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Abstract

Here we examine the process of discretizing an evolutionary game. First, we
change the replicator equation of game theory into a Lotka-Volterra population
equation. Then we use the technique developed by Bettelheim, Agam and Shnerb
[1] to turn the continuous Lotka-Volterra equation into a discrete version. This
involves treating the Lotka-Volterra equation as a mean field equation and using
techniques from quantum field theory and statistical mechanics.
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1 Game Theory Background

1.1 Introduction

Evolutionary game theory is concerned with how the games played between indi-
viduals in a large population affect the population itself. Since it is concerned with
an average outcome of a large number of games, the concept of rational players
can be dropped. That is, the individual players are no longer considered to be
intelligent. This chapter is based on [5] and [7, Chapters 2 and 9]. It is perhaps
best to start with an example of an evolutionary game.

Example 1.1 (The Hawk-Dove Game) Assume we have a population that com-
petes over food. Let us give a value of G to the gain an individual receives by



eating a morsel of food. In the game that the individuals play, each player can
employ one of two strategies. The Hawk strategy is to attack until one of the
players is injured or retreats. We assign a cost of C' > G to an injury. The Dove
strategy is to bluff an attack hoping the other player retreats or, to retreat if the
other player attacks.

Now, if a Hawk meets a Dove, the Hawk will attack and the Dove will retreat.
The payoffs are G for the Hawk (it gets the food) and 0 for the Dove. If two
Hawks meet we assume that each has a probability p = 1/2 of injury. The average
payoff to both players is then (G — C) /2. Two Doves who meet will bluff until one
retreats. If each is equally likely to retreat, then the average payoff to both players
is /2. We represent this game in the following matrices:

G=C

MO = l (2) Q] (D)
2
G=C

M® = l é Q] (2)
2

The matrix M9 gives player i’s expected payoff in any game. (Note that
M® = (MUNT, je, M® is the transpose of M. This is an example of a
symmetric game, to be defined below.) A Hawk (Dove) strategy is given by the
vector [1 0] ([0 1]). Note, we will not distinguish explicitly between row and column
vectors. To determine the payoffs, we represent player one’s strategy as a row
vector and player two’s as a column vector. For example, assume that player one
is a Dove and player two is a Hawk. Then the payolffs to each player are
0 1]Mm L

U1 =

[ (1)
0

Uy = [0 1}M<2>
G

In general, we allow individuals in a population to use a Hawk strategy with
probability h and a Dove strategy with probability d = (1 — h). It is this situation
that we will be most interested in. In particular, we want to know which h, if it
exists, is “optimal” in a sense to be made precise below.



1.2 Game Theory

Every player in a game has a set of N() pure strategies, denoted by (). In
the Hawk-Dove game, both players have the pure strategies given by Hawk and
Dove, so, for player i, ®() = {H @, D(i)}. In addition, each player has a payoff
“matrix” M) where

when we have n players. The normal form of a game is given by
ro= {o® o0 nm  pm0Y 3)

The normal form tells us: 1) The number of players in a game; 2) Their respective
strategies, and; 3) Their payoff matrices.

(v)

A mixed strategy is when a player assigns some probability p;’ to each
element c,o;i) € (). We let a mixed strategy be denoted by s() = [p{, ... p(].

This means that player : will use the pure strategy c,oy)

set of all possible strategies for player : is the simplex

with probability p!”'. The

J

J

‘ ' NG@
S = {S(i) e RN :p(l) > 0 and Zpy) = 1}

j=1
Definition 1.2 The support of s') € S is given by
Supp(s(i)) = {pr) 1< < NG andpy) > 0}
The interior of S\ is defined by
int(SO) = {s®:p{ L0 foral1 < j < NO}
The boundary of S\ is

bd(SW) = SO\int(SW)

The interior of S is the set of completely mixed strategies. The “corners” of
S are the pure strategies of player i. The pure strategies are a subset of bd(S)).
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The set of pure strategy combinations of a game I’ is

o = J]oW
=1

Similarly, the set of all mixed strategy combinations is

S = J[sY
=1
Suppose each player uses the mixed strategy sV, 7 = 1,...,n. We willlets € S
denote the vector s = [s(!), ..., s(™]. With these strategies, the probability that
@ = [a,o;}), - c,o;:)] € ® is actually played is given by

sp) = IIn
=1
Then the expected payoff for player ¢, given the vector s, is

MO(s) = 3 s(e)MI(y)

pEd
where M)(y) is the payoff to player i when ¢ € @ is played.
Example 1.3 In the Hawk-Dove game we have that ®") = &) = {[ D}.
The payoff matrices were given in (1) and (2). So our normal form for this
game is ' = {q)(l), e p ) M(Q)}. A typical mixed strategy for a player is
st) = [ 1 — b)), where 0 < D < 1 and we will let d) = 1 — h1). Then h()

(dW)) gives the probability that player i will use the Hawk (Dove) strategy. This
gives us

SO = {s" e R* 1 1. dD > 0 and b + dV) = 1}
o — {H(I)H(z) g e pM) ) D(I)D(2)}

S = {s € R*: s(p;) > 0 and 24:3(992') = 1}

Ifwelet o = HUH®, o, = HOD®) s = DOHE) and o, = DMV DO),
then



andy" s(p;) = L. Itis easy to see that
MO@s) = s 10

where s(1) . M (Ds(2) is the inner product of s(!) with M ()s(2),

Consider some s € 5. Let us allow player ¢ to freely choose any strategy
5() € SO and define s\ = [s(), ... s(=1 §0) st+D 5] Thatis, s\5()
is the same as s except that player i’s strategy s(9) is replaced by the strategy §(%).
From the strategies §(Y) € S there are some that are more advantageous to player
1.

Definition 1.4 We call a strategy 3% € S a best reply of playeritos € S if
M(i)(s\é(i)) = max M(i)(s\é(i))

5 est)

The set of all best replies for player 1 against s is denoted by 3 (i)(s). The set of
pure best replies is given by

BOs) = {0 € 90}
We then have that
s ¢ ﬁ(i)(s) & Supp(é(i)) C B(i)(s) 4)

Lets,5 € S. Now, § is called a best reply against s if and only if 5 € pU(s) for
all 1. The set of pure best replies is given by

There should be no confusion in calling ) or § a best reply the meaning should
always be clear from the context. The same comment holds for 3()(s) and B()(s)
versus 3(s) and B(s), respectively. Note that B(s) € ® and f(s) € S.

An important case is when s € 3(s). That is, when s is a best reply to itself.
It is readily apparent from (4) that

s € [(s) & supp(s) C B(s)



Definition 1.5 Given a game I', we call s € S a Nash equilibrium (NE) if
s € (s). We denote the set of Nash equilibria by NE(T'), for the game T'. If
B(s) = {s}, we call s a strict Nash equilibrium. If supp(s) = B(s), then s is
called a quasi-strict Nash equilibrium. We denote the strict and quasi-strict Nash
equilibria by NE,(I') and NE,(I"), respectively.

A quasi-strict NE requires that every player assigns some positive probability to
all of their best replies. A strategy s is a strict NE if and only if it is the unique
best reply to itself. Then s € ®, which means that each player has one, and only

one, pure strategy best reply to s. That is, 3{)(s) = {c,ogl)} = BU)(s), for all i.

Hence, 5(s) = {¢;} = B(s) where ¢; = [‘P;j)v e 7995‘:)]'

Example 1.6 For the Hawk-Dove game, every s € S is given by s = [s(1), s(?)]
where s = [R(), 1 — ). Then s\8\) represents the situation where we allow
player i to vary h) while the other player’s hD) is held constant. To find player
one’s best replies, we need to find the h'V)’s such that

. . G-c 2)
[ A 1—h<1>}[ : nghh(z)]
: -

is maximized for a fixed h®). Now
L] -
h

0 S |]1-h®
A
= | g

If AW > BW) then player one should use the Hawk strategy. So AV > B =
RO = 1. Similarly, AV < B = h() = 0 and AV = BM = p1) ¢ [0, 1].
Now, A 2 BO) & G/C 2 h®). Then, since C > G,

Ws)=BW ={H} if G/C>n?
Us)=BY ={D} if G/C <h?
SO BW =(H D} if G/C=hr?

1

(
(

B
B
() =

By the symmetry of the game, we can let h'Y) — h?) and h®) — bV in the above
analysis to find player two’s best replies

89(s) = BW = {0} if G/C>h0
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B3(s) = B® ={D} if G/C <hW
BA(s)=5® B® ={H D}y if G/C=hrD

Now we will find the NE’s of the Hawk-Dove game. If h'? < G/C then
BW(s) = {HY}. This implies that h\") =1 > G//C so that 3¥(s) = {D}. Hence,
h? =0 < G/C. So, (H, D) is the unique best reply to itself. Also, it is easy to
show that (D, H) is a second NE. Note that (H, D) and (D, H) are strict NE’s.
These equilibria tell us that it is always best to use the opposite pure strategy of
your opponent’s pure strategy. (In the context of evolutionary game theory, these
equilibria are irrelevant since we will not allow a player to condition their strategy
on the other player’s strategy.)

A third NE is when hV) = h\2) = G/C. This is a quasi-strict, but not strict,
NE. Since this equilibrium is a symmetric NE (i.e., it does not depend on which
player is called player one, for example), we may expect a population to adopt
this strategy. It is this idea that we now examine.

1.3 Evolutionarily Stable Strategies

Evolutionary game theory largely examines games between two players. These
games, called bimatrix games, are given by ' = {®(), &), () M}, We
say that I is a symmetric game if the conditions ®(") = &) and M) = (M ®)T
hold. This is the case we will be most interested in. For symmetric games, (%)
and M) are redundant. For example, if player one uses strategy q and player two
uses p, we have for player two’s payoff

q-MPp = p-(MP)'q

= p- M(l)q
Each player then uses the same pure strategy space ¢ = () = {¢,,..., ¢, }. The
payoff of one pure strategy versus another is given by the corresponding element of
the fitness matrix M = M. So strategy ¢; versus ¢; has payoff ¢;- M ¢p; = M;;
and strategy ¢; versus ¢; has payoff M;;. All of this allows us to identify the
symmetric game I" in (3) with the fitness matrix M. Hence, instead of referring to
the game [' = {®M), &) M) M)} we will, in this case, refer to the game M
instead.

When we examined the Hawk-Dove game above, we found a symmetric NE.
We would like to think that the population would settle to this strategy and would
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be stable. By stable we mean that a mutant strategy can not invade a population
using the NE. But, since the NE was not strict, it is not obvious that it is stable
against invasion. The invaders could use a strategy that does as well as the NE
strategy against the NE strategy. It is apparent that we need to refine our concept of
an equilibrium so that it reflects our intuition about stability. We do this presently.

Suppose a population () consists of two types of individuals, [ and .J. Then
@ = «J 4+ (1 — )] where x and (1 — z) are the frequencies of ./ and [ indi-
viduals, respectively. Now, let [ use the strategy p and J the strategy p. Then ()
corresponds to the strategy mixture xp + (1 — «)p. Letting the simplex

S™o= {pERm:ijOandejzl}
7=1

be the set of all possible strategies in our game M , we make the following definition.

Definition 1.7 p € 5™ is evolutionarily stable if, for allp € S™, p # p, and all
e(p) > 0 sufficiently small, we have that

p-M(p+(1—c)p) < p-M(ep+(L-c)p) 5)

In (5) we have, after letting ¢ — 0,
p-Mp < p-Mp

That is, p is a best reply to itself—so p is a symmetric NE. We can also rewrite (5)
as

(I—€e)(p-Mp—p-Mp)+e(p-Mp—p-Mp) > 0 (6)

So the fact that p is a NE is not enough to guarantee that it is evolutionarily stable
(i.e., that it can not be invaded). We need to add a second condition that p must
satisfy. Equation (6) motivates the following definition.

Definition 1.8 A strategy p € S™ is an evolutionarily stable strategy (ESS) if it
satisfied the following two conditions:

e equilibrium condition
p-Mp < p-Mp

Jorallp € S™. That is, p is a symmetric NE.

8



e stability condition
p-Mp < p-Mp

whenp # pandp - Mp = p - Mp. That is, p is stable against invasion.

The stability condition states that when p and p fare equally well against p, p will
fare better against p than p will. This seems reasonable. If p tries to invade, p
will on average fare better in the perturbed population () = e + (1 — €)/. Thus,
the [ individuals’ fitness will be higher than the ./ individuals’ fitness, and they
will be able to resist the invasion by .J.

We may ask when an ESS exists? (Note, if p is a strict NE then it is an ESS
since the stability condition is already met.) Let us first state a theorem proved by
Nash [6].

Theorem 1.9 (Nash, 1951) Every symmetric bimatrix game has a symmetric NE
given by (p,p), p € S™.

So the equilibrium condition is not much of a restriction. It seems intuitive that we
should be able to characterize the ESS by some form of stability condition. This
is in fact possible.

Theorem 1.10 The strategy p € S™ is an ESS of the game M if and only if there
exists a neighborhood U of p, U C S™, such that

p-Mp < p-Mp

Jorallp € U withp # P.

The final question we will ask is when is an ESS unique? The following
theorem gives us a partial answer to this question.

Theorem 1.11 Let p be an ESS of the game M and (p, p) be a symmetric NE. If
supp(p) C B(p) then p = p.

We can see this by assuming that (p,p) and (p,p), p # p. are both symmetric
NE of the game A/. Now let supp(p) C B(p) which means that p is a best

9



reply against itself and p. So p and p fare equally well against p, and p fairs at
least as well against p as p does. Hence, the stability condition is not met. So
p is not an ESS of the game M. Now take the contrapositive of this to prove the
theorem. This gives us a partial uniqueness corollary. Assume p € int(S™), so
that supp(p) = ¢. This implies that B(p) = ¢. So supp(p) is always a subset of
B(p). Then theorem 1.11 holds, and we have

Corollary 1.12 If p € int(S™) is an ESS of the game M, then it is the unique
ESS.

Example 1.13 Now we examine the symmetric NE of the Hawk-Dove game. The
equilibrium condition is already met. With h® = Gi/C, we have p = [G/C (1 —

G//C)], so that
IR )

2
Then, for every p € S™, p # P, we have that p - Mp = p - Mp. Letp =
[p1 (1 — p1)]. It follows that

QMR

C G
. — R 2 J—
p-Mp 5Pt
G?
- — — J— -
b Mp Chtytae
SO
C G?
) -5 . - _ Gpy — —
p-Mp—p-Mp SPi TG = 5
We need to check that
C G?
Tt <0

or, equivalently, if

G G\’
p%—Q_pl‘F(—) > 0

2 (@) = ()
P Cpl O = P O
0

But,



Jorall p # p. Hence, p is an ESS of the game M. Since p € int(S™), it is the
unique ESS.

As we stated earlier, we would expect the population playing the Hawk-Dove
game to utilize the strategy p in example 1.13. Not only will it receive an optimal
payoff from the game, but it will be stable against invasion also. What if the
population is not utilizing p? How can it evolve to the strategy p? We turn our
attention to these questions in Section 2.

2 Replicator Dynamics

2.1 Introduction

So far we have only examined static games between two players. The concept of
an ESS implies that some sort of dynamics is occurring in the population though.
Here we will add in temporal dynamics in order to achieve a more realistic model
of games that are repeatedly played. We then examine the connections between
the game theoretic (frequency) dynamics and the dynamics arising from a density
model.

2.2 The Replicator (Frequency) Equation

In a game M, we can imagine having strategy types p;, € S™. We let x; denote
the frequency of the i-type individuals in a population, where xy 4+ - -+ + x,, = 1.
Letting x = [zy,...,,], the state of a population is given by x € S”. If an
i-type individual plays against a j-type individual, the payoff to the :-type player
is given by A;; = p; - Mp;. We can then construct a new fitness matrix A from
the underlying game M.

Given a population state x and a fitness matrix A, the fitness (i.e., expected
payoff) of an i-type individual is (Ax);, the /th row of Ax. The average fitness
is x - Ax. Assuming i-types only produce i-type offsprings, the frequency of the
i-types in the next generation will be (by basic Darwinian theory)

x - Ax

11



or
(Ax); — x - Ax

x - Ax

(7

l’; — T = X
If we assume the changes in «; are small between generations, we can replace (7)
with
(Ax); — x - Ax

x - Ax

(8)

j/'i = Z;
Equation (8) can be further simplified by using the following theorem.
Theorem 2.1 Let B(x,t) > 0. Then the solutions x = f(x,t) and x =
B(x',t)f(x',t) can be mapped into each other through a change in the time
variable, T = 0(t), where 0 is a strictly monotonic function. If B and f are
time-independent, then the two systems have the same orbits.
So we finally have that our replicator (frequency) equation

j/'i = Z; [(AX)Z — X AX] (9)

has the same trajectories as (8). From (9), note that x; = 0 = 2; = 0. So a strategy
type that is extinct remains so. Also, it is easy to show that zy + - - - z,, = 0. Then
x € S™ for all time.

We can define the symmetric Nash equilibria and evolutionarily stable states
as before.

Definition 2.2 A state X € S™ is a Nash Equilibrium (NE) of the game A if, for
allx € S

x-Ax < x-Ax

We call x an evolutionarily stable state (ESS) if, for all x in some neighborhood
U C S"of X, x # X, we have

x-Ax < X-Ax

We will use ESS to denote both evolutionarily stable strategies and states. This
should not cause confusion as the meaning will be clear from the context.

Before stating some results about the NE’s and ESS’s of a game A, we need to
define some stability concepts.

12



Definition 2.3 A solution u(t) of a differential equation is Lyapunov stable if,
for a given € > 0, there exists a 6(e¢) > 0 such that, if the solution v(t) satisfies
|u—v|[<datt =ty then| u—v |< eforeveryt > t,. If, in addition, we
have

lim [u—v]| — 0
t—o00
then u(t) is called asymptotically stable.
The following theorem collects some basic results concerning ESS’s.

Theorem 2.4 The following results hold for x:

1. If x € S™is a NE of the game A, then X is a fixed point of (9).
2. If X is a Lyapunov stable solution of (9), then x is a NE of the game A.

3. If X is an ESS of the game A, then it is an asymptotically stable fixed point
of (9).

4. If X € int(S™) is an ESS of the game A, then it is a globally stable fixed
point of (9).

The mean population strategy is given by p = > x;p,;. Now consider some
other average population strategy p = > y;p;. We call p strongly stable if, given
an ¢ > 0, p — P under the evolution given in (9) whenever || p — p ||< catt = ¢g
. That is, as long as the mean population strategy starts sufficiently close to p, it
will converge to p provided p is a possible mean population strategy. The concept
of strong stability formalizes the behavior that we intuitively would want an ESS
to have. We end this section with the following important theorem.

Theorem 2.5 p € S™ is an ESS of the game A if and only if it is strongly stable
under the evolution given in (9).

2.3 The Lotka-Volterra (Density) Equation

The last section dealt with the evolution of the frequencies in a population. Here
we show that this is closely connected to the evolution of the population densities
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(to be defined). It is this connection that we will be most concerned about. The
replicator equation (9) can be mapped onto the Lotka-Volterra equation (to be
defined below). First note that (9) is invariant under the addition of a constant to
any column of A. So we can always assume that A has all zeros in the last row.
We define new variables

Ty
yi = — (10)
Ly
for: =1,...,n. Since (10) gives us
Yi
T, = Py
Zj:l y]

we refer to the y; as the densities of the population. Equation (10) leads to

vi = dt \z,

Ty
= (5) 14x)i = (ax).]
= yi(Ax);
— wlAy)e, an
Employing Theorem 2.1, we have that
vi = yi(Ay)

n—1

= Y (Am + Z Az’jyj) (12)
7=1

where, in the second equality, we used the fact that y, = 1 and A,;; = 0. Equation

(12) is the Lotka-Volterra (density) equation. While we will not explicitly

represent y,, in (12), it is very important that we remember that there is always an

“extra variable”, y, = 1, associated with the density equation. Since y, = 1, we

can define anew matrix A; := A;;,1,5 = 1,...,n—1. Wecall A; the interaction
matrix. For simplicity, rewrite (12) as

Ui = yilri+ (Ary)id (13)
where: =1,...,n— landr;, = A;,.

Let us review what we have done so far. We started with a static game that
individuals in a population play. This game naturally leads to a dynamical system

14



for the evolution of the strategies in a population (i.e., the replicator equation).
By defining new variables y; that give the relative frequencies of the p; strategies
versus the p,, strategy, we mapped the replicator equation onto the Lotka-Volterra
equation. As we will now show, the Lotka-Volterra equation naturally arises from
a completely different way of analyzing populations.

Consider two competing populations: a predator population y;, and a prey
population y;. In the absence of prey, the predator’s population will decline by a
rate given by r; + Ay1y1, where ry, A;; < 0. When prey are present, the predator’s
population increases by a rate A;5y,, Ao > 0. When predators are not present,
the prey’s population increases (or decreases) by a factor of ry + Agoys, 72 > 0
and Ay; < 0. The A,, represents the prey’s intraspecie competition for food.
Predators will reduce the prey population with rate Ay;y;, A9 < 0. This gives us
the equations

1 = wilr+ Any + Ay (14)
U2 = yalre + Asyr + Azoys] (15)

which is just (13) forn = 2.

It is difficult to give a game theoretic interpretation to this derivation of the
Lotka-Volterra equation. The two populations are not really competing over
anything like food. Rather, the prey are trying to avoid the predators and the
predators are trying to capture the prey. Also, underlying (14) and (15) is a
certain discretized situation. If a predator captures the prey, the prey’s population
is reduced by a definite amount, namely one. We can also imagine that this
consumption of prey leads to an increase in the reproductive success of the predator.
For example, maybe the consumption of one prey leads to an additional predator
in the next generation. This is perhaps clearer if we think not about populations
but, instead, think of a simple chemical reaction [4, page 7]. Let two chemicals A
and B react as

A+B — 2B

If a and b are the concentrations of A and B, respectively, we have, as an approx-
imation, that

i@ = a[-b] (16)
h = bld] (17)



Equations (16) and (17) are a special case of (14) and (15). The discrete nature of
the underlying reaction should now be clear.

Let us return to the Hawk-Dove game. Using (1), our matrix will be given by

) G-c @
— 2 2
M = l 0 ] (18)
Then our Lotka-Volterra equation is
. G G-C
Yy = Ui [5 + 5 y1] (19)
Yy = 1 (20)

where y; 1s the relative frequency of the Hawk strategy in a population. Equation
(19) is the smooth approximation of the discrete process

e

n

cC—-G

25 21)
yity — 0 (22)

What happens to z; and x5 if the process in (21) occurs? We have
yi—y = ptl (23)

Then,

v— ey = (24)

Ty — T, = (25)

1+
1

y1 + 2

So, if y; is initially small, an increase in y; leads to a relatively large increase
(decrease) in x; (z2). For y; large, any change in y; results in a small change in
X1 and Zo.
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3 Discretizing Evolutionary Games

As we have previously stated, the density equations are a smooth approximation
to the true dynamics. The same can be said about the frequency equations because
we assumed that the changes in ; were small when deriving (8). In this section
we examine the effects of this discretization.

The discretization effects on the predator-prey model

o= [—p+ Ayelu (26)
Y2 = [0 — Ayl (27)
i, o, A > 0, have already been explored in [1] (see also [2]). Here we summarize

some of the results obtained in this procedure. The first step is to derive the Master
equations for the predator-prey model

- 0 (28)
Y2 s 2y2 (29)
Ay — 2y (30)

Let P, ,, be the probability that there are m predators and n prey. Then the rate
of change in P, ,, is the rate at which probability “flows into” this state less the
rate at which probability “flows out” of this state. The Master equations give the
equations for the changes in the P, ,,’s. For (28) to (30) we have

Pry = —(um+on+ X mn) Py, + plm + 1) Py (31)

+o(n —1) Pyt +Am —1)(n 4+ 1)Pr_1n41

The first term in (31) gives the probability of leaving state P,, ,,. This can happen
through annihilation (i.e., death) of a predator, creation (i.e., birth) of a prey,
or consumption of a prey by a predator resulting in the birth of a new predator

(equations (28), (29) and (30), respectively). The other three terms in (31) give
the probabilities of entering state P, ,, through the reactions in (28) through (30).

Now let |m, n) be the state where there are m predators and n prey. We define
) = D Pualm.n) (32)

as the state of our system. Let the creation of a predator be denoted by the operator
AT
a’, so that

&llm,n) = |m+1Ln) (33)
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The annihilation of a predator will be given by the operator a defined by
alm,ny = mlm—1,n) (34)

We similarly define the creation and annihilation of the prey with the operators bt
and b :
) = |m,n+1) (35)

Bt
blm,n) = n|m,n—1) (36)

m,n
|m, n
The operators satisfy the commutation relations

o] =

al —a

ta (37)

[b.b7] bt — b'h (38)

— o> = O

with all other commutators being zero. We can see this from, for example,

a,a"| [m.n) = (aal—afa)|m,n)
= alm+1,n) —mal|m—1,n)
= [(m+1) =m][m,n)
= 1|m,n)
and
a,b"] [m,n) = (ab'—bla)m,n)
= alm,n+1) —mbfm —1,n)
= (m—m)lm—1,n+1)
= 0lm—1,n+1)

From (32) we see that
|¢> = ZPmm|m7n>
= Z [—(um + on+ Amn)Pr,, + p(m+ 1) Prg1 s (39)

m,n

+o(n — 1) Pyt + Am —1)(n+ 1)Pp_1ns1] Im,n)
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Using the creation and annihilation operators, we can rewrite (39) as
) = —H) (40)
where
H = p(a"—1)a+o(1 —bhHb'b + xaf(bt —af)ab (41)
This is easily checked since, for example,
p( = DAY = 3 (!~ Dam.n)
= 3 Pl — 1ysaln — 1)

= 3 P (pmlm, ) — pimfm = 1))

m,n

= Z (/,Lumm - M(m + 1)Pm+1,n) |m7 n>

m,n

We can do a similar analysis of the other terms in (41) to recover (39).

Now let us apply this formalism to the relatively simpler equation (19). The
discrete process here is given by (21) and (22)

e

A1 2y, (42)
c=G
ity — 0 (43)
Our Master equations are given by
. C -G G
P, = — %m + 1 m(m — 1)] P, + E(m — )Py (44)
-G
4 2+ 1) P
With the creation and annihilation operators defined as above, we have
by = 3 Pulm) (45)
= —Hpuply)
where
G C -G
Hup = (1= aha'a + 7 (afal — 1)aa (46)
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So what does this discretization of the density equation say about the frequency
equation? We will look at the process in (28) to (30). First note that y; = m,
y2 = n and y3 = 1 corresponds to one, and only one, x; = ¢, x5 = r and x5 = s,
where ¢,r,s € Q (thatis, ¢, r, and s are members of the rational numbers Q).
Also, for any allowed 1, x5 and x5, we have a unique m and n that they correspond
to. Not all ¢, r and s are possible. Since x1 + 22 + 23 = 1 and y; = x; /x5, we
must have

Girts = 1 (47)
qg = ms (48)
r = ns (49)

By (47), s is redundant as a label. So we have the unique correspondence

Prn —— Py, (50)
where
m
_ S 51
q mnrl (51)
r = _n (52)
m-4+n+1

Pmm are the Master equations in the density formalism and Pw are the Master
equations in the frequency formalism. We have not derived an explicit expression
for P, ., butlet us see what (39) can tell us. Let P, ;(0) = 8;,,8,,,, where i, j,m,n €
Ny and &y, is the Kronecker delta defined by

s oo [ 1 ifl=k
BTl 0 ifl#k

Then (39) says that, for ¢ > 0, P, ,(¢) < 1. That is, the probability that our
individual is in state P, ,begins to diffuse away. So, for { > 0, we need to
use (39) to give us the probability that our individual is in state |m', n'). But this
means, in the frequency formalism, that an individual that starts at |¢, r), with |¢, )
having the obvious definition, may not remain in |¢, ). That is, the individual may
mutate (see [5, Chapter 20]).

Now we need to ask: “How does this discretized evolution relate to the fre-
quency and density equations?” We are really asking if the concept of an ESS
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has any significance when we look at the “microstructure” of the evolution of a
population through mutation. As shown in [1], it does from an average viewpoint.
They find that the evolution of the population mean follows the average evolution
of the mutating individuals. It is this population mean that gives meaning to the
ESS concept. Specifically, we define the average, for the Hawk-Dove game,

o= S mb, (53)

where m is the average relative frequency of the hawk strategy in a population.
Then (53) evolves according to the equation in (19)

m/:n4§+G;Cﬂ (54)

4 Discussion

We have briefly reviewed the process of discretizing an evolutionary game. This
process allows us to consider the replicator equation as the evolution of the average
strategy of a large population. The Master equations that arise in the discrete pro-
cess allow us to examine the evolution of the probability density of a population’s
strategies. Thus, we can examine a game on two levels: 1) at the level of the
population average (a “global” approach), and; 2) at the level of the individual (a
“local” approach).

The article by Bettelheim, Agam and Shnerb [1] goes into a more detailed and
extensive analysis of this process. In particular, they also examine the case where
there is a spatial dimension. This may be useful in applying the discretization
process to the games considered in [3].

References

[1] O. Bettelheim, E. Agam and N. M. Shnerb. “Quantum phase transitions” in
classical nonequilibrium processes. Physica E, 9:600, 2001.

[2] J. Cardy and W. C. Tauber. Theory of branching and annihilating random
walks. Physical Review Letters, 77(23):4780—4783, 1996.

21



[3] R. Cressman and G. T. Vickers. Spatial and density effects in evolutionary
game theory. Journal of Theoretical Biology, 184(4):359-369, 1997.

[4] P. Grindrod. The Theory and Applications of Reaction-Diffusion Equations:
Patterns and Waves. Oxford, 1996.

[5] J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.
Cambridge, 2002.

[6] J. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286-295,
1951.

[7] E. van Damme. Stability and Perfection of Nash Equilibria. Springer-Verlag,
1996.

22



