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Abstract

We introduce a value for NTU games with coalition structure. This
value coincides with the consistent value for trivial coalition structures, and
with the Owen value for TU games with coalition structure. Furthermore,
we present two characterizations: the first one using a consistency property
and the second one using balanced contributions’ properties.

1. Introduction

Some of the most important issues of cooperative game theory are to define “good”
values, to study which interesting properties are satisfied by these values, and to
obtain axiomatic characterizations using some of these properties.
In cooperative games with transferable utility (TU games), Shapley (1953)

introduces the Shapley value. He characterizes it as the only value satisfying
efficiency, null player, symmetry, and additivity. Later, several authors obtain
new characterizations of the Shapley value using other properties. For instance,
Myerson (1980) characterizes the Shapley value using balanced contributions and
Hart and Mas-Colell (1989) characterize it by consistency.
There are several extensions of TU games. The most natural one is the ex-

tension to games without transferable utility (NTU games). Another extension
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applies to TU games with coalition structure, which study situations where play-
ers are partitioned into several groups. This model was considered by Aumann
and Dréze (1974) and Owen (1977). Of course, a third extension is to NTU
games with coalition structure. Since in TU games the Shapley value has a lot of
interesting properties, several authors propose, in these extended models, values
which are generalizations of the Shapley value.
In NTU games the Harsanyi value (Harsanyi (1963)), and the Shapley NTU

value (Shapley (1969)), are generalizations of the Shapley value. Maschler and
Owen (1989, 1992) define the consistent value for hyperplane games and NTU
games. The main idea behind this generalization is to maintain (as far as possible)
the consistency property of the Shapley value. Later, Hart and Mas-Colell (1996)
develop a bargaining mechanism which implements the consistent value. They
also characterize it by means of balanced contributions.
Owen (1977) introduces a generalization of the Shapley value, called the Owen

value, for TU games with coalition structure. He characterizes his value using ax-
ioms similar to those used by Shapley (1953). Later, Winter (1992) characterizes
the Owen value using the consistency property and Calvo, Lasaga, and Winter
(1996) do so using properties of balanced contributions.
In the volumes 2 and 3 of the handbook of game theory with economic appli-

cations, chapters 37 (”Coalition structures” by J. Greenberg), 53 (”The Shapley
value” by E. Winter), 54 (”Variations of the Shapley value” by D. Monderer and
D. Samet), and 55 (”Values of non-transferable utility games” by R. P. McLean),
it is possible to find surveys of this literature.
It is of our interest to know whether the consistent value and the Owen value

can be generalized the same way. Then, we introduce a new value, called the con-
sistent coalitional value. It can be characterized in two ways: by the consistency
property and by the balanced contributions properties. We must note that our
characterizations generalize the results about consistency obtained by Maschler
and Owen (1989) for the consistent value and Winter (1992) for the Owen value.
They also generalize the results about balanced contributions obtained by Hart
and Mas-Colell (1996) for the consistent value and Calvo et al. (1996) for the
Owen value. We believe these characterizations make the consistent coalitional
value a proper generalization of the consistent and the Owen value forNTU games
with coalition structure.
Furthermore, Vidal-Puga (2002) proposes a non-cooperative game for which

the consistent coalitional value arises as equilibrium payoff. His results are similar
to those presented by Hart and Mas-Colell (1996) for the consistent value.
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The paper is organized as follows. In Section 2 we introduce the notation and
some previous results. In Section 3 we define the consistent coalitional value. In
Section 4 we study which properties are satisfied by this value. In Section 5 we
present two axiomatic characterizations. Section 6 is devoted to some concluding
remarks. Finally, in the Appendix, we present the proofs of the results obtained
in the paper.

2. Definitions and Previous Results

Given a set A, |A| denotes the cardinal of A. Given x, y ∈ RN , we say y ≤ x when
yi ≤ xi for each i ∈ N and x ∗ y is the scalar product P

i∈N
xiyi. We denote RN+ =©

x ∈ RN : xi ≥ 0, ∀i
ª
and RN++ =

©
x ∈ RN : xi > 0,∀i

ª
. We say that x ∈ RN is

normalized if
P
i∈N

max {xi,−xi} = 1. Given λ ∈ RN a vector orthogonal to some
surface on RN , we say that λ is orthonormal if it is normalized.
A game without transferable utility, or simply an NTU game, is a pair (N, V )

where N = {1, 2, ..., n} is the set of players and V is a correspondence (character-
istic function) which assigns to each coalition S ⊂ N a subset V (S) ⊂ RS. This
subset represents all the possible payoffs that members of S can obtain for them-
selves when play cooperatively. For S ⊂ N , if there is no ambiguity, we maintain
the notation V when refering to the application V restricted to S as player set.
We also denote S = N\S.
Following Maschler and Owen (1992) we impose the next conditions on the

function V :
(A1) For each S ⊂ N , the set V (S) is comprehensive (i.e., if x ∈ V (S) and

y ∈ RS with y ≤ x, then y ∈ V (S)) and bounded above (i.e., for each x ∈ RS,
the set {y ∈ V (S) : y ≥ x} is compact).
(A2) For each S ⊂ N , the boundary of V (S), which we denote by ∂V (S), is

smooth (on each point of the boundary there exists an unique outward orthonor-
mal vector) and nonlevel (the outward vector on each point of ∂V (S) has its
coordinates positive). We denote these orthonormal vectors as λS =

¡
λSi
¢
i∈S.

(A3) These λSi are continuous functions on ∂V (S).
(A4) There exists a positive number δ, such that for each S ⊂ N and i ∈ S,

λSi > δ.
(A5) For each S ⊂ N , the origin 0S = (0, ..., 0) ∈ RS belongs to V (S).
Property (A5) is a normalization and does not affect our results.
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We denote by NTU(N) the set of NTU games over N and by NTU the set
of all NTU games.
We now introduce two particular subclasses of NTU games studied in this

paper.
We say that (N,V ) is a game with transferable utility (or TU game) if there

exists a function v : 2N → R, called the characteristic function, satisfying v (∅) =
0 and for each S ⊂ N, V (S) =

½
x ∈ RS :P

i∈S
xi ≤ v(S)

¾
. Usually we represent a

TU game as the pair (N, v) . We denote by TU (N) the set of TU games over N
and by TU the set of all TU games.
We say that (N, V ) is a hyperplane game if for all S ⊂ N there exists λS ∈ RS++

satisfying
V (S) =

©
x ∈ RS : λS ∗ x ≤ v(S)ª (2.1)

for some v : 2N → R.
Notice that each TU game is a hyperplane game (just take λSi = 1 for each

S ⊂ N and i ∈ S).
A coalition structure C over N is a partition of the player set, i.e., C =

{C1, C2, ..., Cm} ⊂ 2N where
S

Cq∈C
Cq = N and Cq ∩ Cr = ∅ when q 6= r. We

denote by (N, V, C) an NTU game (N, V )with coalition structure C over N . We
denote CNTU(N) as the set of NTU games with coalition structure over N
(CTU (N) for TU games) and by CNTU the set of all NTU games with coalition
structure (CTU for TU games).
Given S ⊂ N we denote by CS the structure C restricted to the players in S,

i.e., CS = {Cq ∩ S}Cq∈C. Notice that this implies that CS may have less or the
same number of coalitions as C. For simplicity we use C−i instead of CN\{i}.

A payoff configuration for (N,V ) is a set of payoffs x =
¡
xS
¢
S⊂N with x

S ∈
V (S) for all S ⊂ N.
Given G a subset of CNTU (or NTU), a value Γ on G is a correspondence

which assigns to each (N, V, C) ∈ G a subset Γ (N, V, C) ⊂ V (N). We say that¡
ΓS
¢
S⊂N is a payoff configuration associated to Γ if ΓS ∈ Γ (S, V, CS) for all

S ⊂ N. When several NTU games or coalition structures are involved we write
ΓS (V ) , ΓS (C) , or ΓS (V,C) instead of ΓS.
If Γ (N, V, C) is a single point of V (N) for all (N, V, C) ∈ G we say that Γ

is a single value. Of course each single value has a unique payoff configuration
associated. Usually we write ΓN instead of Γ (N,V,C) .
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We denote by φN (or φN (v)) the Shapley value (Shapley (1953)) of the TU
game (N, v).
For TU games with coalition structure φN (or φN (v, C)) denotes the Owen

value (Owen (1977)), which is a generalization of the Shapley value (when C =
{N} or C = ©{i}i∈Nª , the Owen value coincides with the Shapley value).
We now present the consistent value for NTU games following Maschler and

Owen (1989, 1992).
Let Π be the set of all permutations over N . Given π ∈ Π, we define the set

of predecessors of i under π as

P (π, i) = {j ∈ N : π(j) < π(i)}.

We call the marginal contribution of player i ∈ N to the game V in the
permutation π to

di(π) = max
n
xi :

³
(dj(π))j∈P (π,i) , xi

´
∈ V (P (π, i) ∪ {i})

o
.

So, di(π) is the maximum that player i can obtain in V (S) after his predecessors
obtain their respective dj(π)’s. We denote d(π) = (di (π))i∈N .

Given a hyperplane game (N, V ), the consistent value ΨN (orΨN(V )) (Maschler
and Owen (1989)) is the vector of expected marginal contributions, where each
π ∈ Π is equally likely, i.e.

ΨN =
1

n!

P
π∈Π

d(π).

Notice that each d(π) is an efficient vector (it belongs to the boundary of
V (N)). Since we are dealing with hyperplane games, this boundary is flat and
the consistent value is also an efficient value.
Maschler and Owen (1989) prove that, given i ∈ N,

ΨN
i =

1
|N |λNi

Ã P
j∈N\{i}

λNi Ψ
N\{j}
i + v (N)− P

j∈N\{i}
λNj Ψ

N\{i}
j

!
. (2.2)

One way to extend a hyperplane solution to the general class of NTU games
with convex V (S)’s is to pass arbitrary hyperplanes to the various sets V (S) .
These hyperplanes determine a hyperplane game to which we know the solution.
If this solution belongs to V (N) we say that this is a solution to the NTU game

5



(N, V ) . This is the way adopted by Maschler and Owen (1992) for extending the
consistent value to the class of NTU games.
Formally, given an NTU game (N, V ) we say that (N, V 0) is a supporting

hyperplane game for (N, V ) if for each S ⊂ N ,

V 0(S) =
©
x ∈ RS : λS ∗ x ≤ v(S)ª

where λS is orthonormal to the boundary of V (S) and v(S) = max
©
λS ∗ x : x ∈ V (S)ª.

Notice that V (S) ⊂ V 0(S).
Given an NTU game (N, V ) a payoff configuration x is a consistent value

for (N,V ) if there exists a supporting hyperplane game for (N, V ) such that
xS = ΨS (V 0) for all S ⊂ N. It is known that the consistent value is not a single
value.

3. The Consistent Coalitional Value

In this section we define the consistent coalitional value for NTU games. We
first define it in hyperplane games by generalizing the expression (2.2) of Ψ to
situations with coalition structure.
Given a hyperplane game (N, V, C), the consistent coalitional value ΥN (or

ΥN (V,C)) is the only vector satisfying the following two conditions:
For all Cq ∈ C, P

j∈Cq
λNj Υ

N
j =

1

|C|

" P
Cr∈C\Cq

Ã P
j∈Cq

λNj Υ
N\Cr
j

!
+ v (N)− P

Cr∈C\Cq

Ã P
j∈Cr

λNj Υ
N\Cq
j

!#
. (3.1)

For all i ∈ Cq ∈ C,

ΥNi =

1
|Cq|λNi

Ã P
j∈Cq\{i}

λNi Υ
N\{j}
i +

P
j∈Cq

λNj Υ
N
j −

P
j∈Cq\{i}

λNj Υ
N\{i}
j

!
. (3.2)

Remark 1. It is straightforward to prove thatΥ is well-defined and
P
j∈N

λNj Υ
N
j =

v (N) .
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Since Υ is a single value, there is only one consistent coalitional payoff con-
figuration Υ =

¡
ΥS
¢
S⊂N , which satisfies that Υ

S = ΥS (V,CS) ∈ ∂V (S) for all
S ⊂ N .
The generalization of Υ to NTU games is done analogously to the consistent

value. For anNTU game with coalition structure (N,V,C), we take for each coali-
tion S ⊂ N a orthonormal vector λS to the boundary of V (S). Let (N, V 0, C) be
the resulting hyperplane game and let Υ =

¡
ΥS
¢
S⊂N be the consistent coalitional

payoff configuration associated with (N, V 0, C). If ΥS ∈ V (S) for all S ⊂ N , we
say that Υ is a consistent coalitional payoff configuration.
In the next theorem we prove the existence of consistent coalitional payoff

configurations.
Theorem 1: Every NTU game has a consistent coalitional payoff configura-

tion.
Proof. See the Appendix.

If C = {N} or C = ©{i}i∈Nª the consistent coalitional value Υ coincides with
the consistent value Ψ. When C = {N}, (3.2) coincides with (2.2) and when C =©{i}i∈Nª, (3.1) coincides with (2.2) . SinceΥ is the only value in hyperplane games
satisfying (2.2) we conclude that Υ = Ψ. Now it is straightforward to conclude
that Υ = Ψ in NTU games. Moreover, for TU games with coalition structure
the consistent coalitional value coincides with the Owen value (we will see it later
in Corollary 1). Thus, the consistent coalitional value is a generalization of the
consistent value and the Owen value for NTU games with coalition structure.

We know that the Shapley value, the consistent value, and the Owen value
are obtained as an average of marginal contributions depending on equal-likely
permutations. Thus, it seems reasonable to generalize these values in the same
way.
We say that a permutation π ∈ Π is admissible with respect to C if given

i, j ∈ Cq ∈ C and k ∈ N such that π(i) < π(k) < π(j) then k ∈ Cq. We denote
by ΠC the set of all permutations over N admissible with respect to C.
Given a hyperplane game (N, V, C), the random order coalitional value zN

(or zN(V,C)) is defined as the vector of expected marginal contributions when
all the admissible permutations with respect to C are equally likely, i.e.

zN =
1

|ΠC|
X
π∈ΠC

d(π).
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We can extend, as in the case of the consistent coalitional value, the random
order coalitional z to NTU games. Using arguments similar to those used with
Υ we can prove that z is a single value in hyperplane games but not in general.
Moreover, z also generalizes the consistent value and the Owen value.
In TU games McLean (1991) defines the random order coalitional structure

values. z is the natural generalization to NTU games of McLean’s values when
all the admissible permutations are equal-likely and the rest of permutations have
probability 0. It is remarkable that Maschler and Owen (1992) even suggest the
name random order value instead of consistent value.
The definition of Υ is not so intuitive as the definition of z. Nevertheless, we

believe that Υ is a more suitable value for hyperplane games (and NTU games)
than z.We will prove later that Υ satisfies more interesting properties. Moreover,
Υ can be characterized generalizing axiomatic characterizations of the Owen value
and the consistent value.
We now compute Υ and z in the following example.
Example 1. (Owen (1972)). Let (N, V, C) be such that N = {1, 2, 3} and

V ({i}) = {xi ∈ R{i} : xi ≤ 0}, ∀i ∈ N,
V ({1, 2}) = {(x1, x2) ∈ R{1,2} : x1 + 4x2 ≤ 1, x1 ≤ 1, x2 ≤ 1

4
},

V ({1, 3}) = {(x1, x3) ∈ R{1,3} : x1 ≤ 0, x3 ≤ 0},
V ({2, 3}) = {(x2, x3) ∈ R{2,3} : x2 ≤ 0, x3 ≤ 0},

and

V (N) = {x ∈ RN : P
i∈N
xi ≤ 1;xi ≤ 1 ∀i ∈ N ; xi + xj ≤ 1 ∀i, j ∈ N}.

If C = {{1, 2}, {3}}, we obtain that

ΥN =
¡
13
32
, 13
32
, 6
32

¢
and zN =

¡
8
16
, 5
16
, 3
16

¢
.

However, for C = {{1}, {2, 3}} both values coincide because

ΥN = zN =
µ
8

16
,
5

16
,
3

16

¶
.

This example shows that Υ and z are different.
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4. Properties

In this section we present several desirable properties and study which of them
are satisfied by the consistent coalitional value.
Some of these properties are well-known in the literature of NTU games.

Others are introduced in this paper generalizing properties of TU games. We
present the definitions for single values. The definition for payoff configurations
associated with general values is straightforward.

We say that a value Γ satisfies efficiency (EF) if for each (N, V, C) ∈ CNTU,
ΓN ∈ ∂V (N) .

Remark 2. Since V satisfies (A2) we conclude that if Γ satisfies efficiency
then for each (N, V, C) ∈ CNTU and S ⊂ N, there exists λS ∈ RS++ satisfying
λS ∗ΓS = v (S) where v(S) = max©λS ∗ x : x ∈ V (S)ª . Of course, the reciprocal
statement is also true.

Given (N, V,C) ∈ CNTU we say that two players i, j ∈ N are symmetric if
two properties hold:
For each S ⊂ N\{i, j}, if x ∈ V (S ∪ {i}), yj = xi, and yk = xk for each k ∈ S

then, y ∈ V (S ∪ {j}).
For each S ⊃ {i, j} , if x ∈ V (S), yi = xj, yj = xi, and xk = yk for each

k ∈ S\ {i, j} then, y ∈ V (S).
We say that a value Γ satisfies individual symmetry (IS) if for each pair of

symmetric players i, j ∈ Cq ∈ C,

ΓNi = ΓNj .

We now present the property of covariance in hyperplane games following
Maschler and Owen (1989). Let (N,V,C) and (N, eV ,C) be two hyperplane games
such that for each S ⊂ N,

V (S) =
©
x ∈ RS : λS ∗ x ≤ v(S)ª and eV (S) = nx ∈ RS : eλS ∗ x ≤ ev (S)o .

We say that (N, V, C) and (N, eV ,C) are equivalent under a linear transforma-
tion of player i’s utility if there exist two constants a ∈ R++ and b ∈ R such that
for all S ⊂ N : eλSi = λSi

a
, eλSj = λSj if j 6= i, ev(S) = v (S) +

bλSi
a
if i ∈ S, and
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ev(S) = v (S) if i /∈ S. Notice that if (N,V,C) and ³N, eV ,C´are equivalent under
a linear transformation of player i’s utility, then ex ∈ V (S) if and only if there
exists x ∈ V (S) satisfying: exi = axi + b and exj = xj if j ∈ S \ {i}.
We say that a value Γ satisfies covariance (COV) if, given two hyperplane

games (N,V,C) and (N, eV ,C), equivalent under a linear transformation of some
player i’s utility,

ΓNi

³eV ,C´ = aΓNi (V,C) + b and

ΓNj

³eV ,C´ = ΓNj (V,C) if j ∈ N\ {i} .

Thus, covariance just states that, if we linearly change player i’s utility func-
tion, his final payoff changes the same way, while other players’ payoffs remain
constant.

Hart and Mas-Colell (1989) characterize the Shapley value as the only value
on TU games satisfying consistency and other properties. They say that a value
Γ satisfies consistency (CONS) if and only if for each (N, v) ∈ TU, S ⊂ N, and
i ∈ S,

ΓNi (v) = ΓSi (vS)

where vS (T ) = v
¡
T ∪ S¢− P

j∈S
ΓNj (v) for all T ⊂ S.

Winter (1992) extends the definition of consistency to TU games with coalition
structure. He say that a value Γ satisfies consistency (CONS) if and only if for
each (N, v, C) ∈ CTU, Cq ∈ C, S ⊂ Cq, and i ∈ S,

ΓNi (v, C) = ΓSi (vS, {S})

where vS (T ) = v
¡
T ∪ S¢−P

j∈S
ΓNj (v) for all T ⊂ S. Notice that Winter’s consis-

tency is a generalization of Hart and Mas-Colell’s consistency to TU games with
coalition structure.
Maschler and Owen (1989) show that if we define the property of consistency

of Hart and Mas-Colell (1989) in NTU games as in the TU case, there is no value
satisfying consistency and other ”basic” properties (for instance, efficiency). Thus
they provide a weaker definition of consistency for hyperplane games.
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They say that a value Γ satisfies l-consistency if for each hyperplane game
(N, V, C) with l ≤ |N | and i ∈ N,X

S⊂N,i∈S,|S|=l
ΓSi (VS) =

µ|N |− 1
l − 1

¶
ΓNi (V ) .

where VS(T ) =
n
x ∈ RT :

³
x,
³
ΓT∪Si

´
i∈S

´
∈ V ¡T ∪ S¢o for all T ⊂ S.

We now present a generalization to hyperplane games with coalition structure.

Given a value Γ, a hyperplane game (N, V, C) , and S ⊂ Cq ∈ C, the reduced
game (S, VS, {S}) is defined for each T ⊂ S as follows:

VS(T ) =
n
x ∈ RT :

³
x,
³
ΓT∪Si

´
i∈S

´
∈ V ¡T ∪ S¢o .

It is straightforward to prove that VS is the hyperplane game given, for each
T ⊂ S, by

VS(T ) =

x ∈ RT :X
i∈T

λT∪Si xi ≤ v
¡
T ∪ S¢−X

i∈S
λT∪Si ΓT∪Si

 .
We say that a value Γ satisfies l-consistency if for each hyperplane game

(N, V, C), Cq ∈ C with l ≤ |Cq| , and i ∈ Cq,X
S⊂Cq,i∈S,|S|=l

ΓSi (VS) =

µ|Cq|− 1
l − 1

¶
ΓNi (V ) .

For simplicity we denote ΓSi (VS) = ΓSi (VS, {S}) and ΓNi (V ) = ΓNi (V,C) .

We call 2-consistency bilateral consistency (BCONS).
Notice that our bilateral consistency generalizes, in the natural way, the con-

sistency of Hart and Mas-Colell (1989), the consistency of Winter (1992), and the
bilateral consistency of Maschler and Owen (1989).

Myerson (1980) characterizes the Shapley value using efficiency and balanced
contributions. He say that a value Γ satisfies balanced contributions (BC) if for
each (N, v) ∈ TU and i, j ∈ N,

ΓNi − Γ
N\{j}
i = ΓNj − Γ

N\{i}
j .

11



Calvo et al. (1996) generalize the property of balanced contributions for TU
games with a coalition structure obtaining two properties: BCAC and BCAP 1.
They say that a value Γ satisfies balanced contributions among coalitions (BCAC)

if for each (N, v, C) ∈ CTU and Cq, Cr ∈ C with q 6= r,X
j∈Cq

ΓNj −
X
j∈Cq

Γ
N\Cr
j =

X
j∈Cr

ΓNj −
X
j∈Cr

Γ
N\Cq
j .

They say that a value Γ satisfies balanced contributions among players in the
same coalition (BCAP) if for each i, j ∈ Cq ∈ C with i 6= j,

ΓNi − Γ
N\{j}
i = ΓNj − Γ

N\{i}
j .

Hart and Mas-Colell (1996) introduce the following generalization of balanced
contributions for NTU games.
They say that a value Γ satisfies average balanced contributions (ABC) if for

each (N,V ) ∈ NTU, S ⊂ N, and i ∈ S, there exists λS ∈ RS++ such thatX
j∈S\{i}

λSi

³
ΓSi − Γ

S\{j}
i

´
=
X

j∈S\{i}
λSj

³
ΓSj − Γ

S\{i}
j

´
.

We now introduce the properties of average balanced contributions among
coalitions and average balanced contributions among players in the same coalition
for NTU games with coalition structure.
We say that a value Γ satisfies average balanced contributions among coalitions

(ABCAC) if for each (N, V, C) ∈ CNTU, S ⊂ N, and C 0q = Cq ∩ S ∈ CS, there
exists λS ∈ RS++ such that

X
C0r∈CS\C0q

X
j∈C0q

λSj

³
ΓSj − Γ

S\C0r
j

´ = X
C0r∈CS\C0q

X
j∈C0r

λSj

³
ΓSj − Γ

S\C0q
j

´ .
We say that a value Γ satisfies average balanced contributions among players

in the same coalition (ABCAP) if for each (N,V,C) ∈ CNTU, S ⊂ N, C 0q =
Cq ∩ S ∈ CS, and i ∈ C 0q, there exists λS ∈ RS++ such thatX

j∈C0q\{i}
λSi

³
ΓSi − ΓS\{j}i

´
=

X
j∈C0q\{i}

λSj

³
ΓSj − ΓS\{i}j

´
.

1Even though Calvo et al. (1996) present these two balanced properties as only one, we think
that for our paper it is more natural the formulation as two properties.
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Notice that our average balanced contributions properties generalize, in the
natural way, the balanced properties of Myerson (1980), Calvo et al. (1996), and
Hart and Mas-Colell (1996).
Before studying the properties satisfied by the consistent coalitional value we

need a previous result.

Lemma 1. Given a hyperplane game (N,V,C) and i ∈ S ⊂ Cq ∈ C,

(S\ {i} , VS, {S\ {i}}) =
¡
S\ {i} , VS\{i}, {S\ {i}}

¢
.

Proof. This result is due to Maschler and Owen (1989). ¥

Maschler and Owen (1989) prove that Ψ satisfies, in hyperplane games, l-
consistency for all l = 1, ..., n. In the next proposition we obtain a similar result
for Υ.
Proposition 1. The consistent coalitional value satisfies, in hyperplane games,

l-consistency for each l with 1 ≤ l ≤ n.
Proof. See the Appendix.

In the next theorem we study which of these properties are satisfied by the
consistent coalitional value.

Theorem 2. The consistent coalitional value satisfies EF , IS, ABCAC, and
ABCAP . Moreover, in hyperplane games it also satisfies COV and BCONS.
Proof. See the Appendix.

By Theorem 2 we know that Υ satisfies, in NTU games or hyperplane games,
all the interesting properties that the Owen value satisfies in TU games and the
consistent coalitional value in NTU games or hyperplane games.

5. Axiomatic characterizations

In this section we present two axiomatic characterizations of the consistent coali-
tional value. The first one applies to the set of hyperplane games; and we present
it by using consistency. The second one applies to the set of NTU games; and we
present it by using balanced contributions.
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Hart and Mas-Colell (1989) characterize the Shapley value on the class of
TU games as the only single value satisfying EF, SYM (symmetry), COV, and
CONS. Later, Winter (1992) and Maschler and Owen (1989) extend this result
in two different ways.
Winter (1992) extends it to the class of TU games with coalition structure.

He proves that the Owen value is the only single value satisfying EF, IS, COV,
CONS, and Game Between Coalitions Property (GBCP ).
They say that a single value Γ satisfies GBCP if for each TU game (N, v, C)

and Cq ∈ C, X
i∈Cq

Γi(N, v,C) = ΓCq
¡
M, v[C], {M}¢ ,

where M = {C1, ..., Cm} and v[C] (S) = v
µ S
Cr∈S

Cr

¶
for each S ⊂ M. This prop-

erty says that the amount received by a coalition in the game played by the
coalitions (every coalition acts as a single player) coincides with the sum of the
amounts received by the members of this coalition in the original game.
This property cannot be exported to hyperplane games.
It is not difficult to check that the proof of Winter’s result about the character-

ization of the Owen value is also valid if we replace GBCP by BCAC. Then, the
Owen value is the only single value satisfying EF, IS, COV, CONS, and BCAC.
Maschler and Owen (1989) extend this result to the class of hyperplane games.

They prove that the consistent value is the only single value satisfying EF, SYM,
COV, and BCONS.
In Theorem 3 below we generalize the results of Hart and Mas-Colell (1989),

Winter (1992), and Maschler and Owen (1989) to hyperplane games with coalition
structure.

Theorem 3: The consistent coalitional value is the only single value on the
class of hyperplane games satisfying EF, IS, COV,BCONS, and ABCAC.
Proof. See the Appendix.

Remark 3. The properties used in this theorem are independent (see the
Appendix).

Myerson (1980) characterizes the Shapley value on the class of TU games as
the only single value satisfying EF and BC. Later, Calvo et al. (1996) and Hart
and Mas-Colell (1996) extend this result in two different ways.
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Calvo et al. (1996) extend it to the class of TU games with coalition structure.
They prove that the Owen value is the only single value satisfying EF, BCAP,
and BCAC.
Hart and Mas-Colell (1996) extendMyerson’s result to the class ofNTU games

proving that the consistent value is the only value satisfying EF and ABC.
In Theorem 4 below we generalize the results of Myerson (1980), Calvo et al.

(1996), and Hart and Mas-Colell (1996) to NTU games with coalition structure.

Theorem 4. The consistent coalitional value is the only value on the class of
NTU games with coalition structure satisfying EF, ABCAC, and ABCAP.
Proof. See the Appendix.

Remark 4. The properties used in this theorem are independent (see the
Appendix).

We now prove that the consistent coalitional value generalizes the Owen value.

Corollary 1: For each TU game (N, v, C) the Owen value is the only consis-
tent coalitional value.
Proof. See the Appendix.

The results obtained in this section about the consistent coalitional value and
the relation with other values can be summarized in the following table.
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Table 1

About consistency
Without coalition structure With coalition structure
TU Hyperplane TU Hyperplane
Shapley Consistent Owen Consistent

Coalitional
EF EF EF EF
SYM SYM IS IS
COV COV COV COV
CONS BCONS CONS BCONS

BCAC ABCAC
About balanced contributions

Without coalition structure With coalition structure
TU NTU TU NTU
Shapley Consistent Owen Consistent

Coalitional
EF EF EF EF
BC ABC BCAC ABCAC

BCAP ABCAP

Then, the consistent coalitional value is the right generalization of the Owen
value and the consistent value to NTU games with coalition structure if we focus
on the properties of consistency and balanced contributions of both values.

6. Concluding remarks

In this paper we present two generalizations of the Owen value and the consistent
value for NTU games with coalition structure: the consistent coalitional value
and the random order coalitional value.
We now study which of the properties introduced before are satisfied by the

random order coalitional value. In the following lemma we prove that the random
order coalitional value also satisfies (3.1) .
Lemma 2. z satisfies (3.1) in the class of hyperplane games.
Proof. See the Appendix.
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Since z and Υ are different (Example 1) we conclude that z does not satisfy
(3.2) .

Proposition 2. a) The random order coalitional value satisfies EF , IS, COV
(in hyperplane games), and ABCAC.
b) The random order coalitional value satisfy neither BCONS nor ABCAP.
Proof. a) It is trivial to see that z satisfies EF and IS.
Maschler and Owen (1989) show that, for any π ∈ Π, the vector d(π) satisfies

COV . Since z is the mean of some of these d(π)’s, we conclude that z also
satisfies COV .
By Lemma 2, z satisfies (3.1) . Now, using arguments similar to those used in

the proof of Theorem 2 for Υ, we can conclude that z also satisfies ABCAC.
b) It is as a consequence of theorems 3 and 4. ¥

In TU games, NTU games, and TU games with coalition structure the Shapley
value, the consistent value, and the Owen value have two important aspects.
Firstly, they have an intuitive definition because they can be computed through
the vector of marginal contributions. Secondly, these values can be characterized
with nice properties (namely, consistency and balanced contributions).
NTU games with coalition structure generalize the three class of games men-

tioned before. Nevertheless, in this general framework we can not find a value with
an intuitive definition and nice characterizations. The random order coalitional
value has an intuitive definition through the vector of marginal contributions but
fails in the nice characterizations. The consistent coalitional value has nice char-
acterizations but fails in the intuitive definition.
This fact is not surprising. There are results from TU games that can not

be generalized in the same way to NTU games. For instance, the consistent
value and the Shapley NTU value are generalizations of the Shapley value. But,
whereas the consistent value generalizes the characerizations of the Shapley value
based in the properties of consistency and balanced contributions, Aumann (1985)
proves that the Shapley NTU value generalizes the classical axiomatization of the
Shapley value.

NTU games with coalition structure are studied also by Winter (1991), where
he characterizes the Game Coalition Structure Value. This value is a general-
ization of both, the Harsanyi value for NTU games and the Owen value for TU
games with coalition structure. Winter characterizes his value with six axioms:
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EF, COV, conditional additivity, independence of irrelevant alternatives, inessen-
tial games, and unanimity games. We believe that the properties used in the
characterizations of Υ are more natural than the properties used by Winter. For
instance, unanimity games says that the value must coincide with the Owen value
in unanimity games.

7. Appendix

Proof of Theorem 1. The structure of the proof is analogous to the proof of
Theorem 3.3 in Maschler and Owen (1992), where they prove the existence of the
consistent value for general NTU games.
We make use of induction to prove the following claim:

Given
¡
xT
¢
TÃN with x

T ∈ RT such that, for any S Ã N , the collection¡
xT
¢
T⊂S is a consistent coalitional payoff configuration of the game

(S, V, CS), there exists xN ∈ ∂V (N) such that
¡
xT
¢
T⊂N is a consistent

coalitional payoff configuration of (N,V,C).

For n = 1 the claim is trivially true, the collection being the empty set.
Assume now the claim holds for less than n players. Thus, there exists a

collection
¡
xT
¢
TÃN such that, for any S Ã N ,

¡
xT
¢
T⊂S is a consistent coalitional

payoff configuration of the game (S, V, CS).
Assume that z ∈ ∂V (N). For each T Ã N , let λT =

¡
λTi
¢
i∈T be the orthonor-

mal vector outwards xT . Moreover,
¡
λNi
¢
i∈N is the orthonormal vector outwards

z.
Consider the hyperplane game (N, V z, C) such that, for each S ⊂ N,

V z(S) =
©
y ∈ RS : λS ∗ y ≤ v (S)ª

where v (S) = λS ∗ xS when S 6= N and v (N) = λN ∗ z.
Let

¡
ΥS(z)

¢
S⊂N be the (unique) consistent coalitional payoff configuration for

the hyperplane game (N, V z, C). By definition of V z, ΥS (z) = xS for all S Ã N ,
independently of the chosen z.
We want to show that there exists a point xN ∈ ∂V (N) such that the collection¡

xT
¢
T⊂N is a consistent coalitional payoff configuration for (N, V, C). Notice that

it is enough to prove that ΥN
¡
xN
¢
= xN . We make use of a fixed point theorem.
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Since Υ satisfies (3.1) and (3.2) and the λSi ’s are strictly positive and continuous
functions, ΥN(z) is also a continuous function of z.

We define M = max

½ |xTi |
δ
: i ∈ T Ã N

¾
, where δ is given by (A4).

Given Cq ∈ C, by (3.1),

|C| P
j∈Cq

λNj Υ
N
j (z) =

P
Cr∈C\Cq

Ã P
j∈Cq

λNj x
N\Cr
j

!
+v (N)− P

Cr∈C\Cq

Ã P
j∈Cr

λNj x
N\Cq
j

!
.

By (A5), v (N) ≥ 0, and since the λNj ’s are positive,

≥
X

Cr∈C\Cq

X
j∈Cq

λNj (−Mδ)

− X
Cr∈C\Cq

ÃX
j∈Cr

λNj (Mδ)

!
= − (|C|− 1)Mδ

X
j∈Cq

λNj −Mδ
X

j∈N\Cr
λNj

≥ − (|C|− 1)Mδ −Mδ = −|C|Mδ,

where the last inequality comes because λN is normalized.
So,

P
j∈Cq

λNj Υ
N
j (z) ≥ −Mδ for each Cq ∈ C.

Given i ∈ Cq ∈ C, by (3.2),

|Cq|ΥN
i (z) =

X
j∈Cq\{i}

x
N\{j}
i +

P
j∈Cq

λNj Υ
N
j (z)−

P
j∈Cq\{i}

λNj x
N\{i}
j

λNi

≥
X

j∈Cq\{i}
(−Mδ) +

−Mδ− P
j∈Cq\{i}

λNj Mδ

λNi

= − (|Cq|− 1)Mδ − Mδ

λNi
−

P
j∈Cq\{i}

λNj Mδ

λNi

since λNi > δ, λN is normalized, and δ < 1,

> − (|Cq|− 1)Mδ −M −M
X

j∈Cq\{i}
λNj
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> − (|Cq|− 1)Mδ −M −M
> − (|Cq|− 1)M − 2M
≥ −2|Cq|M.

So, ΥN
i (z) > −2M .

The rest of the proof is analogous to Maschler and Owen’s (1992) and we just
give a geometric description for the case n = 2.

Figure 1

We define D =
©
x ∈ RN : xi ≥ −2M for all i ∈ Nª. Given a vector z on

∂V (N) ∩ D (which is the thick line in figure 1), we have proved that ΥN (z) ∈
D; and so the point F (z) obtained by applying a projection centered at σ =
(−2M, ...,−2M) ∈ RN , also belongs to ∂V (N) ∩D (see figure 1). By applying a
standard fixed point theorem over the (continuous) function F , we find the desired
xN . ¥

Proof of Proposition 1. We proceed by induction on l. The theorem is
trivially true for l = 1. Assume it is true for at most l − 1.
If we apply the induction hypothesis to the game (N\ {j} , V, C−j) with j ∈

Cq\ {i} (if Cq = {i}, the result is trivially true for Cq) then,
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P
T⊂Cq\{j}:i∈T,|T |=l−1

ΥT
i (VT ) =

¡|Cq|−2
l−2

¢
Υ
N\{j}
i (V ) . (7.1)

We wish to prove that for each Cq ∈ C and i ∈ Cq,

lλNi
P

S⊂Cq :i∈S,|S|=l
ΓSi (VS) = lλ

N
i

¡|Cq|−1
l−1

¢
ΓNi (V ) . (7.2)

To do so, we analyze the left side of this expression. Assume that i ∈ S ⊂ Cq
and |S| = l. Applying (3.2) to (S, VS, {S}), which is also a hyperplane game, we
obtain:

lλNi Υ
S
i (VS) =

X
j∈S\{i}

λNi Υ
S\{j}
i (VS)+

X
j∈S

λNj Υ
S
j (VS)−

X
j∈S\{i}

λNj Υ
S\{i}
j (VS) .

If we compute Υ in the game VS we obtain thatX
j∈S

λNj Υ
S
j (VS) = v (N)−

X
j∈S

λNj Υ
N
j (V ) .

Hence,

lλNi Υ
S
i (VS) =

X
j∈S\{i}

λNi Υ
S\{j}
i (VS)+v (N)−

X
j∈S

λNj Υ
N
j (V )−

X
j∈S\{i}

λNj Υ
S\{i}
j (VS) .

Since there are
¡|Cq |−1
l−1

¢
possible sets S ⊂ Cq with i ∈ S and |S| = l,

lλNi
X

S⊂Cq :i∈S,|S|=l
ΥS
i (VS) =

X
S⊂Cq:i∈S,|S|=l

 X
j∈S\{i}

λNi Υ
S\{j}
i (VS)

+µ|Cq|− 1
l − 1

¶
v (N)

−
X

S⊂Cq:i∈S,|S|=l

X
j∈S

λNj Υ
N
j (V )

− X
S⊂Cq:i∈S,|S|=l

 X
j∈S\{i}

λNj Υ
S\{i}
j (VS)

 .
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Rearranging the order of summation, we have:

X
j∈Cq\{i}

 X
S⊂Cq:i,j∈S,|S|=l

λNi Υ
S\{j}
i (VS)

+µ|Cq|− 1
l − 1

¶
v (N)

−
X

j∈N\{i}

 X
S⊂Cq :i∈S,j /∈S,|S|=l

λNj Υ
N
j (V )

− X
j∈Cq\{i}

 X
S⊂Cq :i,j∈S,|S|=l

λNj Υ
S\{i}
j (VS)

 .
We now analyze the four terms separately:

1. First term is equal, by Lemma 1, to

X
j∈Cq\{i}

λNi

 X
T⊂Cq\{j}:i∈T,|T |=l−1

ΥT
i (VT )


which coincides, by (7.1), withµ|Cq|− 2

l − 2
¶ X
j∈Cq\{i}

λNi Υ
N\{j}
i (V ) .

2. Since v(N) = λNi Υ
N
i (V )+

P
j∈Cq\{i}

λNj Υ
N
j (V )+

P
j∈N\Cq

λNj Υ
N
j (V ), second

term is equal toµ|Cq|− 1
l − 1

¶
λNi Υ

N
i (V ) +

µ|Cq|− 1
l − 1

¶ X
j∈Cq\{i}

λNj Υ
N
j (V )

+

µ|Cq|− 1
l − 1

¶ X
j∈N\Cq

λNj Υ
N
j (V ) .

3. Third term is equal to

−
X

j∈Cq\{i}

 X
S⊂Cq:i∈S,j /∈S,|S|=l

λNj Υ
N
j (V )

− X
j∈N\Cq

 X
S⊂Cq:i∈S,j /∈S,|S|=l

λNj Υ
N
j (V )
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since for each j ∈ Cq\ {i}, there are
¡|Cq |−2
l−1

¢
possible sets S, such that

S ⊂ Cq, i ∈ S, j /∈ S, and |S| = l; and for each j ∈ N\Cq, there are
¡|Cq|−1
l−1

¢
possible sets S, such that S ⊂ Cq, i ∈ S, j /∈ S, and |S| = l, last expression
coincides with

−
µ|Cq|− 2
l − 1

¶ X
j∈Cq\{i}

λNj Υ
N
j (V )−

µ|Cq|− 1
l − 1

¶ X
j∈N\Cq

λNj Υ
N
j (V ) .

4. Fourth term is equal, by Lemma 1, to

−
X

j∈Cq\{i}
λNj

 X
T⊂Cq\{i}:j∈T,|T |=l−1

ΥT
j (VT )

 ,
which coincides, by (7.1), with

−
µ|Cq|− 2
l − 2

¶ X
j∈Cq\{i}

λNj Υ
N\{i}
j (V ) .

Since
¡|Cq|−1
l−1

¢
=
¡|Cq |−2
l−1

¢
+
¡|Cq|−2
l−2

¢
, adding terms 2 and 3 we obtainµ|Cq|− 1

l − 1
¶
λNi Υ

N
i (V ) +

µ|Cq|− 2
l − 2

¶ X
j∈Cq\{i}

λNj Υ
N
j (V ) .

Then,
lλNi

X
S⊂Cq :i∈S,|S|=l

ΥS
i (VS) =

µ|Cq|− 2
l − 2

¶ X
j∈Cq\{i}

λNi Υ
N\{j}
i (V ) +

µ|Cq|− 1
l − 1

¶
λNi Υ

N
i (V )

+

µ|Cq|− 2
l − 2

¶ X
j∈Cq\{i}

λNj

³
ΥN
j (V )−Υ

N\{i}
j (V )

´
.

In Theorem 2 we prove, without using this lemma, that Υ satisfies ABCAP
and hence,

=

µ|Cq|− 2
l − 2

¶ X
j∈Cq\{i}

λNi Υ
N\{j}
i (V ) +

µ|Cq|− 1
l − 1

¶
λNi Υ

N
i (V )

+

µ|Cq|− 2
l − 2

¶ X
j∈Cq\{i}

λNi

³
ΥN
i (V )−Υ

N\{j}
i (V )

´
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=

µ|Cq|− 1
l − 1

¶
λNi Υ

N
i (V ) +

µ|Cq|− 2
l − 2

¶ X
j∈Cq\{i}

λNi Υ
N
i (V )

 .
Since

¡|Cq |−1
l−1

¢
+
¡|Cq|−2
l−2

¢
(|Cq|− 1) = l

¡|Cq|−1
l−1

¢
, the last expression coincides with

l

µ|Cq|− 1
l − 1

¶
λNi Υ

N
i (V )

which is precisely the right side of (7.2). ¥

Proof of Theorem 2. It is straightforward to prove that Υ satisfies EF and
IS. By Proposition 1, we know that Υ satisfies BCONS.
Let

¡
ΥS
¢
S⊂N be a consistent coalitional payoff configuration. Then, there ex-

ists a supporting hyperplane game (N, V 0, C) such that ΥS = ΥS (V 0, C) . More-
over, V 0(S) =

©
y ∈ RS : λS ∗ y ≤ v(S)ª , where λS ∈ RS++ is an orthonormal

vector to ∂V (S) and v(S) = max
©
λS ∗ x : x ∈ V (S)ª .

We now prove that Υ satisfies ABCAC. In order to simplify the notation, we

assume that S = N. By EF and Remark 2, v(N) =
P
Cr∈C

Ã P
j∈Cr

λNj Υ
N
j

!
. Applying

this to (3.1) we obtain that for all Cq ∈ C,

|C|
X
j∈Cq

λNj Υ
N
j =

=
X

Cr∈C\Cq

X
j∈Cq

λNj Υ
N\Cr
j

+ X
Cr∈C

ÃX
j∈Cr

λNj Υ
N
j

!
−

X
Cr∈C\Cq

ÃX
j∈Cr

λNj Υ
N\Cq
j

!

=
X

Cr∈C\Cq

X
j∈Cq

λNj Υ
N\Cr
j

+X
j∈Cq

λNj Υ
N
j +

X
Cr∈C\Cq

ÃX
j∈Cr

λNj

³
ΥN
j −Υ

N\Cq
j

´!
.

If we subtract
P

Cr∈C\Cq

Ã P
j∈Cq

λNj Υ
N
j

!
= (|C|− 1) P

j∈Cq
λNj Υ

N
j in both sides, then

X
j∈Cq

λNj Υ
N
j =
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X
Cr∈C\Cq

X
j∈Cq

λNj

³
Υ
N\Cr
j −ΥN

j

´+ X
j∈Cq

λNj Υ
N
j +

X
Cr∈C\Cq

ÃX
j∈Cr

λNj

³
ΥN
j −Υ

N\Cq
j

´!
.

Hence,

0 =
X

Cr∈C\Cq

X
j∈Cq

λNj

³
Υ
N\Cr
j −ΥNj

´+ X
Cr∈C\Cq

ÃX
j∈Cr

λNj

³
ΥN
j −Υ

N\Cq
j

´!
,

which means that Υ satisfies ABCAC.

We now prove that Υ satisfies ABCAP. In order to simplify the notation, we
assume that S = N. Given i ∈ Cq ∈ C, by (3.2),

|Cq|λNi ΥN
i =

X
j∈Cq\{i}

λNi Υ
N\{j}
i +

X
j∈Cq

λNj Υ
N
j −

X
j∈Cq\{i}

λNj Υ
N\{i}
j

=
X

j∈Cq\{i}
λNi Υ

N\{j}
i + λNi Υ

N
i +

X
j∈Cq\{i}

λNj

³
ΥN
j −Υ

N\{i}
j

´
=

X
j∈Cq\{i}

λNi

³
Υ
N\{j}
i −ΥN

i

´
+ |Cq|λNi ΥNi +

X
j∈Cq\{i}

λNj

³
ΥN
j −Υ

N\{i}
j

´
.

Then,

0 =
X

j∈Cq\{i}
λNi

³
Υ
N\{j}
i −ΥN

i

´
+

X
j∈Cq\{i}

λNj

³
ΥN
j −Υ

N\{i}
j

´
,

which means that Υ satisfies ABCAP.

We now prove that Υ satisfies COV. Given i ∈ Cq ∈ C, let
³
N, eV ,C´ be

obtained from (N, V, C) by a change in player i’s utility. Let a and b be the
corresponding constants. We proceed by induction over the number of coalitions
of C.
If C has only one coalition (C = {N}) and since Ψ satisfies COV :

• ΥN
i

³eV ´ = ΨNi

³eV ´ = aΨN
i (V ) + b = aΥ

N
i (V ) + b and

• ΥN
j

³eV ´ = ΨNj

³eV ´ = ΨN
j (V ) = ΥN

j (V ) for each j ∈ N\ {i}.
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Assume the result holds when |C| has at most m− 1 coalitions. We prove it
when |C| = m.
By (3.1) ,

|C|
X
j∈Cq

λ̃
N

j Υ
N
j

³eV ´ =
X

Cr∈C\Cq

X
j∈Cq

λ̃
N

j Υ
N\Cr
j

³eV ´
+ ṽ (N)− X

Cr∈C\Cq

ÃX
j∈Cr

λ̃
N

j Υ
N\Cq
j

³eV ´! .
By induction hypothesis, ΥN\Cr

i

³eV ´ = aΥN\Cr
i (V ) + b when Cr 6= Cq; more-

over, ΥN\Crj

³eV ´ = Υ
N\Cr
j (V ) when j 6= i. Since λ̃

N

i =
λNi
a
and λ̃

N

j = λNj when

j 6= i,

|C|
X
j∈Cq

λ̃
N

j Υ
N
j

³eV ´ =
X

Cr∈C\Cq

 X
j∈Cq\{i}

λNj Υ
N\Cr
j (V ) + λNi Υ

N\Cr
i (V ) +

bλNi
a


+v (N) +

bλNi
a
−

X
Cr∈C\Cq

ÃX
j∈Cr

λNj Υ
N\Cq
j (V )

!

=
X

Cr∈C\Cq

X
j∈Cq

λNj Υ
N\Cr
j (V )

+ v (N)
−

X
Cr∈C\Cq

ÃX
j∈Cr

λNj Υ
N\Cq
j (V )

!
+ |C| bλ

N
i

a

= |C|
X
j∈Cq

λNj Υ
N
j (V ) + |C|

bλNi
a
,

where the last equality comes because Υ satisfies (3.1) .
Given k ∈ Cq, by (3.2) ,

|Cq|λ̃Nk ΥN
k

³eV ´ = X
j∈Cq\{k}

λ̃
N

k Υ
N\{j}
k

³eV ´+X
j∈Cq

λ̃
N

j Υ
N
j

³eV ´− X
j∈Cq\{k}

λ̃
N

j Υ
N\{k}
j

³eV ´ .
By the induction hypothesis and the previous result, if k = i then,

|Cq|λ̃Ni ΥNi
³eV ´ =

X
j∈Cq\{i}

µ
λNi Υ

N\{j}
i (V ) +

bλNi
a

¶
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+
X
j∈Cq

λNj Υ
N
j (V ) +

bλNi
a
−

X
j∈Cq\{i}

λNj Υ
N\{i}
j (V )

=
X

j∈Cq\{i}
λNi Υ

N\{j}
i (V )+

X
j∈Cq

λNj Υ
N
j (V )

−
X

j∈Cq\{i}
λNj Υ

N\{i}
j (V ) +

bλNi
a
|Cq|

= |Cq|λNi ΥN
i (V ) +

bλNi
a
|Cq|,

where the last equality comes because Υ satisfies (3.2) .
Therefore,

ΥNi

³eV ´ = aΥN
i (V ) + b.

By the induction hypothesis and the previous result, if k 6= i then,

|Cq|λNk ΥN
k

³eV ´ =
X

j∈Cq\{k}
λNk Υ

N\{j}
k (V )+

X
j∈Cq

λNj Υ
N
j (V ) +

bλNi
a

−
X

j∈Cq\{k,i}
λNj Υ

N\{k}
j (V )− λNi Υ

N\{k}
i (V )− bλ

N
i

a

=
X

j∈Cq\{k}
λNk Υ

N\{j}
k (V )+

X
j∈Cq

λNj Υ
N
j (V )−

X
j∈Cq\{k}

λNj Υ
N\{k}
j (V )

= |Cq|λNk ΥN
k (V ) .

Therefore, ΥN
k

³eV ´ = ΥN
k (V ) .

Given Cr ∈ C \ Cq, using arguments similar to those used for Cq we can
conclude that X

j∈Cr
λ̃
N

j Υ
N
j

³eV ´ =X
j∈Cr

λNj Υ
N
j (V ) .

Now using (3.2) it is not difficult to conclude that for each j ∈ Cr, ΥN
j

³eV ´ =
ΥN
j (V ) .

Thus, Υ satisfies COV. ¥

27



Proof of Theorem 3. In Theorem 2 we proved that the consistent coalitional
value satisfies these five properties in the class of hyperplane games.
We now prove the reciprocal. Let eΥ be a single value satisfying these five

properties. We will show that eΥ = Υ. We proceed by induction on the number of
players. If there is only one player, then, by EF, eΥ = max {x : x ∈ V ({i})} = Υ.

When |N | = 2 we can assume without loss of generality that λ{i}i = λ
{j}
j = 1.

There are two possible coalition structures, C1 = {i, j} or C2 = {{i} , {j}} .
Given a ∈ R, let (N, va) be the TU game given by va ({i}) = va ({j}) = a and

va (N) = 1.

Since eΥ satisfies EF and IS, we conclude that

eΥN
i

¡
va, C1

¢
= eΥN

j

¡
va, C1

¢
=
1

2
.

Since eΥ satisfies EF and ABCAC, we conclude that

eΥN
i

¡
va, C2

¢
= eΥN

j

¡
va, C2

¢
=
1

2
.

A similar result can be obtained for Υ.
Since any hyperplane game with two players (N, V, C) can be obtained from

va (for some a) by linear transformation of utilities of players, and Υ and eΥ satisfy
COV it is straightforward to prove that for each i ∈ N,

eΥNi = v (N) + λNi v ({i})− λNj v ({j})
2λNi

= ΥN
i .

Moreover,

λNi Υ
N
i − λNj Υ

N
j = λNi eΥN

i − λNj eΥN
j = λNi v ({i})− λNj v ({j}) . (7.3)

Assume that eΥ = Υ for hyperplane games with at most n − 1 players with
n ≥ 3. We prove eΥ = Υ when (N, V, C) is a hyperplane game with n players.
We first prove that for each Cq ∈ C,P
j∈Cq

λNj Υ
N
j (V ) =

P
j∈Cq

λNj eΥN
j (V ) . (7.4)
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By induction hypothesis we know that, for each S Ã N, eΥS (V ) = ΥS (V ) .
Given Cq ∈ C, by (3.1), X

j∈Cq
λNj Υ

N
j (V ) =

=
1

|C|

 X
Cr∈C\Cq

X
j∈Cq

λNj Υ
N\Cr
j (V )

+ v (N)− X
Cr∈C\Cq

ÃX
j∈Cr

λNj Υ
N\Cq
j (V )

!
=

1

|C|

 X
Cr∈C\Cq

X
j∈Cq

λNj eΥN\Cr
j (V )

+ v (N)− X
Cr∈C\Cq

ÃX
j∈Cr

λNj eΥN\Cq
j (V )

! .
Since eΥ satisfies EF , v(N) =

P
Cr∈C

Ã P
j∈Cr

λNj eΥN
j (V )

!
. Then,

|C|
X
j∈Cq

λNj Υ
N
j (V ) =

X
Cr∈C\Cq

X
j∈Cq

λNj
eΥN\Cr
j (V )

+X
j∈Cq

λNj
eΥN
j (V )

+
X

Cr∈C\Cq

ÃX
j∈Cr

λNj

³eΥN
j (V )− eΥN\Cq

j (V )
´!

.

We add and subtract
P

Cr∈C\Cq

Ã P
j∈Cq

λNj
eΥN
j (V )

!
= (|C|− 1) P

j∈Cq
λNj
eΥN
j (V ),

=
X

Cr∈C\Cq

X
j∈Cq

λNj

³eΥN\Cr
j (V )− eΥN

j (V )
´+ |C|X

j∈Cq
λNj
eΥN
j (V )

+
X

Cr∈C\Cq

ÃX
j∈Cr

λNj

³eΥN
j (V )− eΥN\Cq

j (V )
´!

So,

|C|
X
j∈Cq

λNj Υ
N
j (V )−

X
j∈Cq

λNj
eΥN
j (V )

 =
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=
X

Cr∈C\Cq

ÃX
j∈Cr

λNj

³eΥN
j (V )− eΥN\Cq

j (V )
´!

−
X

Cr∈C\Cq

X
j∈Cq

λNj

³eΥN
j (V )− eΥN\Cr

j (V )
´ .

Since eΥ satisfies ABCAC, we conclude that the last expression is equal to 0.
Then, X

j∈Cq
λNj Υ

N
j (V ) =

X
j∈Cq

λNj eΥN
j (V ) .

We now prove that eΥN
i = ΥN

i for each i ∈ Cq ⊂ N. We denote by VS and eVS
the reduced games associated to Υ and eΥ respectively.
By (7.4) , if Cq = {i} we conclude that eΥN

i = ΥN
i .

Assume that Cq 6= {i} . For each j ∈ Cq \{i} we consider S = {i, j}. We know
that VS and eVS are hyperplane games. We denote by vS and ṽS the associated
functions to VS and eVS. By the definition of reduced game and the induction
hypothesis, eVS ({i}) = VS ({i}) and eVS ({j}) = VS ({j}) .
Hence, vS ({i}) = ṽS ({i}) and vS ({j}) = ṽS ({j}) .
Since eΥ satisfies EF we conclude that v (N) =

P
k∈N

λNk
eΥN
k (V ) . Then,

eVS (S) = n(xi, xj) ∈ R{i,j} : λNi xi + λNj xj ≤ λNi eΥN
i (V ) + λNj eΥN

j (V )
o
.

By the efficiency of eΥ and (7.3),

λNi
eΥS
i

³
ṼS

´
+ λNj

eΥS
j

³
ṼS

´
= λNi

eΥN
i (V ) + λNj

eΥN
j (V )

λNi eΥS
i

³
ṼS

´
− λNj eΥS

j

³
ṼS

´
= λNi ṽS ({i})− λNj ṽS ({j}) .

If we sum on Cq \ {i} both expressions,

λNi
X

j∈Cq\{i}

eΥS
i

³
ṼS

´
+

X
j∈Cq\{i}

λNj eΥS
j

³
ṼS

´
= λNi (|Cq|− 1) eΥN

i (V )+
X

j∈Cq\{i}
λNj eΥN

j (V )
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λNi
X

j∈Cq\{i}

eΥS
i

³
ṼS

´
−

X
j∈Cq\{i}

λNj eΥSj ³ṼS´ = λNi (|Cq|− 1) ṽS ({i})+
X

j∈Cq\{i}
λNj ṽS ({j}) .

Since eΥ satisfies BCONS,
P

j∈Cq\{i}
eΥS
i

³
ṼS

´
= (|Cq|− 1) eΥNi (V ). Hence,

λNi
eΥN
i (V ) +

X
j∈Cq\{i}

λNj
eΥS
j

³
ṼS

´
=
X
j∈Cq

λNj
eΥN
j (V )

(|Cq|− 1)λNi eΥN
i (V )−

X
j∈Cq\{i}

λNj
eΥS
j

³
ṼS

´
= λNi (|Cq|− 1) ṽS ({i})+

X
j∈Cq\{i}

λNj ṽS ({j}) .

A similar analysis for Υ yields,

λNi Υ
N
i (V ) +

X
j∈Cq\{i}

λNj Υ
S
j (VS) =

X
j∈Cq

λNj Υ
N
j (V )

(|Cq|− 1)λNi ΥN
i (V )−

X
j∈Cq\{i}

λNj Υ
S
j (VS) = λNi (|Cq|− 1) vS ({i})+

X
j∈Cq\{i}

λNj vS ({j}) .

By (7.4),

λNi eΥN
i (V ) +

P
j∈Cq\{i}

λNj eΥS
j

³
ṼS

´
= λNi Υ

N
i (V ) +

P
j∈Cq\{i}

λNj Υ
S
j (VS) . (7.5)

Since ṽS ({i}) = vS ({i}) and ṽS ({j}) = vS ({j}) ,

(|Cq|− 1)λNi eΥN
i (V )−

P
j∈Cq\{i}

λNj
eΥS
j

³
ṼS

´
= (|Cq|− 1)λNi ΥN

i (V )−
P

j∈Cq\{i}
λNj Υ

S
j (VS) . (7.6)

Adding (7.5) and (7.6),

|Cq|λNi ΥN
i (V ) = |Cq|λNi eΥN

i (V )

which means that eΥN
i (V ) = ΥN

i (V ) . ¥

Proof of Remark 3. ABCAC is independent of the rest of properties because
the consistent value satisfies EF , IS, COV, and BCONS but not ABCAC.
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Using arguments similar to those used by Winter (1992), we can conclude that
the rest of properties are independent. ¥

Proof of Theorem 4. By Theorem 2, we know that Υ satisfies these prop-
erties.
We now prove the reciprocal. We proceed by induction on the number of

players. The result is trivially true for n = 1. Assume the result holds for each
S Ã N .
Assume now

³
Υ̃S
´
S⊂N

is a payoff configuration associated to a value Υ̃ sat-

isfying these properties. By Remark 2 and EF , for each S ⊂ N there exists
λS ∈ RS++ satisfying λS ∗ Υ̃S = v (S) , where v(S) = max

©
λS ∗ x : x ∈ V (S)ª .

Let (N, V 0, C) be the corresponding hyperplane game, i.e. for each S ⊂ N,

V 0(S) =
©
y ∈ RS : λS ∗ y ≤ v(S)ª .

It is enough to prove that Υ̃S = ΥS (V 0) for all S ⊂ N. By induction hy-
pothesis, for each S Ã N, Υ̃S = ΥS (V 0) . We will show that Υ̃N = ΥN (V 0) . By
simplicity we take ΥN = ΥN (V 0) . Assume that i ∈ Cq ∈ C.
Since Υ̃ satisfies EF and ABCAC, using arguments similar to those used in

the proof of Theorem 3, we can conclude that for each Cq ∈ C,X
j∈Cq

λNj Υ
N
j =

X
j∈Cq

λNj Υ̃
N
j .

By (3.2),

|Cq|λNi ΥN
i =

X
j∈Cq\{i}

λNi Υ
N\{j}
i +

X
j∈Cq

λNj Υ
N
j −

X
j∈Cq\{i}

λNj Υ
N\{i}
j .

Since
P
j∈Cq

λNj Υ
N
j =

P
j∈Cq

λNj Υ̃
N
j and the induction hypothesis,

|Cq|λNi ΥN
i =

X
j∈Cq\{i}

λNi Υ̃
N\{j}
i +

X
j∈Cq

λNj Υ̃
N
j −

X
j∈Cq\{i}

λNj Υ̃
N\{i}
j

=
X

j∈Cq\{i}
λNi Υ̃

N\{j}
i + λNi Υ̃

N
i +

X
j∈Cq\{i}

λNj

³
Υ̃N
j − Υ̃

N\{i}
j

´
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if we add and substract
P

j∈Cq\{i}
λNi Υ̃

N
i = (|Cq|− 1)λNi Υ̃Ni , we obtain:

=
X

j∈Cq\{i}
λNi

³
Υ̃
N\{j}
i − Υ̃N

i

´
+ |Cq|λNi Υ̃Ni +

X
j∈Cq\{i}

λNj

³
Υ̃N
j − Υ̃

N\{i}
j

´
.

Then,

|Cq|λNi
³
ΥN
i − Υ̃N

i

´
=

X
j∈Cq\{i}

λNj

³
Υ̃N
j − Υ̃

N\{i}
j

´
−

X
j∈Cq\{i}

λNi

³
Υ̃N
i − Υ̃

N\{j}
i

´
.

Since Υ̃ satisfies ABCAP, we conclude that the last expression is equal to 0.
Then, Υ̃N

i = ΥN
i . ¥

Proof of Remark 4. EF is independent of the rest of properties. The value

ΓNi = 0 for each NTU game (N, V, C) and i ∈ N
satisfies ABCAC and ABCAP but not EF.
ABCAP is independent of the rest of properties. The random order coalitional

value satisfies EF and ABCAC but not ABCAP.
ABCAC is independent of the rest of properties.
Given a hyperplane game (N, V, C) we define, for each i ∈ N,

ΩNi =
v (N)

|N |λNi
.

Let π ∈ Πq be a permutation of players in Cq. We consider f (π) ∈ RCq such
that for each i ∈ Cq,

fi (π) = max
n
xi :

³¡
ΩSj
¢
j∈Cq , (fj (π))j∈P (π,i) , xi

´
∈ V (S)

o
,

where S = Cq ∪ P (π, i) ∪ {i} .
It is straightforward to prove that

fi(π) =

v (S)− P
j∈Cq

λSj Ω
S
j−

P
j∈P (π,i)

λSj fj (π)

λSi
.

Then, given i ∈ Cq ∈ C, we define Γ as follows:
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ΓNi =
1

|Πq|
P

π∈Πq
fi (π) .

For each Cq ∈ C and π ∈ Πq, since Ω satisfies EF,
P
j∈Cq

λNj Ω
N
j =

P
j∈Cq

λNj fj (π).

Hence,
P
j∈Cq

λNj Ω
N
j =

P
j∈Cq

λNj Γ
N
j . Then, it is trivial to see that Γ satisfies EF in

the class of hyperplane games.
We now prove that Γ satisfies ABCAP.
For each j ∈ Cq we denote the set of permutations of Πq where j is the

last player by Πq (j). If j 6= i, then player i’s expected marginal contribution
conditioned to j being last, is the same as in the game (N\ {j} , V, C−j), which is
Γ
N\{j}
i , i.e.

1

|Πq (j) |
X

π∈Πq(j)
fi(π) =

1

|ΠC−jq |
X

π∈ΠC−jq

fi (π) = Γ
N\{j}
i .

Given π ∈ Πq (i),

fi(π) =

v (N)− P
j∈Cq

λNj Ω
N
j −

P
j∈Cq\{i}

λNj fj (π)

λNi

=

P
j∈Cq

λNj Ω
N
j −

P
j∈Cq\{i}

λNj fj (π)

λNi

=

P
j∈Cq

λNj Γ
N
j −

P
j∈Cq\{i}

λNj fj (π)

λNi
.

Then,

1

|Πq (i) |
X

π∈Πq(i)
fi(π) =

P
j∈Cq

λNj Γ
N
j

λNi
− 1

|Πq (i) |
X

π∈Πq(i)

P
j∈Cq\{i}

λNj fj (π)

λNi

=

P
j∈Cq

λNj Γ
N
j

λNi
− 1

λNi

X
j∈Cq\{i}

λNj
1

|Πq (i) |
X

π∈Πq(i)
fj (π)
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=

P
j∈Cq

λNj Γ
N
j

λNi
− 1

λNi

X
j∈Cq\{i}

λNj Γ
N\{i}
j

=

P
j∈Cq

λNj Γ
N
j −

P
j∈Cq\{i}

λNj Γ
N\{i}
j

λNi
.

Thus, for each i ∈ Cq ∈ C,

ΓNi =
1

|Πq|
X
π∈Πq

fi(π)

=
1

|Πq|
X

j∈Cq\{i}

X
π∈Πq(j)

fi(π) +
1

|Πq|
X

π∈Πq(i)
fi(π).

Since |Πq| = |Cq| |Πq (j)| for each j ∈ Cq, the last expression can be rewritten
as

1

|Cq|

 X
j∈Cq\{i}

1

|Πq (j) |
X

π∈Πq(j)
fi(π) +

1

|Πq (i) |
X

π∈Πq(i)
fi(π)



=
1

|Cq|

 X
j∈Cq\{i}

Γ
N\{j}
i +

P
j∈Cq

λNj Γ
N
j −

P
j∈Cq\{i}

λNj Γ
N\{i}
j

λNi

 .
Then,

|Cq|λNi ΓNi =
X

j∈Cq\{i}
λNi Γ

N\{j}
i +

X
j∈Cq

λNj Γ
N
j −

X
j∈Cq\{i}

λNj Γ
N\{i}
j .

Since |Cq|λNi ΓNi =
P
j∈Cq

λNi Γ
N
i , it is easy to conclude that Γ satisfies ABCAP.

If we proceed with Γ in the same way that we did with Υ we can extend Γ
to the set of NTU games and prove that Γ also satisfies EF and ABCAP in the
class of NTU games. Of course, Γ 6= Υ. ¥

Proof of Corollary 1: Since each TU game is a hyperplane game, we con-
clude that the consistent coalitional value is a single value. Repeating the same
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arguments that in the proof of Theorem 4 for TU games we can obtain that there
is at most a value (on the set of TU games) satisfying EF, ABCAC, and ABCAP.
Then, we only need to prove that the Owen value φ satisfies these properties.
We know that φ satisfies EF. We now prove that φ satisfies ABCAC and

ABCAP . By simplicity we assume that S = N.
Since φ satisfies BCAC, for each Cq, Cr ∈ CX

j∈Cq

³
φNj − φ

N\Cr
j

´
=
X
j∈Cr

³
φNj − φ

N\Cq
j

´
.

Then,

X
Cr∈C\Cq

X
j∈Cq

³
φNj − φ

N\Cr
j

´ =
X

Cr∈C\Cq

ÃX
j∈Cr

³
φNj − φ

N\Cq
j

´!

which means that φ satisfies ABCAC in TU games.
Since φ satisfies BCAP , for each Cq ∈ C and i, j ∈ Cq

φNi − φ
N\{j}
i = φNj − φ

N\{i}
j .

Then, X
j∈Cq\{i}

³
φNi − φ

N\{j}
i

´
=

X
j∈Cq\{i}

³
φNj − φ

N\{i}
j

´
which means that φ satisfies ABCAP in TU games. ¥

Proof of Lemma 2: Let z =
¡
zS
¢
S⊂N be the random order coalitional

payoff configuration for (N,V,C). By definition, zNj is the expected marginal
contribution of player j over all the |ΠC| admissible permutations of players with
respect to C. We classify these permutations in |C| groups according the last
coalition Cr in such permutations.
Let ΠC(Cr) be the set of admissible permutations with respect to C in which

players of coalition Cr are in the last position. Notice that |ΠC| = |C||ΠC(Cr)| for
each Cr ∈ C.
If Cr 6= Cp, then the expected marginal contribution for each player j ∈ Cp in

the permutations of ΠC(Cr) coincides with the expected marginal contribution of
player j in the game (N\Cr, V, C\Cr), which is zN\Crj , i.e.
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1

|ΠC(Cr)|
P

π∈ΠC(Cr)
dj(π) =

1

|ΠC\Cr |
P

π∈ΠC\Cr
dj (π) = zN\Crj . (7.7)

Moreover, for each π ∈ ΠC(Cq),X
j∈Cq

λNj dj(π) = v(N)−
X

Cr∈C\Cq

ÃX
j∈Cr

λNj dj(π)

!
.

Then,

1

|ΠC(Cq)|
X

π∈ΠC(Cq)

X
j∈Cq

λNj dj(π)


=

1

|ΠC(Cq)|
X

π∈ΠC(Cq)

v(N)− X
Cr∈C\Cq

X
j∈Cr

λNj dj(π)


=

1

|ΠC(Cq)|
X

π∈ΠC(Cq)
v(N)−

X
Cr∈C\Cq

X
j∈Cr

λNj

 1

|ΠC(Cq)|
X

π∈ΠC(Cq)
dj(π)


= v(N)−

X
Cr∈C\Cq

ÃX
j∈Cr

λNj z
N\Cq
j

!
. (7.8)

We have then:X
j∈Cq

λNj zNj =
X
j∈Cq

λNj
1

|ΠC |
X
π∈ΠC

dj(π)

=
X
j∈Cq

λNj

X
Cr∈C

1

|ΠC|
X

π∈ΠC(Cr)
dj(π)


since

¯̄
ΠC
¯̄
= |C| ¯̄ΠC (Cr)¯̄, the last expression can be rewritten asP

j∈Cq
λNj

1

|C|
P
Cr∈C

1

|ΠC(Cr)|
P

π∈ΠC(Cr)
dj(π) =

1

|C|

P
j∈Cq

λNj
P

Cr∈C\Cq

1

|ΠC(Cr)|
X

π∈ΠC(Cr)
dj(π)| {z }

+
1

|ΠC(Cq)|
X

π∈ΠC(Cq)

X
j∈Cq

λNj dj(π)


| {z }
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the terms above brackets are those given in (7.7) and (7.8), so:

=
1

|C|

X
j∈Cq

λNj
X

Cr∈C\Cq
zN\Crj + v(N)−

X
Cr∈C\Cq

ÃX
j∈Cr

λNj z
N\Cq
j

!
=

1

|C|

 X
Cr∈C\Cq

X
j∈Cq

λNj z
N\Cr
j

+ v(N)− X
Cr∈C\Cq

ÃX
j∈Cr

λNj z
N\Cq
j

!
which is precisely the statement of this lemma. ¥
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