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Abstract It is known that every continuous time fictitious play process
approaches equilibrium in every nondegenerate 2×2 and 2×3 game, and
it has been conjectured that convergence to equilibrium holds generally for
2×n games. We give a simple geometric proof of this. As a corollary, we
obtain the same result for the discrete fictitious play process.
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1 Introduction

The idea of fictitious play is over half a century old. It was originally intro-
duced by Brown (1951) as an algorithm to calculate the value of a zero-sum
game. Apart from this, the fictitious play process (FP) is the prime exam-
ple of a so called myopic learning process. In a fictitious play process two
players are engaged in the repeated play of a finite game. Each player be-
lieves that her opponent plays a stationary mixed strategy. In each round,
she estimates this strategy by the historical distribution of pure strategies
and reacts with a strategy that maximizes her expected payoff in the next
round, i.e., with a myopic best response. We say that an FP approaches
equilibrium if the sequence of beliefs converges to the set of Nash equilibria
of the game. A game is said to have the fictitious play property (FPP), if
every FP approaches equilibrium in this game.
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Robinson (1951) proved that every two-person zero-sum game has the
FPP. Miyasawa (1961) established the same result for every 2×2 game,1

see also Metrick and Polak (1994). Other convergence results are due to
Milgrom and Roberts (1991), Monderer and Shapley (1996a, 1996b), and
Sela (1999). It is well known, however, that for games with more than two
strategies per player convergence need not occur. Shapley (1964) demon-
strated this with a 3×3 bimatrix game for which fictitious play ends up in
an asymptotically stable limit cycle. Other examples include Jordan (1993)
and Foster and Young (1998). With three or more strategies per player,
even chaotic behavior is possible, see Cowan (1992) or Richards (1997).

The cited results also hold for the continuous time version of the fictitious
play process (CFP), or the best response dynamics (Gilboa and Matsui,
1991, Matsui, 1992), which differs from CFP only by a rescaling of time.
Nonconvergence results can be found in Gaunersdorfer and Hofbauer (1995)
or Krishna and Sjöström (1998), while convergence results for CFP have
been established by Rosenmüller (1971), Hofbauer (1995), Harris (1998),
Sela (2000), and Berger (2001, 2002).

In particular, we know that in games with more than two strategies per
player CFP need not converge. On the other hand, every CFP approaches
equilibrium in (nondegenerate) 2×2 games (Rosenmüller, 1971) and 2×3
games (Sela, 2000). An open question is the case of 2×n games with n ≥ 4.
Monderer and Sela (1997) conjecture that convergence to equilibrium in
fact extends to all nondegenerate 2×n games. In the following we show that
this is indeed the case.

The proof consists of two main parts. In the first part we construct a
simple linear mapping from the space of mixed strategy pairs to the two-
dimensional plane, which has the property that any nonconvergent CFP
path is mapped to a nonconvergent path in a compact region, which does
not cross itself and must therefore approach a limit cycle. The second part
is to show that such a limit cycle does not exist. The proof of this latter
part is straightforward and uses only the elementary geometric properties
of similar triangles.

The remainder of this paper is structured as follows. Section 2 introduces
the notation we use and defines FP and CFP. The main theorem is stated
and proved in section 3. Section 4 extends the result to the discrete fictitious
play process.

2 Fictitious Play

2.1 Notation

Let (A,B) be a two-player bimatrix game where player 1 has pure strategies
numbered from 1 to m, and player 2 has pure strategies 1, . . . , n. A is an m×n

1 He assumed a particular tie-breaking rule. Without such a rule, there are
degenerate 2×2 games where FP does not converge, see Monderer and Sela (1996).
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payoff matrix for player 1 and B an n×m payoff matrix for player 2. Thus,
if player 1 chooses i and player 2 chooses j, the payoff to player 1 is aij and
the payoff to player 2 is bji. The set of mixed strategies of player 1 is then
the m − 1 dimensional probability simplex Sm, and analogously Sn is the
set of mixed strategies of player 2. The expected payoff for player 1 playing
strategy i if player 2 plays the mixed strategy q = (q1, . . . , qn)t ∈ Sn (where
the superscript t denotes the transpose of a vector) is (Aq)i. Analogously
(Bp)j is the expected payoff for player 2 playing strategy j against the
mixed strategy p = (p1, . . . , pm)t ∈ Sm. If both players use mixed strategies
p and q, respectively, the expected payoffs are ptAq to player 1 and qtBp
to player 2. For p ∈ Sm we denote by BR(p) the set of best responses to
p. A pair of mixed strategies (p∗,q∗) is a Nash equilibrium if and only if
q∗ ∈ BR(p∗) and p∗ ∈ BR(q∗).

2.2 Discrete Fictitious Play

For t = 1, 2, 3, . . . , the sequence (p(t),q(t)) is a discrete fictitious play pro-
cess (FP), if

(p(1),q(1)) ∈ Sm×Sn (1)

and for all t,

p(t + 1) =
tp(t) + b1(t)

t + 1
and q(t + 1) =

tq(t) + b2(t)
t + 1

, (2)

where b1(t) ∈ BR(q(t)) and b2(t) ∈ BR(p(t)).

2.3 Continuous Fictitious Play

If we go from discrete time steps to continuous time t > 0, we obtain the
continuous fictitious play process (CFP)

ṗ(t) =
b1(t)− p(t)

t
, q̇(t) =

b2(t)− q(t)
t

. (3)

Up to a rescaling of time – which does not change the shape of the orbits –
the CFP is equivalent to the best response dynamics

ṗ(t) = b1(t)− p(t), q̇(t) = b2(t)− q(t). (4)

Obviously, if some pure strategy i of player 1 is the unique best response
to q(0), the path p(t) is a straight line in Sm, heading for i, as long as
this strategy remains the unique best response.2 For any pure strategy i
of player 1 denote by Qi the set of mixed strategies q of player 2 with

2 More generally, Hofbauer (1995) shows that for any initial condition a piece-
wise linear CFP path can be constructed.
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BR(q) = {i}. Analogously, let Pj be the set of mixed strategies p of player
1 with BR(p) = {j}. The sets Qi for different pure strategies i of player 1
are (possibly empty) disjoint, open, and convex subsets of Sn (analogously
for player 2).

If player 1, say, switches from i to i′, then at the switching point she is
indifferent between these two pure strategies – both do equally well (and
at least as good as his other pure strategies) against q. Geometrically, the
set of points q ∈ Sn where player 1 is indifferent between two given pure
strategies i and i′, is a (possibly empty) linear subspace of Sn. The next
switch again occurs when one of the players is indifferent between two of
her pure best responses. Between switches, the CFP path is a straight line
heading for some pair of pure best responses.

3 CFP in 2×n Games

Consider now the case m = 2. Actually we work with nondegenerate 2×n
games (A,B), i.e., games where no column of A or B contains two identical
payoffs. We can now state the main result.

Theorem 1 Every continuous fictitious play process approaches equilibrium
in every nondegenerate 2×n game.

Proof Let us start with the contradictory assumption that there is a nonde-
generate 2×n game and a CFP path (p(t),q(t))t>0 that does not approach
equilibrium.

We can exclude the trivial cases where one of the players has a strictly
dominant strategy.3 If dominant strategies do not exist, then the set

H = {(p,q) ∈ S2×Sn : (Aq)1 = (Aq)2}, (5)

where player 1 is indifferent between both her pure strategies, is an n − 1
dimensional linear subspace of S2×Sn. If, on the other hand, player 2 is
indifferent between the pure best replies j and j′, then we have (Bp)j =
(Bp)j′ , which defines a particular point pj,j′ ∈ S2. At least one such point
of indifference must exist. If at time t the CFP path (p(t),q(t)) is in Pj×Qi,
then the path heads for the pure strategy pair (i, j), as long as it stays in
Pj×Qi.

It is now possible to construct a linear mapping F from the state space to
the two-dimensional plane, which has the important property that the im-
ages F (Pj×Qi) of the disjoint best response regions are themselves disjoint.
Consider the following linear mapping from S2×Sn to R2:

(x, y) = F (p,q) = (p1, (Aq)1 − (Aq)2). (6)

3 Weakly dominant strategies are then automatically excluded by the nonde-
generacy assumption.



Fictitious Play in 2×n Games 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R11 R1k R1,k+1 

R21 R22 R2k R2,k+1 

R12 

0 x1 x2 xk-1 xk 1 

a1 

a2 

ak 

ak+1 

�  

�
 

..... 

..... 

Fig. 1 The image of the state space S2×Sn under the linear mapping F .

This linear mapping has the property that it maps the state space S2×Sn to
a rectangle [0, 1]×[α, β] with α < 0, β > 0, and player 1’s indifference set H
to the interval [0, 1] on the x-axis. The indifference sets {pj,j′}×Sn of player
2 are mapped to vertical line segments {pj,j′

1 }×[α, β], and, writing aj short
for a1j−a2j , we can also see that the pure strategy pairs (1, j) and (2, j) are
mapped to the points (1, aj) on the right border and (0, aj) on the left border
of the rectangle, respectively. The height of the rectangle is determined by
α = min{aj} and β = max{aj}. Moreover, the piecewise linear CFP path
(p(t),q(t)) is mapped to a piecewise linear path (x(t), y(t)) = F (p(t),q(t)),
which we will call the induced path.

Renumbering the strategies of player 2 in the appropriate way, we can
achieve an ordering of the indifference points pj,j′

1 such that 0 < p1,2
1 <

p2,3
1 < · · · < pk,k+1

1 < 1 for some 1 ≤ k ≤ n − 1, or, defining xi = pi,i+1
1 ,

such that 0 < x1 < · · · < xk < 1. The image of the state space S2×Sn under
the mapping F thus has a shape as shown in Figure 1, where the images of
the sets Pj×Qi are denoted by Rij .

Note, that if the induced path (x(t), y(t)) is in R1j , it heads for the point
(1, aj), while if it is in R2j , it heads for (0, aj). In short, any induced path
moves to the right as long as it is above the x-axis, and to the left as long
as it is below the x-axis. If the CFP path, and hence the induced path, does
not converge, then the latter must move clockwise in a cyclic fashion within
the rectangle. It is clear that induced paths cannot cross, and from this we
can now conclude that the induced path converges to a closed limit cycle
– called a Shapley polygon – in the rectangle. An example is depicted in
Figure 2, where the 4 leftmost and the 4 rightmost edges of such a Shapley
polygon are drawn.
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Fig. 2 The 4 leftmost and the 4 rightmost edges of a Shapley polygon in the
rectangle.

We have intentionally not drawn the full polygon in Figure 2. The reason
for this is that such a Shapley polygon does not exist. This is the crucial
point of the analysis.

Lemma 1 There exists no Shapley polygon in the rectangle.

Proof We prove this by contradiction. Starting with the assumption that
there exists a Shapley polygon with 2(k + 1) edges (a Shapley 2(k + 1)-
gon), where k ≥ 2, we show that there also exists a Shapley 2k-gon. This
implies that there exists a Shapley 4-gon. It remains to show that a Shapley
4-gon does not exist. For the first part let us assume that there is a Shapley
2(k + 1)-gon, as indicated in Figure 3. Note that we have 0 < x < x1 <
xk−1 < xk < x′ < 1 and y1, yk−1, yk > 0, as well as z1, zk−1, zk < 0. Also,
necessarily, a1 > 0 and ak+1 < 0, but ak may have any sign.

With the notation in this figure, by comparing the similar triangles in
the left half, we can derive the following:

y1

x1 − x
=

a1

1− x
and

−z1

x1 − x
=

a1 − z1

x1
. (7)

Noting that a1 > 0, z1 < 0, and x < x1, these equations yield

−z1

y1
=

a1 − z1

a1

1− x

x1
>

1− x

x1
>

1− x1

x1
. (8)

By comparing the similar triangles on the right side of the polygon in
Figure 3 we can also find the identities

yk

x′ − xk
=

yk − ak+1

1− xk
and

−zk

x′ − xk
= −ak+1

x′
. (9)
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Fig. 3 Notation for the proof of Lemma 1.

This yields

−zk

yk
=

1− xk

xk − yk/ak+1
<

1− xk

xk
, (10)

since yk and −ak+1 are positive. On the other hand, for arbitrary yk >
0, zk < 0 the inequality −zk/yk < (1− xk)/xk is sufficient for the existence
of a number ak+1 < 0, for which the equality in (10) holds. This can be
seen, if we let ak+1 go from −∞ to 0. The middle term in (10) then falls
from (1 − xk)/xk to 0, and by the intermediate value theorem, for some
number ak+1 < 0 it is equal to −zk/yk.

From Figure 3 we can derive a third pair of identities. These are

yk−1 − ak

1− xk−1
=

yk − ak

1− xk
and

−zk−1 + ak

xk−1
=
−zk + ak

xk
, (11)

which yield

yk−1 =
yk(1− xk−1)− ak(xk − xk−1)

1− xk
(12)

and

−zk−1 =
−zkxk−1 − ak(xk − xk−1)

xk
. (13)
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Note that the nominator −zkxk−1 − ak(xk − xk−1) > 0 since zk−1 < 0.
Taken together we have

−zk−1

yk−1
=

−zkxk−1 − ak(xk − xk−1)
yk(1− xk−1)− ak(xk − xk−1)

1− xk

xk
. (14)

From (10) it follows that −zkxk < yk(1 − xk), and xk−1 < xk implies
1− xk < 1− xk−1, so we get the inequality

−zkxk−1 < yk(1− xk−1). (15)

Adding −ak(xk − xk−1), we have

0 < −zkxk−1 − ak(xk − xk−1) < yk(1− xk−1)− ak(xk − xk−1), (16)

or

0 <
−zkxk−1 − ak(xk − xk−1)

yk(1− xk−1)− ak(xk − xk−1)
< 1. (17)

Furthermore, xk > xk−1 implies (1−xk)/xk < (1−xk−1)/xk−1, and together
with (14) and (17) this yields

−zk−1

yk−1
<

1− xk−1

xk−1
. (18)

Note that from the consideration below (10) we can now conclude that there
exists a number a < 0 such that the line connecting the points (xk−1, yk−1)
and (1, a) and the line connecting (xk−1, zk−1) and (0, a) intersect on the
x-axis at some point x′ between xk−1 and 1. In short, this means that there
exists a Shapley 2k-gon. Repeating the same argument, we get

−zk−2

yk−2
<

1− xk−2

xk−2
, (19)

and so on, until we reach

−z1

y1
<

1− x1

x1
, (20)

implying the existence of a Shapley 4-gon. However, this contradicts inequal-
ity (8). Hence the Shapley 4-gon and all of the “larger” Shapley polygons
do not exist. ut

This concludes the proof of the main theorem. ut
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4 FP in 2×n Games

There are no general results relating the behavior of discrete and continuous
time ficititious play. However, by invoking a result from Hofbauer and Sorin
(2002, Proposition 8) – see also Hofbauer (1995) – we can easily derive
convergence to equilibrium in nondegenerate 2×n games also for FP.

Corollary 1 Every nondegenerate 2×n game has the fictitious play property.

Proof By Theorem 1, every CFP path approaches equilibrium in a nonde-
generate 2×n game. This means that the maximal invariant set of the CFP
dynamics (3) is the set of Nash equilibria of the game. By Proposition 8 of
Hofbauer and Sorin (2002), the set of limit points of a discrete fictitious play
process is contained in this Nash equilibrium set. In other words, every limit
point of an FP is a Nash equilibrium. It follows that every FP approaches
equilibrium. ut
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