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Abstract. Consider an n-person stochastic game with Borel state space S, compact
metric action sets A1, A2, . . . , An, and law of motion q such that the integral under q
of every bounded Borel measurable function depends measurably on the initial state
x and continuously on the actions (a1, a2, . . . , an) of the players. If the payoff to each
player i is 1 or 0 according to whether or not the stochastic process of states stays
forever in a given Borel set Gi, then there is an ε-equilibrium for every ε > 0.

1 Introduction.

The stochastic games treated here have n players 1, 2, . . . , n. The state space S is a
Borel subset of a Polish space. Every player i has an action set Ai which is a compact
metric space. The set P(Ai) of probability measures defined on the Borel subsets of
Ai is given the usual weak topology and, hence, P(Ai) is also compact metrizable. Let
A = A1×A2×· · ·×An have its product topology so that it too is compact metrizable.
The law of motion q is a conditional probability distribution on S given S × A with
the interpretation that, if the players choose actions a = (a1, a2, . . . , an) ∈ A at state
x ∈ S, then q(·|x, a) is the conditional distribution of the next state. It is assumed that
for every bounded Borel measurable function f : S 7→ R, the integral

∫
f(y) q(dy|x, a)

is, for fixed x, a continuous function of a and, for fixed a, a Borel measurable function
of x.

A strategy for a player specifies how the player selects an action at each stage
of play. Formally, a strategy σi for player i is a function that assigns to each par-
tial history p = (a1, x1, a

2, x2, . . . , xk), including the empty partial history p = ∅, a
probability measure σi(p) ∈ P(Ai). The measure σi(∅) is the distribution of player i’s
initial action a1

i and σi(p) is the conditional distribution of player i’s action ak+1
i given

p = (a1, x1, a
2, x2, . . . , xk). A function σ̄i that assigns a strategy σ̄i(x) to each initial

state x ∈ S is called a family of strategies. A strategy σi is Borel if, for k = 1, 2, . . .,
σi(a

1, x1, a
2, . . . , xk) is Borel measurable from (A× S)k to P(Ai). A family of strate-

gies σ̄i is Borel if, for k = 1, 2, . . ., σ̄i(x)(a1, x1, a
2, . . . , xk) is Borel measurable from

S × (A× S)k to P(Ai). All the strategies and families of strategies considered in this
paper will be Borel. So we will sometimes omit the adjective ”Borel.”

A Borel profile is an n-tuple σ = (σ1, σ2, . . . , σn) of Borel strategies - one for each
player. A Borel family of profiles is an n-tuple σ̄ = (σ̄1, σ̄2, . . . , σ̄n) of Borel families
of strategies.

An initial state x0 = x and a Borel profile σ together with the law of motion q
determine in the usual way a probability measure Px,σ on the Borel subsets of the
infinite product space

H = S × A× S × A× · · · . (1.1)

We regard Px,σ as the distribution of the infinite sequence or play h = (x0, a
1, x1, a

2, . . .)
with x0 = x, and write Ex,σ for the associated expectation operator.
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Suppose now that each player i has a bounded Borel measurable payoff function
φi : H 7→ R. Thus, if x is the initial state and each player selects a strategy σi, the
expected payoff to player i is Ex,σφi, where σ is the profile (σ1, σ2, . . . , σn).

For ε ≥ 0, an ε-equilibrium at the initial state x is a profile σ = (σ1, σ2, . . . , σn),
such that, for all i = 1, 2, . . . , n,

Ex,σφi ≥ sup
µi

Ex,(σ1,...,σi−1,µi,σi+1,...,σn)φi − ε,

where µi ranges over the set of all strategies for player i. A Nash equilibrium is a
0-equilibrium.

A challenging problem in the theory of stochastic games is to determine when
equilibria exist. For uncountable state and action spaces, the major results available
are for payoff functions that are discounted sums of daily rewards. (See Mertens and
Parthasarathy (1991) and Nowak(to appear) and the references cited in these papers.)

Here we treat a very special nondiscounted case. To each player i is associated a
Borel subset Gi of the state space S. The payoff function φi is the indicator function
of the set G∞i ⊆ H defined by

G∞i = {(x0, a
1, x1, a

2, . . .) : xk ∈ Gi for all k = 0, 1, . . .}. (1.2)

Thus each player i receives a payoff of 1 if the process of states stays forever in Gi

and receives 0 otherwise. A game that has payoff functions of this form and satisfies
the other assumptions made above is called a Borel stay-in-a-set game.

Theorem 1.1. For every n-person Borel stay-in-a-set game and every ε > 0, there is
a Borel family σ̄ of profiles such that σ̄(x) is an ε-equilibrium at x for all x ∈ S.

For a countable state space and finite action sets, this result was proved by Secchi
and Sudderth (2001a). Here we follow the outline of their proof, but must verify that
it can be carried out in a Borel measurable framework.

The next section gives a Borel treatment of finite horizon games. Section 3 treats
the one-person stay-in-a-set game. The proof of Theorem 1.1 is completed in section
4. The final section has a generalization and some questions.

We conclude this section with a remark on conditioning.

Remark 1.2. Let σi be a strategy and let p = (a1, x1, a
2, x2, . . . , xk) be a partial his-

tory. The conditional strategy σi[p] is defined at each partial history p̃ = (b1, y1, b
2, y2, . . . , yl)

by the rule σi[p](p̃) = σi(pp̃) where pp̃ is the partial history consisting of the elements of
p followed by the elements of p̃. If σ = (σ1, σ2, . . . , σn) is a profile, then the conditional
profile σ[p] is just the profile of conditional strategies (σ1[p], σ2[p], . . . , σn[p]). A stop-
ping time T is a Borel mapping from A×S×A×S×· · · to {0, 1, . . .}∪{∞} such that,
for k = 0, 1, . . . and infinite histories h = (a1, x1, a

2, x2, . . .) and h̃ = (b1, y1, b
2, y2, . . .),

if T (h) = k and h and h̃ agree in their first 2k coordinates, then T (h̃) = k. If
T (h) < ∞, we define σ[pT ](h) = σ[pT (h)], where pT (h) = pT (a1, x1, a

2, x2, . . .) =
(a1, x1, a

2, x2, . . . , a
T (h), xT (h)). Suppose that x ∈ X, σ is a profile, T is a stopping

time, and Px,σ[T <∞] = 1. Then it is straightforward to verify that PxT ,σ[pT ] is a ver-
sion of the conditional Px,σ-distribution of (xT , a

T+1, xT+1, . . .) given (a1, x1, . . . , xT ).



2 Borel backward induction

The objective of this section is to see that the usual backward induction argument
can, under our assumptions on S, A, and q, be made Borel measurable. To do this
we consider a k-day game Γk(u)(x) with initial state x and terminal payoff functions
ui : S 7→ R, i = 1, 2, . . ., that are bounded and Borel measurable. That is, for each
Borel profile σ = (σ1, σ2, . . . , σn), the payoff to each player i is Ex,σui(xk). (We could
of course restrict attention to k-day strategies.)

Lemma 2.1. For each k = 1, 2, . . . there is a Borel family σ̄k of profiles such that
σ̄k(x) is a Nash equilibrium for Γk(u)(x) for every x ∈ S.

Proof. Consider first the case k = 1. For each x ∈ S, the one-day game Γ1(u)(x) is
just a one-shot game with compact action sets A1, A2, . . . , An and payoffs

wi(x, a) = wi(x, a1, a2, . . . , an) =

∫
ui(x1) q(dx1|x, a).

By our assumptions about q, the functions w1, w2, . . . , wn are, for fixed x, continuous
on the compact set A. So, by a standard result (Theorem I.4.1, Mertens et al (1994)),
there is a Nash equilibrium µ = (µ1, µ2, . . . , µn) ∈ P(A1) × P(A2) × · · · P(An) for
Γ1(u)(x). To complete the argument for the case k = 1, we must make a selection
µ̄(x) from the set N1(u)(x) of Nash equilibria for Γ1(u)(x) in such a way that the
function µ̄ is Borel. To see that a Borel selection is possible, notice that the graph
Gr(N1(u)) is the collection of all (x, µ) such that, for all i = 1, 2, . . . , n, and all
ν ∈ P(Ai),∫

· · ·
∫
wi(x, a)µ1(da1) · · ·µn(dan) ≥∫
· · ·
∫
wi(x, a)µ1(da1) · · ·µi−1(dai−1)ν(dai)µi+1(dai+1) · · ·µn(dan).

Because each space Ai is separable, the same is true of P(Ai). Thus the inequality
above holds for all ν ∈ P(Ai) if and only if it holds for all ν belonging to a countable
dense subset of P(Ai). It follows easily that Gr(N1(u)) is a Borel subset of S×P(A1)×
P(A2) × · · · P(An). We have already seen that every x-section, namely N1(u)(x), is
nonempty. Furthermore, it is straightforward to check that N1(u)(x) is a closed and,
therefore, compact subset of the compact set P(A1) × P(A2) × · · · P(An). It now
follows from the Kunugui-Novikov selection theorem (cf. section 5.7.1 of Srivastava
(1998)) that there is a Borel selector µ̄ such that µ̄(x) ∈ N1(u)(x) for all x ∈ S. This
completes the proof for k = 1.

Assume now the inductive hypothesis that the result holds for some k ≥ 1, and
let σ̄k be a Borel family of Nash equilibria for the k-day games Γk(u)(·). Let

vi(x) = Ex,σ̄k(x)u(xk), x ∈ S, i = 1, 2, . . . , n.

It follows from our assumptions on q and the Borel measurability of σ̄k that the vi
are also Borel. Hence, by the case k = 1, there is a Borel family of profiles µ̄ for the
one-day games Γ1(v)(·). Define σ̄k+1(x) = (σ̄k+1

1 (x), · · · , σ̄k+1
n (x)) by letting, for every

x ∈ S and i = 1, 2, . . . , n, the strategy σ̄k+1
i (x) begin with the mixed action µ̄i(x) and



then continue with σ̄ki (x1) given that the next state is x1. Then σ̄k+1(x) is clearly
Borel in x. A standard backward induction shows that σ̄k+1(x) is a Nash equilibrium
for Γk+1(u)(x) for every x.

Remark 2.2. The assumption made in the lemma of a terminal payoff ui(xk) for
each player i is not necessary. The lemma remains true if each player has a payoff
function that is a Borel measurable function of the entire history up to time k. This
more general form of the lemma is easily reduced to that already proved by defining
new states

x̃k = (x0, a
1, x1, a

2, . . . , xk)

and introducing a new law of motion

q̃(x̃k+1|x̃k, ak+1) = q(xk+1|xk, ak+1).

This is a standard technique sometimes called the ”partial history trick.” (See Secchi
and Sudderth (2001b).)

3 The one-person game

We assume in this section that there is a single player and we omit the subscript ”1”.
Thus G is written for G1, A for A1, etc.

This one-person, stay-in-a-set game can be viewed as a gambling problem or as
a negative dynamic programming problem in which the player loses 1 unit when the
process of states first exits from G. Indeed, the game of this section is a special case
of those treated in Maitra et al (1991). However, the result needed below, namely
that there exists a Borel measurable family of optimal strategies, is not proved in this
reference. So we will prove it here. Closely related results are in Schäl (1975).

Let v be the value function for the game defined by

v(x) = sup
σ
Px,σ(G∞), x ∈ S,

and, for n = 1, 2, . . ., let vn be the value function for the n-day game defined by

vn(x) = sup
σ
Px,σ(Gn), x ∈ S,

where
Gn = {h = (x0, a

1, x1, a
2, . . .) : xi ∈ G, i = 0, 1, . . . , n}.

Note that v(x) = vn(x) = 0 for all x 6∈ G.
Let f : S 7→ A be Borel measurable. Then f determines a (deterministic) Borel

family of stationary strategies f∞, where f∞(x) is the strategy at initial state x that
uses action f(y) whenever the current state is y.

Lemma 3.1. (i) The n-day value functions vn are pointwise nonincreasing and
converge pointwise to v.

(ii) The vn are Borel measurable, and, hence, so is v.



(iii) There is a Borel family f∞ of optimal stationary strategies so that

v(x) = Px,f∞(x)(G
∞), x ∈ S.

Proof. Since Gn ⊇ Gn+1, it is trivial that vn(x) ≥ vn+1(x) for all x ∈ S, n ≥ 1. Let
w(x) = limn vn(x), x ∈ S. We will show below that v = w. Obviously, both functions
are identically zero on the complement of G. So we will be mainly concerned with
x ∈ G.

Define an operator R on bounded Borel measurable functions φ : S 7→ R by the
rule

(Rφ)(x) =

{
supa

∫
G
φ(x1) q(dx1|x, a), x ∈ G

0, x 6∈ G.

By our assumptions on q,
∫
G
φ(x1) q(dx1|x, a) is a continuous function of a for fixed x.

So the supremum above can be taken over a countable dense set of a’s. Hence, Rφ is
Borel measurable and bounded. Furthermore, the backward induction algorithm can
be written as

v1 = R1, vn = Rvn−1 n ≥ 2.

It follows that the vn are Borel measurable, and, hence, so is w.
Now fix x ∈ G and consider the functions

ψn(a) =

∫
G

vn−1(x1) q(dx1|x, a), ψ(a) =

∫
G

w(x1) q(dx1|x, a), a ∈ A.

By our assumptions on q, the functions ψ, ψn, n ≥ 2 are continuous on the compact
set A. By the monotone convergence theorem, ψn decreases to ψ as n→∞. By Dini’s
theorem (Kelley (1955), p. 239), ψn converges uniformly to ψ. Using the continuity
of ψn and the compactness of A, we also have

vn(x) = sup
a
ψn(a) = ψn(an),

for some an ∈ A and every n. Let ank be a convergent subsequence of an and let
a∗ = limk ank . Then

w(x) = limψnk(ank) = ψ(a∗) =

∫
G

w(x1) q(dx1|x, a∗) ≤ (Rw)(x).

On the other hand, for every n, vn+1(x) = (Rvn)(x) ≥ (Rw)(x) and, hence, w(x) ≥
(Rw)(x).

Thus w solves the optimality equation φ = Rφ. To see that v = w, first notice
that v ≤ vn because G∞ ⊆ Gn. Therefore, v ≤ lim vn = w.

Next use again the Kunugui-Novikov selection theorem to find a Borel mapping
f : S 7→ A such that for all x ∈ G,

w(x) =

∫
G

w(x1) q(dx1|x, f(x)) ≤
∫
G

1 q(dx1|x, f(x)) = Px,f∞(x)(G
1),

and f is equal to some arbitrary fixed action on the complement of G. An argument
by induction shows that, for all x and n,

w(x) ≤ Px,f∞(x)(G
n)→ Px,f∞(x)(G

∞) ≤ v(x).

We conclude that w = v and f∞(x) is optimal for every x.



Corollary 3.2. For every ε > 0, there is a Borel function Nε : S 7→ {1, 2, . . .} such
that

vNε(x)(x) ≤ v(x) + ε

for all x ∈ S.

Proof. Let Nε(x) = inf{n : vn(x) ≤ v(x) + ε}.

4 The proof of Theorem 1.1

The proof is by induction on the number of players n, and is essentially a Borel version
of the proof of Theorem 1.2 in Secchi and Sudderth (2001a).

For n = 1, the theorem is immediate from Lemma 3.1(iii). So assume n ≥ 2, and
that the theorem holds for every (n-1)-person Borel stay-in-a-set game. Fix ε > 0 and
consider an n-person Borel stay-in-a-set game as defined in section 1. It suffices to
find a Borel family σ̄ of ε-equilibria for this n-person game.

We consider three cases based on the position of the initial state x0 = x.
Case 1. x 6∈

⋂n
i=1 Gi.

Suppose that x 6∈ Gi for some player i. Then the payoff to player i will be zero
for every profile , and every strategy for player i will be optimal versus the strategies
of the other players. To construct a Borel family µ̄i of profiles such that µ̄i(x) is an
ε/2-equilibrium for every x 6∈ Gi, fix an action a∗i ∈ Ai for player i and consider the
(n-1)-player stay-in-a-set game on S with sets G1, . . . , Gi−1, Gi+1, . . . , Gn and law of
motion

q̃(·|x, (a1, . . . , ai−1, ai+1, . . . , an)) = q(·|x, (a1, . . . , ai−1, a
∗
i , ai+1, . . . , an)).

By the inductive hypothesis, this game has a Borel family ν̄i of ε/2-equilibria. Let
µ̄i be the family of profiles for the original game obtained from ν̄i by adding at each
x ∈ S the strategy for player i that always plays action a∗i . Then µ̄i is Borel and µ̄i(x)
is an ε/2-equilibrium if x 6∈ Gi.

To complete this case, define the family σ̄ on the complement of
⋂n
i=1 Gi by setting

σ̄(x) =

{
ν̄1(x), if x 6∈ G1

ν̄i(x), if x ∈
⋂i−1
j=1 Gj, x 6∈ Gi, i = 2, . . . , n.

Then σ̄(x) is an ε/2-equilibrium for every x 6∈
⋂n
i=1 Gi and σ̄ is Borel on this set.

For use below, let

ψi(x) = Px,σ̄(x)(G
∞
i ), x 6∈

n⋂
i=1

Gi,

be the payoff to each player i from the profile σ̄(x).
For the next case, define the set

Gε = {x ∈
n⋂
i=1

Gi : there exists a profile τ such thatPx,τ (
n⋂
i=1

G∞i ) ≥ 1− ε/2}.

Case 2. x ∈ Gε.



Note that
⋂n
i=1 G

∞
i = (

⋂n
i=1 Gi)

∞ and consider the one-person stay-in-a-set game
with G =

⋂n
i=1 Gi, action set A = A1 × · · · × An, and the same law of motion q. Let

f∞ be the optimal stationary family of Lemma 3.1(iii). Then f∞ can be regarded
as a Borel family of profiles in the n-person game. Define σ̄(x) to be the profile
corresponding to f∞(x) for x ∈ Gε. Clearly, σ̄(x) is an ε/2-equilibrium for all x ∈ Gε.

Notice also that, if v is the value function for the one-person game, then

Gε = {x ∈
n⋂
i=1

Gi : v(x) ≥ 1− ε/2}.

So, by Lemma 3.1, Gε is a Borel set.
As in case 1, set

ψi(x) = Px,σ̄(x)(G
∞
i ), x ∈ Gε.

Now set F ε =
⋂n
i=1 Gi −Gε.

Case 3. x ∈ F ε.
Define the Borel measurable stopping time T on histories h = (a1, x1, a

2, . . .) by

T (h) = inf{k ≥ 1 : xk 6∈ F ε}.

Lemma 4.1. For all x ∈ F ε and all profiles τ , Px,τ [T <∞] = 1.

Proof. Same as for Lemma 3.1 in Secchi and Sudderth (2001a).

Consider the one-person game with G = F ε, action set A, and law of motion q.
The lemma says that, if v is the value function for this one-person game, then v(x) = 0
for all x ∈ F ε. The corresponding N -day one-person game has value function

vN(x) = sup
σ
Px,σ[T > N ].

Set N(x) = Nε/4(x) where Nε/4 is the function given by Corollary 3.2. Then, for all
x ∈ F ε and profiles τ ,

Px,τ [T ≤ N(x)] ≥ 1− ε/4. (4.1)

For x ∈ F ε and each positive integer N , consider the game ΓN(u)(x) of section 2,
where the terminal payoff to to player i is defined by

ui(y) =

{
ψi(y), if y 6∈ F ε,

0, if y ∈ F ε ; i = 1.2. . . . , n,

and the law of motion is

q̃(·|y, a) =

{
q(·|y, a), y ∈ F ε,

δ(y), y 6∈ F ε.

(Here δ(y) is point mass at y.) We have changed the law of motion from what it was
in section 2, but will continue to denote this game by ΓN(u)(x). Notice that the new
law of motion essentially stops each path at the time T of first exit from F ε. Hence,
the expectation operator Ẽ corresponding to q̃ is related to that of the original law
of motion by the equality

Ẽx,σf(xN) = Ex,σf(xT∧N), (4.2)



for bounded Borel f : S 7→ R, where T ∧N is the minimum of T and N . By Lemma
2.1, there is a Borel family µ̄N of profiles such that µ̄N(x) is a Nash equilibrium for
the game ΓN(u)(x) for every x ∈ F ε.

Returning to the Borel stay-in-a-set game, for each x ∈ F ε such that N(x) = N ,
we define the profile σ̄(x) to agree with µ̄N(x) up to time T and, then, at time T ,
switch to σ̄(xT ). (Note that xT 6∈ F ε and so σ̄(xT ) is available from either Case 1 or
Case 2.)

The family of profiles σ̄ is now defined for all x ∈ S. It is Borel by construction
and, by Cases 1 and 2, σ̄(x) is an ε/2-equilibrium for x 6∈ F ε. So it only remains to
show that σ̄(x) is an ε- equilibrium for x ∈ F ε.

Fix x ∈ F ε and assume N(x) = N . Fix also a player i and an arbitrary strategy µi
for player i. Let τ be the profile obtained from σ̄(x) = (σ̄(x)1, . . . , σ̄(x)i, . . . , σ̄(x)n)
by substituting µi for σ̄(x)i. It suffices to show that

Px,σ̄(x)(G
∞
i ) ≥ Px,τ (G

∞
i )− ε. (4.3)

Calculate as follows:

Px,σ̄(x)(G
∞
i ) = Ex,σ̄(x)(PxT ,σ̄(xT )(G

∞
i )1Gi(xT ))

= Ex,σ̄(x)(ψi(xT ))

= Ex,σ̄(x)(ui(xT ))

= Ex,µ̄N (x)(ui(xT ))

≥ Ex,µ̄N (x)(ui(xT∧N))− ε/4
= Ẽx,µ̄N (x)(ui(xN))− ε/4
≥ Ẽx,τ (ui(xN))− ε/4
= Ex,τ (ui(xT∧N))− ε/4
≥ Ex,τ (ui(xT ))− ε/2
= Ex,τ (ψi(xT ))− ε/2
= Ex,τ (PxT ,σ̄(xT )(G

∞
i ))− ε/2

= Ex,τ (PxT ,σ̄(x)[pT ](G
∞
i ))− ε/2

≥ Ex,τ (PxT ,τ [pT ](G
∞
i ))− ε

= Px,τ (G
∞
i )− ε

(4.4)

The first equality above uses the facts that T < ∞ a.s. (Px,σ̄(x)), that a version of
the conditional Px,σ̄(x)-distribution given the pre-T σ-field FT is PxT ,σ̄(xT ), and that
the pT (h)-section of G∞i is G∞i or ∅ according as xT ∈ Gi or not because F ε ⊆ G∞i .
The second and third equalities depend on the definitions of ψi and ui, respectively.
The fourth equality is by virtue of the fact that σ̄(x) and µ̄N(x) agree up to time
T . The first inequality follows from (4.1). The next equality is by (4.2). The second
inequality is a consequence of the fact that µ̄N(x) is a Nash equilibrium in ΓN(u)(x).
The equality following is again by (4.2). The third inequality is by (4.1). The final
inequality uses the fact that σ̄(xT ) = σ̄(x)[pT ] is an ε/2-equilibrium in the stay-in-a-
set game starting at xT and the notation PxT ,τ [pT ] from Remark 1.2 for the conditional
Px,τ -distribution given FT .



5 A generalization

Prior to this section we have worked with the product topology on the space H of (1.1)
where S is assigned the topology under which it is a Borel subset of a Polish space
and A has the topology under which it is compact metrizable. It is now convenient to
introduce a second topology on H, namely, the product topology when S and A are
assigned the discrete topology. In this section, the term ”Borel” will always refer to the
first topology, while the terms ”closed,” ”continuous,” and ”upper semi-continuous”
will refer to the second.

For example, if Gi is a Borel subset of S with its original topology, then the set G∞i
of (1.2) is Borel in the first topology and closed in the second. We will call it a Borel,
closed set. The indicator function of the set G∞i is Borel, upper semi-continuous.

For another example, consider the discounted reward function

φi(h) = φi(x0, a
1, x1, a

2, . . .) =
∞∑
k=0

βkri(xk, a
k+1) (5.1)

where 0 < β < 1 and ri : S × A 7→ R is bounded Borel for the original topologies on
S and A. The function φi is Borel, continuous.

Here is a generalization of Theorem 1.1. (We continue to make the assumptions
on S, A, and q described in section 1.)

Theorem 5.1. Suppose that each player i for i = 1, 2, . . . , n, has a bounded Borel,
upper semi-continuous payoff function. Then, for every ε > 0, there is a Borel family
σ̄ of profiles such that σ̄(x) is an ε-equilibrium at x for every x ∈ S.

In the special case that S is countable and A1, A2, . . . , An are finite, this theorem
coincides with Theorem 1.1 of Secchi and Sudderth (2001b). Indeed, our Theorem
5.1 can be proved by going through the steps of their proof and verifying that they
can be made Borel measurable. With one exception, all of this is straightforward and
analogous to our proof of Theorem 1.1.

The exception concerns the adaptation of Lemma 3.6 from Secchi and Sudderth
(2001b) to the present setting. In that lemma it is shown that, with the aid of the
partial history trick, an arbitrary closed set Ci ⊆ H can be reduced to a set G∞i as
in (1.2). However, it is not clear that the set G∞i is Borel. Luckily it was proved in
Lemma 6.2 of Maitra et al (1991) that Gi can be chosen to be a Borel subset of the
state space.

Remark 5.2. Suppose that the payoff functions in Theorem 5.1 are Borel, continu-
ous. With this stonger hypothesis, perhaps the conclusion can be strengthened to say
that there exists a Borel family of Nash equilibria. This is true for discounted payoffs
(Mertens and Parthasarathy, 1991) or if S is finite and A1, A2, . . . , An are finite (cf.
5.2 of Secchi and Sudderth, 2001b). Indeed, we have no counterexample to the exis-
tence of Nash equilibria even when the payoffs are only Borel, upper semi-continuous
as in the theorem.
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