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Abstract

We introduce a value for NTU games with coalition structure. This
value coincides with the consistent value for trivial coalition structures, and
with the Owen value for TU games with coalition structure. Furthermore,
we present two characterizations: the first one using a consistency property
and the second one using balanced contributions’ properties.

1. Introduction

Some of the most important issues of cooperative game theory are to define “good”
values, to study which interesting properties are satisfied by these values, and to
obtain axiomatic characterizations using some of these properties.

In cooperative games with transferable utility (7'U games), Shapley (1953)
introduces the Shapley value. He characterizes it as the only value satisfying
efficiency, null player, symmetry, and additivity. Later, several authors obtain
new characterizations of the Shapley value using other properties. For instance,
Myerson (1980) characterizes the Shapley value using balanced contributions and
Hart and Mas-Colell (1989) characterize it by consistency.

There are several extensions of TU games. The most natural one is the ex-
tension to games without transferable utility (NTU games). Another extension
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applies to TU games with coalition structure, which study situations where play-
ers are partitioned into several groups. This model was considered by Aumann
and Dréze (1974) and Owen (1977). Of course, a third extension is to NTU
games with coalition structure. Since in TU games the Shapley value has a lot of
interesting properties, several authors propose, in these extended models, values
which are generalizations of the Shapley value.

In NTU games the Harsanyi value (Harsanyi (1963)), and the Shapley NTU
value (Shapley (1969)), are generalizations of the Shapley value. Maschler and
Owen (1989, 1992) define the consistent value for hyperplane games and NTU
games. The main idea behind this generalization is to maintain (as far as possible)
the consistency property of the Shapley value. Later, Hart and Mas-Colell (1996)
develop a bargaining mechanism which implements the consistent value. They
also characterize it by means of balanced contributions.

Owen (1977) introduces a generalization of the Shapley value, called the Owen
value, for TU games with coalition structure. He characterizes his value using ax-
ioms similar to those used by Shapley (1953). Later, Winter (1992) characterizes
the Owen value using the consistency property and Calvo, Lasaga, and Winter
(1996) do so using properties of balanced contributions.

In the volumes 2 and 3 of the handbook of game theory with economic appli-
cations, chapters 37 (”Coalition structures” by J. Greenberg), 53 (" The Shapley
value” by E. Winter), 54 (" Variations of the Shapley value” by D. Monderer and
D. Samet), and 55 (” Values of non-transferable utility games” by R. P. McLean),
it is possible to find surveys of this literature.

It is of our interest to know whether the consistent value and the Owen value
can be generalized the same way. Then, we introduce a new value, called the con-
sistent coalitional value. It can be characterized in two ways: by the consistency
property and by the balanced contributions properties. We must note that our
characterizations generalize the results about consistency obtained by Maschler
and Owen (1989) for the consistent value and Winter (1992) for the Owen value.
They also generalize the results about balanced contributions obtained by Hart
and Mas-Colell (1996) for the consistent value and Calvo et al. (1996) for the
Owen value. We believe these characterizations make the consistent coalitional
value a proper generalization of the consistent and the Owen value for NT'U games
with coalition structure.

Furthermore, Vidal-Puga (2002) proposes a non-cooperative game for which
the consistent coalitional value arises as equilibrium payoff. His results are similar
to those presented by Hart and Mas-Colell (1996) for the consistent value.



The paper is organized as follows. In Section 2 we introduce the notation and
some previous results. In Section 3 we define the consistent coalitional value. In
Section 4 we study which properties are satisfied by this value. In Section 5 we
present two axiomatic characterizations. Section 6 is devoted to some concluding
remarks. Finally, in the Appendix, we present the proofs of the results obtained
in the paper.

2. Definitions and Previous Results

Given a set A, | A| denotes the cardinal of A. Given x,y € RY | we say y < = when

y; < x; for each i € N and z * y is the scalar product »_ z;y;. We denote Rﬂ\: =
iEN
{z eRY:2;>0,Vi} and RY, = {z € RN : z; > 0,Vi}. We say that z € RV is
normalized if Y max {z;, —z;} = 1. Given A € RY a vector orthogonal to some
iEN
surface on RY, we say that \ is orthonormal if it is normalized.

A game without transferable utility, or simply an NTU game, is a pair (N, V)
where N = {1,2,...,n} is the set of players and V is a correspondence (character-
istic function) which assigns to each coalition S C N a subset V(S) C RS. This
subset represents all the possible payoffs that members of S can obtain for them-
selves when play cooperatively. For S C N, if there is no ambiguity, we maintain
the notation V' when refering to the application V' restricted to S as player set.
We also denote S = N\S.

Following Maschler and Owen (1992) we impose the next conditions on the
function V:

(A1) For each S C N, the set V(S) is comprehensive (i.e., if z € V(S) and
y € RS with y < x, then y € V(S)) and bounded above (i.e., for each x € R,
the set {y € V(S) : y > x} is compact).

(A2) For each S C N, the boundary of V(S), which we denote by 0V (.5), is
smooth (on each point of the boundary there exists an unique outward orthonor-
mal vector) and nonlevel (the outward vector on each point of 9V (S) has its
coordinates positive). We denote these orthonormal vectors as A\* = ()\;g )

(A3) These A7 are continuous functions on 9V/(S).

(A4) There exists a positive number ¢, such that for each S C N and i € 5,
A > 6.

(A5) For each S C N, the origin 0g = (0, ...,0) € R belongs to V(S).

€S’

Property (A5) is a normalization and does not affect our results.
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We denote by NTU(N) the set of NTU games over N and by NTU the set
of all NTU games.

We now introduce two particular subclasses of NTU games studied in this
paper.

We say that (N, V) is a game with transferable utility (or TU game) if there
exists a function v : 2 — R, called the characteristic function, satisfying v () =

0 and for each S C N, V(5) = {x eERY:Y 1 < U(S)} . Usually we represent a
i€s
TU game as the pair (V,v). We denote by TU (N) the set of TU games over N
and by T'U the set of all TU games.
We say that (N, V) is a hyperplane game if for all S C N there exists PEl= RS,
satisfying
V(S)={z eR*: N xz <0v(9)} (2.1)

for some v : 2V — R.
Notice that each TU game is a hyperplane game (just take )\;S = 1 for each
S C Nandie€S).

A coalition structure C' over N is a partition of the player set, i.e., C' =

{C1,Cy,...,Crn} C 2V where |J C, = N and C,NC, = 0 when q # r. We
CqeC

denote by (N,V,C)an NTU game (N, V) with coalition structure C' over N. We

denote CNTU(N) as the set of NTU games with coalition structure over N

(CTU (N) for TU games) and by CNTU the set of all NTU games with coalition

structure (CTU for TU games).

Given S C N we denote by Cg the structure C restricted to the players in S,
i.e., Cg = {Cy N S}e,ecc. Notice that this implies that C's may have less or the
same number of coalitions as C'. For simplicity we use C_; instead of C\ 3.

A payoff configuration for (N,V) is a set of payoffs =z = (3:5) with 29 €
V(9S) for all S C N.

Given G a subset of CNTU (or NTU), a value I on G is a correspondence
which assigns to each (N,V,C) € G a subset I' (V,V,C) C V (N). We say that
(T%) scy 18 a payoff configuration associated to I' if 'S € 1'(S,V,Cs) for all
S C N. When several NTU games or coalition structures are involved we write
5 (V), 5(C), or ¥ (V,C) instead of I'°.

If I'(N,V,C) is a single point of V (N) for all (N,V,C) € G we say that I'
is a single value. Of course each single value has a unique payoft configuration
associated. Usually we write I'V instead of T' (N, V, C).

SCN
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We denote by ¢ (or ¢ (v)) the Shapley value (Shapley (1953)) of the TU
game (N, v).

For TU games with coalition structure ¢" (or ¢" (v,C)) denotes the Owen
value (Owen (1977)), which is a generalization of the Shapley value (when C' =
{N} or C = {{i},cn} , the Owen value coincides with the Shapley value).

We now present the consistent value for NTU games following Maschler and
Owen (1989, 1992).

Let IT be the set of all permutations over N. Given w € II, we define the set
of predecessors of i under 7 as

P(m,i)={j € N :n(j) <7(i)}.

We call the marginal contribution of player ¢ € N to the game V' in the
permutation 7 to

d;(7) = max {xz : ((dj(ﬂ-))jep(ﬂ_,i) ,QL’Z’> eV (P(m,i)U {z})} :

So, d;() is the maximum that player ¢ can obtain in V'(.S) after his predecessors
obtain their respective d;(7)’s. We denote d(7) = (d; (7));cn-

Given a hyperplane game (N, V), the consistent value ¥ (or ¥ (V) (Maschler
and Owen (1989)) is the vector of expected marginal contributions, where each
m € Il is equally likely, i.e.

Notice that each d(7) is an efficient vector (it belongs to the boundary of
V(N)). Since we are dealing with hyperplane games, this boundary is flat and
the consistent value is also an efficient value.

Maschler and Owen (1989) prove that, given i € N,

e BT ST LD DIPY S P (2.2)
©o\JeN\{i} JEN\{i}

One way to extend a hyperplane solution to the general class of NTU games
with convex V (S)’s is to pass arbitrary hyperplanes to the various sets V (5).
These hyperplanes determine a hyperplane game to which we know the solution.
If this solution belongs to V' (N) we say that this is a solution to the NTU game
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(N, V). This is the way adopted by Maschler and Owen (1992) for extending the
consistent value to the class of NTU games.

Formally, given an NTU game (N,V) we say that (V,V’) is a supporting
hyperplane game for (N, V) if for each S C N,

V'(S)={z € R%: N sz <0(9)}

where A\ is orthonormal to the boundary of V(S) and v(S) = max {)\S xx:x € V(S)}
Notice that V' (S) C V'(S).

Given an NTU game (N,V) a payoff configuration x is a consistent value
for (N,V) if there exists a supporting hyperplane game for (/N,V) such that
25 = U5 (V') for all S C N. It is known that the consistent value is not a single
value.

3. The Consistent Coalitional Value

In this section we define the consistent coalitional value for NTU games. We
first define it in hyperplane games by generalizing the expression (2.2) of ¥ to
situations with coalition structure.

Given a hyperplane game (N,V,C), the consistent coalitional value TV (or
TV (V,C)) is the only vector satisfying the following two conditions:

For all C, € C,

>N =

J€Cq
1 Cr Cq
PR ON D IRVE il EXIC R SRR (D DIPTE Sl | PR GEY
C] C,eC\C, \j€C, CreC\C, \JE€Cr

Foralli € C, € C,
TN —
j N\{7
TeATe ( )DIIPHE RS DIP WS CEED DERP A Gl }). (3.2)
7€Cq\{i} 7€Cq 7€C\{i}

Remark 1. Tt is straightforward to prove that T is well-defined and )\j-v TV =
jEN
v(N).



Since T is a single value, there is only one consistent coalitional payoff con-
figuration T = (%) which satisfies that Y5 = TS (V,Cg) € 9V (9) for all
S CN.

The generalization of T to NTU games is done analogously to the consistent
value. For an NTU game with coalition structure (N, V, ('), we take for each coali-
tion S C N a orthonormal vector A\° to the boundary of V(S). Let (N, V', C) be
the resulting hyperplane game and let T = (TS ) scy De the consistent coalitional
payoff configuration associated with (N, V’,C). If Y9 € V (S) for all S C N, we
say that Y is a consistent coalitional payoff configuration.

In the next theorem we prove the existence of consistent coalitional payoff
configurations.

Theorem 1: Every NTU game has a consistent coalitional payoff configura-
tion.

Proof. See the Appendix.

SCN’

If C = {N} or C = {{i};,.n} the consistent coalitional value T coincides with
the consistent value ¥. When C' = {N}, (3.2) coincides with (2.2) and when C' =
{{i};cn}, (3.1) coincides with (2.2) . Since T is the only value in hyperplane games
satisfying (2.2) we conclude that T = W. Now it is straightforward to conclude
that T = ¥ in NTU games. Moreover, for TU games with coalition structure
the consistent coalitional value coincides with the Owen value (we will see it later
in Corollary 1). Thus, the consistent coalitional value is a generalization of the
consistent value and the Owen value for NTU games with coalition structure.

We know that the Shapley value, the consistent value, and the Owen value
are obtained as an average of marginal contributions depending on equal-likely
permutations. Thus, it seems reasonable to generalize these values in the same
way.

We say that a permutation 7w € II is admissible with respect to C' if given
i,j € Cq € C and k € N such that (i) < n(k) < m(j) then k € C,. We denote
by II¢ the set of all permutations over N admissible with respect to C.

Given a hyperplane game (N, V,C), the random order coalitional value F*
(or FN(V,C)) is defined as the vector of expected marginal contributions when
all the admissible permutations with respect to C' are equally likely, i.e.

N 1
F —WZd(ﬂ')

wellC



We can extend, as in the case of the consistent coalitional value, the random
order coalitional f to NTU games. Using arguments similar to those used with
T we can prove that F is a single value in hyperplane games but not in general.
Moreover, F also generalizes the consistent value and the Owen value.

In TU games McLean (1991) defines the random order coalitional structure
values. F is the natural generalization to NTU games of McLean’s values when
all the admissible permutations are equal-likely and the rest of permutations have
probability 0. It is remarkable that Maschler and Owen (1992) even suggest the
name random order value instead of consistent value.

The definition of T is not so intuitive as the definition of . Nevertheless, we
believe that T is a more suitable value for hyperplane games (and NTU games)
than f. We will prove later that T satisfies more interesting properties. Moreover,
T can be characterized generalizing axiomatic characterizations of the Owen value
and the consistent value.

We now compute T and F in the following example.

Example 1. (Owen (1972)). Let (N, V,C) be such that N = {1,2,3} and

= {z; e RY¥ .2, <0}, Vie N,
1
= {(z1,22) € RUH gy 4 day < 1,27 < 1,1y < Z}’

)
)

VH{L,3}) = {(z1,23) e R 2y < 0,25 <0},
) = {(z2,23) € RI23} . 2, < 0,23 < 0},

and

VIN)={zeRY: Y 0, <1;2, <1Vi€ N;a; +2; <1Vi,j € N}.
1EN

If C = {{1,2},{3}}, we obtain that

T = (%5 5) and I = (555 15) -

However, for C' = {{1},{2,3}} both values coincide because

8 5 3
YWepN=(= = =),
a <16’16’16)

This example shows that T and F are different.



4. Properties

In this section we present several desirable properties and study which of them
are satisfied by the consistent coalitional value.

Some of these properties are well-known in the literature of NTU games.
Others are introduced in this paper generalizing properties of TU games. We
present the definitions for single values. The definition for payoff configurations
associated with general values is straightforward.

We say that a value I satisfies efficiency (EF) if for each (N,V,C) € CNTU,
'Y e oV (N).

Remark 2. Since V satisfies (A2) we conclude that if I" satisfies efficiency
then for each (N,V,C) € CNTU and S C N, there exists 2\ e Rir satisfying
A %S = v (S) where v(S) = max {)\S xx:x € V(S)}. Of course, the reciprocal
statement is also true.

Given (N,V,C) € CNTU we say that two players i,j € N are symmetric if
two properties hold:

For each S C N\{3,j}, if z € V(SU{i}), y; = 4, and yj, = x, for each k € S
then, y € V(S U{j}).

For each S D {i,j}, if z € V(S), yi = z;, y; = x;, and z;, = yyfor each
ke S\ {i,j} then, y € V(S).

We say that a value I' satisfies individual symmetry (IS) if for each pair of
symmetric players i,j € C, € C,

N _ N
ry =r¥.

We now present the property of covariance in hyperplane games following
Maschler and Owen (1989). Let (V,V,C) and (N, V', C) be two hyperplane games
such that for each S C N,

V(S)={zeR%: X\ x2 <v(5)} and V(S):{xERS:XS*xS'ﬁ(S)}.

We say that (N, V,C) and (N, v, C') are equivalent under a linear transforma-

tion of player i’s utility if there exist two constants a € R, and b € R such that
s A g _ bAY

forall S C N : ) :j, Aj :)\fifj#i,v(S):U(S)jL a’ if i € S, and




v(S) =wv(S) if i ¢ S. Notice that if (N,V,C) and (N, v, C’) are equivalent under
a linear transformation of player ¢’s utility, then z € V(S)if and only if there
exists z € V (S) satisfying: z; = ax; +band 7; = z; if j € S\ {i}.

We say that a value I' satisfies covariance (COV) if, given two hyperplane
games (N, V,C) and (N, V,C), equivalent under a linear transformation of some
player i’s utility,

ry (‘7,0) = al'}'(V,C) +band
v (\7,0) = VW, C) it j € N\ {i}.

Thus, covariance just states that, if we linearly change player ¢’s utility func-
tion, his final payoftf changes the same way, while other players’ payoffs remain
constant.

Hart and Mas-Colell (1989) characterize the Shapley value as the only value
on TU games satisfying consistency and other properties. They say that a value
' satisfies consistency (CONS) if and only if for each (N,v) € TU,S C N, and
1 €85,

IV () = TY (vs)

where vg (T) =v (TUS) — > TV (v) forall T C 5.

jes

Winter (1992) extends the definition of consistency to T'U games with coalition
structure. He say that a value I satisfies consistency (CONS) if and only if for
each (N,v,C) e CTU,C, € C, S C Cy,and i € S,

Y (v,C) =T} (vs,{S})

where vg (T) =v (TUS) = Y 'Y (v) for all T C S. Notice that Winter’s consis-
€S

tency is a generalization of IZIart and Mas-Colell’s consistency to TU games with

coalition structure.

Maschler and Owen (1989) show that if we define the property of consistency
of Hart and Mas-Colell (1989) in NT'U games as in the TU case, there is no value
satisfying consistency and other "basic” properties (for instance, efficiency). Thus
they provide a weaker definition of consistency for hyperplane games.
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They say that a value I' satisfies [-consistency if for each hyperplane game
(N,V,C) with I < |N| and i € N,

> rrow = (o,

SCN,iesS,|S|=l

where Vg(T) = {:U eRT: (:U, (ngug)ies) eV (T Ug)} forall T C S.

We now present a generalization to hyperplane games with coalition structure.

Given a value I', a hyperplane game (N,V,C), and S C C, € C, the reduced
game (S,Vs,{S}) is defined for each T C S as follows:

()= fe 5 o (175), ) v 0w}

It is straightforward to prove that Vs is the hyperplane game given, for each
T C S, by

Vs(T) =z € RT : Y M, <o (TUT) - Y ATTS
i€l i€S
We say that a value I' satisfies [-consistency if for each hyperplane game
(N, V,C), C, € C with [ < |C,], and i € C,,

> e = (9w,

SCCyq,i€S,|S|=l

For simplicity we denote 'Y (V) = I'Y (Vs, {S}) and TV (V) =TV (V,C).

We call 2-consistency bilateral consistency ( BCONS).

Notice that our bilateral consistency generalizes, in the natural way, the con-
sistency of Hart and Mas-Colell (1989), the consistency of Winter (1992), and the
bilateral consistency of Maschler and Owen (1989).

Myerson (1980) characterizes the Shapley value using efficiency and balanced
contributions. He say that a value I' satisfies balanced contributions (BC) if for
each (N,v) € TU and i,j € N,

[N _ pN\GY _ N _ pN(
? J J '

(2
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Calvo et al. (1996) generalize the property of balanced contributions for TU
games with a coalition structure obtaining two properties: BCAC and BCAP!.

They say that a value I satisfies balanced contributions among coalitions (BCAC)
if for each (NV,v,C) € CTU and C,,C, € C with g # r,

N N\C, N N\C,
PRRYEDDEVIED DI VED W Vi
Jj€Cyq j€Cyq j€Cr jeCr
They say that a value I' satisfies balanced contributions among players in the
same coalition (BCAP) if for each i,j € C, € C' with i # j,
N N\{j} _ pN N\{i}

Hart and Mas-Colell (1996) introduce the following generalization of balanced
contributions for NTU games.

They say that a value I' satisfies average balanced contributions (ABC) if for
each (N,V) € NTU, S C N, and i € S, there exists \° € R, such that

S A (rF - W) = 3T a8 (15 - )

jes\{i} jeS\{i}

We now introduce the properties of average balanced contributions among
coalitions and average balanced contributions among players in the same coalition
for NTU games with coalition structure.

We say that a value I' satisfies average balanced contributions among coalitions
(ABCAC) if for each (N,V,C) € CNTU, S C N, and C; = C, N S € Cs, there

exists \° € ]Ri + such that

OISR CEA S I O TR

CreCs\Cj | JECy CleCs\Cy | JeC;

We say that a value I' satisfies average balanced contributions among players
in the same coalition (ABCAP) if for each (N,V,C) € CNTU, S C N, C; =

C,N S € Cg, and i € Cp, there exists e R, such that

SN (rS _ r.s\{j}) -y ¥ (FS B Fs\{z’})
v ¢ v J J j .

jeCi\{i} jeCi\{i}

'Even though Calvo et al. (1996) present these two balanced properties as only one, we think
that for our paper it is more natural the formulation as two properties.
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Notice that our average balanced contributions properties generalize, in the
natural way, the balanced properties of Myerson (1980), Calvo et al. (1996), and
Hart and Mas-Colell (1996).

Before studying the properties satisfied by the consistent coalitional value we
need a previous result.

Lemma 1. Given a hyperplane game (N,V,C) andi € S C C, € C,

(S\{i}, Vs, {S\{i}}) = (S\{i}, Vo, {S\{i}}) -

Proof. This result is due to Maschler and Owen (1989). |

Maschler and Owen (1989) prove that ¥ satisfies, in hyperplane games, I-
consistency for all [ = 1,...,n. In the next proposition we obtain a similar result
for T.

Proposition 1. The consistent coalitional value satisfies, in hyperplane games,
[-consistency for each [ with 1 <[ <n.

Proof. See the Appendix.

In the next theorem we study which of these properties are satisfied by the
consistent coalitional value.

Theorem 2. The consistent coalitional value satisfies EF, IS, ABCAC, and
ABCAP. Moreover, in hyperplane games it also satisfies COV and BCONS.
Proof. See the Appendix.

By Theorem 2 we know that Y satisfies, in NTU games or hyperplane games,
all the interesting properties that the Owen value satisfies in TU games and the
consistent coalitional value in NT'U games or hyperplane games.

5. Axiomatic characterizations

In this section we present two axiomatic characterizations of the consistent coali-
tional value. The first one applies to the set of hyperplane games; and we present
it by using consistency. The second one applies to the set of NT'U games; and we
present it by using balanced contributions.

13



Hart and Mas-Colell (1989) characterize the Shapley value on the class of
TU games as the only single value satisfying EF, SY M (symmetry), COV, and
CONS. Later, Winter (1992) and Maschler and Owen (1989) extend this result
in two different ways.

Winter (1992) extends it to the class of TU games with coalition structure.
He proves that the Owen value is the only single value satisfying E'F, 1.5, COV,
CONS, and Game Between Coalitions Property (GBCP).

They say that a single value I satisfies GBCP if for each TU game (N, v,C)
and C, € C,

> Ti(N,v,C) =Tg, (M09, {M}),

i€Cy

where M = {C4,...,Cy,} and vl€(8) =w ( U C’T> for each S C M. This prop-
Cres
erty says that the amount received by a coalition in the game played by the

coalitions (every coalition acts as a single player) coincides with the sum of the
amounts received by the members of this coalition in the original game.

This property cannot be exported to hyperplane games.

It is not difficult to check that the proof of Winter’s result about the character-
ization of the Owen value is also valid if we replace GBC'P by BC'AC. Then, the
Owen value is the only single value satisfying E'F, I.S, COV, CONS, and BCAC.

Maschler and Owen (1989) extend this result to the class of hyperplane games.
They prove that the consistent value is the only single value satisfying FF, SY M,
COV, and BCONS.

In Theorem 3 below we generalize the results of Hart and Mas-Colell (1989),
Winter (1992), and Maschler and Owen (1989) to hyperplane games with coalition
structure.

Theorem 3: The consistent coalitional value is the only single value on the
class of hyperplane games satisfying FF, I.S, COV, BCONS, and ABCAC.
Proof. See the Appendix.

Remark 3. The properties used in this theorem are independent (see the
Appendix).

Myerson (1980) characterizes the Shapley value on the class of TU games as
the only single value satisfying EF' and BC. Later, Calvo et al. (1996) and Hart
and Mas-Colell (1996) extend this result in two different ways.
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Calvo et al. (1996) extend it to the class of TU games with coalition structure.
They prove that the Owen value is the only single value satisfying EF, BC' AP,
and BCAC.

Hart and Mas-Colell (1996) extend Myerson’s result to the class of NT'U games
proving that the consistent value is the only value satisfying EF and ABC.

In Theorem 4 below we generalize the results of Myerson (1980), Calvo et al.
(1996), and Hart and Mas-Colell (1996) to NTU games with coalition structure.

Theorem 4. The consistent coalitional value is the only value on the class of
NTU games with coalition structure satisfying EF, ABCAC, and ABCAP.
Proof. See the Appendix.

Remark 4. The properties used in this theorem are independent (see the
Appendix).

We now prove that the consistent coalitional value generalizes the Owen value.
Corollary 1: For each TU game (N, v, C) the Owen value is the only consis-
tent coalitional value.

Proof. See the Appendix.

The results obtained in this section about the consistent coalitional value and
the relation with other values can be summarized in the following table.
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Table 1

About consistency

Without coalition structure | With coalition structure
TU Hyperplane TU Hyperplane
Shapley | Consistent Owen | Consistent
Coalitional
EF EF EF EF
SY M SY M 1S 1S
cov cov cov cov
CONS BCONS CONS | BCONS
BCAC | ABCAC
About balanced contributions
Without coalition structure | With coalition structure
TU NTU TU NTU
Shapley | Consistent Owen | Consistent
Coalitional
EF EF EF EF
BC ABC BCAC | ABCAC
BCAP | ABCAP

Then, the consistent coalitional value is the right generalization of the Owen
value and the consistent value to NTU games with coalition structure if we focus
on the properties of consistency and balanced contributions of both values.

6. Concluding remarks

In this paper we present two generalizations of the Owen value and the consistent
value for NTU games with coalition structure: the consistent coalitional value

and the random order coalitional value.

We now study which of the properties introduced before are satisfied by the
random order coalitional value. In the following lemma we prove that the random

order coalitional value also satisfies (3.1).
Lemma 2. F satisfies (3.1) in the class of hyperplane games.
Proof. See the Appendix.
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Since F and T are different (Example 1) we conclude that F does not satisfy
(3.2).

Proposition 2. a) The random order coalitional value satisfies EF’, .S, COV
(in hyperplane games), and ABCAC.

b) The random order coalitional value satisfy neither BCONS nor ABCAP.

Proof. a) It is trivial to see that f satisfies EF and IS.

Maschler and Owen (1989) show that, for any 7 € II, the vector d() satisfies
COV. Since F is the mean of some of these d(m)’s, we conclude that F also
satisfies COV'.

By Lemma 2, F satisfies (3.1) . Now, using arguments similar to those used in
the proof of Theorem 2 for T, we can conclude that f also satisfies ABC'AC.

b) It is as a consequence of theorems 3 and 4. |

InTU games, NTU games, and T'U games with coalition structure the Shapley
value, the consistent value, and the Owen value have two important aspects.
Firstly, they have an intuitive definition because they can be computed through
the vector of marginal contributions. Secondly, these values can be characterized
with nice properties (namely, consistency and balanced contributions).

NTU games with coalition structure generalize the three class of games men-
tioned before. Nevertheless, in this general framework we can not find a value with
an intuitive definition and nice characterizations. The random order coalitional
value has an intuitive definition through the vector of marginal contributions but
fails in the nice characterizations. The consistent coalitional value has nice char-
acterizations but fails in the intuitive definition.

This fact is not surprising. There are results from 7U games that can not
be generalized in the same way to NTU games. For instance, the consistent
value and the Shapley NTU value are generalizations of the Shapley value. But,
whereas the consistent value generalizes the characerizations of the Shapley value
based in the properties of consistency and balanced contributions, Aumann (1985)
proves that the Shapley NT'U value generalizes the classical axiomatization of the
Shapley value.

NTU games with coalition structure are studied also by Winter (1991), where
he characterizes the Game Coalition Structure Value. This value is a general-
ization of both, the Harsanyi value for NTU games and the Owen value for TU
games with coalition structure. Winter characterizes his value with six axioms:
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EF, COV, conditional additivity, independence of irrelevant alternatives, inessen-
tial games, and unanimity games. We believe that the properties used in the
characterizations of T are more natural than the properties used by Winter. For
instance, unanimity games says that the value must coincide with the Owen value
in unanimity games.

7. Appendix

Proof of Theorem 1. The structure of the proof is analogous to the proof of
Theorem 3.3 in Maschler and Owen (1992), where they prove the existence of the
consistent value for general NTU games.

We make use of induction to prove the following claim:

Given (xT)TgN with 7 € RT such that, for any S & N, the collection
(azT) reg IS a consistent coalitional payoff configuration of the game

(S,V,Cs), there exists x¥ € OV (N) such that (azT)TcN s a consistent
coalitional payoff configuration of (N,V,C).

For n = 1 the claim is trivially true, the collection being the empty set.
Assume now the claim holds for less than n players. Thus, there exists a
collection (:BT)Tg  such that, for any S & N, (:BT)TC 5 18 a consistent coalitional

payoff configuration of the game (S, V, Cs).

Assume that z € OV(N). For each T ¢ N, let AT = ()\?)ZET be the orthonor-
mal vector outwards 7. Moreover, ()\fv )Z.e  1s the orthonormal vector outwards
z.

Consider the hyperplane game (N, V?* C) such that, for each S C N,

VE(S) = {y eRY: N xy SU(S)}

where v (S) = A% x 25 when S # N and v (N) = AV * 2.

Let (T5(2)) scn Pe the (unique) consistent coalitional payoff configuration for
the hyperplane game (N, V# C). By definition of V* T9(z) = 2 for all S ¢ N,
independently of the chosen z.

We want to show that there exists a point ¥ € 9V (N) such that the collection
(:BT)TC v 1s a consistent coalitional payoff configuration for (N, V, (). Notice that

it is enough to prove that TV (ZL"N ) = 2. We make use of a fixed point theorem.
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Since Y satisfies (3.1) and (3.2) and the AJ’s are strictly positive and continuous
functions, T™(2) is also a continuous function of z.

We define M = max {% el ¢ N}, where ¢ is given by (A4).

Given C, € C, by (3.1),

|C‘ Z )\;VT?[ (’Z) = Z (Z )\;ijv\or> +o (N)— Z (Z )\;-V.T;V\Cq> .

j€Cy creC\C, \j€Cq creCc\C, \j€Cr

By (A5), v (N) > 0, and since the )\j-v’s are positive,

> N YN My | - Y (ZA?(%S))

CreC\C, \J€Cq CreC\C, \jECr
_ N N
— —(|C|—1)M62)\j — MS§ Z A
j€Cyq JEN\C»r

> —(|C| - 1) M6 — M6 = —|C| M,

where the last inequality comes because A" is normalized.
So, > )\é-VTjV (z) > —Mé for each C, € C.
Jj€Cq
Given i € C, € C, by (3.2),
AT - T AN

J

} | 9€C €Ca\(i}
CITFGE) = 3 T+ o
J€Ca\ (i} :
~Mé— Cz\{.} ANMS
> 3 (—M8)+ S
J€Co\ (i} A
> AYMS

Mo jec,\{i}
= _(|CQ‘_1)M5_)\N - )\N

i i

since )\fv > 6, AV is normalized, and § < 1,

> —(ICl—1)Ms—M—-M > A
JEC\{i}
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> —(|Cyl = 1) M&§ — M — M
> —(|C)|—1) M —2M
> —2|C,|M.

So, TN(2) > —2M.
The rest of the proof is analogous to Maschler and Owen’s (1992) and we just
give a geometric description for the case n = 2.

\

\

TN

F(z) &"(2)

z

S(=2M ,~2M) \

Figure 1

We define D = {3: eERN :z;, > —2M foralli € N}. Given a vector z on
OV (N) N D (which is the thick line in figure 1), we have proved that T (2) €
D; and so the point F'(z) obtained by applying a projection centered at o =
(—2M,...,—2M) € R¥ also belongs to 9V (N) N D (see figure 1). By applying a
standard fixed point theorem over the (continuous) function F', we find the desired
. |

Proof of Proposition 1. We proceed by induction on [. The theorem is
trivially true for [ = 1. Assume it is true for at most [ — 1.

If we apply the induction hypothesis to the game (N\{j},V,C_;) with j €
C,\ {i} (if C; = {i}, the result is trivially true for C,) then,
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YT (V) = (95N (V). (7.1)
TCCG\{j}€T,|T|=l-1

We wish to prove that for each C; € C' and 7 € Cj,

aY I T =l (Er v, (7.2)

To do so, we analyze the left side of this expression. Assume that i € S C C,
and |S| = [. Applying (3.2) to (S, Vs, {S}), which is also a hyperplane game, we
obtain:

VTS (Vs) = Y AN (Ve) + 3T AN (ve) = Y0 AN (1)
jes\{i} Jjes jesS\{i}

If we compute T in the game Vg we obtain that
D OANTI (Vs) = v (N) = Y AN (V
Jes jes

Hence,

VTS (Ve) = D0 AN (V) 4o (=Y AN TN ()= 3T AN (1)
jes\{i} j€S jes\{i}

Since there are (‘ Cal - )pos&ble sets S C C, with ¢ € S and |S| =1,

Yy X () =

5CCy:i€8,|S|=l

> | e )+ (e

SCCyies,|S|=l \jeS\{i}
NA~N N~~S\{i}
- YTV - > > A (V)
SCCqieS,|S|=l \ jes SCCyiics,|S|=l \jeS\{i}
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Rearranging the order of summation, we have:

BN IS DRV L) BN (L TTEY

7€C\{i} \SCCq:i,jES,[S|=l

- > oY - Y ST AT ()

JEN\{i} \SCCy:€S,j¢5,|S|=l J€CN{i} \SCCyq:i,j€S,|S|=l

We now analyze the four terms separately:
1. First term is equal, by Lemma 1, to
> A > ! (Vi)
JEC\{i} TCC\{j}4€T,|T|=1-1
which coincides, by (7.1), with
|Col =2 NyN\{}
ATV
(9157) = o)
JE€C\i}

2. Since v(N) = AYTN (V)+ > AVT¥N(V)+ > ANTY(V), second
JEC\ {4} JEN\Cq
term is equal to

(‘%‘_‘f)xﬁgv (V)+(|Olq|__11) > AN (V)

J€C\{i}
|Cyl — 1

JEN\Cq

3. Third term is equal to

- > SooNYYw |- > oo Y (w)

JEC\{i} \ SCCyieS,j¢S,|S|=l JEN\Cy \SCCy:i€8S,j¢S,|S|=l
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since for each j € C,\ {i}, there are (‘Cl‘l_'f) possible sets S, such that
SCCpieS, j¢sS, and |S| =1[; and for each j € N\C,, there are ('Cl‘ﬂil)
possible sets S, such that S C C,, i € S, j ¢ S, and |S| = [, last expression
coincides with

|Cql =2 NN |Cql =1 NN
(90 = oo (90 £ amm.
J€C\{i}
4. Fourth term is equal, by Lemma 1, to

>N > T (Vr) |

jEC\{i} TCCo\{i}:5€T,|T|=1-1
which coincides, by (7.1), with
C i
(\ al = ) Z )\NTN\{ V).
7€Cq\{i}

Since (‘C;‘L‘Il) = (‘Cl‘ﬂf) + (‘Cl‘i‘f), adding terms 2 and 3 we obtain

(‘C;A__ll)AﬁVTiV(V)Jr(m;q‘_;Q) SNy ().

€0\
Then,
Y Z 17 (Vs) =
SCCyieS,|S|=1
C,l -2 : -1
(9157) = oy (0 ey )
JEC\(i)
C .
(\ ol — ) T <TN ij\“}(V)).
J€C\{i}

In Theorem 2 we prove, without using this lemma, that T satisfies ABC' AP
and hence,

Cyl -2 . Cl—1
_ (‘ o ) S NN (1) 4 (' o )AfVva(V)

J€C\{i}

(\C\ ) T <TN Tf’\{j}(V))

J€C\{i}
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(Y (Y5 | Z o

J€Ca\ {7}
Since ('C;"_‘Il) + ('%"_';2) (|Cq| —1) =1 ('%"_'Il), the last expression coincides with

(S s

which is precisely the right side of (7.2). |

Proof of Theorem 2. It is straightforward to prove that Y satisfies £ F and
1S. By Proposition 1, we know that Y satisfies BOCONS.

Let (TS ) SeN be a consistent coalitional payoff configuration. Then, there ex-
ists a supporting hyperplane game (N, V', C) such that T5 = T (V' ,C) . More-
over, V'(S) = {y e R%: Moy < v(S)}, where A% € RS, is an orthonormal
vector to OV (S) and v(S) = max {\* xz 1z € V(9)}.

We now prove that T satisfies ABC' AC. In order to simplify the notation, we

assume that S = N. By EF and Remark 2, v(N) = > [ > )\ijf[) . Applying
CreC \ jeCr

this to (3.1) we obtain that for all C, € C,

N
C] > AT =

JEC,

~ oy [vaere)sy (Z A;wy) - (Z Aj-VTj.V\cq>

CreC\Cqy \J€Cq CreC \jeCr CreC\Cq \j€Cr
_ N~~N\Cr NN N N N\C
-y (pame)esams $ (S m-ne)
CreC\C; \J€Cy JEC, CreC\Cy \JEC:

If we subtract ) ( > )\;.VTjV) =(C]-1) > )\ijj.V in both sides, then

CreC\Cy \JEC, jeC,
N~A~N _
E AT =

JECY
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S (s me-m)) s 5 (S -me)

CreC\Cy \JECy JEC, CreC\Cy \jEC
Hence,
N (NG N N\C
- 3 (e v (Sar-ne).
CreC\Cy \J€Cy CreC\Cy \jEC,

which means that Y satisfies ABCAC.

We now prove that T satisfies ABCAP. In order to simplify the notation, we
assume that S = N. Given i € C, € C, by (3.2),

CATY = 3 I e 3 e

JEC\ {4} JEC, JE€C\ {7}

_ N~~N\{j} N~N N (~~N N\{i}
S DEPHE LRI G DEPYN C A vl
jeCa\{i} jeCq\{i}

= > (TN ) ey S AN (T =T
jeCq\{i} J€C\ {1}

Then,

_ N N\{} N N (~~N N\{i}

0= > A (TN M) 4 3y (T -,
JeC\{i} JEC\{i}

which means that Y satisfies ABCAP.

We now prove that T satisfies COV. Given i € C; € C, let (N,‘ZC) be

obtained from (N,V,C) by a change in player i’s utility. Let a and b be the
corresponding constants. We proceed by induction over the number of coalitions

of C.
If C has only one coalition (C'= {N}) and since ¥ satisfies COV:

o TV (17) =gV (f/) = aUN (V) +b=aTN (V) +band

o« TV (V) =i (V) =wi (v) =1

J

(V) for each j € N\ {i}.
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Assume the result holds when |C| has at most m — 1 coalitions. We prove it
when |C| = m.

By (3.1),
~N ~
1> AN (V) =
J€Cq
INAN\Cr (77 ~ ANVAN\Cy (17
SOy A (V) LYY (Z AT (V))
CreC\Cqy \jeCq CreC\Cqy \jeCr
By induction hypothesis, TfV\C" (‘7> = anV\C" (V) + b when C, # C,; more-
N\C: NG e xN LAY NN
over, T V) = T; " (V) when j # i. Since \; = i = A, when
J# i
NN (T NA~N\C: NA~~N\C:r b)‘iv
oy A <V) = 3 X AT W) AT (1) + 2
jeCyq CreC\Cq \jeC\{i}
N+ A AN (v
+v (N) + P Z Z i Lj (V)
C.eC\Cy \jEC,

= > A W) | e

CreC\Cq \JECy

- > (Z PR (% ) bAN

CreC\Cqy \j€C
b)\N
= [c] > Ay
Jj€Cy

where the last equality comes because Y satisfies (3.1).
Given k € Cy, by (3.2),

|C|>\kTN< ) IR TN\{J}( ) Z)‘ TN(V)_ IORES TN\{k}< )

JE€C\{k} J€C\{k}
By the induction hypothesis and the previous result, if k£ =i then,
- ~ . AN
RN (7) = X (W) )
JECN i) ¢
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AN .
N~N i NA~~N\{3}
FRNT V) F = > )
§€Cy JEC\Li}
= > AN+ Y A (v)
FECo\(i) i€Cq

; DAY
SEDDRR R (AR (e
7€C\{i}
DAY
|Cq‘;

a

=[G (V) +

where the last equality comes because T satisfies (3.2) .
Therefore,

TN (17) = oYV (V) +b.

By the induction hypothesis and the previous result, if k # ¢ then,

~ A 2%
|Cq|>\kNTkN<V) - ¥ Agrﬁ\{f}(VHZAjVT;V(VHT
jeCq\{k} JEC,
N\{k N\{k b)\N
— 3 A ) AN ) - o
JEC k) ¢
] N\{k
= Y ATV @+ Y Ay - ST AN
JEC\ k) e JEC\ k)

=GN TR (V).

Therefore, T8 (V) =TN (V).

Given C, € C'\ C,, using arguments similar to those used for C, we can

conclude that N B
2N (V) =) NTY (V).

jEC, jEC

Now using (3.2) it is not difficult to conclude that for each j € C,, Tf[ <‘7> =
TV (V).

Thus, T satisfies COV. [ |
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Proof of Theorem 3. In Theorem 2 we proved that the consistent coalitional
value satisfies these five properties in the class of hyperplane games.

We now prove the reciprocal. Let T be a single value satisfying these five
properties. We will show that T = T. We proceed by induction on the number of
players. If there is only one player, then, by EF, Y = max{z: 2z € V ({i })} T.

When |N| = 2 we can assume without loss of generality that )\{Z} = A W=,
There are two possible coalition structures, C' = {i,j} or C? = {{Z} { j}}

Given a € R, let (IV,v%) be the TU game given by v® ({i}) = v*({j}) = a and
v*(N) = 1.

Since T satisfies EF and IS , we conclude that
1

va (v*,C) = T;V (v*,C) = 5
Since T satisfies EF and ABCAC, we conclude that
~ ~ 1
N a 2 N a 2

TV (v°,C%) =TV (v ,0)25.
A similar result can be obtained for Y.

Since any hyperplane game with two players (IV,V,C') can be obtained from

v?® (for some a) by linear transformation of utilities of players, and T and T satisfy
COV it is straightforward to prove that for each 7 € N,

v(V) + X ({i}) — Av ({5})

' 2\

- TN

Moreover,

AVTN = ANTN = ANTN - AVTN = ANy ({i}) — Ao ({5}).- (7.3)

Assume that ”:fv = T for hyperplane games with at most n — 1 players with
n > 3. We prove T =T when (N, V, () is a hyperplane game with n players.
We first prove that for each C, € C,

S ATV =2 ANTN (V). (7.4)

JjeClq J€C,
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By induction hypothesis we know that, for each S ¢ N, TS (V)

Given C, € C, by (3.1),

Since T satisfies EF, v(N) =

C] > AT (v

2

CreC\Cyq

>

CreC\Cyq

J€C,

We add and subtract

(

CreC\Cy

>

So,

>

|
(

CreC\Cy

SN (v) =

JEC,

>N )

jeCyq

ST

jeCyq

2.

CcreC

D

CreC\Cy

>

CreC\Cy

2.

CreC\C,

Z )\N( N\CT

J€C,

(Zw@

oY (v) -

]
J€Cq

))+U(N)—

(Z ANTN (V)). Then,
jeCy

(

J€Cq

(-Z
J€Cq

2.

)+U(N)—

>

D AT <V>)

(Z (T v
JECr

AN (v>>

)

)

N\C

IRV

J€Cq
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CreC\Cy

CreC\Cy

(V))

(
(

TS (V).

>N W)

JECr

S AN ()

JECr

NA~N
+ ) ATV

J€Cq

-5 <V>)> .

=(Cl=1) ¥ AT (V).

J€C,

+H1C] Y AT (V)

J€C,




S N O CRUR A

CreC\Cy \jECr
> (Z AV (T;.V (V) =TV (V))) .
CreC\Cy \JECq

Since T satisfies ABCAC, we conclude that the last expression is equal to 0.

Then,
DN (V)= NV

JjeClq Jj€lq

We now prove that TV = T¥ for each i € C, C N. We denote by Vs and Vs

the reduced games associated to T and T respectively.

By (7.4), if C, = {i} we conclude that TN = TV,

Assume that C’ # {i} . For each j € C, \{z} we consider S = {7, j}. We know
that Vg and ‘75 are hyperplane games. We denote by vg and 0g the associated
functions to Vg and Vg. By the definition of reduced game and the induction
hypothesis,

Vs ({i}) = Vs ({i}) and Vi ({j}) = Vs ({7})-

Hence, vs ({i}) = 0s ({1}) and vs ({7}) = 0s ({5}) - _
Since Y satisfies EF we conclude that v (N) = > AYTY (V). Then,

keN
Vs () = {(x 2;) € RED AN gy 4 ANz, < ANTN (V) 4 AN TN (V)} .
By the efficiency of T and (7.3),
VS (V) + AT (V) = ANTY (V) + XN (V)

VS (V) = A5 (V) = MV ({3) = \os ({5])

If we sum on C; \ {i} both expressions,

AV TS(VS>+ 3 )\NTS( )-AN(|C\—1 TN+ Y ATV

7€Cq\{i} 7€Cq\{i} 7€Cq\{i}
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AVOSTOS (VS)— 3T (vs)_AN(\o\—ms i+ Y Mas ().

J€C\{i} J€C\{i} J€C\{i}

Since T satisfies BCONS, Y. 7T5 (\75> = (|C,] = 1) TN (V). Hence,
7€Cq\{i}

MY (V) + Y AT (VS)ZZA;VY;V (V)

JEC\(i) j€Cy
(Gl = DAY (V)= 30 TS5 (V) = AV (Gl - Das({ih+ Y. Mas ().
JEC\(i} JECq\(i}
A similar analysis for T yields,
AN (V) + > AT (V) = Y AN (v
JjE€C\{i} j€Cy
(Cal = DANTY (V)= > AT (Vs) = AN (ICl = Dws i+ > Mos ({5}).
JECa\(i) JECa\(i)
By (7.4),
AN (V) + S AT (VS)
FECA(i)
=ANTN (V) + > ANTS(vs). (7.5)

7€Cq\{i}
Since 9 ({i}) = vs ({i}) and s ({j}) = vs ({1})
(G = DAY (V) = 3> ANT5 (1s)
j€Cq\{i}

=(1C =N TF (V) = > X1 (Vs). (7.6)
jebatiy

Adding (7.5) and (7.6),
ClAN TN (V) = [CAN TN (V)
which means that ;ffv (V)=_TN(V). [

Proof of Remark 3. ABC' AC is independent of the rest of properties because
the consistent value satisfies EF', I.S, COV, and BCON S but not ABCAC.
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Using arguments similar to those used by Winter (1992), we can conclude that
the rest of properties are independent. |

Proof of Theorem 4. By Theorem 2, we know that T satisfies these prop-
erties.

We now prove the reciprocal. We proceed by induction on the number of
players. The result is trivially true for n = 1. Assume the result holds for each
S G N.

Assume now (TS) is a payoff configuration associated to a value T sat-
SCN.

isfying these properties. By Remark 2 and EF', for each S C N there exists
A% e RY, satisfying A° + T5 = v(S), where v(S) = max {\ xz:2 € V(S)}.
Let (N, V', C) be the corresponding hyperplane game, i.e. for each S C N,

VI(S)={y eR%: XN xy <o(S)}.

It is enough to prove that T5 = Y5 (V') for all S € N. By induction hy-
pothesis, for each S ¢ N, T8 = T8 (V’). We will show that TV = TV (V'). By
simplicity we take TV = TV (V') . Assume that i € C, € C.

Since T satisfies EF and ABCAC, using arguments similar to those used in
the proof of Theorem 3, we can conclude that for each C, € C,

> AT =Y T

J€Cq JECq
By (3.2),
N~N _ N~~N\{j} N~N N~N\{i}
CANTN = Y0 AN Y ANy Y AN
JEC\ {3} JECq JEC\ {4}

Since )\év Tﬁv =53 )\év T;V and the induction hypothesis,

J€Cq JECq
CNTY = 3 T T Y T
j€C\{i} J€C, JEC\{i}
= 3 TN NN S AN (T - TN
J€Cq\{i} J€Cq\{i}
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if we add and substract Y. ANTN = (|C,| — 1) AN TV, we obtain:

J€C\{i}
= 3 (TN ) e T S A (T -1
7€Cq\{i} 7€Cq\{i}
Then,
G, AN (Tﬁv_ﬂv>: Z AN <T N\{z}) Z AN (TN N\{J}>
7€Cq\{i} 7€Cq\{i}

Since T satisfies ABC AP, we conclude that the last expression is equal to 0.
Then, TN TN, |

Proof of Remark 4. FF is independent of the rest of properties. The value
'Y =0 for each NTU game (N,V,C) andi € N

satisfies ABCAC and ABC AP but not EF.

ABC AP is independent of the rest of properties. The random order coalitional
value satisfies FF and ABC AC but not ABCAP.

ABCAC is independent of the rest of properties.

Given a hyperplane game (N, V, C) we define, for each i € N,

v _ V()
COINIAT

Let 7 € II, be a permutation of players in C,. We consider f (1) € R% such
that for each i € Cy,

fi ) = max L () em (s (1)) ey ) €V (S) )

where S = C, U P (m,i) U {i}.
It is straightforward to prove that

Then, given i € C; € C, we define I' as follows:
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M= S fi(m).

‘H | welly

For each C; € C and 7 € I, since () satisfies EF, > ANQN = Z AN i ().
JEC, JECq
Hence, > AMQN = 3> ANTN. Then, it is trivial to see that I' satisfies EF in
J€Cq J€C,
the class of hyperplane games.

We now prove that I' satisfies ABC AP.

For each j € C,; we denote the set of permutations of II, where j is the
last player by I, (j). If j # 4, then player i’s expected marginal contribution
conditioned to j being last, is the same as in the game (N\ {j},V,C_;), which is
N\

;e

N\{J}
o 2 7 2 ko=

welly(4)
Given 7 € 11, (4),

v(N) = X Y- ¥ A ()

icCq jeCq\{i}
fl(Tr) = - N
S Y- T A ()
. J€Cq JEC\ {3}
> ANTY= ¥ N fi(m)
. J€Cq J€C\ {3}
Then,
. NI > X
i€Cyq JECq\1i
0] 2, AR GTIP R
N
S ANTY

> film)

welly(7)

Jj€Cy 1
w2 N 0]
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N
> ANTY

_ J€C r NP
v i jeCy\{i}
NN NpN\{i}
,Z)‘jrj_‘z‘)‘jrj
_ J€Cq JE€C\{i}
= N

Thus, for each i € C, € C,

7r€Hq
1
=mz I
J€C\{i} melly(j) 7r€Hq
Since |II,| = |Cy| |11, (7)| for each j € C,, the last expression can be rewritten

as

1 1
| 2 o 2 FO T a2 S
_Jecq\{l} w€lly () 7r6Hq

[ > AN A;.Vrj.v\{}
1 N\ 7€Cq 7€C\i}

Z @ T AV
JEC\i} i

Then,

CANTY = 37 AN ST Y- N NN,

J€C\{i} JECq J€C\{i}

Since |C,[ANTYN = 37 ANTY it is easy to conclude that T satisfies ABC AP.
JECq

If we proceed with I' in the same way that we did with T we can extend I’

to the set of NTU games and prove that I' also satisfies FF' and ABC AP in the

class of NTU games. Of course, I' # 1. |

Proof of Corollary 1: Since each T'U game is a hyperplane game, we con-
clude that the consistent coalitional value is a single value. Repeating the same
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arguments that in the proof of Theorem 4 for TU games we can obtain that there
is at most a value (on the set of TU games) satisfying EF, ABC AC, and ABC AP.
Then, we only need to prove that the Owen value ¢ satisfies these properties.
We know that ¢ satisfies EF. We now prove that ¢ satisfies ABC'AC and
ABCAP. By simplicity we assume that S = N.
Since ¢ satisfies BCAC, for each C,,C, € C

> (o = o) = 20 (6 - o).

Jj€Cy JjeCr
Then,
N N\Cr o N N\Cq
> (TE-a)) - T (SE-a)
CreC\Cyq \J€Cq CreC\Cqy \j€C:r

which means that ¢ satisfies ABCAC in TU games.
Since ¢ satisfies BCAP, for each C, € C and i, j € C;

N _ N\GY _ N N\
o — ¢ ¢; —¢;

i J

Then,
N _ N\{j}) _ N _ N\{i}
DI D ol (S
7 3 J J
JEC\{i} J€EC\{i}
which means that ¢ satisfies ABCAP in TU games. |

Proof of Lemma 2: Let f = (F S)S < be the random order coalitional
payoff configuration for (N,V,(C). By definition, f ;V is the expected marginal
contribution of player j over all the |II¢| admissible permutations of players with
respect to C'. We classify these permutations in |C| groups according the last
coalition C, in such permutations.

Let TI9(C,) be the set of admissible permutations with respect to C' in which
players of coalition C, are in the last position. Notice that |I1¢| = |C||TI¢(C, )| for
each C, € C.

If C, # C,, then the expected marginal contribution for each player j € C, in
the permutations of I1¢(C,) coincides with the expected marginal contribution of
player j in the game (N\C,, V, C\C,), which is F;-V\CT, i.e.
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. 1 N\C
R d. = — d. _ e -
G ety "~ OO e, @ 7 1 v.)

Moreover, for each w € HC(Cq),

D AVdi(m) =o(N)— Y (Z )\;.Vdj(w)>.

J€Cq CreC\Cq \JECr
Then,
1 N
c Z Z Ay dj(m)
‘H (Cqﬂ WEHC(Cq) [jecq
1
V1 reno(c,) CreC\Cq jECr
_ 1 N
- I (C,)| Z v(N Z Z)‘ |Hc Z d;(
V1 renc(c,) CreC\Cy \jEC: WEHC(C
= o(N)- Y. (Z AjVFjV\Cq> . (7.8)
C,eC\Cy \jEC:

We have then:

ZM’VF;\[ - Z)\N|HC| Zd

j€Cq j€Cq nell®
Y (Y T
J€Cq CreC nell®(Cy)
since [II°] = |C| |11 (C,)|, the last expression can be rewritten as
S )\NL D _ 1 S di(m) =
JjeCy ’ |C‘ CreC ‘HC{CTN mell€(C,) ’

1
— | A d;( MVd, ()
|C‘ J€Cq CreC\Cy |HC< WE; ‘HC( >‘ Wel;cq) ]% T

N J/ J/
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the terms above brackets are those given in (7.7) and (7.8), so:

1
- m T T e 3 (e
| 7€Cy CreC\Cy CreC\Cqy \jECr

SECTI ol P RE L BEERES ol OoRee

| crec\cy \J€Cq CreC\Cy \jECr

which is precisely the statement of this lemma. |
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