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ABSTRACT  

 

We analyse the manipulability of social choice correspondences via hyperfunctions, 

i.e., functions that pick a non-empty set of alternatives at each admissible preference 

profile over sets of alternatives. We consider a domain of lexicographic orderings of 

sets which allows only two orderings for every ordering over alternatives. We show 

that Gibbard-Satterthwaite type impossibility results prevail on this very narrow 

domain which is a subset of many restricted domains defined through standard 

axioms to extend preferences over alternatives to sets of alternatives. Hence, we are 

able to verify the robustness of the Gibbard-Satterthwaite theorem, showing that it 

holds under almost all reasonable domain restrictions. As hyperfunctions are more 

general objects than regular social choice correspondences, our impossibility results 

carry to the standard framework.  
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1. INTRODUCTION 

 

We know, thanks to Gibbard (1973) and Satterthwaite (1975), the non-existence of 

interesting non-manipulable social choice functions. This result is fairly robust. There 

is a literature, dating back to Pattanaik (1973), followed by Barberà (1977), Kelly 

(1977), Gardenfors (1978) and Feldman (1979a, 1979b), showing similar 

impossibility results for social choice rules, which are not necessarily singleton-

valued.  Their results are given in a framework where the social choice rules are 

modelled as social choice correspondences, which assign a set of alternatives to every 

preference profile over alternatives. The analysis is made under certain extension 

axioms which connect individual preferences over alternatives to sets of alternatives.  

 

There is a recent trend of carrying this analysis in a framework where the 

manipulability question is analyzed via hyperfunctions, i.e. functions that pick a non-

empty set of alternatives at each admissible preference profile over sets of 

alternatives. This approach has the advantage of being in a more general framework 

which, compared to the classical framework, allows to use a finer information about 

individual preferences over sets. For, standard social choice correspondences impose 

a strong invariance condition over social choice rules: The social outcome must be the 

same as far as individuals’ rankings over singleton sets are the same. In other words 

even if individuals change their preferences over sets, the social outcome must remain 

unchanged as far as their ordering of singleton sets remains the same. It is clear that 

hyperfunctions do not have such a restriction. Hence, they are more general social 

choice objects. As a result, every Gibbard-Satterthwaite type of impossibility result in 

the world of hyperfunctions carries to the standard world of social choice 

correspondences.  

 

Of course, if we consider social choice hyperfunctions defined over the full domain of 

preference profiles then strategy-proofness is equivalent to dictatoriality, just by the 

Gibbard-Satterthwaite theorem. Barberà, Dutta and Sen (2001) show that this 

equivalence quite robust under domain restrictions. They consider a domain of 

preferences orderings over sets defined through the idea of expected utility 

consistency. They use two versions of this concept. The former, leading to a coarser 
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domain, ends up in a Gibbard-Satterthwaite type of result: Any unanimous social 

choice hyperfunction, which is non-manipulable, must be dictatorial. The latter, 

leading to a narrower domain allows slightly more permissive result, though still of 

the Gibbard-Satterthwaite spirit: Any unanimous social choice hyperfunction, which 

is non-manipulable, must be either dictatorial or bi-dictatorial.  

 

We carry this result further and present Gibbard-Satterthwaite type of impossibility 

results for social choice hyperfunctions defined over domains restricted through 

extension axioms which assign to every ordering over alternatives the set of 

acceptable orderings over sets. We start by showing that a Gibbard-Satterthwaite type 

of impossibility result prevails under a lexicographic extension axiom which allows 

only two orderings over sets for every ordering over alternatives. This lexicographic 

domain is very narrow and is a subset of many domains defined through standard 

extension axioms. Hence, we are able to state our impossibility result for all 

“reasonable” restricted domains, including those obtained through extension axioms 

such as those used by Gardenfors (1976) and Kelly (1977).  

 

After introducing some preliminaries in Section 2, we give the main impossibility 

result in Section 3 which states a Gibbard-Satterthwaite type result for our 

lexicographic domain. Section 4 generalizes this impossibility to the superdomains of 

the domain considered in the previous section. Section 5 makes some closing 

remarks, relating our results to the previous ones in the literature. 

 

2. PRELIMINARIES 

 

Taking any two integers n and m with n ! 2 and m ! 3, we consider a society N =  

{1,…, n} confronting a set of alternatives A = "a1, a2, …, am#. We write A = 2A \ {$} 

for the set of all non-empty subsets of A.  

 

We let % stand for the set of all complete, transitive and antisymmetric binary 

relations over A. Every & ' %(represents an individual preference on the elements of 
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A in the following manner: For any a, b ' A, a & b means “a is at least as good as b”.1 

In case the preference ordering over A is specified to belong to a particular agent i ' 

N, we will write it as &i . A typical preference profile over A will be denoted by & = 

(&1, ..., &n) ' %N.  

 

Similarly, we let ) stand for the set of all complete and transitive orderings over A. 

Every R ' ) represents an individual preference on the elements of A in the 

following manner: For any X, Y ' A, X R Y means “X is at least as good as Y”. We 

denote P and I for the strict and indifference counterparts of R.2 In case the preference 

ordering over A is specified to belong to a particular agent i ' N, we will write it as 

Ri, with its respective strict and indifference counterparts Pi and Ii . A typical 

preference profile over A will be denoted by R = (R1, ..., Rn) ' )N.  

 

Given any D * ), we define a social choice hyperfunction as a mapping ƒ: [D]N + 

A. Note that we only consider social choice hyperfunctions whose domains are 

cartesian products of some D * ), in which case we say that the social choice 

hyperfunction is defined over the domain D. A social choice hyperfunction ƒ: [D]N + 

A  is manipulable at R ' DN by some i ' N if and only if there exists R’ ' DN with Rj 

= Rj’ for all j ' N \ {i} such that ƒ(R’) Pi ƒ(R). We say that ƒ is strategy-proof if and 

only if there exists no R ' DN at which ƒ is manipulable by some i ' N. 

 

An immediate consequence of the Gibbard-Satterthwaite theorem is that when D = ), 

for social choice hyperfunctions with a range containing at least three elements, 

strategy-proofness is equivalent to dictatoriality.3 We ask whether it is possible to 

escape this equivalence by restricting the domain D through axioms which extend 

preference orderings over alternatives to sets of alternatives. 

 

                                                 
1 As & is antisymmetric, we have for any distinct a, b ' A, we have a & b , not b & a.  In other words, 
for distinct alternatives, a & b means “a is preferred to b”. 
2 For any X, Y ' A, we write X P Y if and only if X R Y holds but Y R X does not, ie., X is preferred 
to Y. In case X R Y and Y R X both hold, we write X I Y, which means indifference between X and Y. 
3 A social choice hyperfunction ƒ is dictatorial if and only if there exists d ' N such that for all R 
within the domain of ƒ we have ƒ(R) ' argmaxARd. 
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We accept that if the preference ordering over A is some & ' %, then the preference 

ordering over A can be some R '() which is “consistent” with &. Thus, we define a 

consistency map -: % + 2) \ {$} which assigns to every & ' % a non-empty set -(&) 

* ) of preference orderings on A((((consistent with &. We assume that every 

consistency map - satisfies a basic axiom A0, which we define as follows: 

 

A0: Given any & ' % and any R ' -(&), we have x & y . "x# R "y# for all x, y ' A. 

 

A0 requires that the ordering of individuals over singleton sets must be the same as 

their ordering over the basic alternatives.  Remark that A0 automatically implies that 

-(&) / -(&’) = $ for all distinct &, &’ ' %.  

 

Given any consistency map -, we write )- = 0& ' % -(&) for the set of acceptable 

preference orderings over A defined through -. Note that )- is always a strict subset 

of ), as every - is assumed to satisfy our basic axiom A0.  

 

Now take any & ' %1  Let 23(&) be an ordering over A which we call the strong 

lexicographic extension of & and define as follows: Take any two distinct X, Y '(A. 

First consider the case where 4X = 4Y = k for some k '{1,…,m-1}. Let, without loss 

of generality, X = {x1,..., xk} and Y = {y1,..., yk} such that xj & xj+1 and yj & yj+1 for all 

j '({1,…,k-1}. We have X 23(&) Y if and only if xh & yh for the smallest h '({1,…,k} 

such that xh 5 yh.  Now consider the case where 4X 5 4Y. Let, without loss of 

generality, X = {x1,..., x4X} and Y = {y1,..., y4Y} such that xj & xj+1 for all j '({1,…, 

4X-1}and yj & yj+1 for all j '({1,…, 4Y-1}. We have either xh = yh for all h '({1,…, 

min{4X, 4Y}} or there exists some h '({1,…, min{4X, 4Y}} for which (xh 5 yh. For 

the first case X 23(&) Y if and only if 4X < 4Y. For the second case, X 23(&) Y if and 

only if xh & yh for the smallest h '({1,…, min{4X, 4Y}} such that xh 5 yh. 

 

Note that at each & ' %, this stronger version of the lexicographic extension idea, 

used by Kaymak and Sanver (forthcoming), determines a unique preference ordering 

23(&) over A which is complete, transitive and antisymmetric. 
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We introduce the concept of a strong inverse lexicographic extension similarly: Take 

any & ' %. The strong inverse lexicographic extension of & is an ordering 26(&) over 

A which is defined as follows: Take any two distinct X, Y '(A. First consider the 

case where 4X = 4Y = k for some k '{1,…,m-1}. Let, without loss of generality, X = 

{x1,..., xk} and Y = {y1,..., yk} such that xj & xj+1 and yj & yj+1 for all j '({1,…,k-1}. 

We have X 26(&) Y if and only if xh & yh for the greatest h '({1,…,k} such that xh 5 

yh.  Now consider the case where 4X 5 4Y. Let, without loss of generality, X = {x1,..., 

x4X} and Y = {y1,..., y4Y} such that xj+1 & xj for all j '({1,…, 4X-1}and yj+1 & yj for all 

j '({1,…, 4Y-1}. We have either xh = yh for all h '({1,…, min{4X, 4Y}} or there 

exists some h '({1,…, min{4X, 4Y}} for which (xh 5 yh. For the first case X 26(&) Y 

if and only if 4X > 4Y. For the second case, X 26(&) Y if and only if xh & yh for the 

smallest h '({1,…, min{4X, 4Y}} such that xh 5 yh. 

 

Again at each & ' %, the strong inverse lexicographic extension determines a unique 

preference ordering 26(&) over A which is  complete, transitive and antisymmetric. 

 

We write 2(for the consistency map which at each & ' %(gives the strong 

lexicographic and inverse lexicographic extensions of &, i.e., 2(&) = {23(&), 26(&)} for 

every & ' %. We write )2 = 0& ' %2(&) for the set of acceptable preference orderings 

over A defined through 21(

 

3. THE MAIN IMPOSSIBILITY RESULT 

 

Our main impossibility result is for the domain )2(. We show that )2( is either 

dictatorial or bi-dictatorial, ie., unanimous and non-manipulable social choice 

hyperfunctions defined over )2((must be either dictatorial or bi-dictatorial.  

 

Before stating our theorem, note that under the consistency map 27(the best and worst 

elements of every agent is a singleton set. We say that a domain D is regular if and 

only if D consists of orderings having singleton sets as their unique maximal and 
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minimal elements. A regular domain D is called fully regular if every singleton set is 

a unique maximal and a unique minimal element for at least one ordering in D. 

Remark that the range of every unanimous hyperfunction defined over a fully regular 

domain contains all singleton sets. 

 

Theorem 3.1: A unanimous social choice hyperfunction ƒ: [)2]N + A is strategy-

proof if and only if ƒ is dictatorial or bi-dictatorial. 

 

The proof of the result benefits from the option set technique used by Barberà and 

Peleg (1990) as well as of the series of lemmata in Barberà, Dutta and Sen (2001). We 

give all these in our Appendix A.  

 

The domain )2 is minimal for Theorem 3.1 to hold: The impossibility result no 

longer holds when the domain of the hyperfunction is further restricted to )2+
 = 0& ' 

%("23(&)} or to )2-
  = 0& ' %("26(&)}. To see the former, consider the hyperfunction 

ƒ1: [)2+
]N  + A defined for every R ' [)2+

]N    as 

 

"a#  if #"i ' N : argmaxARi =  "a## > n/2 for some a ' A 

ƒ1(R) =  

  A otherwise 

 

One can check that ƒ1 is unanimous, non-dictatorial, neither bi-dictatorial while it is 

non-manipulable over )2+
.  

 

To see that Theorem 3.1 fails to hold over )2-
, consider the hyperfunction ƒ2: [)2-

]N  

+ A defined for every R ' [)2-
]N  as ƒ2(R)= 0i'N argmaxARi. Again one can check 

that ƒ2 is unanimous, non-dictatorial, neither bi-dictatorial while it is non-manipulable 

over )2-
.4 

 

                                                 
4 Note that ƒ1 is manipulable over )2-

 and ƒ2 is manipulable over )2+
. 
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We also wish to remark that Theorem 3.1 fails to hold when |A| = 2. Note that even 

when |A| = 2, |A| = 3. So, the range condition of the Gibbard-Satterthwaite theorem 

holds. However, when |A| = 2, both ƒ1 and ƒ2 defined over )2 are strategy-proof.  

 

Having established the dictatoriality or bi-dictatoriality of )2, we ask the implication 

of this to the superdomains of )2. Although one may be tempted to think that all 

superdomains of )2 are dictatorial or bi-dictatorial, this is not the case, as the 

following example illustrates: 

 

Consider a set of alternatives A = {a, b, c}. We know by Theorem 3.1 that any 

unanimous and strategy-proof hyperfunction defined over )2 is dictatorial or bi-

dictatorial. Now take the ordering R ' ) over A where argmaxAR = "a, b# and "a, b# 

P "a# P X for all X ' A \ ""a, b#, "a##. The following hyperfunction ƒ : [)2 0 

"R#]N→ A defined over the domain )2 0 "R# is unanimous, strategy-proof but 

neither dictatorial nor bi-dictatorial: 

 

For all R ' [)2 0 "R#]N , we have 

 

argmaxAR1     if  R1 ' )2 

ƒ(R) =   

argmax""a, b#, "a##R2   otherwise 

 

Thus, not every superdomain of )2 is dictatoral or bi-dictatorial. Of course, it is 

interesting to see which superdomains of )2 preserve its dictatorality or bi-

dictatoriality property. We explore this in the following section. 

 

4. MORE GENERAL IMPOSSIBILITIES  

 

We start by a proposition which states that once we define a dictatorial function over 

a fully regular domain, we cannot escape Gibbard-Satterthwaite type results by 

extending the domain while preserving its regularity property. 



 
9 

 

Proposition 4.1: Take any D, D’ 8 ) with D ∩ D’ = $. Assume D is fully regular 

while D’ is regular. Consider a hyperfunction ƒ : [D 0 D’]N → A which is dictatorial 

over D, ie., for all R ' DN, ƒ(R) = argmaxA Ri for some i ' N.  If ƒ is strategy-proof 

over the domain D 0 D’ then ƒ exhibits i ' N as the dictator over D 0 D’.  

 

The proof of Proposition 4.1 is given in Appendix B. 

 

The next proposition gives a similar result for bi-dictatorial domains. Before stating 

the proposition, we need a definition that we use in the statement of the proposition. 

A fully regular domain D * ) is said to satisfy condition 9 if and only if (i) and (ii) 

below hold. Take any R ' D. Let  {a} = argmaxA R. We have  

 

(i) {a} P {a, b} P {b} for all b ' A \ {a}. 

(ii) {a, b} P {c, b} for all b, c ' A \ {a}. 

 

Proposition 4.2: Let D : )2 be a fully regular domain satisfying condition 9. 

Consider a hyperfunction ƒ : DN → A which is bi-dictatorial over )2, ie., for all R ' 

[)2]N, ƒ(R) = argmaxA Ri 0 argmaxA Rj for some distinct i, j ' N.  If ƒ is strategy-

proof over the domain D then ƒ exhibits i and j as bi-dictators over D. 

 

The proof of Proposition 4.2 is given in Appendix C. 

 

Propositions 4.1 and 4.2 lead to the following theorem which states that all fully 

regular superdomains of )2 must be dictatorial or bi-dictatorial. 

 

Theorem 4.1: Take any fully regular domain D ; )2. A unanimous social choice 

hyperfunction ƒ: [D]N + A is strategy-proof only if ƒ is dictatorial or bi-dictatorial. 

 

Proof: Take D and ƒ as in the statement of the theorem. So ƒ is strategy-proof over 

)2 as well. This, by Theorem 3.1, implies the dictatoriality or bi-dictatoriality of ƒ 
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over )2. In the former case Proposition 4.1 implies the dictatoriality of ƒ over D 

while in the latter Proposition 4.2 implies the bi-dictatoriality of ƒ over D.     ■ 

 

We will use Theorem 4.1 to obtain further impossibility results. We start by showing 

that domains which render bi-dictatorial hyperfunctions non-manipulable can be 

charaterized in terms of condition 9. 

 

Proposition 4.3: Take any fully regular domain D ; )2. A bi-dictatorial 

hyperfunction ƒ: [D]N + A  is strategy-proof if and only if D satisfies condition 9. 

 

Proof: We leave to check the “if” part to the reader. To show the “only if” part, 

consider any fully regular domain D ; )2  which violates condition 9 and a bi-

dictatorial hyperfunction ƒ defined over D. Let, without loss of generality, individual 

1 and 2 be the bi-dictators. We will show that ƒ  is manipulable. Suppose part (i) of 

Condition 9 does not hold. Consider a preference profile R ' DN such that "a# P1 "b# 

P1 "a, b# for some distinct a, b ' A  where {a} = argmaxA R1. Let also argmaxA R2 = 

{b}. As ƒ is bi-dictatorial, we have ƒ(R) = "a, b#. But, since "b# P1 "a, b#, agent 1 

can manipulate ƒ at R via some R’ with argmaxA R1’ = "b# and Rj’ = Rj for all j ≠ 1. 

Now suppose part (ii) of Condition 9 does not hold. Consider a preference profile R ' 

DN such that "a# P1 "b# P1 "c# while "b, c# P1 "a, c# for some distinct a, b, c ' A  

where {a} = argmaxA R1. Let also argmaxA R2 = {c}. As ƒ is bi-dictatorial, we have 

ƒ(R) = "a, c#. But, since "b, c# P1 "a, c#, agent 1 can manipulate ƒ at R via some R’ 

with argmaxA R1’ = "b# and Rj’ = Rj for all j ≠ 1.    ■  

 

The following results are a direct corollary to Theorem 4.1 and Proposition 4.3. 

 

Theorem 4.2: Take any fully regular domain D ; )2((which violates condition 9. A 

unanimous hyperfunction ƒ: [D]N + A  is strategy-proof if and only if ƒ is dictatorial. 
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Theorem 4.3: Take any fully regular domain D ; )2((which satisfies condition 9. A 

unanimous hyperfunction ƒ: [D]N + A  is strategy-proof if and only if ƒ is dictatorial 

or bi-dictatorial. 

 

We now give our attention to various extension axioms of the literature and see 

whether the domain they induce leads to more permissive results. We introduce three 

of these right away. The first one is a dominance axiom due to Kelly (1977): 

 

D: For any two distinct X, Y '(A we have X P Y whenever 

 

< x '(X   < y '(Y    x  &  y and = x '(X = y '(Y with x & y but not y & x. 

 

We write > for the consistency map determined by D. So, for every & ' %, we 

have(((>?&@(A("R ' ) : R satisfies D#1( 

 

Our second axiom is a modified version of the monotonicity axiom of Kannai and 

Peleg (1984), used by Roth and Sotomayor (1990): 

 

M: For any X '(BA, and x, y ' A \ X we have  

 

X 0 {x} R X 0{y} if and only if x & y 

 

We write C for the consistency map determined by M. So, for every & ' %, we 

have(C?&@(A("R ' ) : R satisfies M#1( 

  

Finally, we have the Gardenfors (1976) principle defined as follows: 

 

G: For any X '(A and any y ' A \ X we have 

 

(i) X P X 0 {y} whenever x* &  y where x* = argminX  & 

(ii) X 0 {y} P X whenever y & x*  where x* = argmaxX  & 

 



 
12 

We write D for the consistency map determined by G. So, for every & ' %, we 

have(D?&@(A("R ' ) : R satisfies G#1( 

  

We write )> = 0& ' % >(&),  )C = 0& ' % C(&), )D = 0& ' % D(&)  for the domains 

determined by the respective consistency maps >7(C7(and(D1(Note that we have 

)D((8()>7(as G is stronger than D. Note also that M and G as well as M and D are 

logically independent.  

 

Theorem 4.4:  Consider any unanimous hyperfunction ƒ: [D]N + A. 

 

(i) Let D = )>. The hyperfunction ƒ is strategy-proof if and only if ƒ is 

dictatorial.  

(ii) Let D = )D. The hyperfunction ƒ is strategy-proof if and only if ƒ is 

dictatorial.  

(iii) Let D = )> / )C . The hyperfunction ƒ is strategy-proof if and only if ƒ is 

dictatorial or bi-dictatorial. 

(iv) Let D = )D / )C . The hyperfunction ƒ is strategy-proof if and only if ƒ is 

dictatorial or bi-dictatorial. 

 

Proof: We first show (i) and (ii). Check that )2 is a subset of )> and )D. Moreover 

both )> and )D are fully regular and violate Condition 9. Hence by Theorem 4.2, any 

unanimous and strategy-proof hyperfunction defined over those domains must be 

dictatorial. Needless to say dictatorial hyperfunctions are always strategy-proof. We 

now show (iii) and (iv). Again check that both )> / )C  and )D / )C  are supersets 

of )2(. Moreover they are fully regular and satisfy Condition 9. Hence by Theorem 

4.3, any unanimous and strategy-proof hyperfunction defined over those domains 

must be dictatorial or bi-dictatorial. The strategy-proofness of dictatorial functions is 

obvious and we know by Proposition 4.3 that bi-dictatorial functions defined over 

domains satisfying Condition 9 are strategy-proof.     ■ 
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We close the section by stating an impossibility result on obtaining single-peaked 

domains via reasonable extension axioms.5  

 

Theorem 4.5:  Take any consistency map - (satisfying A0) and let )- = 0& ' % -(&) 

be the set of acceptable preference orderings over A defined through -. If )- is fully 

regular, then the Cartesian product domain [)-]N is not single-peaked. 

 

Proof: Assume )- is fully regular and suppose for a contradiction that [)-]N is single 

peaked. Hence, there exists a total order T over A according to which every R ' 

[)-]N  is single peaked. Take any such R ' [)-]N. As )- is regular, the peak of every 

individual is a singleton set. Now consider the preference profile & ' %N(where 

individuals order alternatives same as their ordering of singleton sets in R, ie., Ri ' 

-(&i) for every i ' N. It is easy to check that & is single-peaked with respect to the 

total order E over A which is defined through T as follows: For all x, y ' A, x E(y if 

and only if {x} T {y}. So the domain {& ' %N((F(= R ' [)-]N with Ri ' -(&i) for all i 

' N} is single-peaked with respect to E1(However,(as )- is fully regular, this domain 

is the full domain of preference profiles over A which is well-known of not being 

single-peaked, hence giving the desired contradiction.      ■ 

 

5.  CONCLUDING REMARKS 

 

Our paper is inspired by Barberà, Dutta and Sen (2001) and it is thanks to their 

lemmata that we are able to prove our main Theorem 3.1. However our results are 

more general. Theorem 3.1 shows the dictatorality or bi-dictatoriality of a particular 

domain )2((based on some lexicographic extension idea, which is consistent with 

many standard axioms of the literature. So, by exploiting this, we show the 

dictatorality or bi-dictatorality of many superdomains of  )2. 

 

                                                 
5 There is an extensive literature about strategy-proof social choice rules defined over single-peaked 
domains, among which we can non-exhaustively list Barberà, Sonnenschein and Zhou (1991), Serizawa 
(1995), Barberà, Massò and Neme (1999), Berga (2002). 
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In particular, we know by Theorems 4.2 and 4.3 that all superdomains of )2((where 

the best and worst elements are singleton sets are dictatorial or bi-dictatorial.6 Note 

that )2((is very restricted and the orderings it contains are very mild in the sense of 

satisfying many standard extension axioms. Moreover the requirement of having 

singleton sets as best and worst elements is very natural when we conceive sets as 

first refinements from which a unique alternative will be finally chosen. That is why, 

we interpret our results as the “almost” impossibility of escaping the Gibbard-

Satterthwaite theorem for social choice hyperfunctions by domain restrictions.7  

 

In fact, many previous impossibility results of the literature where sets are interpreted 

as first refinements, can be obtained through our theorems. Going back to Gärdenfors 

(1976), Barberà (1977) and Kelly (1977), we know that our Theorem 4.4 covers the 

environment they define. Most recently, Barberà, Dutta and Sen (2001) consider 

domains restricted through the idea of conditional expected utility consistency 

(CEUC) and conditional expected utility consistency with equal probabilities 

(CEUCEP). The domain obtained through CEUC is dictatorial while the narrower one 

obtained through CEUCEP is dictatorial or bi-dictatorial. It is clear that both domains 

are fully regular and our lexicographic domain is their strict subset. Thus, our 

Theorems 4.2 and 4.3 imply the impossibility results of Barberà, Dutta and Sen 

(2001).8  

 

We also wish to note that Feldman (1980), Duggan and Schwartz (2000), Ching and 

Zhou (2002), Benoit (forthcoming) are other papers to which our work is related. 

                                                 
6 Specifically, they are dictatorial when they violate condition 91  
7 At this point, let us recall that this impossibility translates into the standard world of social choice 
correspondences. 
8 We also wish to note that some of our results in Theorem 4.4 can be obtained through Barberà, Dutta 

and Sen (2001). For, their domains obtained through CEUC and CEUCEP, which we denote 

respectively )CEUC and )CEUCEP, are related to the ones we use in this theorem. First of all, )> is a 

superset of )CEUC, hence )CEUCEP. So part (i) of Theorem 4.4 is somewhat expected, given the Barberà, 

Dutta and Sen (2001) results. Although )D is a superset of )CEUCEP, it is unrelated to )CEUC. Thus part 

(i) of Theorem 4.4 is not a direct corollary to the impossibility results of Barberà, Dutta and Sen 

(2001). Similarly, )C  is a superset of )CEUCEP, but unrelated to )CEUC. So parts (iii) and (iv) of 

Theorem 4.4 can again be seen as expected under the current literature.  
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Barberà, Dutta and Sen (2001) give an extensive discussion about the relationship of 

their results and the ones in these cited papers, which also clarifies the place of what 

we are doing here among this plethora of contributions. 
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APPENDIX A 

 

Theorem 3.1: A unanimous social choice hyperfunction ƒ: [)2]N + A is strategy-

proof if and only if ƒ is dictatorial or bi-dictatorial. 

 

Proof: We omit the proof of the “if” part which is obvious and only show the “only 

if” part. The proof comes out as a result of a series of lemmata. 

 

We start by remarking that every P ' )2 is complete, transitive and antisymmetric. 

Our first lemma is about the properties of the orderings in )2.  

 

Lemma A1: The domain )2 satisfies the following four properties:  

 

(i) For all P ' )2 and for all x, y ' A, we have "x# P "y# , "x# P "x, y# P "y#. 

 

(ii) For all P ' )2, for all X ' 2A and for all x, y ' A \ X we have and X 0 {x} P X 

0 {y} . "x# P "y#. 

 

(i) For all  x, y ' A, there exists P ' )2-
 such that argmaxA P = "x# and "x# P 

"x, y# P "y# P X for all X ' A \ ""x#, "x, y#, "y##. 

 

(ii) For all x, y ' A, there exists P ' )2+
 such that argminA P = "x# and X P "y# 

P "x, y# P "x# for all X ' A \ ""x#, "x, y#, "y##. 

 

Proof of Lemma A1: (i), (ii), (iii) and (iv) are all immediate consequences of the 

definitions of strong lexicographic and strong inverse lexicographic extensions.     ■ 

We first prove Theorem 3.1 for the case of two agents and then generalize the result 

by induction.  
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Let ƒ: [)2]2  + A be a two-person social choice hyperfunction. We write O2(P1) = 

"ƒ(P1, P2) | P2 ' )2# for the option set of individual 2 given P1 ' )2, which is the set 

of alternatives that individual 2 may enforce by pretending some of his admissible 

orderings while agent 1 is pretending P1. Similarly, for all P2 ' )2, we write O1(P2) = 

"ƒ(P1, P2) | P1 ' )2# for the option set of individual 1. The following result, to which 

we will refer as “Fact”, is an immediate consequence of the definitions of option sets 

and of strategy-proofness.  

 

Fact: If ƒ: [)2]2  + A is strategy-proof, then we have ƒ(P1, P2) ' argmax O2(P1) P2 = 

argmax O1(P2) P1  for all P1, P2 ' )2.  

 

We continue our proof by stating results about the structure of option sets. By a slight 

abuse of notation, given any X 8  A, we denote O2(P1, X) = O2(P1) ∩ X and write 

O2(P1) = O2(P1, A) for sake of consistency.  

 

The following five lemmata is for two-person social choice hyperfunctions ƒ: [)2]2 

+ A which are unanimous and strategy-proof.  For any integer k with 1 ≤ k < m, Ak =  

{X * A : 4X = k} stands for the set of all k element subsets of A. 

 

Lemma A2: For any P1, P1’ ' )2( with argmaxA P1 = argmaxA P1’ = "a# for some a 

' A we have O2(P1, A1) = O2(P1’, A1). 

 

Proof of Lemma A2: Take any P1, P1’ ' )2( as in the statement of the lemma and 

suppose O2(P1, A1) 5 O2(P1’, A1). Assume, without loss of generality, that "x# ' 

O2(P1, A1) but "x# G O2(P1’, A1). Note that "x# 5 "a# since ƒ is unanimous. Now 

pick P2 ')2-
 such that argmaxA P2 = "x# and "x# P2 "a, x# P2 "a# P2 X for all X ' A 

\ ""a#, "a, x#, "x##. We know by part (iii) of Lemma A1 that such a P2 exists. 

However, as "x# ' O2(P1, A1), in order not to contradict our Fact, we must have ƒ(P1, 

P2) = "x#. Moreover, since "a# ' O2(P1’, A1) and "x# G O2(P1’, A1), the strategy-

proofness of ƒ implies that ƒ(P1’, P2) is either "a, x# or "a#. But, as part (i) of Lemma 
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A1 says, we have "a# P1 "a, x# P1 "x#. Thus, in either case, agent 1 will manipulate ƒ 

at (P1, P2) by pretending P1’, contradicting its strategy-proofness.    ■ 

            

Lemma A2 says that the singleton sets in the option set of an agent -say agent 2- must 

be the same for all preferences of the other agent -say agent 1- where the top element 

does not change. The next lemma shows that the option set of an agent, given the 

preference of the other, must either contain one singleton or all of them. 

 

Lemma A3:  For all P1 ' )2, either O2(P1, A1) = argmaxA P1 or O2(P1, A1) = A1. 

 

Proof of Lemma A3: Take any P1 ' )2( and suppose for a contradiction that the 

statement of the lemma does not hold. Let argmaxA P1 = "a# for some a ' A. Let also 

"b#, "c# ' A \ "a# be such that "b# ' O2(P1, A1) and "c# G O2(P1, A1). Since Lemma 

A2 implies that O2(P1, A1) depends only on the maximal element of P1, we may 

assume without loss of generality that "c# P1 "b#. Using Lemma A1 (iii), take R2 ' 

)2-
 such that argmaxA P2 = "c# and "c# P2 "b, c# P2 "b# P2 X for all X ' A \ ""b#, 

"b, c#, "c##. Thus, ƒ(R1, R2) = "b, c# or  "b#, as otherwise agent 2 can manipulate at 

(P1, P2). But we know by Lemma A1 (i) that "c# P1 "b, c# P1 "b#. Since argmaxA P2 = 

"c#, by unanimity of ƒ, agent 1 can enforce "c# by pretending P1’ where argmaxA P1’ 

= "c#. Therefore, agent 1 can manipulate at (P1, P2) by pretending P1’.       ■ 

 

Now, we show that if the option set of an agent –say agent 2- contains all singletons 

for some preference ordering of agent 1, then agent 2 can enforce all singletons for 

every preference ordering of agent 1. 

 

Lemma A4: If O2(P1, A1) = A1 for some P1 ' )2, then O2(P1’, A1) = A1 for all P1’ ' 

)2. 

 

Proof of Lemma A4: Suppose, for a contradiction that O2(P1, A1) = A1 for some P1 ' 

)2 while O2(P1’, A1) 5 A1 for some P1’ ' )2.  Let argmaxA P1 = "a# for some a ' A. 

We know, by Lemma A3, that O2(P1’, A1) = "b# where "b# = argmaxA P1’. Of course, 
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"b# ≠ "a#, as otherwise it would contradict Lemma A2. Now take some c ' A \ "a, b# 

and assume, thanks to Lemma 3.2, that "a# P1 "b# P1 "c#. Pick P2 ' )2-
 with 

argmaxA P2 = "c# and "c# P2 "b, c# P2 "b# P2 X for all X ' A\ ""b#, "b, c#, "c##. 

Observe that ƒ(P1, P2) = "c# while ƒ(P1’, P2) is either "b,c# or "b#. But since we have 

"b# P1 "c, b# P1 "c# from Lemma A1 (i), agent 1 can manipulates at (P1, P2) by 

pretending P1’.       ■ 

 

Remark that O2(P1, A1) = A1 for all P1 ' )2 implies the dictatorality of agent 2 for 

regular domains. Of course O1(P2, A1) = A1 for all P2 ' )2 implies the dictatorality of 

agent 1. So given Lemma A3 and Lemma A4, either one of the agents is the dictator, 

or the only singleton in the option set of one agent is the maximal element of the other 

agent. That is, O2(P1, A1) = argmaxA P1 and O1(P2, A1) = argmaxA P2 for every P1, P2 

' )2 . We will refer to this latter case as (*). 

 

If O2(P1, A1) = argmaxA P1 and O1(P2, A1) = argmaxA P2 for every P1, P2 ' )2 , ie. (*) 

holds, then the two-element sets in the option set of an agent –say agent 2- must 

consist of those which contain the best element of agent 1. We state and show this in 

the following lemma. 

 

Lemma A5: Assume (*) holds. For any P1 ' )2  with argmaxA P1 = "a# for some a ' 

A, we must have O2(P1, A2) = ""a, b#| b ' A#. 

 

Proof of Lemma A5: Assume (*) holds. Take any P1 ' )2  with argmaxA P1 = "a# 

for some a ' A. We first show that ""a, b#| b ' A# * O2(P1, A2). Suppose that there 

exists b ' A such that "a, b# G O2(P1, A2). Pick  P2 ' )2-
 with argmaxA P2 = "b# and 

"b# P2 "a, b# P2 "a# P2 X for all X ' A \ ""a#, "a, b#, "b##. Since (*) holds, ƒ(P1,P2) 

can be neither "a# nor "b#. Moreover, ƒ(P1,P2) ≠ "a, b# also, as by assumption "a, b# 

G O2(P1, A2). Thus, ƒ(P1,P2) = X for some X with "a# P2 X. But agent 2  can then 

manipulate at (P1, P2) by pretending some P2’ with argmaxA P’2 = "a# and obtain "a#  

by the unanimity of ƒ.  

 



 
20 

We now show that O2(P1, A2) * ""a, b#| b ' A#. Suppose not, ie., there exists "b, c# 

' O2(P1, A2) where a, b, c are all distinct. Pick some P2 ' )2-
 with argmaxA P2 = "b# 

and "b# P2 "b, c# P2 "c# P2 X for all X ' A \ ""b#, "b, c#, "c##. As (*) holds, we 

have "b# G O2(P1, A1). So, it must be the case that ƒ(P1, P2) = "b, c#. But we also 

have "a, b# ' O1(P2, A2) from the result of the first part of this lemma and "a, b# P1 

"b, c# from Lemma A1 (ii). Therefore, agent 1 can manipulate at (P1, P2).    ■      

 

The following lemma shows that when (*) holds, option sets of the agents does not 

contain sets with cardinality greater than 2.       

 

Lemma A6: Assume (*) holds. For all P1 ' )2, we have O2(P1, A) = O2(P1, A1) 0 

O2(P1, A2). 

 

Proof of Lemma A6: Assume (*) holds. Take any P1 ' )2 and assume for a 

contradiction that there exists some X ' O2(P1, A) with #X > 2. Assume, without loss 

of generality, that X = "b1, b2, …, bL# is the set of smallest cardinality among those in 

O2(P1, A) with cardinality exceeding 2. In case such a set is not unique, choose one 

arbitrarily. 

 

Let argmaxA P1 = "a# for some a ' A. We first show that a ' X. Suppose not. Let X 

denote the set of all singleton subsets of X and let "b1# = argmaxX P1. We can pick  P2 

' )2-
 such that argmaxA P2 = "b1#, argminA P2 = "a# and "b1# P2 "b2#,…, P2 "bL# P2 

"x# for all x G X. Moreover, for all Y, Z ' A, if a G Y and a ' Z, then Y P2 Z. From 

Lemma A5, O2(P1, A2) = ""a, x#| x ' A#. Since X P2 "a, b1#, we must have X P2 Y 

for all Y ' O2(P1, A2). In addition, X P2 Y for all Y such that |Y| ! L. Since X is the 

set of smallest cardinality greater than 2 in O2(P1, A), this ensures that ƒ(P1, P2) = X. 

But, since "b1# P1 X and ƒ(P1’, P2) = "b1# when argmaxA P1’ = "b1#, agent 1 can 

manipulate (P1, P2) by pretending P1’. Therefore, argmaxA P1 ' X. 

 

From now on, we assume, without loss of generality, that argmaxX P1 = "b1# and 

argmaxX \ {{b1}} P1 = "b2#. Therefore, "b1, b2# P1 X. Now, pick P2 ' )2+
   with 
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(i) argmaxA P2 = "b2# and "bk# P2 "bk+1# for all k ' "2, 3,…, L-1# 

(ii)  argminX P2 = "b1# and "b1# P2 "x# for all x G X. 

 

Hence, we have "b2# G O2(R1, A) from (*) and "b1, b2# ' O2(R1, A) from Lemma 

A5. 

 

Therefore, by referring to our Fact, we claim that ƒ(P1, P2) = X, as otherwise 

individual 2 can manipulate. To see that this claim holds, suppose ƒ(P1, P2) = Y for 

some Y ≠ X. In case where #Y ! #X , there exists y ' Y such that y G X. But since P2 

' )2+
 and "b1# P2 "x# for all x G X, we can conclude that X P2 Y. The second and 

last case is that either #Y = 1 or #Y = 2, since X is set of smallest cardinality among 

those in O2(P1, A) with cardinality exceeding 2. If  #Y = 1 then Y = "b1# in order not 

to contradict (*) and X P2 "b1#. If #Y = 2, we know from Lemma A5 that b1 ' Y, ie., 

Y = "x, b1# for some x ' A and X P2 Y, independent of whatever x is. 

 

Now consider P1’ ' )2-
 with argmaxA P1’ = "b1# and "b1# P1’ "b1, b2# P1’ "b2# P1’ X 

for all X ' A \ ""b1#, "b1,b2#, "b2##. Observe that "b1# G O1(P2,A) by (*) and "b1, 

b2# ' O1(P2,A) by Lemma A5. Therefore,  by using our Fact, we must have ƒ(P1’, P2) 

= "b1, b2#, as otherwise agent 1 can manipulate. But since "b1,b2# P1 X, agent 1 can 

manipulate at (P1, P2) by pretending P1’.    ■    

 

Lemma A5 and Lemma A6 ensure the bi-dictatorality of ƒ when (*) holds. We have 

already seen, by Lemma A3 and Lemma A4, that either one of the agents is the 

dictator, or (*) holds. Thus, with two agents, any unanimous and strategy-proof ƒ 

defined over )2 is either dictatorial or bi-dictatorial.  

 

We will complete the proof by induction, showing that if the impossibility expressed 

by Theorem 3.1 holds over the domain [)2]k for some k ' {2,..., n-1}, then it also 

holds over the domain [)2]k+1. Now take any k ' {2,..., n-1} and assume unanimous 

and strategy-proof hyperfunctions defined over [)2]k have to be dictatorial or bi-
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dictatorial. Consider any unanimous and strategy-proof hyperfunction ƒ: [)2]k+1 + A. 

We will show that ƒ is dictatorial or bi-dictatorial. 

 

To see this, fix agents k, k+1 and define a hyperfunction g : [)2]k + A through ƒ as 

follows: For all (P1,..., Pk) ' [)2]k, g(P1,..., Pk) = ƒ(P1,..., Pk, Pk). In other words, at 

every k-person preference profile (P1,..., Pk), g picks what ƒ would have picked at the 

k+1 person preference profile (P1,..., Pk, Pk), which differs from (P1,..., Pk) by an 

additional agent k+1 who has the same preference as agent k. It is clear that g is 

unanimous. Moreover, no agent i ' "1, 2, …, k-1# can manipulate g as this would 

contradict the strategy-proofness of ƒ. Also observe that for all (P1,..., Pk) ' [)2]k and 

for all Pk’ ' )2, we have g(P1,..., Pk)  = ƒ(P1,..., Pk, Pk) Pk  ƒ(P1,..., Pk’, Pk) Pk ƒ(P1,..., 

Pk’, Pk’) = g(P1,..., Pk-1, Pk’). Thus, agent k cannot manipulate g either. So g is 

unanimous and strategy-proof and hence dictatorial or bi-dictatorial as we have 

assumed that unanimous and strategy-proof  hyperfunctions defined over [)2]k have 

to be dictatorial or bi-dictatorial.   

We will show that ƒ inherits the dictatoriality or bi-dictatoriality of g, in each of the 

following four exhaustive cases: 

CASE 1: g is dictatorial and some agent i who differs from k is the dictator. 

CASE 2: g is bi-dictatorial with agent k  not being one of the bi-dictators. 

CASE 3: g is dictatorial with agent k being the dictator.  

 

CASE 4: g is bi-dictatorial with agent k being one of the bi-dictators. 

 

CASE 1: We claim that if g is dictatorial and some agent i who differs from k and 

k+1 is the dictator, then the same agent i is also the dictator of ƒ. Assume, without 

loss of generality, that agent 1 is the dictator of g. Take any preference profile  P = 

(P1, P2,…, Pk+1) ' [)2]k+1 with argmaxA P1 = "a# for some a ' A. We will show that 

ƒ(P) = "a#. Pick  Pk’ ' )2 such that argminA Pk’= "a#. Check that ƒ(P1, P2,…, Pk-1, 
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Pk’, Pk’) = g (P1, P2,…, Pk-1, Pk’) = "a#, because agent 1 is the dictator of g. Since ƒ is 

strategy proof, we have ƒ(P1, P2,…, Pk-1, Pk’, Pk’)  Pk’ ƒ(P1, P2,…, Pk-1, Pk’, Pk+1) Pk’ 

ƒ(P1, P2,…, Pk-1, Pk, Pk+1). As ƒ(P1, P2,…, Pk-1, Pk’, Pk’)  = argminA Pk’= "a#, this 

implies ƒ(P) = "a#.  

 

CASE 2: We claim that if g is bi-dictatorial and agents i and j who differ from k  are 

the bi-dictators, then the same agents i and j are also the bi-dictators of ƒ. Assume, 

without loss of generality, that agents 1 and 2 are the bi-dictators of g. Take any 

preference profile  P = (P1, P2,…, Pk+1) ' [)2]k+1 with argmaxA P1 = "a# and argmaxA 

P2 = "b# for some a, b ' A. We will show that ƒ(P) = "a, b#. Pick, thanks to Lemma 

A1 (iv), Pk’ ' )2+
 with X  Pk’ "a# Pk’ "a, b# Pk’ "b# for all X ' A \ ""a#, "a, b#, 

"b##. Let Pk’ = Pk+1’. We have ƒ(P1, P2,…, Pk’, Pk+1’) = g (P1, P2,…, Pk-1, Pk’) = "a, b# 

as g is bi-dictatorial. Observe that ƒ(P1, P2,…, Pk, Pk+1’) is either "a, b# or "b#, as 

otherwise agent k can manipulate at (P1, P2,…, Pk’, Pk+1’). Similarly, ƒ(P1, P2,…, Pk, 

Pk+1)  is either "a, b# or "b#, as otherwise agent k can manipulate at (P1, P2,…, Pk’, 

Pk+1). Now, pick Pk” ' )2+
 such that X Pk” "b# Pk” "a, b# Pk” "a# for all X ' A \ 

""a#, "a, b#, "b##. Let Pk”  = Pk+1”  and observe that ƒ(P1, P2,…, Pk’’, Pk+1’’) = "a, 

b#. By applying the previous arguments, it follows that ƒ(P1, P2,…, Pk, Pk+1)  is either 

"a, b# or "a#. Thus, we have ƒ(P) is either "a, b# or {b}, as well as ƒ(P) is either "a, 

b# or {a}, thus implying ƒ(P) = "a, b#. 

CASE 3: We claim that if g is dictatorial and agent k is the dictator, then either agent 

k or agent k+1 is the dictator of ƒ or agents k and k+1 are the bi-dictators of H.  

Now, fix some (Q1, Q2, …,Qk-1) ' [)2]k-1 and define a two-person social choice 

hyperfunction h: [)2]2 + A for the two person society "k, k+1# as follows: For all 

(Pk, Pk+1) ' [)2]2, h (Pk, Pk+1) = ƒ(Q1,…,Qk-1, Pk, Pk+1). The strategy-proofness of ƒ 

implies the strategy proofness of h, while the fact that agent k is a dictator of g 

implies that h is unanimous. As we have already established Theorem 3.1 for the case 

of two agents, h is either dictatorial or bi-dictatorial.  
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We now show that 

(i) if i ' "k, k+1# is the dictator of h, then i is the dictator of ƒ. 

(ii) if k and k+1 are bi-dictators of h, then they are bi-dictators of ƒ. 

To show (i), assume without loss of generality, that k is the dictator of h. Now, fix 

some (Q1’, Q2’, …,Qk-1’) ' [)2]k-1 with Qj’ = Qj for all j ' {1,…,k-2} and Qk-1’ 5 Qk-

1 where "b# Qk-1’ "a# for some a, b ' A. Define h’: [)2]2 + A in an identical manner 

as h, i.e., for all (Pk, Pk+1) ' [)2]2, h’(Pk, Pk+1) = ƒ(Q1’, Q2’, …,Qk-1’, Pk, Pk+1). Note 

again that, h’ is dictatorial or bi-dictatorial. In particular, we claim that agent k, who is 

the dictator of h, is the dictator of h’ as well. Suppose not, i.e., either agent k+1 is the 

dictator of h’ or agents k and k+1 are bi-dictators of h’. To see that this leads to a 

contradiction, take Pk, Pk+1 ' )2 such that argmaxAPk= "b# and argmaxAPk+1 = "a#. 

Therefore, h’(Pk, Pk+1) is either "a# or "a, b#. Thus, ƒ(Q1,…,Qk-2, Qk-1’, Pk, Pk+1) = h’ 

(Pk, Pk+1) which is either "a# or "a, b#, while ƒ(Q1,…,Qk-1, Pk, Pk+1) = h (Pk, Pk+1) = 

"b#. But, since "b# Qk-1’  "a, b# Qk-1’  "a#, agent k-1 can manipulate (Q1,…,Qk-2, Qk-

1’, Pk, Pk+1) by pretending Qk-1. Hence, agent k is dictator of h’ as well. Repeating the 

argument above shows that agent k is the dictator of the function h, independent of 

the choice of (Q1, Q2, …,Qk-1) ' [)2]k-1, which implies that agent k is the dictator of 

ƒ. 

To show (ii), assume k and k+1 are bi-dictators of h. We claim that this again implies 

the bi-dictatoriality of k and k+1 independent of the choice of (Q1, Q2, …,Qk-1) ' 

[)2]k-1. To see this, take (Q1’, Q2’, …,Qk-1’) ' [)2]k-1 with Qj’ = Qj for all j ' 

{1,…,k-2} and Qk-1’ 5 Qk-1 where "a# Qk-1’ "b# as well as "a# Qk-1 "b# for some a, b 

' A. Define h’: [)2]2 + A as above. Note that, h’ is dictatorial or bi-dictatorial. In 

particular, we claim that h’ is bi-dictatorial. Suppose not, i.e., either agent k or agent 

k+1 is the dictator of h’. To see that this leads to a contradiction, take Pk, Pk+1 ' )2 

such that argmaxAPk= "a# and argmaxAPk+1 = "b#. Thus, ƒ(Q1,…,Qk-2, Qk-1’, Pk, Pk+1) 

= h’ (Pk, Pk+1) is either "a# or "b#, while ƒ(Q1,…,Qk-1, Pk, Pk+1) = h (Pk, Pk+1) = "a, b#. 

But, since "a# Qk-1 "b# and "a# Qk-1’ "b#, agent k-1 can either manipulate (Q1,…,Qk-2, 

Qk-1’, Pk, Pk+1) by pretending Qk-1 or manipulate (Q1,…,Qk-2, Qk-1, Pk, Pk+1) by 
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pretending Qk-1’. Hence, agents k and k+1 are bi-dictators of h’ as well. Repeating the 

argument above shows that agents k and k+1 are bi-dictators of the function h 

independent of the choice of (Q1, Q2, …,Qk-1) ' [)2]k-1, which implies that they are 

bi-dictators of ƒ as well. 

 

CASE 4: We claim that if g is bi-dictatorial with agent k being one of the bi-dictators 

and say, without loss of generality, some i ' {1,…, k-1} the other bi-dictator, then 

either {i, k} or {i, k+1} are bi-dictators of H. 

Now consider the k-person social choice hyperfunction g’: [)2]k + A defined 

through ƒ as follows: For all P-ik = (P1, …, Pi-1, Pi+1,…, Pk-1, Pk+1) ' [)2]k-1,  g’(P-ik, 

Pi) = H(P-i, Pi, Pk) with Pi = Pk. Therefore, we know that one of the cases 1 through 4 

must hold for g’, given that i and k are bi-dictators in g. 

We first show that neither CASE 1, nor CASE 2 can hold for g’. 

Suppose for a contradiction that CASE 1 holds for g’, i.e., there exists an agent j 

different from i and k who is the dictator in g’. First consider the case where j = k+1. 

Take P ' [)2]k+1 such that Pi = Pk with argmaxAPk = "a# and argmaxAPk+1 = "b# for 

some a, b ' A. We have ƒ(P-ki, Pi, Pk) = g’(P-ki, Pi)= "b#, since agent k+1 is the 

dictator in g’. Now take  Pk’ = Pk+1 and observe that  ƒ(P-ki, Pi, Pk’) = g(P-kk+1, Pk’) = 

"a, b#, because agents i and k are bi-dictators in g. Since, "a# Pk "a, b# Pk "b#, agent 

k can manipulate (P-ki, Pi, Pk) by pretending Pk’. Now, consider the case where j 5 

k+1. Again take P ' [)2]k+1 such that Pi = Pk with argmaxAPk = "a#, argmaxAPj = "b# 

and argmaxAPk+1 = "a# for some a, b ' A. We have ƒ(P-ki, Pi, Pk) = g’(P-ki, Pi) = "b#, 

since agent j is the dictator in g’. Now let Pk’ = Pk+1. We have ƒ(P-ki, Pi, Pk’) = g(P-k 

k+1, Pk’) = "a#, because agent i and k are bi-dictators in g. Since "a# Pk "b#, agent k 

can manipulate (P-ki, Pi, Pk) by pretending Pk’, showing that CASE 1 cannot hold for 

g’. 
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Now suppose for a contradiction that CASE 2 holds for g’ given that agent i and k are 

bi-dictators in g, i.e., there exists agents j and j’ both different from i and k such that j 

and j’ are bi-dictators of g’. Take P ' [)2]k+1 such that Pi = Pk with argmaxAPk = "a#, 

argmaxAPj = "b#, argmaxAPj’ = "a# and argmaxAPk+1 = "a# for some a, b ' A. We 

have ƒ(P-ik, Pi, Pk) = g’(P-ik, Pi)= "a, b#, since agents j and j’ are bi-dictators of g’. 

Letting Pk’ = Pk+1, we have ƒ(P-ik, Pi, Pk’) = g(P-k k+1, Pk’) = "a#, because agents i and 

k are bi-dictators in g. Since "a# Pk "a, b#, agent k can manipulate (P-ik, Pi, Pk) by 

pretending Pk’, showing that CASE 2 cannot hold for g’ either. 

Therefore, only one of the following two cases holds for g’: 

(i) Agent i is the dictator of g’. 

(ii) Agents i and j are the bi-dictators of g’, where j differs from k . 

Suppose case (i) holds. We use for g’ the arguments that we have used about g in 

CASE 3, which shows that either i or k dictates in ƒ or i and k are bi-dictators of ƒ. 

But, we have assumed that i and k are bi-dictators of g. Therefore, i and k are bi-

dictators in ƒ,.as otherwise H will not be strategy-proof. 

Suppose case (ii) holds. Since i and k are bi-dictators of g, we must have j = k+1, as 

otherwise we will contradict the strategy-proofness of H. Therefore,  i and k+1 are bi-

dictators of ƒ.  

Now, consider the k-person social choice hyperfunction g”: [)2]k + A defined 

through ƒ as follows: For all P-i k+1 = (P1, …, Pi-1, Pi+1,…, Pk-1, Pk) ' [)2]k-1,        

g’’(P-i k+1, Pk+1) = H(P-i k+1, Pk+1, Pi) with Pk+1 = Pi. By arguments identical to those 

about g’, it follows that  CASE 1  and CASE 2  will not apply to g”. So, again there 

are two cases that may hold for g”: The first one is that agent k+1 is the dictator of g”. 

But then, k+1 and i would be bi-dictators of ƒ, as otherwise we would have 

contradicted the bi-dictatoriality of i and k for g or the bi-dictatoriality of i and k+1 to 

g’. The second case is that agent k+1 and some agent j who differs from agent i are bi-

dictators of g”. Hence we are only left with the case below to which we refer as (**): 
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(**) {i, k} are bi-dictators of g, {i, k+1} are bi-dictators of g’, and {k, k+1} are bi-

dictators of g”. 

We complete the proof of Theorem 3.1 by showing that (**) cannot hold. 

Suppose (**) holds. Pick a, b, c ' A and Pk+1, Pk+1” ' )2-
 satisfying the following for 

all X ' A \ ""a#, "b#, "c#, "a, b#, "a, c#, "b, c#, "a, b, c##  

(i) "a# Pk+1 "a, b# Pk+1 "b# Pk+1 "a, c# Pk+1 "a, b, c# Pk+1 "b, c# Pk+1 "c# Pk+1 X 

(ii) "b# Pk+1” "a, b# Pk+1” "a# Pk+1” "b, c# Pk+1” "a, b, c# Pk+1” "a, c# Pk+1” 

"c# Pk+1” X 

let (Pi, Pk) ' [)2]2 be such that argmaxAPi = "c# and argmaxAPk = "a#. Let P-i k k+1 ' 

[)2]k-2  be an arbitrary profile for k-2 person society. Since i and k are bi-dictators in 

g, we have ƒ (P-i k k+1, Pi, Pk+1, Pk) = "a, c#. We claim that ƒ (P-i k k+1, Pi, Pk, Pk+1”)  

must either be "a, c#, "a, b, c# or  "b, c#. To see this, observe that if this outcome is in 

the set ""a#, "a, b#, "b##, then agent k+1 will manipulate at (P-i k k+1, Pi, Pk, Pk+1) via 

Pk+1”. If it is not in this set nor in  ""a, c#, "a, b, c#, "b, c##, then agent k+1 will 

manipulate at  (P-i k k+1, Pi, Pk Pk+1”) via Pk+1 . 

CASE  A : ƒ (P-i k k+1, Pi, Pk, Pk+1”) = "b, c#. 

Let Pi” = Pk+1” and Pi’ ' )2-
 be such that "b# Pi’ "b, c# Pi’ "c# Pi’ X for all X ' A \ 

""b#, "b, c#, "c##. Since k and k+1 are bi-dictators in g”, we must have ƒ (P-i k k+1, 

Pi”, Pk, Pk+1”) = "a, b#. We claim that  ƒ (P-i k k+1, Pi’, Pk, Pk+1”) = "a, b#. Suppose not 

. Since k+1 can force the outcome to be "a, b# by announcing Pk+1’ = Pk, and since 

"b# Pk+1’ "a, b# we must have ƒ (P-i k k+1, Pi’, Pk, Pk+1”) = "b# otherwise agent k+1 

will manipulate. But, then i will manipulate at (P-i k k+1, Pi”, Pk, Pk+1”) via Pi’. 

Therefore,  ƒ (P-i k k+1, Pi’, Pk, Pk+1”) = "a, b#. Since "b, c# Pi’ "a, b#, i will manipulate 

at (P-i k k+1, Pi’, Pk, Pk+1”) via  Pi. Thus, ƒ will not be strategy-proof if case A were to 

hold. 

CASE B : ƒ (P-i k k+1, Pi , Pk, Pk+1”) = "a, c#. 
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Let Pi” = Pk and let Pi* ' )2-
 be such that "a# Pi* "a, c# Pi* "c# Pi* X for all X ' A \ 

""a#, "a, c#, "c##. Since i and k+1 are bi-dictators in g’, we have ƒ (P-i k k+1, Pi”, Pk, 

Pk+1”) = "a, b#. By replicating the appropriate arguments in case A, it follows that ƒ 

(P-i k k+1, Pi*, Pk, Pk+1”) = "a, b#. But "a, c# Pi* "a, b#. Therefore, i will manipulate at 

(P-i k k+1, Pi*, Pk, Pk+1”) via Pi. So, ƒ would not be strategy-proof if case B were to 

hold. 

CASE C: ƒ (P-i k k+1, Pi , Pk, Pk+1”) = "a, b, c#. 

Let Pi” = Pk+1” and Pi’ ' )2+
 be such that "b# Pi’ "c# Pi’ "a# Pi’ "x# for all "x# ' A1 

\ ""a#, "b#, "c##. Since Pi’ ' )2+
 then "a, b, c# Pi’ "a, b#. Since k and k+1 are bi-

dictators in g”, we must have ƒ (P-i k k+1, Pi”, Pk, Pk+1”) = "a, b#. We claim that ƒ (P-i k 

k+1, Pi’, Pk, Pk+1”) = "a, b#. Suppose not. Since k+1 can force the outcome to be "a, b# 

by announcing Pk+1’ = Pi’ we must have ƒ (P-i k k+1, Pi’, Pk, Pk+1”) = "b#. But, then i 

will manipulate at (P-i k k+1, Pi”, Pk, Pk+1”) via Pi’ since "b# Pi’ "a, b#. Therefore, ƒ (P-i 

k k+1, Pi’, Pk, Pk+1”) = "a, b#. Hence, since "a, b, c# Pi’ "a, b#, i will manipulate at (P-i k 

k+1, Pi’, Pk, Pk+1”) via Pi. Thus, ƒ would not be strategy-proof if case C were to hold. 

Hence (**) cannot hold, which completes the proof of Theorem 3.1.    ■  
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APPENDIX B 

 

Proposition 4.1: Take any D, D’ 8 ) with D ∩ D’ = $. Assume D is fully regular 

while D’ is regular. Consider a hyperfunction ƒ : [D 0 D’]N → A which is dictatorial 

over D, ie., for all R ' DN, ƒ(R) = argmaxA Ri for some i ' N.  If ƒ is strategy-proof 

over the domain D 0 D’ then ƒ exhibits i ' N as the dictator over D 0 D’.  

 

Proof:  Take D, D’ and ƒ as in the statement of the proposition. Assume, without loss 

of generality that the dictator over D is agent 1. We will prove the proposition by a 

series of lemmata.  

 

Lemma B1: For all R ' [D 0 D’]N  with R1 ' D and #{i ' N \ {1} : Ri ' D’} = 1 we 

have ƒ(R) = argmaxA R1. 

 

Proof of Lemma B1: Take any R ' [D 0 D’]N  as in the statement of the lemma. 

Assume, without loss of generality that R2 ' D’. We want to show that ƒ(R) = {a} 

where {a} = argmaxA R1. Suppose not, ie., ƒ(R) = X for some X ' A \ ""a##. Now, 

take some R2’ ' D with argminA R2 = "a#. Such an R2’ exists as D is fully regular. 

Consider the profile R’ ' DN where Rj’ = Rj’ for all j ' N \ {2}while the preference 

of agent 2 is R2’. As R’ ' DN, we have ƒ(R’) = {a}, because agent 1 is the dictator 

over D.  But, since X P2’ {a#, agent 2 will manipulate R’ by pretending R2 ' D’, 

contradicting that ƒ is strategy-proof.      ■ 

 

Lemma B2: For all R ' [D 0 D’]N  with R1 ' D and #{i ' N \ {1} : Ri ' D’} = k for 

some k ' {1,..., n-1} we have ƒ(R) = argmaxA R1. 

 

Proof: We will prove the lemma by induction. In fact, Lemma B1 shows that Lemma 

B2 holds for k = 1. Now, suppose that we have ƒ(R) = argmaxA R1 whenever #{i ' N 

\ {1} : Ri ' D’} = k-1. We claim that ƒ(R) = argmaxA R1 whenever #{i ' N \ {1} : Ri 

' D’} = k as well. To see this, let #{i ' N \ {1} : Ri ' D’} = k and assume without 

loss of generality that {j ' N : 2 I j I  k + 1} is the set of agents whose preferences 

belong to D’. We wish to show that ƒ(R) = {a} = argmaxA R1. Suppose not, ie., ƒ(R) 
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= X for some X ' A \ ""a##. Now, take some Rk+1’ ' D with argminA Rk+1’ = "a#. 

Such an Rk+1’ exists as D is fully regular. Consider the profile R’ ' [D 0 D’]N where 

Rj’ = Rj for all j ' N \ {k+1}while the preference of agent k+1 is Rk+1’. Note that at 

the profile R’, the number of agents whose preferences belong to the set D’ is 

precisely k-1, which implies that ƒ(R’) = {a}, as agent 1 is the dictator in this case. 

But, since X Pk+1’ {a#, agent 2 will manipulate R’ by pretending R2 ' D’, 

contradicting that ƒ is strategy-proof.        ■ 

 

Lemma B3: For all R ' [D 0 D’]N  with R1 ' D’ we have ƒ(R) = argmaxA R1. 

 

Proof of Lemma B3: Take any R ' [D 0 D’]N  with R1 ' D’ and suppose for a 

contradiction that ƒ(R) = X for some X ' A \ ""a## while argmaxA R1 = {a}. Take 

any R1’ ' D with argmaxA R1’ = "a# and consider R’ ' [D 0 D’]N with Rj’ = Rj for 

all j ' N \ {1} while the preference of agent 1 is R1’. We know by Lemma B2 that 

ƒ(R’) = "a#, hence agent 1 can manipulate R by pretending R1’ ' D, contradicting 

that ƒ is strategy-proof.     ■ 

 

The fact that ƒ is dictatorial over D 0 D’ is a direct consequence of Lemmata B1, B2, 

and B3.    ■ 
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APPENDIX C 

 

Proposition 4.2: Let D : )2 be a fully regular domain satisfying condition 9. 

Consider a hyperfunction ƒ : DN → A which is bi-dictatorial over )2, ie., for all R ' 

[)2]N, ƒ(R) = argmaxA Ri 0 argmaxA Rj for some distinct i, j ' N.  If ƒ is strategy-

proof over the domain D then ƒ exhibits i and j as bi-dictators over D. 

 

Proof: Take D and ƒ as in the statement of the proposition. Assume, without loss of 

generality that the bi-dictators over )2 are agents 1 and 2. We will prove the 

proposition by a series of lemmata.  

 

Lemma C1: For all R ' DN with R1, R2 ' )2 and #{i ' N \ {1, 2} : Ri ' D \ )2} = 1 

we have ƒ(R) = argmaxA R1 0 argmaxA R2. 

 
Proof: Take any R ' DN  as in the statement of the lemma. Assume, without loss of 

generality that R3 ' D \ )2. We want to show that ƒ(R) = "a1, a2# where {a1} = 

argmaxA R1 and {a2} = argmaxA R2. Suppose for a contradiction that ƒ(R) = X for 

some X ' A \ ""a1, a2##.  

 

Consider first the case where X 5 "a2#. Take R’ ' [)2]N with Rj’ = Rj for all j ' N \ 

{3} while R3’ ' )2 is as follows: Y P3’ "a1# P3’ "a1, a2# P3’ "a2# for all Y ' A \ 

""a1#, "a1, a2#, "a2##. As R’ ' [)2]N and ƒ is bi-dictatorial over )2,  we have ƒ(R’) = 

"a1, a2#. Since X P3’ "a1,a2#, agent 3 will manipulate R’ by pretending R3 ' D \ )2, 

contradicting that ƒ is strategy-proof. 

 

Now consider the case where X 5 "a1#. Take R’ ' [)2]N with Rj’ = Rj for all j ' N \ 

{3} while R3’ ' )2 is as follows: Y P3’ "a2# P3’ "a1, a2# P3’ "a1# for all Y ' A \ 

""a1#, "a1, a2#, "a2##. As R’ ' [)2]N and ƒ is bi-dictatorial over )2,  we have ƒ(R’) = 

"a1, a2#. Since X P3’ "a1,a2#, agent 3 will manipulate R’ by pretending R3 ' D \ )2, 

contradicting that ƒ is strategy-proof. 
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X 5 "a2# and X 5 "a1# exhaust all possible cases, hence completing the proof of the 

lemma.   ■ 

 

Lemma C2: For all R ' DN with R1, R2 ' )2 and #{i ' N \ {1, 2} : Ri ' D \ )2} = k 

for some k ' {1,..., n-2}, we have ƒ(R) = argmaxA R1 0 argmaxA R2. 

 

Proof: We will prove the lemma by induction. In fact, Lemma C1 shows that Lemma 

C2 holds for k = 1. Now, suppose that we have ƒ(R) = argmaxA R1 0 argmaxA R2 

whenever #{i ' N \ {1, 2} : Ri ' D \ )2} = k-1. We claim that ƒ(R) = argmaxA R1 0 

argmaxA R2 whenever #{i ' N \ {1, 2} : Ri ' D \ )2} = k as well. To see this, let #{i 

' N \ {1, 2} : Ri ' D \ )2} = k and assume without loss of generality that {j ' N : 3 I 

j I  k + 2} is the set of agents whose preferences belong to D \ )2. We wish to show 

that ƒ(R) = "a1, a2# where {a1} = argmaxA R1 and {a2} = argmaxA R2. Suppose not, 

ie., ƒ(R) = X for some X ' A \ ""a1, a2##.  

 

Consider first the case where X 5 "a2#. Take R’ ' DN  with Rj’ = Rj for all j ' N \ 

{k+2} while Rk+2’ ' )2 is as follows: Y Pk+2’ "a1# Pk+2’ "a1, a2# Pk+2’ "a2# for all Y 

' A \ ""a1#, "a1, a2#, "a2##. Note that in R’ the number of agents whose preferences 

are in D \ )2 is precisely k-1 which, by the induction hypothesis, implies ƒ(R’) = "a1, 

a2#. Since X Pk+2’ "a1, a2#, agent k+2 can manipulate R’ by pretending Rk+2, 

contradicting that ƒ is strategy-proof. 

 

Now consider the case where X 5 "a1#. Take R’ ' DN  with Rj’ = Rj for all j ' N \ 

{k+2} while Rk+2’ ' )2 is as follows: Y Pk+2’ "a2# Pk+2’ "a1, a2# Pk+2’ "a1# for all Y 

' A \ ""a1#, "a1, a2#, "a2##. Note that in R’ the number of agents whose preferences 

are in D \ )2 is precisely k-1 which, by the induction hypothesis, implies ƒ(R’) = "a1, 

a2#. Since X Pk+2’ "a1, a2#, agent k+2 can manipulate R’ by pretending Rk+2, 

contradicting that ƒ is strategy-proof. 

 

X 5 "a2# and X 5 "a1# exhaust all possible cases, hence completing the proof of the 

lemma.   ■ 
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Lemma C3: For all R ' DN with R1 ' )2 if and only if R2 ' D \ )2 we have ƒ(R) = 

argmaxA R1 0 argmaxA R2. 

 

Proof: Take any R ' DN as in the statement of the lemma. Assume without loss of 

generality that R1 ' D \ )2 while R2 ' )2. We want to show that ƒ(R) = "a1, a2# 

where {a1} = argmaxA R1 and {a2} = argmaxA R2. Suppose not, ie., ƒ(R) = X for some 

X ' A \ ""a1, a2##. We now consider ten cases about the value that X can take: 

 

CASE 1: X = "a1#. Consider R’ ' DN  with R1’ ' )2 with argmaxA R1’ = "a1# and 

Ri’ = Ri for all i ' N \ "1#. We know by Lemma C2 that agents 1 and 2 are bi-

dictators at R’ i.e., ƒ(R’) = "a1, a2#. As R1’ ' )2, we have "a1# P1’ "a1, a2#, hence 

agent 1 can manipulate R’ by pretending R1, contradicting that ƒ is strategy-proof. 

 

CASE 2: X = "a2#. Since D’ satisfies condition 9, we have "a1# P1 "a1,a2# P1 "a2#. 

Consider R’ ' DN  with R1’ ' )2 with argmaxA R1’ = "a1# and Ri’ = Ri for all i ' N \ 

"1#. We know by Lemma C2 that agents 1 and 2 are bi-dictators at R’ i.e., ƒ(R’) = 

"a1, a2#. Since "a1,a2# P1 "a2#, agent 1 can manipulate R by pretending R1’, 

contradicting that ƒ is strategy-proof. 

 

CASE 3: X = "x# for some x ' A \ "a1, a2#. Consider R’ ' DN  with R1’ ' )2 with 

argmaxA R1’ = "x# and Ri’ = Ri for all i ' N \ "1#. We know by Lemma C2 that 

agents 1 and 2 are bi-dictators at R’ i.e., ƒ(R’) = "x, a2#. Since "x# P1’ "x, a2# P1’ 

"a2#, agent 1 can manipulate  R’ by pretending R1, contradicting that ƒ is strategy-

proof. 

 

CASE 4:  X = "a1, x# for some x ' A \ "a1, a2#. Consider R’ ' DN  with R1’ ' )2 

with argmaxA R1’ = "x# and "x# P1’"a1# P1’ "a2#, while Ri’ = Ri for all i ' N \ "1#. 

We know by Lemma C2 that agents 1 and 2 are bi-dictators at R’ i.e., ƒ(R’) = "x, a2#. 

Since "x, a1# P1’ "x, a2#, agent 1 can manipulate  R’ by pretending R1, contradicting 

that ƒ is strategy-proof. 
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CASE 5:  X = "a2, x# for some x ' A \ "a1, a2#. As D satisfies condition 9 and 

argmaxA R1 = "a1#, we have "a1, a2# P1 "a2, x#. Consider R’ ' DN  with R1’ ' )2 

with argmaxA R1’ = "a1# and Ri’ = Ri for all i ' N \ "1#. We know by Lemma C2 that 

agents 1 and 2 are bi-dictators at R’ i.e., ƒ(R’) = "a1, a2#. Hence, agent 1 can 

manipulate R by pretending R1’, contradicting that ƒ is strategy-proof. 

 

CASE 6:  X = "x, y# for some x, y ' A \ "a1, a2#. Consider R’ ' DN  with R1’ ' )2-
 

where argmaxA R1’ = "a1# and "a1# P1’ "x# P1’ "y# P1’ "a2#, while "x, y# P1’ "a1, a2#. 

Let Ri’ = Ri for all i ' N \ "1#. We know by Lemma C2 that agents 1 and 2 are bi-

dictators at R’ i.e., ƒ(R’) = "a1, a2#. Thus agent 1 can manipulate  R’ by pretending 

R1, contradicting that ƒ is strategy-proof. 

 

CASE 7:  # X > 2 with a1 ' X but a2 G X. Consider R’ ' DN  with R1’ ' )2 where 

argmaxA R1’ = "a1#, argminA R1’ = "a2# while X P1’ "a1, a2#. Let Ri’ = Ri for all i ' 

N \ "1#. We know by Lemma C2 that agents 1 and 2 are bi-dictators at R’ i.e., ƒ(R’) = 

"a1, a2#. Since X P1’ "a1, a2#, agent 1 can manipulate  R’ by pretending R1, 

contradicting that ƒ is strategy-proof. 

 

CASE 8:  # X > 2 with a2 ' X but a1 G X. Consider R’ ' DN  with R1’ ' )2+
 where 

argmaxA R1’ = "x# for some x ' X \ {a2}, while argminA R1’ = "a2#. Let Ri’ = Ri for 

all i ' N \ "1#. We know by Lemma C2 that agents 1 and 2 are bi-dictators at R’ i.e., 

ƒ(R’) = "x, a2#. Since R1’ ' )2+ 
we have X P1’ "x, a2#, thus agent 1 can manipulate 

R’ by pretending R1, contradicting that ƒ is strategy-proof. 

 

CASE 9: # X > 2 with a1, a2 G X. Consider R’ ' DN  with R1’ ' )2-
 where argmaxA 

R1’ = "a1# and argminA R1’ = "a2#. We know by Lemma C2 that agents 1 and 2 are 

bi-dictators at R’ i.e., ƒ(R’) = "a1, a2#. Since R1’ ' )2-
 we have X P1’ "a1, a2#, thus 

agent 1 can manipulate R’ by pretending R1, contradicting that ƒ is strategy-proof. 

 

CASE 10: # X > 2 with a1, a2 ' X. Consider R’ ' DN  with R1’ ' )2+
 where argmaxA 

R1’ = "a1# and argminA R1’ = "a2#. We know by Lemma C2 that agents 1 and 2 are 
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bi-dictators at R’ i.e., ƒ(R’) = "a1, a2#. Since R1’ ' )2+
, we have X P1’ "a1, a2#, thus 

agent 1 can manipulate R’ by pretending R1, contradicting that ƒ is strategy-proof. 

 

The ten cases above about the value of X are exhaustive, thus completing the proof.          

■ 

 

Lemma C4: For all R ' DN with R1, R2 ' D \ )2 we have ƒ(R) = argmaxA R1 0 

argmaxA R2. 

 

Proof: Take any R ' DN as in the statement of the lemma. We want to show that ƒ(R) 

= "a1, a2# where {a1} = argmaxA R1 and {a2} = argmaxA R2. Suppose not, ie., ƒ(R) = 

X for some X ' A \ ""a1, a2##. The value that X can belongs to one of the ten cases 

described in the proof of Lemma C3. In fact, Lemma C4 can be shown exactly in the 

same way as Lemma C3, with the sole difference that whenever Lemma C3 benefits 

from Lemma C2, Lemma C4 benefits from Lemma C3.      ■ 
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