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Abstract
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1 Introduction

Stable sets were defined by von Neumann and Morgenstern (1945) as a solu-

tion to n-person cooperative games. This solution has received a great deal of

attention in the literature of games since then (see Lucas (1992).) One of the

first criticisms to the von Neumann and Morgenstern (vN&M) stable sets was

made by Harsanyi (1974) who argued that this notion is unsatisfactory because

it neglects the stabilizing effect of the indirect dominance relation between al-

ternatives. This shortcoming is not shared by the subsolutions developed by

Roth (1976), a generalization of the vN&M stable sets which does take into

account the indirect dominance relation. Interestingly enough, this notion has

not been extensively considered in the game theory literature. This paper shows

evidence of the performance for normal form games of the subsolution known

as the supercore.

A recent approach to the stable set theory and its connections with other

solution concepts in game theory has been developed in the book Theory of

Social Situations (TOSS) by Greenberg (1990). In its Chapter 7 it is argued

that when modeling social environments, normal form games do not capture

the notion of negotiation among players, while an advantage of the approach

proposed in TOSS is that the consequences of different types of negotiations

among players may be analyzed. One of the negotiations considered by Green-

berg is the so called individual contingent threat (ICT) situation, where each

single player can object to the prevailing outcome and can threat the others

by stating that she will use a different strategy.1 The ICT situation can be

associated to a system where the strategy profiles of a normal form game are

the elements of the set and the binary relation defined on that set accounts only

for the profitable single deviations.

With respect to the solutions for the system associated to an ICT situation of

a finite normal form game, Greenberg shows that the vN&M stable sets always

exist in the following two cases: either when there are at most two players

or when there are n players, each one with a set of at most two strategies.2

Unfortunately, however, these theorems cannot be generalized and two counter-
1Negotiations where players can jointly object to the prevailing outcome and can threat the

others by stating that they will use another strategies, are considered by Greenberg (1989).
2Greenberg (1990), pp. 100-1, Theorems 7.4.5 and 7.4.6.
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examples are immediately presented (see Greenberg, 1990, pp. 100-1). Even in

the case of a game with Nash equilibrium (NE) strategy profiles (Nash (1951)),

the existence of a vN&M stable set is not guaranteed.3 In this line of research,

Nakanishi (2001, 2002) has generalized Greenberg’s results. He studies the

existence of the vN&M stable sets for the prisoner’s dilemma and for some

other class of normal form games. Arce (1994) and Muto and Okada (1996,

1998) have also studied the vN&M stable sets for different applications using

the ICT situation approach.

In this paper, we study the supercore as a solution for the systems associated

to an ICT situation of a normal form game and of its mixed extension.

Regarding to the pure strategies case, the supercore of the system associated

to an ICT situation contains the NE strategy profiles. The fact that the super-

core may include strategy profiles other than the NE ones does not diminish

the importance of the supercore as a solution concept. On the contrary, it im-

plies that the supercore is not a reformulation of the NE in a different setting.

Moreover, it means that the analysis of the type of strategy profiles contained

in the supercore is of interest per se. In our study of the supercore we introduce

a procedure that easily allows the determination of this solution. In particular,

given a normal form game we derive a sequence of games and we find that the

set of NE strategy profiles of the last game in the sequence exactly coincides

with the supercore of the system derived from the original game. This procedure

also allows the identification of those games in which the supercore selects ex-

actly the NE strategy profiles. With regard to the content of the supercore, this

solution may be interpreted as the outcome of a dynamic model of sequential

selection of NE strategy profiles. From this perspective, the supercore is formed

by the union of NE and the “NE protected strategy profiles” of each game in

the sequence.

We illustrate the previous results with a numerical example and also by

characterizing the supercore of the system associated to the n-person prisoners’

dilemma. As we shall see, the supercore is the unique vN&M stable set and it

is formed by the strategy profile where all players choose to defect and by those

strategy profiles where the number of players who choose to cooperate is even.
3Greenberg (1990), p. 102, Example 7.4.8.
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For the case of a system associated to the mixed extension of a normal form

game, we show that the supercore of such a system coincides with the set of

NE strategy profiles whenever the normal form game has a finite number of NE

profiles. A simple example shows that this result is not maintained for the case

of infinite NE strategy profiles. The equivalence between the supercore and the

set of NE strategy profiles for the mixed extension of a game is obtained by

using a weaker dominance relation on the set of strategy profiles. The proofs of

such equivalence concludes the paper.

The rest of the paper is organized as follows. Section 2 contains the prelimi-

naries. In Section 3 we introduce the ICT situation associated to a normal form

game. We define the sequence of normal form games which allows to determine

the supercore of the system associated to a normal form game. We conclude

this section with a numerical example and with the characterization of the su-

percore for the n-person prisoner’s dilemma. Section 4 contains the study of

the supercore associated to the mixed extension of a game.
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2 Preliminaries

In these preliminaries we introduce the solution concepts for an abstract system

used in the paper. We also recall the definitions of a finite normal form game,

of its mixed extension and of the Nash equilibrium solution.

An abstract system is a pair (X, R), where X is a set of elements and R is

an irreflexive binary relation defined on X. The relation R is read “dominates”

hence, if for two elements x, x′ in X we have xRx′ then we say that x dominates

x′.

For any x ∈ X, let D(x) denote the dominion of x, i.e., D(x) = {x′ ∈ X :

xRx′}. Given any subset A of X, we define the following sets: D(A) =
⋃

x∈A

D(x),

U(A) = X −D(A),4 and P(A) = U(A)−A.

A subsolution of (X, R) is a subset A of X such that A ⊂ U(A),5 and

A = U2(A), where U2(A) = U(U(A)). The condition A ⊂ U(A) is known as

the internal stability condition. With regard to the condition A = U2(A), Roth

(1976, p. 44) provides the following interpretation:

...every point in U(A) − A is dominated by some other point in

the same set and the entire set, thus “overrules” itself leaving only

the set as “sound”.

In words, if A is a subsolution then D(A) ⊂ D(P(A)).

The intersection of all subsolutions of (X,R) is also a subsolution which is

known as supercore.

A subset A ⊂ X is a vN&M stable set of (X, R) if A = U(A). Thus, a vN&M

stable set is characterized by the internal stability condition A ⊂ U(A), and by

U(A) ⊂ A, known as the external stability condition. Clearly, a vN&M stable

set is a subsolution that satisfies P(A) = ∅.
A subset A ⊂ X is the core of (X,R) if A = U(X).

A finite normal form game ΓN is a triple < N, {Si}i∈N , {ui}i∈N > where

N = {1, ..., n} is the finite set of players, Si is the finite set of strategies for

player i and ui : S = ×i∈NSi −→ R is player i’s payoff function.
4The symbol − stands for the difference binary relation.
5The symbol ⊂ means weakly contained while ( means strictly contained.
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A strategy of player i, ŝi is a best response to s−i if for all si ∈ Si, ui(ŝi,

s−i) ≥ ui(si, s−i) where s−i = (s1, ..., si−1, si+1, ..., sn).

Let s = (s1, ..., sn) denote a strategy profile. Then, s∗ = (s∗1, ..., s
∗
n) is a

Nash equilibrium in ΓN if s∗i is a best response to s∗−i for all i ∈ N .

A mixed extension of the game ΓN is a triple < N, {∆Si}i∈N , {Ui}i∈N >

where ∆Si is the simplex of the mixed strategies for player i, and Ui : ∆(S) =

×i∈N∆Si −→ R, assigns to σ ∈ ∆(S) the expected value under ui of the lottery

over S that is induced by σ (so that Ui(σ) =
∑
s∈S

(
∏

j∈N

σj(sj))ui(s)).

Let σ denote a mixed strategy profile. Then, σ∗ = (σ∗1, ..., σ
∗
n) is a Nash

equilibrium in the mixed extension of the game ΓN if σ∗i is a best response to

σ∗−i = (σ∗1, ..., σ
∗
i−1, σ

∗
i+1, ..., σ

∗
n) for all i ∈ N .

3 The Supercore of (S, ∠)

This section has 3 subsections. In the first one, we define the system associated

to an ICT situation of a normal form game. In the second one we define a

sequence of normal form games that allows the determination of the supercore

of (S, ∠). We conclude the section with a numerical example that illustrates

these results and with the characterization of the supercore of the prisoners

dilemma.

3.1 A system associated to an ICT situation of a finite
normal form game

The application of the approach developed in TOSS to the normal form of

a game allows the consideration of different types of negotiation among play-

ers, and thus the analysis of their possible consequences. In particular, the

negotiation in which each player can deviate from a proposed strategy profile

unilaterally is the one that we study in this paper. This notion of negotiation

is formalized by the individual contingent threat, ICT, situation.

Let us start with a description of the negotiation procedure:

A strategy profile, say s, is proposed to players. If all individuals openly

consent to follow s, then s will be adopted. If player i objects to s, then she

has to openly declare that if the remaining players stick to the specified profile
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s, then she will choose s′i instead of si (contingent threat of player i). Thus,

each single player can object to the prevailing profile and can threat the others

by saying that she will choose another strategy. When player i modifies profile

s into profile s′ it is said that player i induces s′ from s. Any player other than

player i can then counter the new upcoming strategy profile induced by player

i. The process just described continues this way. The set of profiles that player

i can induce from s is denoted as follows:

γi(s) = {s′ ∈ S : s′j = sj for all j 6= i, j ∈ N}.

Thus, γi determines an inducement correspondence for player i from S into

itself. Once we have γi we can define the ICT situation associated with ΓN as:

ΓN
γ ≡ (N, S, {ui}i∈N , {γi}i∈N ).

We are now ready to define the system associated to an ICT situation of a game

in normal form.

Definition 1 An individual dominance system associated to an ICT situation

of a game ΓN is a pair (S, ∠), where ∠ is the binary relation defined on S as

follows:

s′∠s if there exists i ∈ N such that s′ ∈ γi(s) and ui(s′) > ui(s).

This means that s′ dominates s if s′ is derived from s via a deviation of a

player i who is better off under s′ than under s.

(Hereafter, if there is no confusion the individual dominance system will be

called simply as the system.)

3.2 A procedure to compute the supercore of (S, ∠)

Let us consider a game ΓN with at least one NE strategy profile. This assump-

tion is not restrictive since if the game ΓN has not any NE strategy profile, then

the supercore of (S, ∠) is the empty set (Roth, (1976)).

Let S∗ be the set of NE strategy profiles of the game ΓN and let s∗ ∈ S∗.

Starting from s∗, consider the set of strategy profiles obtained by a deviation

of a player who gets a lower payoff than the payoff provided by s∗. This set is
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the dominion of s∗, that is, D(s∗) = {s ∈ S : s∗ ∈ γi(s) and ui(s∗) > ui(s) for

some i ∈ N}. Hence, it is clear that moving from s into s∗ is always profitable

for player i. Then, the dominion of S∗ is D(S∗) =
⋃

s∗∈S∗
D(s∗).

Let υi(ΓN ) be the lowest payoff for player i in the game ΓN . That is,

υi(ΓN ) = min{ui(s): s ∈ S}. Denote by υ(ΓN ) = (υ1(ΓN ), ..., υn(ΓN )) the

vector of lowest payoffs.

In what follows we give a procedure to determine the supercore of (S, ∠),

but first let us consider an intuitive description of this procedure.

Starting from the game ΓN , we define a new game ΓN
1 with the same set of

players and strategies for every player and with the players’ payoffs modified in

the following way: The payoff for each player at every profile in D(S∗) is equal

to his lowest payoff in the game ΓN , while the payoffs corresponding to the

remaining strategy profiles are maintained. The idea behind this modification is

to take any power away from the strategy profiles dominated by the NE strategy

profiles. By assigning them the lowest payoffs of the game, these strategy profiles

cannot dominate any profile.

With this modification at hand, we may verify whether or not game ΓN
1

has additional NE strategy profiles than those that ΓN has. If ΓN
1 has a new

NE strategy profiles then a game ΓN
2 can be defined, and the procedure may

continue iteratively in this manner.

This procedure generates a sequence of games
〈
ΓN

t

〉∞
t=0

and a sequence of

systems 〈(S, ∠t)〉∞t=0 defined inductively as follows:

(i) ΓN
0 = ΓN and (S, ∠0) = (S, ∠).

(ii) For t ≥ 1, ΓN
t = < N, {Si}i∈N , {ut

i}i∈N >, where

ut
i(s) =





υi(ΓN ) if s ∈ D(S∗t−1) in (S, ∠t−1)

ut−1
i (s) otherwise,

and (S, ∠t) is the associated system to ΓN
t where ∠t is the binary relation

on S given by

s′∠ts if there is a player i ∈ N such that s′ ∈ γi(s) and ut
i(s

′) > ut
i(s).
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(S∗t−1 denotes the set of NE strategy profiles of ΓN
t−1.)

Formally, the procedure described above can be summarized as follows:

Step 0: Let ΓN
0 = ΓN . Compute S∗0 and determine D(S∗0 ) in (S, ∠0).

Game ΓN
1 is generated according to the player’s payoff function

{
u1

i

}
i∈N

, and the system (S,∠1) is generated by relation ∠1.

Step t: Let be the game ΓN
t . Compute S∗t .

If S∗t = S∗t−1, then we conclude the procedure.

If S∗t−1 ( S∗t , determine D(S∗t ) in (S, ∠t). Game ΓN
t+1 is gener-

ated according to the player’s payoff function
{
ut+1

i

}
i∈N

, and the

system (S, ∠t+1) is generated by the relation ∠t+1.

Given that S is finite, there exists a k ∈ N
such that S∗t 6= S∗t+1 for all t = 0, ...k − 2 and S∗k = S∗k−1.

Now, we can establish the following theorem:

Theorem 1 Let S∗k be the set of NE strategy profiles of the game ΓN
k . Then S∗k

is the supercore of (S, ∠).

Proof. We will prove that the following two conditions hold:

(i) S∗k is a subsolution of (S,∠).

(ii) Any other subsolution S of (S,∠) contains S∗k .

(i) We show that S∗k satisfies in (S, ∠) the conditions S∗k ⊂ U(S∗k) and S∗k =

U2(S∗k).

By the construction of the sequence of games < ΓN
0 ,...,ΓN

k >, we can write

that for each s ∈ S and for all i ∈ N

uk
i (s) =





υi(ΓN ) if s ∈ D(S∗k) in (S, ∠)

ui(s) otherwise.
(1)

Clearly, the NE strategy profiles of ΓN
k , in the system (S, ∠), cannot dominate

each other and can only be dominated by the strategy profiles belonging to

D(S∗k). Hence, S∗k ⊂ U(S∗k) and S∗k ⊂ U(U(S∗k)). Now, let us assume that there

is a strategy profile s ∈ U(U(S∗k)) such that s /∈ S∗k then s will be dominated in
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(S, ∠k) by some s′ ∈ S. So s′∠ks, and from (1), it follows that s′ /∈ D(S∗k) in

(S, ∠). Since s, s′ /∈ D(S∗k), the players’ payoffs corresponding to the profiles s

and s′ are the same in the games ΓN
k and ΓN , it follows that s′∠s. Therefore, s ∈

D(U(S∗k)), which contradicts that s ∈ U(U(S∗k)). Consequently, S∗k = U(U(S∗k))

and (i) has been proved.

(ii) We argue by contradiction. Suppose that for some subsolution S of

(S, ∠), S∗k 6⊂ S. Now, let us consider S∗0 ⊂ ... ⊂ S∗k and define l = min{t : S∗t 6⊂
S, t = 0, ..., k}. Since S∗0 is the core of (S, ∠), it is included in any subsolution,

therefore l 6= 0.

Let s ∈ S∗l such that s /∈ S. Then, either s ∈ D(S) or s ∈ P(S) in (S, ∠).

Given that s is a Nash equilibrium in ΓN
l , then it can only be dominated by

some strategy profiles in D(S∗l−1) and, by the definition of l we have that S is a

subsolution such that S∗l−1 ⊂ S so that s /∈ D(S). Hence, s ∈ P(S). However,

given that s′ ∈ D(S∗l−1) and S∗l−1 ⊂ S then s′ /∈ P(S) and we have arrived to a

contradiction.

Corollary 1 The core of (S, ∠) coincides with the supercore of (S, ∠) if and

only if S∗0 = S∗1 .

Proof. Given that S∗0 is the core of (S, ∠) the result follows directly from

Theorem 1.

One question that immediately arises is the type of profiles included in the

supercore. The content of this set for (S, ∠) may be interpreted as the result of

a dynamic model of sequential selection of strategy profiles.6

Starting from ΓN
0 and S∗0 , assume that the strategy profiles in D(S∗0 ) “lose

power,” so that the current payoffs of the players are replaced by their cor-

responding lowest payoffs in the game. By taking into account these lowered

payoffs, we determine ΓN
1 , a game where the profiles in D(S∗0 ) cannot dominate

any profile. Thus, starting from ΓN
1 , we determine the set of NE profiles S∗1 .

Clearly the strategy profiles belonging to S∗1 − S∗0 are dominated only by some

profiles in D(S∗0 ) and we call them “NE protected profiles”.

In general, given the game ΓN
t , t = 1, ..., k, S∗t is formed by the set S∗t−1 and

by those NE profiles protected by S∗t−1. Therefore, we can establish that the

6See the dynamic model presented by Roth (1978).
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supercore is formed by S∗0 and the NE protected profiles of each game in the

rest of the sequence.

3.3 Two examples

In what follows we first present a simple example illustrating some previous

results. In order to do it we apply the procedure described above.

Example 1 Consider the following game ΓN

b1 b2 b3 b4

a1 6,6 5,5 1,3 2,2
a2 3,4 4,4 7,2 1,3
a3 6,2 2,3 8,8 6,2
a4 2,3 2,5 9,4 2,5

Step 0 : Let ΓN
0 = ΓN . The vector of lowest payoffs is (υ1(ΓN ), υ2(ΓN )) = (1, 2).

The set of NE strategy profiles of ΓN
0 is S∗0 = {(a1, b1)} and the dominion of S∗0

is D(S∗0 )={(a1, b2), (a1, b3), (a1, b4), (a2, b1), (a4, b1)}. Substituting the payoffs’

profiles in D(S∗0 ) by (1, 2) game ΓN
1 is obtained.

Step 1 : Let be the game ΓN
1

b1 b2 b3 b4

a1 6,6 1,2 1,2 1,2
a2 1,2 4,4 7,2 1,3
a3 6,2 2,3 8,8 6,2
a4 1,2 2,5 9,4 2,5

Here, we have S∗1 = {(a1, b1), (a2, b2)}, andD({(a1, b1), (a2, b2)}) = D({(a1, b1)})∪
{(a2, b3), (a2, b4), (a3, b2), (a4, b2)}. Substituting the payoffs’ profiles inD(S∗1 ) by

(1, 2) game ΓN
2 is obtained.

Step 2: Let be the game ΓN
2

b1 b2 b3 b4

a1 6,6 1,2 1,2 1,2
a2 1,2 4,4 1,2 1,2
a3 6,2 1,2 8,8 6,2
a4 1,2 1,2 9,4 2,5
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The set of NE strategy profiles of ΓN
2 is S∗2 = {(a1, b1), (a2, b2)}. Since

S∗2 = S∗1 the procedure ends.

This procedure generates the sequence of games
〈
ΓN

0 , ΓN
1 ,ΓN

2

〉
. The set

of NE strategy profiles of the game ΓN
2 is the supercore for (S,∠). The two

vN&M stable sets of the system (S, ∠) are {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}
and {(a1, b1), (a2, b2), (a4, b3), (a3, b4)}.

Example 2 The supercore for the Prisoners Dilemma:7

The n-person prisoner’s dilemma represents situations where the cooperative

outcome, all players selecting cooperation, cannot be attained as a NE. Let us

formally define this game.8 Let N be the set of players. Assume that every

player has two actions C (cooperation) and D (defection). The payoff of player

i is given by

fi(a |r ), a = C, D, and r = 0, ..., n− 1,

where a is player i’s action and r is the number of other players who select

action C.

The following three assumptions on the payoff function define an n-person

prisoner’s dilemma:

• A.1 Every player is better off by choosing D than by choosing C. That

is, for all i ∈ N : fi(C |r ) < fi(D |r ) for all r = 0, ..., n− 1.

• A.2 If all players choose D, then the outcome of the game is worse to all

of them than the outcome which arises if they all choose C. That is, for

all i ∈ N : fi(C |n− 1) > fi(D |0).

• A.3 The payoff of player i, given her action, increases as the number of

other players that select C increases; that is, fi(C |r ) and fi(D |r ) are

increasing functions of r.
7Arce (1994) studies the vN&M stable set for a 3-person prisoner’s dilemma. Using sets of

continuous strategies for all players Nakanishi (2001) shows that a vN&M stable set always
exists for an n-person prisoner’s dilemma.

8Here, we follow Nishihara (1997) formulation of the n-person prisoner’s dilemma. See also
Okada (1993).
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It is straightforward that under these assumptions the unique NE strategy

profile is that all players select D.

Let (Spd,∠) denote the system associated to the n-person prisoner’s dilemma.

Proposition 2 The supercore of the n-prisoners dilemma is the unique vN&M

stable set of (Spd, ∠), and it is formed by (D, ...,D) and by those strategy profiles

such that the number of players who choose C is even.

Proof. Using the procedure described above we have a sequence of games
〈
ΓN

0 , ..., ΓN
k

〉
derived in the following way. Step 0 : Let ΓN

0 = ΓN . The set

of NE strategy profiles is S∗0 = {(D, ..., D)} and by A.1 the dominion of S∗0 is

D(S∗0 ) = {s ∈ Spd : si = C and sj = D, for all j 6= i.}. Step t, (t ≥ 1): Let

be the game ΓN
t . The set of NE strategy profiles is S∗t = S∗t−1 ∪ S̃t where S̃t is

the set of profiles of the game ΓN
t such that exactly 2t players choose C. The

dominion of S∗t is D(S∗t ) = D(S∗t−1) ∪ D(S̃t) where D(S̃t) is the set of strategy

profiles such that exactly (2t+1) players choose C. Step k: Since S∗k−1 = S∗k , it

must happen that k = n
2 +1 if n is even, and k = integer part of n

2 plus 1 if n is

odd. It is clear that Spd = S∗k ∪ D(S∗k), so we may conclude that the supercore

of (Spd, ∠) is a vN&M stable set and it is obviously unique.

Lastly, we conclude this section with two comments:

C.1) A drawback of the supercore is that, in general, it does not include the

efficient strategy profiles (a strategy profile is efficient if there is no other strategy

profile where all players are strictly better off.) However, in the prisoner’s

dilemma game the inclusion in the supercore of some efficient strategy profiles

is guaranteed. Notice that: (i) if the number of players in the game is even

then the strategy profile (C, ..., C) is in the supercore and (ii) if the number of

players is odd then all those profiles with exactly one player choosing D are in

the supercore. It is easy to see that A.1, A.2 and A.3 guarantee that (C, ..., C)

and the where exactly one player chooses D are efficient profiles. Example 1

illustrates the case where the supercore does not include any of the two efficient

profiles, (a3, b3) and (a4, b3).

C.2) The selected strategy profiles by the supercore may not be form by

rationalizable strategies. (A strategy is rationalizable if it survives the iterated
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removal of strategies that are never best response, see Bernheim (1984) and

Pearce (1984).) For example, the supercore for the 2-person prisoner’s dilemma

is the set {(D, D),(C,C)}, while only D is a rationalizable.

4 The Supercore of (∆(S), ∠)

In this section we study the supercore of a system associated to the mixed

extension of a normal form game. We find that the supercore of such a system

coincides with the set of NE of the mixed extension of the game whenever the

number of NE profiles is finite. A simple example shows that this is not longer

maintained for the case of infinite Nash equilibrium strategy profiles.

An ICT situation of the mixed extension of a game ΓN is a 4-tuple 〈N, ∆(S),

(Ui)i∈N , (γi)i∈N 〉 where γi is the correspondence from ∆(S) into itself defined

by

γi(σ) = {σ′ ∈ ∆(S) : σ′j = σj for all j 6= i, j ∈ N}.

Thus, γi(σ) is the set of profiles which may be induced by player i from σ.

Definition 2 An individual dominance system associated to an ICT situation

of the mixed extension of a game ΓN is a pair (∆(S), ∠) where ∠ is the binary

relation defined on ∆(S) such that

σ′∠σ if there exits i ∈ N such that σ′ ∈ γi(σ) and Ui(σ′) > Ui(σ).

Let Σ∗ be the set of NE strategy profiles of the mixed extension of the game

ΓN and let σ∗ ∈ Σ∗. The dominion of σ∗ is D(σ∗) = {σ ∈ ∆(S) : σ∗ ∈ γi(σ)

and Ui(σ∗) > Ui(σ) for some i ∈ N}. Then, the dominion of Σ∗ will be

D(Σ∗) =
⋃

σ∗∈Σ∗
D(σ∗).

Theorem 3 If Σ∗ is finite then Σ∗ is the supercore of (∆(S),∠).

Proof. We first prove that Σ∗ is a subsolution of (∆(S), ∠). That is,

Σ∗ ⊂ U(Σ∗) and Σ∗ = U2(Σ∗).

Given that Σ∗ ⊂ U(Σ∗), if Σ∗ = U(Σ∗) then Σ∗ = U2(Σ∗) and Σ∗ is a

subsolution. If Σ∗ 6= U(Σ∗) we have to show that P(Σ∗) ⊂ D(P(Σ∗)), which is

equivalent to the condition Σ∗ = U2(Σ∗) given that Σ∗ ⊂ U(Σ).
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Let σ ∈ P(Σ∗). We will show that σ ∈ D(P(Σ∗)).

Since σ /∈ Σ∗ then σi will not be the best response to σ−i for some player

i. Therefore there exists a profile σ′ ∈ γi(σ) such that Ui(σ′) > Ui(σ). Now,

set σλ = λσ + (1 − λ)σ′ for all λ ∈ [0, 1). By the linearity of Ui we have

Ui(σλ) > Ui(σ), and since σλ ∈ γi(σ), it follows that σλ∠σ for all λ ∈ [0, 1). So

σλ dominates σ, and σλ /∈ Σ∗ given that σ ∈ P(Σ∗).

It remains to prove that σλ ∈ P(Σ∗) for some λ: If σλ ∈ D(Σ∗) for all

λ, then there exists σ∗λ ∈ Σ∗ such that σ∗λ ∈ γj(σλ) for some player j, and

Uj(σ∗λ) > Uj(σλ). If j = i, we have Ui(σ∗λ) > Ui(σλ) > Ui(σ). Hence, σ∗λ will

dominate σ which implies that σ ∈ D(Σ∗). Otherwise the subset {σ∗λ: λ ∈ [0, 1)}
of Σ∗ will be infinite, which contradicts the fact that Σ∗ is finite. Therefore,

σλ ∈ P(Σ∗) for some λ, and since σλ∠σ it follows that σ ∈ D(P(Σ∗)).

Lastly, since the supercore is the intersection of all subsolutions and any

subsolution contains to Σ∗ we can conclude the result.

The result above is not maintained when the mixed extension of the game ΓN

has infinite Nash equilibrium strategy profiles. The following example illustrates

that non Nash equilibrium strategy profiles may belong to the supercore of

(∆(S), ∠).

Example 3 Consider the mixed extension of the following game:

b1 b2

a1 1,0 1,1
a2 -1,1 1,0

Let p be the probability that player 1 chooses a1 and let q be the probability

that player 2 chooses b1. It is easy to check that the set of Nash equilibria is

Σ∗ = {(p, 1− p, 0, 1) : 1
2 ≤ p ≤ 1}. The dominion of the set of Nash equilibria

is D(Σ∗) = {(p, 1 − p, q, 1 − q) : 1
2 < p ≤ 1, 0 < q ≤ 1} and the set of profiles

undominated by the set of Nash equilibria excluded them, is P(Σ∗) = {(p,

1 − p, q, 1 − q) : 0 ≤ p ≤ 1
2 , 0 < q ≤ 1} ∪ {(p, 1 − p, 0, 1) : 0 ≤ p < 1

2}. It is

straightforward to show that the supercore of (∆(S), ∠) is Σ∗∪{( 1
2 , 1

2 , q, 1−q) :

0 < q ≤ 1} ∪ {(p, 1− p, 0, 1) : 0 ≤ p < 1
2}.

In view of this example the equivalence of the supercore and the set of NE

strategy profiles for the mixed extension of a game requires the definition of a
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weaker dominance relation on the set of strategy profiles. In what follows it is

proved that the set of NE strategy profiles for the mixed extension of the normal

form game coincides with the supercore of the system associated considering a

somewhat different dominance relation.

Let us define the new dominance relation.

Definition 3 Let (∆(S), <<) be the weakly individual dominance system asso-

ciated to the mixed extension of the game ΓN , where << is the binary relation

defined on ∆(S) as follows: σ′ << σ if there exists a player i ∈ N such that

σ′ ∈ γi(σ) and either Ui(σ′) > Ui(σ) or Ui(σ′) = Ui(σ) whenever σ′ ∈ Σ∗ and

σ /∈ Σ∗.

With this definition at hand we can establish the following two lemmas.

Lemma 1 Σ∗ is a compact subset of ∆(S).

proof See the Appendix.

Lemma 2D(Σ∗) ∪ Σ∗ in (∆(S), <<) is a closed subset of ∆(S).

proof See the Appendix.

Finally, we will show the equivalence between the set of NE strategy profiles

and the supercore of (∆(S), <<).

Theorem 4 Σ∗ is the supercore of (∆(S), <<).

Proof. See the Appendix.

To conclude, let us relate the results of this section with the ones presented

by Kalai and Schmeidler (1977). These authors study the admissible set in var-

ious bargaining situations. In particular, they present different binary relations

to study the equivalence between the admissible set and the NE strategy profiles

for the mixed extension of a game. They find that under the binary relation ∠,

the admissible set may be “too large”. For instance, in the 2-person matching

pennies game the admissible set coincides with the entire space of mixed strate-

gies. However, since in this example the set of NE profiles is finite, we have that

the supercore coincides with the unique NE strategy profile. In addition, Kalai

and Schmeidler show that the coincidence of the supercore with the set of NE

strategy profiles holds under a rather technical dominance relation definition.

This is also our case.
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5 Appendix

Proofs omitted from the text are provided below.

Proof of Lemma 1

We prove first that Σ∗ is closed.

Let us consider a sequence {σ∗n}n∈N ⊂ Σ∗ such that limn→∞σ∗n = σ∗. We

will see that σ∗ ∈ Σ∗.

Since σ∗n ∈ Σ∗ then (σ∗n)i is a best response to (σ∗n)−i for each i ∈ N . That

is,

Ui((σ∗n)i, (σ∗n)−i) ≥ Ui(σi, (σ∗n)−i) for all σi ∈ ∆(Si).

Taking the limit to each side of the last expression we have:

limn→∞Ui((σ∗n)i, (σ∗n)−i) ≥ limn→∞Ui(σi, (σ∗n)−i) for all σi ∈ ∆(Si).

Since limn→∞σ∗n = σ∗, and Ui is a continuous function it follows that

Ui((σ∗i , σ∗−i) ≥ Ui(σi, σ∗−i) for all σi ∈ ∆(Si).

Therefore, σ∗i is player’s i best response to σ∗−i for every i ∈ N . In other words,

σ∗ is a NE strategy profile.

Lastly, given that Σ∗ is a closed subset of the compact set ∆(S) we conclude

that Σ∗ is compact.¥

Proof of Lemma 2

By Lemma 1, Σ∗ is closed. Hence it is sufficient to prove that the closure of

D(Σ∗) is contained in D(Σ∗) ∪ Σ∗.

Let us consider a sequence {σn}n∈N ⊂ D(Σ∗) such that limn→∞σn = σ. We

will see that σ ∈ D(Σ∗) ∪ Σ∗.

Since σn ∈ D(Σ∗), there is a NE strategy profile σ∗n such that for some player

i ∈ N , σ∗n ∈ γi(σn) and Ui(σ∗n) ≥ Ui(σn). Taking into account that the set Σ∗

is compact (Lemma 1) and that {σ∗n}n∈N ⊂ Σ∗, we can assume without loss of

generality the existence of a profile σ∗ ∈ Σ∗ such that limn→∞σ∗n = σ∗. (If this

is not the case then we substitute that sequence by the appropiate subsequence).

Now, set N(i) = {n ∈ N : σ∗n ∈ γi(σn)} for each i ∈ N . It is clear that for

some j ∈ N the set N(j) is numerable. Hence, we can choose the subsequences
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{σ′n}n∈N of {σn}n∈N and {σ∗′n}n∈N of {σ∗n}n∈N such that (σ∗)′n ∈ γj(σ′n) and

Uj((σ∗)′n) ≥ Uj(σ′n) for all n ∈ N. Therefore, taking the limit to each side in

the last expression we have

limn→∞Uj((σ∗)′n) ≥ limn→∞Uj(σ′n).

Since limn→∞((σ∗)′n) = σ∗, limn→∞(σ′n) = σ, and Uj is a continuous func-

tion, we have Uj(σ∗) ≥ Uj(σ). Given that σ∗ ∈ γi(σ) it follows that if σ /∈ Σ∗

then σ∗ << σ, so either σ ∈ D(Σ∗) or σ ∈ Σ∗ and Lemma 5 follows. ¥

Proof of Theorem 4

Given that any subsolution of (∆(S), <<) contains Σ∗, it is sufficient to

prove that Σ∗ is a subsolution. That is, Σ∗ ⊂ U(Σ∗) and Σ∗ = U2(Σ∗).

Clearly, Σ∗ ⊂ U(Σ∗). If Σ∗ = U(Σ∗) then Σ∗ is a vN&M stable set, and

thus Σ∗ is a subsolution. So, let us assume that P(Σ∗) 6= ∅. We must prove

that Σ∗ = U2(Σ∗) or equivalently that P(Σ∗) ⊂ D(P(Σ∗)).

Let σ ∈ P(Σ∗). Since σ /∈ Σ∗, σi is not the best response to σ−i for some

player i. Hence, there is a σ′ ∈ γi(σ) such that Ui(σ′) > Ui(σ).

Now, if σ′ ∈ P(Σ∗) then we are done. If this is not the case then, set

σλ = λσ + (1 − λ)σ′ for all λ ∈ [0, 1). By the linearity of Ui we have that

Ui(σλ) > Ui(σ), and since σλ ∈ γi(σ), it follows that σλ << σ.

By Lemma 2 we know that D(Σ∗)∪Σ∗ is a closed subset of ∆(S). Therefore,

P(Σ∗) is an open subset of ∆(S). This implies that there exists an ε > 0 such

that the open ball B(σ, ε) ⊂ P(Σ∗) . By choosing a λ ∈ (0, 1) such that

σλ ∈ B(σ, ε) we have that σλ ∈ P(Σ∗). Since σλ << σ, we conclude that

σ ∈ D(P(Σ∗)) and Theorem 4 yields.¥
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