C. The homotopy property can be
satisfied by a translation of the point (0, 0) to the point (8, 8).
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