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ABSTRACT 

Hyperfunctions are social choice rules which assign sets of alternatives to preference profiles

over sets. So, they are more general objects compared to standard (social choice)

correspondences. Thus every correspondence can be expressed in terms of an equivalent

hyperfunction. We postulate the equivalence between implementing a correspondence and its

equivalent hyperfunction. We give a partial charaterization of Nash implementable

hyperfunctions and explore the conditions under which correspondences have Nash

implementable equivalent hyperfunctions. Depending on the axioms used to extend

preferences over alternatives to sets, these conditions are weaker than or logically independent

of Maskin monotonicity, in any case expanding the set of Nash implementable social choice

rules. In fact, social choice rules such as the majority rule and the top cycle are Nash

implementable through their equivalent hyperfunctions while they are not Maskin monotonic,

thus not Nash implementable in the standard framework. 
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1. INTRODUCTION

Maskin (1999) shows that a certain monotonicity condition, to which we refer as Maskin

monotonicity, is necessary for social choice correspondences to be implemented via Nash

equilibria. He also establishes Maskin monotonicty, combined with a no veto power condition

suffices for Nash implementability.1 Thus, the set of social choice correspondences which can

be implemented via Nash equilibria is restricted by Maskin monotonicity. 

Maskin monotonicity is a fairly demanding condition and many well-known social choice

rules fail to be Nash implementable. We explore the possibility of expanding the set of Nash

implementable social choice rules by carrying the implementation problem in a different

setting. We consider hyperfunctions which are social choice rules with a domain consisting of

orderings over non-empty sets. To every preference profile over sets, they assign a non-empty

set of alternatives.2 Note that hyperfunctions are more general objects than standard (social

choice) correspondences which assign a non-empty set of alternatives to every preference

profile over alternatives. In fact, correspondences are hyperfunctions satisfying the following

strong invariance property: The outcome of the hyperfunction must be the same at any two

preference profiles over sets where individuals’ orderings of the singleton sets are the same.

So every correspondence can be expressed in terms of some hyperfunction, to which we refer

as the equivalent hyperfunction of the correspondence.3 

We exploit this fact to obtain more permissive results in Nash implementation. Our point of

departure is that it does not matter whether one implements a correspondence or its equivalent

hyperfunction. We start by giving a partial charaterization of Nash implementable

hyperfunctions. Then, using fairly strong axioms to extend preferences over alternatives to

sets, we explore the conditions under which correspondences have Nash implementable

hyperfunctions. Depending on the axioms used to extend preferences over alternatives to sets,

these conditions are weaker than or logically independent of Maskin monotonicity, in any

case expanding the set of Nash implementable social choice rules. In fact, social choice rules

                                                          
1 So this is a partial charaterization of Nash implementable social choice correspondences. It is first Moore and
Repullo (1990) and then Danilov (1992) who give a  full characterization. All these results are for societies with
at least three people. Dutta and Sen (1991) charaterize Nash implementable social choice correspondences in
two-person societies.
2 Barberà, Dutta and Sen (2001) as well as Özyurt and Sanver (2003) use hyperfunctions to analyze dominant
strategy implementable social choice correspondences. 
3 While not every hyperfunction can be expressed in terms of a correspondence.
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such as the majority rule and the top cycle are Nash implementable through their equivalent

hyperfunctions while they are not Maskin monotonic, thus not Nash implementable in the

standard framework.

The structure of the paper is as follows: We give the preliminaries in Section 2. Section 3

gives a partial charaterization of Nash implementable hyperfunctions. Section 4 explores the

conditions under which social choice correspondences have Nash implementable equivalent

hyperfunctions. Section 5 gives examples of non Maskin monotonic social choice

correspondences which are Nash implementable through their equivalent hyperfunctions.

Concluding remarks follow in Section 6.

2. PRELIMINARIES

Taking any two integers n and m with n ≥ 2 and m ≥ 3, we consider a society N =  {1,…, n}

confronting a set of alternatives A = {a1, a2, …, am}. We write A = 2A \ {∅} for the set of all

non-empty subsets of A. 

We let Π stand for the set of all complete, transitive and antisymmetric binary relations over

A. Every ρ ∈ Π represents an individual preference on the elements of A in the following

manner: For any a, b ∈ A, a ρ b means “a is at least as good as b”.4 In case the preference

ordering over A is specified to belong to a particular agent i ∈ N, we will write it as ρi . A

typical preference profile over A will be denoted by ρ = (ρ1, ..., ρn) ∈ ΠN. 

Similarly, we let ℜ stand for the set of all complete and transitive orderings over A. Every R

∈ ℜ represents an individual preference on the elements of A in the following manner: For

any X, Y ∈ A, X R Y means “X is at least as good as Y”. We denote P and I for the strict and

indifference counterparts of R.5 In case the preference ordering over A is specified to belong

to a particular agent i ∈ N, we will write it as Ri, with its respective strict and indifference

                                                          
4 As ρ is antisymmetric, we have for any distinct a, b ∈ A, we have a ρ b ⇒ not b ρ a.  In other words, for
distinct alternatives, a ρ b means “a is preferred to b”.
5 For any X, Y ∈ A, we write X P Y if and only if X R Y holds but Y R X does not, ie., X is preferred to Y. In
case X R Y and Y R X both hold, we write X I Y, which means indifference between X and Y.
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counterparts Pi and Ii . A typical preference profile over A will be denoted by R = (R1, ..., Rn)

∈ ℜN. 

We accept that if the preference ordering over A is some ρ ∈ Π,  then the preference ordering

over A can be some R ∈ ℜ which is “consistent” with ρ. Thus, we define a consistency map

κ:  Π → 2ℜ \ {∅} which assigns to every ρ ∈ Π a non-empty set κ(ρ) ⊆ ℜ of preference

orderings on A consistent with ρ. We assume that every consistency map κ satisfies a basic

axiom A0, which we define as follows:

A0: Given any ρ ∈ Π and any R ∈ κ(ρ), we have x ρ y ⇔ {x} R {y} for all x, y ∈ A.

A0 requires that the ordering of individuals over singleton sets must be the same as their

ordering over the basic alternatives.  Remark that A0 automatically implies that κ(ρ) ∩ κ(ρ’)

= ∅ for all distinct ρ, ρ’ ∈ Π. 

Given any consistency map κ, we write ℜκ = ∪ρ ∈ Π κ(ρ) for the set of acceptable preference

orderings over A defined through κ. Note that ℜκ is always a strict subset of ℜ, as every κ is

assumed to satisfy our basic axiom A0. 

A (social choice) correspondence is a mapping F: ΠN → A.  Let L(a, ρi) = {x ∈ A | a ρi x} be

the lower contour set of an alternative a ∈ A at a given preference ρi of an agent i. A

correspondence F: ΠN → A is said to be Maskin-monotonic if and only if given any ρ , ρ’ ∈

ΠN and any a ∈ A, we have a ∈ F(ρ) ⇒ a ∈ F(ρ’) whenever L(a; ρi) ⊆ L(a; ρi') for every i ∈

N. A correspondence F is said to satisfy the no veto power condition if and only if given any ρ

∈ ΠN and any a ∈ A we have #{i ∈ N : L(a, ρi) = A} ≥ n – 1 ⇒  a ∈ F(ρ).

A mechanism for a correspondence is an (n+1)-tuple µ = ({Mi}i∈N, h)  where Mi is the non-

empty message space of agent i and h: M → A is the outcome function which assigns an

element of A to each joint message m ∈ M = Mi
i

n

=
∏

1

. At each ρ ∈ ΠN, a mechanism µ induces

a normal form game Γ(µ, ρ)  =  {(Mi, ui)}i∈Ν where Mi is the strategy space of agent i and ui

is his real –valued “payoff function” defined over M such that for any m, m’ ∈ M, ui(m) ≥
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ui(m’) if and only if h(m) ρi h(m’). We write ν(Γ(µ, ρ)) for the set of Nash equilibria of the

game Γ(µ, ρ). We say that a mechanism µ implements a social choice correspondence F: ΠN

 → A via Nash equilibria if and only if given any ρ ∈ ΠN we have 

F(ρ) = ∪m ∈ ν(Γ(µ, ρ)) h(m) .

3.  IMPLEMENTABLE HYPERFUNCTIONS 

Given any D ⊆ ℜ, we define a (social choice) hyperfunction as a mapping ƒ: DN → A. So,

while we assuming that correspondences are defined over the full domain of preference

orderings (over alternatives), the domains of hyperfunctions, which are preference orderings

over sets, may be restricted. 

A correspondence F: ΠN → A and a hyperfunction f: DN → A are said to be equivalent if and

only if for all ρ ∈ ΠN and for all R ∈ DN, 

[ x ρi y ⇔ {x} Ri {y} for all i ∈ N and for all x, y ∈ A] ⇒ F(ρ) = f(R).

So, we say that a correspondence and a hyperfunction are equivalent if at each preference

profile over sets, the hyperfunction picks the set that the correspondence would pick when the

alternatives are ordered in the same way as the singleton sets. Note that every correspondence

has a unique equivalent hyperfunction.

A mechanism  for a hyperfunction is an (n+1)-tuple µ = ({Mi}i∈N, H) where Mi is the non-

empty message space of agent i and H: M → A is the outcome correspondence which assigns

a nonempty-subset of A to each joint message m ∈ M. At each R ∈ ℜN, a mechanism

µ induces a normal form game Γ(µ, R)  = {(Mi, ui)}i∈Ν where Mi is the strategy space of

agent i and ui is his real –valued “payoff function” defined over M such that for any m, m’ ∈

M, ui(m) ≥ ui(m’) if and only if H(m) Ri H(m’). We write ν(Γ(µ, R)) for the set of Nash
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equilibria of the game Γ(µ, R). We say that a mechanism µ implements a hyperfunction f: DN

 → A via Nash equilibria if and only if given any R ∈ DN we have 

f(R) = ∪m ∈ ν(Γ(µ, R)) H(m).

Remark that, the above definition of implementation is a rather weak one, as the standart

concept would require f(R) = H(m) for every m ∈ ν(Γ(µ, R)). On the other hand our aim is

not to implement hyperfunctions but to implement correspondences through hyperfunctions

and the definition we use suffices for this. For it does not matter whether one implements a

correspondence or its equivalent hyperfunction according to the definition of implementation

we will be using.

We now introduce a weak monotonicity condition for hyperfunctions which is necessary for

their implementability.

Write L(X, Ri) = {X ∈ A | X Ri Y} for the lower contour set of a set X ∈ A at a given

preference Ri of an agent i.  A hyperfunction f: DN → A is said to be weakly monotonic if and

only if given any R ∈ DN, there exists a cover C of f(R) such that for all X ∈ C and all R’ ∈

DN with L(X; Ri) ⊆ L(X; Ri’) for all i ∈ N, we have X ⊆ f(R’). 

Proposition 3.1. Take any D ⊆ ℜ. A hyperfunction f: DN → A is Nash implementable only if

f is weakly monotonic.

Proof:  Take a hyperfunction f: DN → A which is Nash implementable. Let µ = ({Mi}i∈N,

H) be the mechanism which Nash implements f. Take any R ∈ DN. As µ Nash implements f,

we have f(R) = ∪m ∈ ν(Γ(µ, R)) H(m). Clearly, {H(m)} m ∈ ν(Γ(µ, R))  is a cover C of f(R). Now take

any H(m) ∈ C and any R’ ∈ DN with L(H(m); Ri) ⊆ L(H(m); Ri’) for all i ∈ N. Thus m ∈

ν(Γ(µ,  R’)) which implies that H(m) ⊆ f(R’) as µ Nash implements f, showing that {H(m)} m

∈ ν(Γ(µ, R)) is the cover mentioned by the proposition. Q.E.D.

A hyperfunction f: DN → A is said to satisfy the set no veto power condition if and only if

given any R ∈ DN and any X ∈ A we have #{i ∈ N : L(X, Ri) = A} ≥ n – 1 ⇒  X ⊆ f(R).
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Proposition 3.2. Let #N ≥ 3. Take any D ⊆ ℜ. A weakly monotonic hyperfunction f: DN → A

satisfying the set no veto power condition is Nash implementable.

Proof: Our proof will be constructive. Let #N ≥ 3. Take any D ⊆ ℜ. Consider any weakly

monotonic hyperfunction f: DN → A satisfying the set no veto power condition. For any R ∈

DN, write C(R) for the cover of f(R) which renders f weakly monotonic. We will construct a

Maskin (1999) type mechanism µ=({Mi}i∈Ν, H) where the message space of an agent i will be

Mi = DN × A × IΝ . Thus a message mi = (Ri, Xi, ni) of an agent i will consist of some

preference profile Ri in D, some non-empty set of alternatives Xi and some integer ni ∈ IΝ..

Now, for any j ∈ N, we define two subsets of the joint message space M as follows:

M2j = {m ∈ M : ∀ i ∈ N \ {j}, mi = (R*, X*, ni) for some (R*, X*) ∈ DN × A with X* ∈ C(R*)

and mj = (R**, X**, nj) such that X* ⊄ f(R**) and X** ∈ L(X*; Rj*) but X** ∉ L(X*; Rj**)}.

M1j = {m ∈ M \ M2j : ∀ i ∈ N \ {j}, mi = (R*, X*, ni) for some (R*, X*) ∈ DN × A with X*

∈ C(R*)}  

Define M1 = ∪j∈N M1j, M2 = ∪j∈N M2j and M3 = M \ (M1 ∪ M2). 

For any m ∈ M3, we denote j*** = argmax j ∈ N nj (ties can be broken arbitrarily) and let X***

∈ A be the outcome announced by agent j***. 

The outcome function H: M → A is defined, according to the above notation, as follows:

     X* whenever m ∈ M1

H(m) =     X** whenever m ∈ M2

    X*** whenever m ∈ M3

 

So, if all agents announce the same preference profile R* and the same outcome X* ∈ C(R*),

then the outcome X*  is implemented. If all but one of the agents agree on announcing R* and
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X* and the remaining agent j announces a different preference profile R** then X*  is still

implemented, unless X* ⊄ f(R**) and j happens to be the agent for whom there exists some

X** ∈ A with X** ∈ L(X*; Rj*) but X** ∉ L(X*; Rj**), and announces X** in his message,

in which case X** is implemented.
6 Otherwise, implement the outcome announced by the

agent who announces the highest integer (ties can be broken arbitrarily). 

Now take any R ∈ DN. Writing Γ(µ, R) for the game that the mechanism µ induces at R, we

claim that ∪m ∈ ν(Γ(µ, R)) H(m) = f(R). 

We will first show that f(R) ⊆ ∪m ∈ ν(Γ(µ, R)) H(m). Take any X* ∈ C(R) and consider the joint

message m ∈ M1 where mi = (R, X*, ni) for every i ∈ N. It is clear that no agent i, by

unilaterally changing his message, can obtain a message in M3. In fact the only thing he can

do is to stay in M1 without being able to change the final outcome or to fall in M2 where the

new outcome he can enforce will be in L(X*; Rj). So m ∈ ν(Γ(µ, R)). Thus, for any X* ∈

C(R), there exists some m ∈ ν(Γ(µ, R)) with H(m) = X*, showing that f(R) ⊆ ∪m ∈ ν(Γ(µ, R))

H(m).

We will now show that ∪m ∈ ν(Γ(µ, R)) H(m) ⊆ f(R). Take any m ∈ ν(Γ(µ, R)). We claim that

H(m)  ⊆ f(R).

Consider first the case where m ∈ M1 and thus H(m) = X* .  Suppose that X*  ⊄ f(R). By weak

monotonicity of f, ∃ j ∈ N and ∃ X** ∈ A such that X** ∈ L(X*; Rj*) but X** ∉ L(X*; Rj),

which contradicts the fact that m ∈ ν(Γ(µ, R)), as this agent j, by altering his message mj,

could switch the outcome from X*  to X**  and be better off, as X** ∉ L(X*; Rj).

Now consider the case where m ∈ M2 and thus H(m) = X**.  We want to show that X** ⊆

f(R). We know in this case that any agent i ∈ N \ {j} by altering his message mi, can obtain

his most preferred outcome. But as m ∈ ν(Γ(µ, R)), it must be the case that X** ∈ argmax X

∈ A Ri for every i ∈ N \{j}. As f satisfies the set no veto power condition, we have X** ⊆ f(R).

                                                          
6 As f is weakly monotonic, X* ⊆ f(R*) and X* ⊄ f(R**) for some X* ∈ C(R*) ⇒ ∃ i ∈ N and ∃ X** ∈ A such
that X** ∈ L(X*; Rj*) but X** ∉ L(X*; Rj**).



9

Finally consider the case where m ∈ M3 and thus H(m) = X***.  We want to show that X*** ⊆

f(R). We know in this case that any agent i ∈ N,  by altering his message mi, can obtain his

most preferred outcome. But as m ∈ ν(Γ(µ, R)), it must be the case that X*** ∈ argmax X ∈ A

Ri for every i ∈ N. Again as f satisfies the set no veto power condition, we have X*** ⊆

f(R). Q.E.D.

In the next section, we explore the conditions which ensure correspondences to have Nash

implementable equivalent hyperfunctions. 

4. IMPLEMENTING CORRESPONDENCES THROUGH HYPERFUNCTIONS

We start by introducing two new definitions.

We say that a consistency map κ satisfies the strong solidarity condition if and only if given

any ρ, ρ’ ∈ Π, any R ∈ κ(ρ), any R’ ∈ κ(ρ’) and any X ∈ A, we have  L(X; R) ⊆ L(X; R’)

⇒ L(x; ρ) ⊆ L(x; ρ’) for all x ∈ X. 

Strong solidarity imposes that the improvement of a set in an ordering must require the

improvement of all the elements of this set in the corresponding orderings over alternatives.

This is a fairly demanding condition while there are consistency maps which satisfy it.7 We

will turn to this issue later in Section 5, where we give examples of correspondences which

are Nash implementable through hyperfunctions while they are not Maskin-monotonic, thus

not Nash implementable in the standard framework.

A correspondence F: ΠN → A is said to be group monotonic if and only if given any ρ, ρ’ ∈

ΠN with L(x; ρi) ⊆ L(x; ρi') for all i ∈ N and for all x ∈ F(ρ), we have F(ρ) ⊆ F(ρ’). 

Group monotonicity imposes the following restriction over correspondences: Pick a

preference profile ρ where some set X is the social choice. Let ρ’ be some other preference
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profile where for every agent the lower contour set of every element of X does not shrink.

Then the social choice at ρ’ must include all the elements of X. Note that group monotonicity

is weaker than Maskin monotonicity. 

Theorem 4.1: Let κ be a consistency map satisfying the strong solidarity condition. Take any

correspondence F: ΠN → A and its equivalent hyperfunction f : [ℜκ]N → A. If F is group

monotonic then f is weakly monotonic.

Proof: Take κ, F and f as in the statement of the theorem. Assume F is group monotonic. To

show that f is weakly monotonic, take any R ∈ [ℜκ]N. For every i ∈ N, let Ri ∈ κ(ρi). As f is

the equivalent hyperfunction of F, we have f(R) = F(ρ).  Consider the cover C = {f(R)} of

f(R). Now take some R’ ∈ [ℜκ]N with L(f(R); Ri) ⊆ L(f(R); Ri’) for every i ∈ N. Let Ri’ ∈

κ(ρi’) for all i ∈ N. As κ satisfies the strong solidarity condition, for every i ∈ N, we have

L(x; ρi) ⊆ L(x; ρi’) for all x ∈ f(R) = F(ρ). This implies f(R) ⊆ F(ρ’) by the group

monotonicity of F. Again, as f is the equivalent hyperfunction of F, we have F(ρ’) = f(R’).

Hence, given any R ∈ [ℜκ]N, the weak monotonicity of f can be established through the cover

C = {f(R)}.  Q.E.D.

Call a domain D ⊆ ℜ regular if given any R ∈ D we have argmax R = {x} for some x ∈ A,

i.e., every ordering in D has a unique best element which is a singleton set. Regularity is a

fairly weak conditions. In fact, almost all consistency maps which conceive sets as first

refinements of the original sets of alternatives lead to regular domains.8

Theorem 4.2: Take any correspondence F: ΠN → A and its equivalent hyperfunction f: [ℜκ]N

→ A where κ is any consistency map leading to a domain ℜκ which is regular. If F satisfies

the no veto power condition, then f satisfies the set no veto power condition.

Proof: Take F, f and κ as in the statement of the theorem. Assume F satisfies the no veto

power condition. We will show that f satisfies the set no veto power condition as well. Now

                                                                                                                                                                                    
7 For example, the strong lexicographic and strong inverse lexicographic extensions used by Kaymak and Sanver
(forthcoming) and Özyurt and Sanver (2003) are consistency maps satisfying the strong solidarity condition.
8 To give a few examples, the consistency maps based on the extension axioms of Gärdenfors (1976), Barberà
(1977) and Kelly (1977) will all lead to regular domains. 
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take any R ∈ [ℜκ]N and any X ∈ A such that #{i ∈ N : L(X, Ri) = A} ≥ n – 1. As ℜκ is

regular, X = {x} for some x ∈ A. Now let Ri ∈ κ(ρi) for all i ∈ N. So given any i ∈ N, L({x},

Ri) = A ⇒ L(x, ρi) = A. Thus, #{i ∈ N : L(x, ρi) = A} ≥ n – 1. As F satisfies the no veto

power condition, x ∈ F(ρ), showing that {x} ⊆ f(R) as f and F are equivalent, completing the

proof.  Q.E.D.

We know by Theorem 4.1 that a correspondence which is group monotonic (but possibly not

Maskin monotonic) has an equivalent hyperfunction which satisfies the necessary condition

for Nash implementability. Moreover, Theorem 4.2 tells that the no veto power condition

carries in a much easier way, as regularity of domains is a fairly mild condition. So we

interpret Theorem 4.1 and 4.2 as a positive result for Nash implementation as they herald the

weakening of the necessary (and almost sufficient) conditions for the implementation of

correspondences. In fact, we now know that every weakly monotonic correspondence

satisfying the no veto power condition can be Nash implemented through hyperfunctions

under an appropriately chosen consistency map. We state this as a corollary.

Corollary 4.1. Assume #N ≥ 3. Let κ be a consistency map satisfying the strong solidarity

condition and leading to a domain ℜκ which is regular. Every group monotonic

correspondence F: ΠN → A satisfying the no veto power condition has a Nash implementable

equivalent hyperfunction f : [ℜκ]N → A.

Remark that our results are based on a balance between the strenghts of the solidarity

condition imposed on consistency maps and the monotonicity condition imposed on

correspondences. To preserve this balance, weakening the strong solidarity condition of

consistency maps requires strenghtening the group monotonicity condition. Hence, one can

obtain results similar to those of Theorem 4.1 and 4.2 under more general consistency maps at

the expense of narrowing the set of Nash implementable hyperfunctions.

Consider for example the following solidarity condition for consistency maps: 

A consistency map κ is said to satisfy the solidarity condition if and only if given any ρ, ρ’ ∈

Π, any R ∈ κ(ρ), any R’ ∈ κ(ρ’) and any X ∈ A, we have L(X; R) ⊆ L(X;R’)  ⇒ L(x*; ρ) ⊆ 
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L(x*; ρ’) where x* = argmax X ρ. 

This clearly weakens the strong solidarity condition. The issue of finding consistency maps

satisfying this condition will be handled in the next section.9

A correspondence F: ΠN → A is said to be strongly group monotonic if and only if given any 

ρ,  ρ’  ∈  ΠN  with  L(x*; ρi)  ⊆  L(x*; ρi')  for all  i ∈ N    where  x* = argmax F(ρ) ρi,  we

have  F(ρ) ⊆ F(ρ’).
                                                          

This clearly strenghtens the the group monotonicity condition. Note also that strong group

monotonicty neither implies nor is implied by Maskin monotonicty. We can easily check that

Theorems 4.1, 4.2 and Corollary 4.1 can easily be adopted  to these new definitions. We state

the final result without proof.

Corollary 4.2. Assume #N ≥ 3. Let κ be a consistency map satisfying the solidarity condition

and leading to a domain ℜκ  which is regular. Every strong group monotonic correspondence

F: ΠN → A satisfying the NVP condition has a Nash implementable equivalent hyperfunction

f : [ℜκ]N → A.

Which social choice rules are covered by Corollaries 4.1 and 4.2? We devote the next section

to examples of social choice correspondences which are not Maskin monotonic (hence not

Nash implementable in the classical sense) while they can be Nash implemented via

hyperfunctions. 

5. EXAMPLES OF CORRESPONDENCES IMPLEMENTABLE THROUGH

HYPERFUNCTIONS

We start by the top-cycle, a social choice rule introduced by Schwartz (1972). At any ρ ∈ ΠΝ,

define a binary relation τ(ρ) over A through the majority relation as follows: For all  x, y ∈ A,

x τ(ρ) y if and only if # {i ∈ N : x ρi y } ≥ n/2. Assuming an odd number of agents, τ(ρ) is a

                                                          
9 See also footnote 6.
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tournament, i.e., a complete and antisymmetric binary relation. Given any  ρ ∈ ΠΝ, the top

cycle TC(ρ) is the smallest subset X of A with respect to set inclusion satisfying x τ(ρ) y for

all x ∈ X and for all y ∈ A \ X. Note that TC(ρ) is non-empty at each ρ ∈ ΠΝ.10 

We first note that the top cycle, as a social choice correspondence, is not Maskin monotonic.

To see this, take a society N = {1, 2, 3} confronting a set of alternatives A = {x, y, z} and let

ρ, ρ’ ∈ ΠN be as follows:

ρ1 ρ2 ρ3 ρ1’ ρ2’ ρ3’

x y z x y x

y z x y z z

z x y z x y

Example 5.1.

Check that TC(ρ) = A and TC(ρ’) = {x}. So, y ∈ TC(ρ) but y ∉ TC(ρ’), while the lower

contour set of y is the same for all agents at both preference profiles, hence showing the non-

monotonicity of the top cycle. 

We now show that the equivalent hyperfunction of the top cycle is Nash implementable over

the domain obtained through the following lexicographic extension axiom: Take any ρ ∈ Π

and any two distinct X, Y ∈ A. First consider the case where #X = #Y = k for some k

∈{1,…,m-1}. Let, without loss of generality, X = {x1,..., xk} and Y = {y1,..., yk} such that xj ρ

xj+1 and yj ρ yj+1 for all j ∈ {1,…,k-1}. We have X R Y if and only if xh ρ yh for the smallest h

∈ {1,…,k} such that xh ≠ yh.  Now consider the case where #X ≠ #Y. Let, without loss of

generality, X = {x1,..., x#X} and Y = {y1,..., y#Y} such that xj ρ xj+1 for all j ∈ {1,…, #X-1}and

yj ρ yj+1 for all j ∈ {1,…, #Y-1}. We have either xh = yh for all h ∈ {1,…, min{#X, #Y}} or

there exists some h ∈ {1,…, min{#X, #Y}} for which  xh ≠ yh. For the first case, we have X R

Y if and only if #X < #Y. For the second case, X R Y if and only if xh ρ yh for the smallest h

∈ {1,…, min{#X, #Y}} such that xh ≠ yh.

                                                          
10 Moreover, Miller (1977) shows that when τ(ρ) is antisymmetric, TC(ρ) is a singleton consisting of the unique
Condorcet winner, when it exists; otherwise it is a set with at least three elements, over which there is a majority
cycle.
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Kaymak and Sanver (forthcoming) show that to each ρ ∈ Π,  the lexicographic extension

axiom determines a unique complete, transitive and antisymmetric ordering λ(ρ) over A. We

hence have ℜλ  = ∪ρ ∈ Π {λ (ρ)} as the domain determined through λ.

Proposition 5.1: Assume an odd number of agents with #N ≥ 3. The top cycle is Nash

implementable through its equivalent hyperfunction defined over ℜλ.

Proof: We will prove the proposition through Corollary 4.1. First check that λ satisfies the

strong solidarity condition of Corollary 4.1 and leads to a domain ℜλ which is regular. It is

clear that the top cycle satisfies the no veto power condition. To complete the proof, we must

show that it is also group monotonic. 

Take any ρ, ρ’ ∈ ΠN  with L(x; ρi) ⊆ L(x; ρi') for all i ∈ N and all x ∈ TC(ρ). First note that

for all x ∈ TC(ρ) and for all y ∈ A \ TC(ρ), we have x τ(ρ) y ⇒ x τ(ρ’) y. Hence, TC(ρ’) ⊆

TC(ρ). Note also that for all x, y ∈ TC(ρ), we have x τ(ρ) y ⇔ x τ(ρ’) y, implying TC(ρ) ⊆

TC(ρ’), which in turn implies TC(ρ) = TC(ρ’), establishing the group monotonicity of the top

cycle. Q.E.D.

We also wish to note that the top cycle fails to satisfy the strong group monotonicity condition

of Corollary 4.2, disabling us to Nash implement it under milder extension maps, satisfying

the (weaker) solidarity condition.11

                                                          
11 One can check this through the following three-by-three social choice problem with  ρ, ρ’ ∈ ΠN as follows:

ρ1 ρ2 ρ3 ρ1’  ρ2’ ρ3’

x y z x y z

y z x y z y

z x y z x x
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We now consider the majority rule which picks the alternative considered as the best by a

strict majority12 when such alternative exists and picks all alternatives otherwise. For each ρ

∈ ΠN , we define the majority rule M : ΠN → A as

    {x} if #{i ∈ N : L(x; ρi} = A } > n/2
M(ρ) = 
                A   otherwise

One can check through Example 5.1 above that M is not Maskin monotonic. We now show

that the equivalent hyperfunction of M is Nash implementable over the domain obtained

through the following two extension axioms: 

Our first axiom that we call A1 requires that the best element of a set must be preferred to the

set itself. In other words, for all ρ ∈ Π, for all R ∈ κ(ρ), and for all X ∈ A with #X > 1 we

have {x} P X where x = argmaxX ρ.

The next extension axiom, A2, assumes optimistic individuals who prefers a set X to a set Y if

they prefers the best outcome of X to the best outcome of Y. In other words, for all ρ ∈ Π, for

all R ∈ κ(ρ), and for all X, Y ∈ A we have : 

X P Y whenever x p y where X ⊆ L(x; ρ}  and Y ⊆ L(y; ρ).

We denote κ for the consistency map which assigns to each ordering over alternatives, all

orderings over sets which satisfy axioms A1 and A2, hence defining ℜκ = ∪ρ ∈ Π κ (ρ). 

Proposition 5.2: Let # N ≥ 3. Given the consistency map κ determined by axioms A1 and A2,

the majority rule is Nash implementable through its equivalent hyperfunction defined over

ℜκ.

Proof: We will prove the proposition through Corollary 4.2. First check that κ satisfies the

solidarity condition of Corollary 4.2 and leads to a domain ℜκ  which is regular. It is clear that
                                                          
12 A strict majority is a coalition of agents whose cardinality exceeds its complement coalition.
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the majority rule satisfies the no veto power condition. To complete the proof, we must show

that it is also strongly group monotonic. To see this, take any ρ, ρ’ ∈ ΠN such that for all i ∈

N, we have L(x*; ρi) ⊆  L(x*; ρi') where x* = argmax M(ρ) ρi. We have to show that M(ρ) ⊆

M(ρ’). By definition of M, M(ρ) is either a singleton or equals A. 

First consider the case where M(ρ) = {x*} for some x* ∈ A. By definition of M, we have #{i

∈ N : L(x*; ρi) = A } > n/2. As L(x*; ρi) ⊆ L(x*; ρi') for all i ∈ N, we have #{i ∈ N : L(x*;

ρ’i) = A } >  n/2 as well which, again by definition of M, implies M(ρ’) = {x*}. 

Now consider the case where M(ρ) = A. By definition of M, for any x ∈ A, we have # {i ∈ N

: L(x; ρi) = A } ≤  n/2. Recall that for all i ∈ N, L(x*; ρi) ⊆ L(x*; ρi') where x* = argmaxA ρi.

Thus, for each i ∈ N, argmaxA ρi = argmaxA ρi', impliying  # {i ∈ N : L(x; ρ’i) = A } ≤  n/2

for all x ∈ A, which, again by definition of M, implies M(ρ’) = A. Hence, M is strongly group

monotonic, completing the proof. Q.E.D.

As a further example, consider the plurality rule when we have only three voters. The

plurality rule picks the alternatives considered as best by the highest number of voters.  For

each ρ  ∈ ΠN , we define the plurality rule PL : ΠN → A as the subset X of A such that for all

x ∈ X and for all y∈A we have #{i ∈ N : L(x; ρi} = A }  ≥  #{i ∈ N : L(y; ρi} = A }.            

The plurality rule is a refinement of the majority rule. One can easily check that it is not

Maskin monotonic, but strongly group monotonic when we have only three voters. Thus, we

state the following result without proof.

Proposition 5.3: Let #N = 3. Given the consistency map κ determined by axioms A1 and A2,

the plurality rule is Nash implementable through its equivalent hyperfunction defined over

ℜκ.

6. CONCLUDING REMARKS 
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Our results on Nash implementability are positive. We show that group monotonic social

choice correspondences (satisfying the no veto power condition) can be Nash implemented

via their equivalent hyperfunctions. The strenght of the group monotonicity condition depends

on the strenght of the axioms used to extend preferences over alternatives to sets. In any case,

it is not stronger than Maskin monotonicity. Thus, there are social choice rules which are not

Maskin monotonic but group monotonic, which expands the set of Nash implementable social

choice rules. In particular, the top cycle and qualified majority rules are Nash implementable

via their equivalent hyperfunctions, while they fail to be Maskin monotonic.

This positive result is based on our postulating the equivalence between implementing a

correspondence and its equivalent hyperfunction. This is an acceptable claim when outcomes

of correspondences are conceived as a first refinement of the set of alternatives from which a

final unique choice will be made. 

We wish to close by mentioning the possibility of defining the concept of a minimal group

monotonic extension, similar to the minimal monotonic extension of Sen (1995). Clearly, the

minimal group monotonic extension of a social choice correspondence will be a subset of its

minimal monotonic extension. Thus, non Maskin monotonic social choice rules can be Nash

implemented at a “lower cost”. So it would be interesting to look for the minimal group

monotonic extensions of various social choice correspondences, in the same manner as

Thomson (1999) does for minimal monotonic extensions.  
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