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Abstract

We model decentralized team formation as a game in which players make offers to

potential teams whose members then either accept or reject the offers. The games in-

duce no-delay subgame perfect equilibria with unique outcomes that are individually

rational and match soulmates. We provide sufficient conditions for equilibria to imple-

ment core coalition structures. When each player can make a sufficiently large number

of proposals, we obtain the novel and surprising result that outcomes are Pareto opti-

mal. We then design a mechanism to implement equilibrium of this game and provide

sufficient conditions to ensure that truthful reporting of preferences is a strong ex post

Nash equilibrium. Moreover, we show empirically that players rarely have an incentive

to misreport preferences more generally. Furthermore, for the problem with cardinal

preferences, we show empirically that the resulting mechanism results in significantly

higher social welfare than serial dictatorship, and the outcomes are highly equitable.
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“They used to tell me you have to use your five best players, but I’ve found that you win with the

five who fit together best.”
–Red Auerbach

1. Introduction

Whether business, social, or recreational, activity is often organized into groups

through informal, decentralized processes. In school, students find their own study

groups, roommates, project partners, and homecoming dates. Similar informal proce-5

dures are often responsible for matching business partners, research collaborators, and

tennis doubles teams.

We model decentralized matching as a sequential bargaining game1, with the re-

striction that our game has non-transferable utility. In our game, a proposer invites a

subset of players to join her in a team. Players in the proposed team then sequentially10

accept or reject the invitation. If all accept, the team is formed, and all associated play-

ers are removed from the game. Then another player (or potentially the same player

if her team was rejected) becomes the proposer, and the process continues for a prede-

fined number of rounds or until no players remain who have not become members of

a team. At a terminal node, players who remain unassigned to a team at that node, are15

assigned to singleton teams.

We analyze this game under the condition that players have perfect information

about each other’s preferences. First, we demonstrate two general properties that such

games possess: there is a unique subgame perfect Nash equilibrium (SPNE) team struc-

ture and every SPNE involves no delay in the formation of equilibrium teams. Both20

are quite surprising, given that SPNE tends to be a weak criterion in most prior game

models (necessitating refinements, such as stationarity). Moreover, equilibrium out-

comes are always individually rational. Our final general positive result for games with

an arbitrary exogenous order of proposers, is that every SPNE matches soulmates, that

is, any team that is most preferred by all its members is formed. Indeed, our result25

is stronger: it matches soulmates even in a recursive sense, where upon removing a

1Sequential bargaining as in our model has its origins in Stahl 1972, 1977 and Rubinstein 1982.
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set of matched soulmates, new soulmate teams arise once player preferences no longer

include matched players, and so on, until no soulmate teams remain; all such teams are

formed in every SPNE of our game, independent of order over proposers. An important

consequence of this is that whenever all players are so matched, the SPNE outcome co-30

incides with the unique core outcome. In general, however, the games we consider do

not select a core coalition structure.

Our results for Pareto optimal outcomes are especially interesting. We find that a

restriction on our game model dictating that any proposer in the specific order must be

able to propose at least n + 1 times, where n is the number of teams containing that35

proposer, ensures Pareto optimality of outcomes. We term the resulting restricted set

of games “Rotating Proposer Games (RPGs)”.

Our games bear resemblance to a number of previously studied models of non-

cooperative coalition formation games, for example, [22, 19, 8, 11, 18, 9]. Most of

these are TU games [11, 18, 22, 19], and all assume an infinite horizon. Moreover,40

most make a consequential assumption about the order of proposers where the first

player to reject a proposal becomes the proposer in the next round. In contrast, we

consider finite-horizon games in which the proposer order is fully exogenous.

As an alternative to fully decentralized coalition formation, a planner may design

a centralized matching process in which players report their hedonic preferences over45

teams, and a centralized mechanism returns a partition of players into teams and, if

need be, singleton sets. A significant advantage of the centralized process is that it

is now natural to allow for incomplete information about player preferences. This,

however, poses significant theoretical challenges, discussed below.

A natural option, which is unlike most approaches to the problem in prior literature,50

is to simply centralize a decentralized mechanism that has good equilibrium properties.

In instances where preference reports are truthful, the outcome properties are the same

as those of the equilibrium of the decentralized mechanism.

We take this approach and introduce a new mechanism, the Rotating Proposer

Mechanism (RPM), that centralizes the rotating proposer game. RPM allows us to55

achieve Pareto efficiency, individual rationality, and IMS. Our empirical work demon-

strates that these can be achieved with only a small relaxation of incentive compati-
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bility. While RPM involves a substantial computational burden to implement exactly,

we develop several approximations that, by construction, maintain individual rational-

ity and IMS (details provided in Supplementary Materials). Using an algorithm for60

finding an upper bound on the number of untruthful players (also in Supplementary

Materials), we show that RPM and its approximate versions introduce few incentives

for manipulation in several classes of the roommate problem, as well as settings with

3-player teams. In extensive experiments, we evaluate the properties of RPM in both

exact and approximate versions, in terms of social welfare (a much stronger notion65

than Pareto optimality, using cardinal preferences over coalitions) and fairness (using

several natural notions thereof). We show that in comparison with random serial dic-

tatorship, which serves as a calibration baseline for empirical results, RPM achieves

high social welfare and has desirable equity properties.

To place our contribution in the literature and highlight some of the problems faced,70

we briefly note some of the literature. Alcalde and Barberà prove that without restric-

tions on the sets of admissible preferences, there is no matching mechanism that is

Pareto optimal, individually rational, and strategyproof, even in two-sided problems (a

special case of our team-formation environment) [3]. Rodriguez-Alvarez shows that

any mechanism that is strategyproof and individually rational must either be bossy or75

put restrictions on which partitions can form [20]. Moreover, Leo et al. prove that

any mechanism that matches soulmates cannot be strategyproof on general preference

domains [13].

A number of mechanisms have been proposed to achieve subsets of the desired

properties of efficiency, incentive compatibility, individual rationality, and matching of80

soulmates. Aziz et al. present a class of mechanisms that are Pareto optimal and indi-

vidually rational [4]. Specific instances of this class can be selected to effect other

properties, such as improved fairness (without formal guarantees) and even strate-

gyproofness in restricted settings. In the context of roommate problems (teams of

two), Biro et al. exhibits mechanisms which are both Pareto optimal and implement85

iterative matching of soulmates (IMS) [7].2 Pareto efficiency and individual rationality

2Actually, these satisfy a more general property of maximum irreversibility.
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in roommate problems can also be achieved either by almost stable matchings [1] or

least-unpopular matchings [15]. Wright and Vorobeychik empirically evaluated sev-

eral mechanisms for team formation, but offer few theoretical guarantees [25]. The

literature thus shows that guaranteeing even individually rationality and efficiency re-90

quires relaxing incentive compatibility, justifying our interest in the “small” relaxation

of incentive compatibility.

2. Modeling Decentralized Matching

2.1. Environment

We consider a well known model described in Banerjee et al. [6] of an environment95

populated by a set of players N = {1, . . . , n} who must be partitioned into teams.3 A

team T ∈ 2n is a set of players, and a team structure π is a partition of the total player

set into teams. For a player i, let πi be the team in the partition π containing i.

In many situations teams face some feasibility constraints; for example, teams may

be constrained to consist of at most k individuals. Generically, let T denote the set of100

feasible teams, which we assume to always include singleton teams, {i}. For a player

i, we denote the subset of feasible teams that include i by Ti ⊂ T . Each player i ∈ N

has a strict preference ordering �i over Ti. A profile of preferences � (or profile for

short) is a list of preferences for every i ∈ N . Given a profile �= ( �1, ..., �i, ...,

�n), the list of preferences for all players except i is denoted by �−i. In addition, we105

assume that players have lexicographic preferences over time, that is, for all t < t′,

joining a team T at time t is strictly preferred to joining T at time t′.4

2.2. Non-Cooperative Coalition Formation Game

We model the decentralized process of hedonic coalition formation using a natural

non-cooperative game with perfect information.5 In the game, players sequentially110

3We use the terms teams and coalitions interchangeably throughout.
4Time can be measured by the number of actions that are taken to go from a node to a final outcome. Our

use of lexicographic preferences was inspired by Bloch and Diamantoudi (2006).
5A hedonic game is simply a game with ordinal preferences over teams of membership.
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propose teams that are then accepted or rejected by their prospective members. We

term such games accept-reject games (ARGs).

Formally, an ARG is a game of perfect information in extensive form with player

set N , a set of feasible teams T , a preference profile � over team structures, and an

ordered list of players O = (i1, i2, ..., im), in which each player i ∈ N is included at115

least once.6 The ordering determines the order in which players can make proposals to

other players (or to themselves alone) to form teams. Each proposal and its responses

lead to a subgame. The game begins with the first player in the ordering, say i, propos-

ing a team T ∈ Ti. The players in T then sequentially decide whether to accept the

proposal. If all players in T accept the proposal then those players have no decision120

nodes in the remaining subgame and, in particular, they can no longer make propos-

als (they loose their places in the ordering).7 If one or more players in T reject the

proposal, we arrive at a subgame in which any players in T who still had proposals to

make can do so, when it is their turn in the ordering O, and can still accept or reject

proposals made to them to join teams. In either case, we arrive at a new subgame125

where it is the next player’s turn in the ordering to make a proposal (provided that she

has not already joined a team).

The game proceeds to the next proposer in the ordering O. The process continues

until there are no more opportunities for teams to form – either (a) all players are in

teams or (b) the mth player in the order has made a proposal and players to whom the130

proposal is made have responded. In case (b), the remaining players, if any, become

singleton teams. In either case, the outcome is a team structure.

We illustrate the mechanics of this game through a simple example.

Example 1. Consider an ARG with four players N = {1, 2, 3, 4}, and the order of

proposers O = (1, 2, 3, 4) in which the size of each team is at most two (roommate

6The order of the players inO is arbitrary; for example, ifN = {1, 2, 3} the orderingOmay be (3, 1, 2).
7Informally, we can think of those players who all agree to be in some proposed team as leaving the

game; their assigned team is determined and they have no further actions in the game.
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problem). Suppose that the profile of preferences is as follows:

1 : {1, 4} �1 {1, 2} �1 {1, 3} �1 {1}

2 : {2, 1} �2 {2, 4} �2 {2, 3} �2 {2}

3 : {3, 2} �3 {3, 1} �3 {3, 4} �3 {3}

4 : {4, 3} �4 {4, 2} �4 {4, 1} �4 {4}

The following is an example scenario:

1. Player 1 proposes to {1, 4}, and 4 rejects the proposal.135

2. 2 proposes to {2, 1} and 1 accepts the proposal. The group is formed and both 1

and 2 are removed from the game.

3. 3 proposes to {3, 4} and 4 accepts the proposal. The group is formed and 3, 4

are removed.

The partition that results from this sequence is π = {{1, 2}, {3, 4}}. Note that this140

partition is also a subgame perfect Nash equilibrium (SPNE) of this ARG.

2.3. Equilibrium Properties of ARGs

As we demonstrate below, there are several important properties that hold in any

subgame perfect Nash equilibrium of an arbitrary accept-reject game:

• individual rationality (players are not a part of any team if they would prefer to145

be by themselves),

• matching of soulmates (players who all prefer to be together are matched, even

in a more general sense discussed below), and

• when the game is “IMS-complete” (see below), the outcomes are in the core of

the derived cooperative game.150

Surprisingly, Pareto optimality is not necessarily satisfied by an SPNE outcome, as

we show presently.

An outcome π is Pareto optimal if there does not exist another feasible outcome

π′ that is strictly preferred by a nonempty subset of players N ′ ⊂ N and to which
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all other players, N\N ′ are indifferent. In our context this means that an outcome is155

Pareto optimal if there is no collection of players who can all be made better off by

a reshuffling of team memberships among these players while maintaining the same

team memberships of all remaining players, if any.

We begin our analysis with two examples that illustrate the subtleties involved in

analyzing ARGs. What is particularly revealing is that small and seemingly incon-160

sequential changes solely to the order of proposals can effect significant changes in

equilibrium outcomes. The following example illustrates a SPNE with an outcome that

is not Pareto optimal.

Example 2. Consider a roommate problem with a set of 6 players, {1, . . . , 6} who

have the following preferences:

1 : {1, 3} �1 {1, 4} �1 {1, 5} �1 {1, 2} �1 {1, 6} �1 {1}

2 : {2, 1} �2 {2, 5} �2 {2, 4} �2 {2, 3} �2 {2, 6} �2 {2}

3 : {3, 2} �3 {3, 4} �3 {3, 1} �3 {3, 5} �3 {3, 6} �3 {3}

4 : {4, 3} �4 {4, 1} �4 {4, 5} �4 {4, 2} �4 {4, 6} �4 {4}

5 : {5, 2} �5 {5, 4} �5 {5, 1} �5 {5, 3} �5 {5, 6} �5 {5}

6 : {6, 5} �6 {6, 1} �6 {6, 2} �6 {6, 3} �6 {6, 4} �6 {6}

Suppose the order of proposers is O = (1, 2, 3, 4, 5, 6). The SPNE outcome of this

game is {{1, 5}, {2, 4}, {3, 6}}, as argued in Appendix A. This outcome is not Pareto165

optimal, as {{2, 5}, {1, 4}, {3, 6}} is a Pareto improvement.

Our next example illustrates that with a change in the ordering of players Pareto-

optimality may be achieved.

Example 3. Consider now a very minor modification of Example 2: we let player 1

move twice in the very beginning rather than just once. Specifically, the new order is170

O = (1, 1, 2, 3, 4, 5, 6); everything else (in particular, the set of players, their pref-

erences, and feasible teams) remains the same. We now show that this modification

results in teams in which players are completely reshuffled. First, it is immediate that

if any proposal by 1 is rejected in the very beginning, the subgame becomes identical

to the game in Example 2. Having this in mind, suppose that 1 makes an offer to {1, 3}175
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at the very beginning. If 3 rejects, it is teamed up with 6 in the resulting subgame.

Clearly, 3 strictly prefers to be on a team with 1, and would therefore accept. Once the

team {1, 3} is formed, 2 and 5 prefer to be with one another rather than with anyone

else, and the resulting team must be formed as well (see our discussion of this below,

in the context of iteratively matching soulmates). Consequently, the SPNE outcome is180

{{1, 3}, {2, 5}, {4, 6}}. It is easy to verify that this outcome is Pareto optimal.

It is instructive to observe that in the above example the SPNE outcome, if the first

proposal by 1 were rejected, serves as a kind of credible threat to player 3. This turns

out to have significant consequences for optimality, as we show below.

We next proceed to prove several interesting and useful characteristics of subgame185

prefect Nash equilibria of ARGs, as well as some properties of their equilibrium out-

comes. We start with some additional notation. Define a T-subgame as the subgame

of an ARG in which an offer T has been made and the players i ∈ T\{i} sequentially

decide whether to accept or reject this offer. For any proposal T , denote the subgame

in which T is rejected by ATR and the subgame in which T is accepted by ATA . Note190

that each such subgame of an ARG is itself an ARG, with the caveat that we lift the

restriction that each player appears at least once in the order O.

Recall that, as in any subgame of a game, if a player does not own any decision

nodes in that subgame, then the player simply has no more choices to make; this holds

for all those players who, at prior decision nodes, joined teams. A subgame allows the195

possibility, however, that one or more players may no longer be able to make proposals

but still may own decision nodes requiring them to accept or reject proposals.

First, we make a simple observation.

Observation 1. For any strict subgame A, and for any two feasible proposals T, T ′,

ATR = AT ′R.200

This follows immediately from the fact that if a proposal from a player i is rejected

the outcome is independent of the specific proposal T that was made.

The next lemma serves largely as a tool in subsequent results, but may be interesting

in its own right as it addresses the issue of coordination faced by players who had just

received a proposal to be on some team T and who all prefer T to the outcome that205
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would materialize if this team were rejected. We show that in an SPNE such a team T

will always be accepted, but observe that this is entirely a consequence of the sequential

nature of the accept/reject decisions and the assumption of lexicographic preferences.

In particular, if players were to decide team membership simultaneously, the game

becomes one of coordination and a host of “bad” equilibria could emerge in which,210

for example, a collection of players jointly reject the team that is better for all players

in the collection. In contrast, with sequential decision-making the team T is selected.

Lexicographic preferences ensure that in this situation players do not reject a proposal

to join T even if T would still be formed in a subsequent subgame.8

Lemma 1. Consider a T -subgame of an arbitrary subgameA for a proposal of team T .215

Let AR be the subgame in which T is rejected and let ΠR be the set of SPNE outcomes

of AR. Suppose that ∀πR ∈ ΠR and ∀i ∈ T either T �i πR,i, or T = πR,i. 9 Then all

i ∈ T will accept T in every SPNE of the T -subgame.

We relegate the proof of Lemma 1 to Appendix A.

Next we present one of the main results of this section: all subgame perfect Nash220

equilibria involve no delay, and result in a unique outcome. It is an immediate corollary

to the following Theorem.

Theorem 1. In any SPNE of an arbitrary subgameA, all proposals are accepted along

the equilibrium path. Moreover, the SPNE outcome is unique.

The proof of Theorem 1 is obtained by backward induction and is relegated to225

Appendix A.

Remark: The above result shows that an SPNE has the property that at every

proposer node along the equilibrium path, the SPNE offer is accepted. Of course a

8A player i may make a proposal to all members of T but, if the player makes a proposal that is rejected,

she could receive a proposal from another member of the team T who appears later in the ordering. Note

also that it is possible for a player i to make an offer to herself of team {i} and she could then reject the

proposal, thus making herself available to join another team later in the game. In any case, as the reader will

see, this will not happen in an SPNE.
9Where πR,i is the team to which i is assigned in πR.
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strategy must still specify what happens at every other node of the tree, including nodes

that would follow a non-SPNE proposal or rejection of am SPNE proposal.230

2.4. The Coalitional Game

Having characterized the structure of subgame perfect Nash equilibria of an ARG,

we now consider whether the unique outcome satisfies important properties of the cor-

responding coalitional game. The first of these is individual rationality. This, it turns

out, is immediate, since the strategy of rejecting every proposal will, in our game235

model, leave each player by themselves, and they can therefore do no worse in any

subgame perfect Nash equilibrium.

Proposition 1. In every SPNE outcome of any ARG, each player i is at least as well

off as in the singleton team {i}.

The set of players N and their preferences � determines a (hedonic) cooperative240

game of coalition formation. An assignment π of players to teams is in the core of this

cooperative team formation game if there does not exist a coalition of players T ⊂ N

with the property that for all i ∈ T , T �i πi. An interesting question is whether, if

the core of cooperative game that can be formed from the information on preferences

is nonempty, equilibrium outcomes always result in a core coalition structure. As the245

following example demonstrates, this is not the case, even for bipartite matching prob-

lems.

Example 4. Consider a bipartite matching problem with a set of 6 players, {1, . . . , 6}

who have the following preferences:

1 : {1, 4} �1 {1, 5} �1 {1, 6} �1 {1} �1 {1, 2} �1 {1, 3}

2 : {2, 5} �2 {2, 4} �2 {2, 6} �2 {2} �2 {2, 1} �2 {2, 3}

3 : {3, 6} �3 {3, 5} �3 {3, 4} �3 {3} �3 {3, 1} �3 {3, 2}

4 : {4, 3} �4 {4, 2} �4 {4, 1} �4 {4} �4 {4, 5} �4 {4, 6}

5 : {5, 3} �5 {5, 1} �5 {5, 2} �5 {5} �5 {5, 4} �5 {5, 6}

6 : {6, 2} �6 {6, 3} �6 {6, 1} �6 {6} �6 {6, 4} �6 {6, 5}

Suppose that all of the above teams are feasible, and that the order of proposers is

O = (1, 2, 3, 4, 5, 6). It is not difficult to ascertain that the unique SPNE outcome
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(under lexicographic preferences) of this game is {{1, 5}, {2, 6}, {3, 4}}. However,250

{3, 5} is a blocking pair, and this game has two core outcomes: {{1, 5}, {2, 4}, {3, 6}}

and {{1, 4}, {2, 5}, {3, 4}}.

However, we now show that ARG equilibria implement another important property,

iterated matching of soulmates (IMS) [13]. This, it turns out, leads to a sufficient

condition to guarantee that ARG outcomes are in the core.255

IMS captures the idea that a set of players who, among the set of players not al-

ready in teams, all prefer to be with each other, are natually matched. Formally, a team

T is a team of (1st order) soulmates if for all i ∈ T , T � T ′ for all T ′ ∈ Ti. Iter-

atively applying this criterion we obtain IMS: in every iteration, we match all teams

consisting of soulmates among players not matched in prior rounds. Informally, this260

criterion may be of independent importance because any mechanism, centralized or de-

centralized, which does not match players who wish to be with one another might be ill

perceived.10 A more formal motivation is that all teams matched by IMS are blocking

coalitions [13], and players in blocking coalitions may create instability.11 Moreover,

implementing IMS has important consequences for incentive compatibility and core265

stability. Next, we show that ARG subgame perfect Nash equilibrium outcomes al-

ways match soulmates in this iterative sense. More precisely, let T̂IMS be a collection

of teams produced by IMS. We say that ARG implements IMS in SPNE partition π if

T̂IMS ⊆ π.

270

Proposition 2. Every SPNE of an ARG implements IMS.

Proof. We prove this by induction.

Base Case: We show that every soulmate team must be formed by any SPNE. We

prove this by contradiction.

10Of course, in some situations, it may not be desirable to match soulmates. For example, in forming

sports teams in a school, a “captains mechanism,” in which two captains sequentially choose team members,

may be preferable.
11As shown by [13], the assumption that all players can be matched as soulmates is weaker than the top

coalition property of [6].
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Consider a SPNE s in which all proposals are accepted (sufficient, since such a275

SPNE always exists and all SPNE result in a unique outcome by Theorem 1), and let π

be the corresponding SPNE outcome. Let T be a team of soulmates and suppose that

it is not formed by s. Let i ∈ T be the earliest proposer in T and let πi be the team to

which i is assigned by s. Suppose i proposes to T . By Lemma 1 and the fact that T is

a team of soulmates, all members of T will accept this proposal. Because T �i πi, i280

strictly prefers to propose T than to propose πi, s cannot be a SPNE.

Inductive Step: Suppose that all teams of kth order soulmates (i.e., from the first k

rounds of IMS) are formed. We now show that all soulmate teams from k + 1st round

form as well. We do this by a similar contradiction argument as the base case.

Again, let s be an always-accept SPNE with outcome π, and let T be the team285

of k + 1st round (conditional) soulmates (i.e., soulmates if all soulmate teams from

previous k rounds form), and suppose T is not formed. Let i ∈ T be the earliest

proposer in T and let πi be the team to which i is assigned by s. Suppose i proposes

to T . By Lemma 1, the fact that T is a team of conditional k + 1st round soulmates,

and the inductive hypothesis, all will accept this proposal (since they cannot possibly290

be on a team with anyone from the first k IMS rounds, and strictly prefer T to all other

teams). Since T �i πi, i strictly prefers to propose T than to propose πi (which cannot

contain any teams including soulmates from the first k rounds of IMS), s cannot be a

SPNE.

As shown by [13], if IMS matches all players, the resulting outcome is the unique295

core coalition structure. The following corollary then follows.

Corollary 1. Suppose that all players are matched by IMS. Then every SPNE of an

arbitrary ARG yields the unique core coalition structure.

2.5. The Rotating Proposer Game

As we showed in Example 2, SPNE outcomes of an arbitrary ARG need not even be300

Pareto optimal. Recall, however, that the SPNE outcome of Example 3 is Pareto opti-

mal. Thus, as we had observed, ordering over the players can potentially restore Pareto
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optimality. We now use this insight to devise a restriction of ARGs—specifically, re-

stricting the orderings over proposers—which allows us to guarantee that the outcome

is always Pareto optimal.305

Specifically, we propose a class of ARGs which we term rotating proposer games

(RPGs). In an RPG, the orderO over players is such that each player i can make |Ti|+1

proposals before we move on to another player. It turns out that this condition suffices

to guarantee Pareto efficiency.12

Example 5. Consider again Example 2, but now let the order allow each proposer to310

propose seven times, that is, O = (1, 1, 1, 1, 1, 1, 1, 2, 2, . . . , 5, 5, 6, 6, 6, 6, 6, 6, 6).

If the very first proposal by 1 is rejected, it is not difficult to show, through a slightly

modified argument as in Example 2, that the same SPNE outcome obtains as in that

example (i.e., {{1, 5}, {2, 4}, {3, 6}}). Consequently, as in Example 3, if 1 proposes to

{1, 3}, 3 will accept, and the resulting SPNE outcome of the RPG is the Pareto optimal315

outcome {{1, 3}, {2, 5}, {4, 6}}.

Again, just as the Example 3, the last proposal by 1 serves as a credible threat of

the inefficient outcome if the proposal is rejected, which creates the incentive for 3 to

accept an offer it would otherwise have rejected.

Theorem 2. Every SPNE of a RPG is Pareto optimal.320

Before we prove Theorem 2, we make several observations.

Observation 2. Consider a proposer i and consider k ≤ |Ti|+1 so that i is proposing

for the kth time (having been rejected k− 1 times). Let πik be the team i is assigned to

in the SPNE of the game that starts with her kth proposal. Then either πik �i πi,k+1

or πik = πi,k+1.325

This follows from observing that if πi,k+1 �i πik, then in SPNE, when i proposes

for the kth time, she should make a proposal which will be rejected, contradicting

Theorem 1.

12Recall that in any ARG all proposals are accepted. Thus, the size of the set |Ti| is immaterial here,

since players would only ever make a single proposal in equilibrium. It is only the potential of making these

proposals that matters.
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Corollary 2. It follows that there must be some k̄ such that πik̄ = πi,k̄+1, since i can

propose more times than there are possible teams for her to propose to.330

Observation 3. If πk is the SPNE outcome of the game beginning with player i’s kth

proposal and πik = πi,k+1, then πk = πk+1.

This follows because the subgame that follows i proposing to πik and being ac-

cepted is the same whether it occurs following i’s kth or k+ 1th proposal. Specifically,

the next proposer j is the same (the next player in the ordering O who is not in πik)335

and the set of available players for j to propose to is the same.

Lemma 2. Let π1 be the SPNE outcome of a subgame A1 with player i proposing for

the first time, and let π2 be the SPNE outcome of A2, the subgame which results if i’s

first proposal is rejected. Then π1 = π2.

Proof. We will show that if πik = πi,k+1, then πi,k−i = πik. The result then follows340

from Observation 3. Assume πik = πi,k+1.

From Observation 2, πi,k−1 �i πik or πi,k−1 = πik. If πi,k−1 = πik, then by

Observation 3 πk−1 = πk and the result follows as shown below.

Assume instead, for contradiction, that πi,k−1 �i πik. Then since the team πi,k−1

is accepted by all its members, we have that ∀ j ∈ πi,k−1, πi,k−1 �j πjk.345

Now since πi,k−1 �i πik, we must have that if i proposes the team πi,k−1 on her

kth proposal, it is rejected. Otherwise, if it were accepted in SPNE, she would propose

πi,k−1 and the team would be formed, with player i better off as a result, contradicting

the fact that it’s an SPNE outcome of the game starting with i’s kth proposal. This

implies that for some j ∈ πi,k−1, πj,k+1 �j πi,k−1. But since πk = πk+1, we have350

that πjk �j πi,k−1 �j πjk, a contradiction. Thus, it is not the case that πi,k−1 �i πik,

so it must be that πi,k−1 = πik, implying that πk−1 = πk.

By recursively applying what we have shown thus far, that πik = πi,k+1 implies

πi,k−i = πik, beginning with the k̄ from our Corollary to Observation 2, we have that

π1 = π2, as desired.355

We now proceed to prove Theorem 2 by contradiction. Let π be the SPNE outcome

of an RPG. Suppose, for contradiction, that the set of teams π′ is a Pareto-improvement
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over π. That is, each player j has π′j �j πj with at least one player having π′j �j πj .

We will show that this implies π is not an SPNE outcome.

Since π 6= π′, there are some players on different teams in π and π′. Let Q be the360

set of such players, and let i ∈ Q be the first such player to propose.

Claim. All players in πi and π′i are still available when i proposes for the first

time. If this were not the case, then there must have been some other player j who

proposed before i who is in π′i but not πi (note that all members of πi are in Q, so i is

the first member of πi to propose, which implies by Theorem 1 that all members of πi365

are available when i first proposes). But then j ∈ Q, contradicting the premise that i is

the first player in Q to propose.

Now, let A be the subgame starting with i’s first opportunity to propose. Since

π′ is a Pareto-improvement over π, from strict preferences over teams it follows that

π′i �j πj for all j ∈ π′i. By Lemma 2, if these players j reject a proposal of π′i, they370

will be assigned, in SPNE, to πj in the subgame AR that begins if i’s first proposal is

rejected. Thus, if i’s first proposal is to the team π′i, all members of the team will accept.

Therefore, since π′i �i πi, i will propose to π′i and this proposal will be accepted. Thus

π is not, in fact, an SPNE outcome of the RPG, since the SPNE outcome is unique by

Theorem 1.375

However, while RPGs do resolve the Pareto optimality issue, Example 4 can be

extended to use the RPG order and still results in the same outcome, which is not in the

core. Nevertheless, it has been argued that Pareto optimality may itself be a compelling

stability property in many coalitional settings [16].

In summary, RPG equilibrium outcomes are individually rational and implement380

IMS (inherited from general ARGs), and, in addition, are Pareto optimal. Moreover,

all equilibria have no delay of forming teams, and result in a unique outcome. From

the perspective of decentralized hedonic coalition formation with complete informa-

tion, this is a strong set of properties. However, complete information is a strong as-

sumption, one we would in practice wish to relax. To do so, we proceed to consider385

a centralized (mechanism design) approach to team formation that turns RPGs into a

direct mechanism by implementing a SPNE in which, given a collection of reported

preferences, all offers are accepted.
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3. The Rotating Proposer Mechanism

In order to move to a centralized team formation setting, we need to formally define390

a team formation mechanism. A team formation mechanism M maps every preference

profile� to a partition π, i.e. π = M(�). Our goal is to exhibit such a mechanism, and

analyze its properties. The mechanism, termed Rotating Proposer Mechanism (RPM),

implements the subgame perfect Nash equilibrium of the RPG in which all proposals

are accepted. In this equilibrium, whenever it’s a player i’s turn to propose, i makes a395

proposal to her most preferred team among those that would be accepted.

For any profile, if all players report their preferences truthfully, equilibrium out-

comes of the game have a number of good properties which are thereby inhereted by

RPM. Of particular note is that RPM is individually rational, Pareto optimal, and im-

plements IMS. However, it is also immediate from known results that the RPM mecha-400

nism is not in general strategyproof (this would conflict with individual rationality and

implementing IMS [13]).

The loss of incentive compatibility seems problematic. However, one side-effect of

RPM implementing IMS is that RPM is strongly incentive compatible13 and yields a

unique core team structure on a restricted class of preference domains for which IMS405

always matches all players [13]. As an example, these domains include other well-

known restrictions on preferences, such as top coalition [6] and common ranking [12]

properties.

This, however, would seem to limit its practical consideration, as such restrictions

can rarely be guaranteed or verified. Moreover, we wish to make stronger efficiency410

claims than Pareto optimality, and also view fairness as an important criterion. For the

former, we are particularly interested in utilitarian social welfare, a much stronger cri-

terion than Pareto efficiency. We will also consider several notions of fairness discussed

below.

While we cannot make strong theoretical guarantees about these for broad realistic415

preference domains, we consider such properties empirically.

13More precisely, truth telling is a strong ex post Nash equilibrium.

17



3.1. Empirical Methodology

In our empirical assessments, we use both synthetic and real hedonic preference

data. In both cases, preferences were generated based on a social network structure

in which a player i is represented as a node and the total order over neighbors is then420

generated randomly. Non-neighbors represent undesirable teammates (i would prefer

being alone to being teamed up with them).

The networks used for our experiments were generated using the following models:

• Scale-free network: We adapt the Barabási-Albert model [2] to generate scale-

free networks. For each (n,m), where n is the number of players, m denotes the425

density of the network, we generate 1, 000 instances of networks and profiles.

• Karate-Club Network [26]: This network represents an actual social network

of friendships between 34 members of a karate club at a US university, where

links correspond to neighbors. We generate 100 preference profiles based on the

network.430

Finally, we used a Newfrat dataset [17] that contains 15 matrices recording weekly

sociometric preference rankings from 17 men attending the University of Michigan.

In order to quantitatively evaluate both the exact and approximate variants of RPM,

the ordinal preferences �i have to be converted to cardinal ones ui(·), upon which

both mechanisms operate. For this purpose, we introduce a scoring function suggested435

by Bouveret and Lang [10] to measure a player’s utility. To compute a player i’s utility

of player j we adopt normalized Borda scoring function, defined as ui(j) = g(r) =

2(k − r + 1)/k − 1, where k is the number of i’s neighbors, and r ∈ {1, . . . , k}

is the rank of j in i’s preference list. Without loss of generality, for every player i

we set the utility of being a singleton ui(i) = 0. We assume that the preferences of440

players are additively separable [6], which means that a player i’s utility of a team T is

ui(T ) =
∑
j∈T ui(j).

3.2. Summary of Empirical Results

We now summarize the main empirical results. Full details, including a discussion

of how we handle the computational complexity challenges associated with RPM can445
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be found in the Supplementary Materials.

Under RPM, incentives to misreport preferences are rare. For the roommate problem,

we find that typically 1% of players or fewer have an incentive to misrepresent their

preferencs, and fewer than 3% of all randomly generated profiles have any such players.

Approximate versions of RPM (which enable implementation of this mechanism at a450

larger scale) do not much degrade these results. With teams of (at most) three, our

experiment reflect only approximate RPM, and we find that no more than 5% of players

have an incentive to misreport preferences.

RPM is highly efficient. We compare utilitarian social welfare of RPM (using a cardi-

nal transformation of ordinal preferences) and its approximations to serial dicatorship455

(which is also Pareto optimal). We observe that in all experiments RPM yields much

higher social welfare, with improvements typically ranging between 15 and 20%.

RPM yields equitable outcomes. As is well known, serial dictatorship results in highly

inequitable outcomes (in the ex post sense). We observe that RPM yields outcomes far

more equitable, with significant improvements in terms of the Gini coefficient, and a460

dramatically lower correlation between a random proposer order and utility (for exam-

ple, correlation in some experiments drops from over 0.4 to well below 0.05).

4. Conclusions

We consider sequential non-cooperative coalition formation games with a finite

horizon. In these, players iteratively propose teams, which are then sequentially ac-465

cepted or rejected. We analyze subgame perfect Nash equilibria of the resulting perfect

information game. Our first key result is that there is an essentially unique no-delay

equilibrium (all proposals are accepted in every equilibrium), and the equilibrium out-

come is unique. Our second major positive result is that in a subgame perfect Nash

equilibrium teams involving soulmates, even in a stronger iterative sense, are always470

formed. While this result is of independent interest, we also use it to provide a sufficient

19



condition for the core outcome to be implemented in an equilibrium of our game. Fi-

nally, we exhibit a restricted class of games, where the restriction is on the exogenously

specified order of proposers, in which equilibrium outcomes are Pareto optimal.

Our most significant results demonstrate that the number of proposals a player can475

make affects the equilibrium outcome of the game. These culminate in Theorem 2,

which shows that with a sufficient number of proposals the equilibrium outcome is

Pareto optimal, which is not the case if a player can only propose once. This result

is both novel and surprising. While the intuition—illustrated by an example—is that

Pareto optimality results from the 1-proposal game serving as a credible threat, the480

proof is quite subtle and requires all the rsults obtained before this theorem.

While Theorem 2 is an interesting result for the class of coalition formation games

considered, it also inspires a number of questions. Most important, can similar results

be obtained for other classes of games? Are there other situations in which the ability

of players to make multiple proposals can lead to Pareto improving outcomes? We have485

in mind, in particular, political situations. The door is now open to the investigation of

these, and other, related questions.
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[27] Zermelo, E., 1913. Über eine anwendung der mengenlehre auf die theorie des

schachspiels, in: Proceedings of the fifth international congress of mathemati-

cians, II, Cambridge UP, Cambridge. pp. 501–504.565

23

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9902
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9902
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9902


Appendix A. Additional Proofs

Details of Example 2. Suppose that all of the above teams are feasible, and that the

order of proposers is O = (1, 2, 3, 4, 5, 6). For example, if 1’s offer is rejected, 2

makes an offer. If that gets rejected, then 3 makes an offer, and so on. We now derive

the subgame perfect Nash equilibrium outcome of this game (which turns out to be570

unique, as we show later).

1. Consider any subgame in which player 6 makes an offer. Clearly, every offer will

be accepted, since rejection implies that the player who rejects an offer becomes

a singleton (and each player in our example prefers to be on a team with anyone

to being by themselves).575

2. Consider a subgame in which players 1-4 have all been rejected, and it is player

5’s turn to make an offer. If any offer by 5 is rejected at this point, the outcome

will be {{1}, {2}, {3}, {4}, {5, 6}}, since 5 is 6’s most preferred teammate, and

by the preceding logic. Consequently, any offer by 5 to teams with players 1-4

will be accepted. Since 5 most prefers 2, who is still available, this is the offer580

5 will make, and it will be accepted. Moreover, since 1 is the most preferred

remaining player by 6, the outcome in this subgame is {{1, 6}, {2, 5}, {3}, {4}}.

SPNE outcome in this subgame: {{1, 6}, {2, 5}, {3}, {4}}.

3. Consider a subgame in which players 1-3 have all been rejected, and it’s player

4’s turn to make an offer. If player 4 makes an offer to {3, 4}, the team {3, 4}585

will form if 3 accepts or teams {3}, {4} will form if it rejects (from subgame

(2) above). Since 4 prefers 3 to any others, he can do no better than making

an offer to {3, 4}, with the outcome being {{1, 6}, {2, 5}, {3, 4}}. It is thus an

equilibrium of this subgame for 4 to offer to {3, 4}, and for 3 to accept. SPNE

outcome in this subgame: {{1, 6}, {2, 5}, {3, 4}}.590

4. Consider a subgame in which players 1 and 2 have been rejected, and now it’s

player 3’s turn. If player 3 makes an offer to {2, 3}, 2 prefers to reject, be-

cause 2 prefers to be with 5 (the outcome of subgame (3)) than with 3. If
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player 3 makes an offer to {3, 4}, this offer is accepted, and the outcome is

again {{1, 6}, {2, 5}, {3, 4}}. Making any other offer cannot improve 3’s utility.595

SPNE outcome in this subgame: {{1, 6}, {2, 5}, {3, 4}}.

5. Consider a subgame in which player 1 was rejected, and player 2 now makes

an offer. If 2 makes an offer to {1, 2}, 1 will accept, because if 1 rejects, they

end up paired with 6 (subgame (4)), and 1 prefers being with 2. Since 1 is the

most prefered pick by 2, 2 would strictly prefer making this offer to any other.600

Thus, team {1, 2} will form. Once this happens, {3, 4} will team up since they

are then conditional soulmates, which implies that {5, 6} will team up as well.

SPNE outcome in this subgame: {{1, 2}, {3, 4}, {5, 6}}.

6. Now, consider player 1’s options. If 1 makes an offer to {1, 3} or {1, 4}, it will be

rejected, because both 3 and 4 prefer to be with each other than to be with 1 (and605

they end up together if they reject 1). If 1 makes an offer to {1, 5}, 5 will accept,

since 5 prefers to be with 1 than to be with 6 (which is the outcome if 5 rejects

1’s offer). Consequently, 1 will make an offer to {1, 5} in equilibrium, and 5

will accept, forming the team {1, 5}. Now, by the time 2 gets to move, 1 and 5

are off the market. Suppose that 2 and 3 then make offers which are rejected. If610

4 then makes an offer to {3, 4}, 3 will accept, because otherwise both will end

up by themselves (since 6 will make an offer to {2, 6}). Since 3 accepts, the

teams {3, 4} and {2, 6} form in this subgame, with the resulting SPNE outcome

in this subgame being {{1, 5}, {3, 4}, {2, 6}}. Backing up, suppose it’s 3’s turn

to make an offer. If 3 offers to {2, 3}, 2 will accept, because otherwise 2 ends615

up with 6. Since 2 is 3’s most preferred player, the team {2, 3} will then form.

Consequently, the SPNE of the subgame in which 2 is rejected after 1 and 5 team

up is {{1, 5}, {2, 3}, {4, 6}}. Finally, suppose that 2 makes an offer to {2, 4}, its

most preferred remaining teammate. 4 will then accept, since rejecting the offer

will cause 4 to be teamed up with 6, who is less preferred than 2. Consequently,620

the teams {2, 4} and {3, 6} will form. This means that the following outcome is

a SPNE outcome of the full game: {{1, 5}, {2, 4}, {3, 6}}.
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Proof of Lemma 1. We prove this by induction, after noting that AR is unique by

Observation 1.

Base Case: Suppose that the team T has been proposed. Consider an arbitrary625

sequential order of accept/reject decisions for players in T . Suppose that i is last in

that order and all players before i have accepted. Then i will clearly accept since for

any πR ∈ ΠR, by assumption either T �i πR,i or, if T = πR,i and, from lexicographic

time preferences this holds even if, in a further subgame, another proposer proposes T

and it is accepted.630

Inductive Step: Consider a player i such that none of the players k < i in the

accept/reject order have rejected. Our inductive hypothesis is that if i accepts, then in

every SPNE of the residual T -subgame all players k′ > i (which follow i in the order)

accept. It is immediate that i’s unique optimal strategy is then to accept, since for any

πR ∈ ΠR either T �i πR,i, or T = πR,i, and acceptance is preferred by lexicographic635

time preferences. The final step is to observe that when i is the first player in the order,

none of the players before i have rejected, because no one precedes i.

Proof of Theorem 1. We prove this by showing the result for a subgame with only one

remaining proposer and then appealing to backward induction.

Base Case: Consider an arbitrary subgame with only one player, i, who can still640

make a proposal and the set of feasible teams for i, denoted by Ti (none of the others

matter). We show that in this subgame in every SPNE all proposals are accepted and

result in a unique outcome. First, define T IRi = {T ∈ Ti|T �j {j}∀ j ∈ T} ∪ {i},

that is, a subset of feasible teams in which every team is preferred by all its members

over being by themselves unioned with {i}. Clearly, every team offer T ∈ T IRi other645

than {i} will be accepted. Let T ∗i be i’s most preferred team in T IRi . If T ∗i = {i},

by lexicographic preferences i strictly prefers to propose to and to accept team {i}.

Otherwise, T ∗i �i {i}. Because all j ∈ T ∗i accept and form a team, teams which

have been formed thus far are fixed, and any remaining players become singletons, the

subgame has a unique SPNE outcome.650

Now consider the player who is the next to last proposer. Standard backward in-

duction for extensive games with perfect information can now be applied and the above
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result holds for the “rolled back” game. This can be continued until the first player in

the ordering O is to make an offer, which proves the result.14

14It is interesting to note some differences between this Theorem and Zermelo’s Theorem and its exten-

sions presenting uniqueness results for SPNE of extensive form games with perfect information. Zermelo’s

Theorem [27] requires strict preferences and each terminal node of the game is unique. We do not neces-

sarily have uniqueness of each terminal node and players may be indifferent between some terminal nodes –

those that assign them to the same team.
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Supplementary Materials (For Online Publication)655

Appendix B. Details of Computational Approaches to Implementing RPM

While RPM is a rather intuitive mechanism, it is quite challenging to implement the

associated subgame perfect Nash equilibrium. In particular, the size of the backward

induction search tree is O(2
∑n

i=1 |Ti|). Even in the roommate problem, in which the

size of teams is at most two, computing SPNE is O(2n2). We address this challenge in660

three ways: (1) preprocessing and pruning to reduce the search space, (2) approxima-

tion for the roommate problem, and (3) a general heuristic implementation.

Appendix B.1. Preprocessing and Pruning

One of the central properties of RPM is that it implements iterative matching of

soulmates. In fact, it does so in every subgame in the backwards induction process.665

Now, observe that computing the subset of teams produced through IMS is O(n3) in

general, and O(n2) for the roommate problem, and is typically much faster in practice.

We therefore use it as a preprocessing step both initially (reducing the number of play-

ers we need to consider in backwards induction) and in each subgame of the backwards

induction search tree (thereby pruning irrelevant subtrees).670

Because IMS preprocessing is computationally efficient, it is always applied before

any of the approximate/heuristic versions of RPM below, with the direct consequence

that even these approximate versions implement IMS.

We show the computational value of IMS in preprocessing and pruning using syn-

thetic preference profiles based on the generative scale-free model.675

Figure B.1 shows the ratio of time consumed by RPM with IMS to that without

IMS.15 In all cases, we see a clear trend that using IMS in preprocessing and pruning

has increasing importance with increased problem size.

15The simulations describes in this section were run on a 2.6 GHz Intel Core i5 Mac machine with 8 GB

RAM.
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Figure B.1: Time consumed ratio (with IMS/without IMS) for RPM on scale-free networks

Appendix B.2. Approximate RPM for the Roommate Problem

Using IMS for preprocessing and pruning does not sufficiently speed up RPM com-680

putation in large-scale problem instances. Thus, we next developed a parametric ap-

proximation of RPM that allows us to explicitly trade off computational time against

approximation quality. We leverage the observation that the primary computational

challenge of applying RPM to the roommate problem is determining whether a pro-

posal is to be accepted or rejected. If we are to make this decision without exploring685

the full game subtree associated with it, considerable time can be saved. Our approach

is to use a heuristic to evaluate the “likely” opportunity of getting a better teammate in

later stages: if this heuristic value is very low, the offer is accepted; if it is very high,

the offer is rejected; and we explore the full subgame in the balance of instances.

More precisely, consider an arbitrary offer from player i to another player j. Given

the subgame of the corresponding RPM, let Uj(i) denote the set of feasible teammates

that j prefers to i, and let Uj(j) be the set of feasible teammates who j prefers to be

alone. We can use these to heuristically compute the likelihood Rj(i) that j can find a

better teammate than the proposer i:

Rj(i) =
|Uj(i)|
|Uj(j)|

· 1

|Uj(i)|
∑

k∈Uj(i)

(
1− |Uk(j)|
|Uk(k)|

)
=

1

|Uj(j)|
∑

k∈Uj(i)

(
1− |Uk(j)|
|Uk(k)|

)
(B.1)

Intuitively, we first compute the proportion of feasible teammates that j prefers to i.690

Then, for each such teammate k, we extract the proportion of feasible teammates who
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are not more preferred by k than the receiver j. Our heuristic then uses an exogenously

specified threshold, α, (0 ≤ α ≤ 0.5) as follows. If Rj(i) ≤ α, player j accepts the

proposal, while if Rj(i) ≥ 1 − α, the proposal is rejected. In the remaining cases,

our heuristic proceeds with evaluating the subgame at the associated decision node.695

Consequently, when α = 0, it is equivalent to the full backwards induction procedure,

and computes the exact RPM. Note that for any α, this approximate RPM preserves

IR, and we also maintain IMS by running it as a preprocessing step.

The parameter α of our approximation method for RPM in the roommate problem

allows us to directly evaluate the trade-off between running time and quality of approx-700

imation; small α will lead to less aggressive use of the acceptance/rejection heuristic,

with most evaluations involving actual subgame search, while large α yields an in-

creasingly heuristic approach for computing RPM, with few subgames fully explored.
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Figure B.2: Time consumed and average proportion of same teams

Figure B.2a depicts the fraction of time consumed by RPM with different values of

α compared to exact RPM (when α = 0) on scale-free networks (m = 3). Based on705

this figure, even a comparatively small value of α dramatically decreases computation

time.

Figure B.2b compares similarity of the final team partition when using the heuristic

compared to the exact RPM. Notice that even for high values of α, there is a signif-

icant overlap between the outcomes selected by RPM with and without the heuristic.710

We note that α = 0.1 appears to trade off approximation quality and running time

particularly well: for comparatively sparse networks (i.e., m = 2) it yields over 99%

overlap with exact RPM (this proportion is only slightly worse for denser networks), at
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a small fraction of the running time. Henceforth, we use α = 0.1 when referring to the

approximate RPM in the reminder of this section.715

Appendix B.3. Heuristic Rotating Proposer Mechanism (HRPM)

Unlike the roommate problem, general team formation problems have another source

of computational complexity: the need to iterate through the combinatorial set of po-

tential teams to propose to. Moreover, evaluating acceptance and rejection becomes

considerably more challenging. We therefore develop a more general heuristic which720

scales far better than the approaches above, but no longer has the exact RPM as a spe-

cial case. We term the resulting approximate mechanism Heuristic Rotating Proposer

Mechanism (HRPM), and it assumes that the sole constraint on teams is their cardinality

and that preferences can be represented by an additively separable utility function [6].

With the latter assumptions, we allow preferences over teams to be represented simply725

as preference orders over potential teammates, avoiding the combinatorial explosion in

the size of the preference representation.

In HRPM, each proposer i attempts to add a single member to their team at a

time in the order of preferences over players. If the potential teammate j accepts i’s

proposal, j is added to i’s team, and i proposes to the next prospective teammate until730

either the team size constraint is reached, or no one else who i prefers to being alone is

willing to join the team. Player j’s decision to accept or reject i’s proposal is based on

calculatingRj(l) for each member l of i’s current team T using Equation B.1, and then

computing the average for the entire team, Rj(T ) = 1
|T |
∑
l∈T Rj(l) (see Algorithm 1

for the precise description of HRPM). We then use an exogenously specified threshold735

β ∈ [0, 1], where j accepts if Rj(T ) ≤ β and rejects otherwise. The advantage of

HRPM is that the team partition can be found in O(ωn2), where ω is the maximum

team size. The disadvantage, of course, is that it only heuristically implements RPM.

Crucially, it does preserve IR, and IMS is implemented as a preprocessing step.

Appendix C. Properties of Exact and Approximate RPM740

Over truthful preference reports, RPM inherits the properties of the game, includ-

ing IR, IMS, and Pareto efficiency. In general, however, these properties conflict with
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Algorithm 1 Heuristic Rotating Proposer Mechanism (HRPM)
input: (N,�, O), ω, β

return: Team formation outcome π

1: π = ∅

2: while O is non-empty do

3: i← the first player in O

4: πi ← {i}

5: while |πi| < ω do

6: if �i is empty or the first player in �i is i then

7: O ← O\{i}

8: break

9: player i proposes to the first player j in �i
10: Rj(πi) = 1

|πi|
∑
l∈πi

1
|Uj(j)|

∑
k∈Uj(i)

(
1− |Uk(j)|

|Uk(k)|

)
11: if Rj(πi) ≤ β then . player j accepts the proposal

12: πi ← πi ∪ {j}

13: remove j from O and N

14: remove j from �k for each player k ∈ N

15: remove i from O, N and �k for each player k ∈ N

16: while N is non-empty do . add singletons into the outcome.

17: pick an arbitrary instance i from N

18: remove i from O and N

19: return π
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incentive compatibility. Moreover, when it comes to efficiency, Pareto optimality is

a weak criterion and we would wish to know how well a mechanism fairs in terms

of stronger efficiency criteria, such as utilitarian social welfare (with cardinal prefer-745

ences). Fairness, too, is an important consideration in matching, particularly when it

comes to forming teams. Next, we explore these issues using empirical tools.

Appendix C.1. Incentive Compatibility

In spite of the known impossibility results, the fact that RPM is not incentive com-

patible may be intuitively surprising, given that it implements an equilibrium of the750

complete information game. To gain further intuition into this, consider the following

example.

Example 6. Consider a roommate problem with 3 players having the following pref-

erences:
1 : {1, 2} �1 {1, 3} �1 {1}

2 : {2, 3} �2 {2, 1} �2 {1}

3 : {3, 1} �3 {3, 2} �3 {1}

Suppose that the order in RPM is O = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3). In the sub-

game perfect Nash equilibrium of the corresponding RPG, 1 will propose to {1, 2}, 2

will accept, and the resulting teams are {{1, 2}, {3}}. This is because 2 is 1’s most755

preferred roommate, and if 2 rejects, then 1 would offer to 3 who would accept (since

they like 1 more than 2), and 2 would be left alone.

Now, if player 3 misreports preferences to claim that she prefers 2 to 1, then 2 and

3 are soulmates and would be matched, with the resulting outcome {{1}, {2, 3}}. The

latter outcome is clearly preferred by 3, and consequently 3 has the incentive to lie.760

Despite the general failure of incentive compatibility in RPM, we now explore em-

pirically how frequently this failure actually occurs. We use the roommate problem, as

in this case the special structure of RPM allows us to use Algorithm 2 to compute an

upper bound on the number of players who could possibly benefit by misreporting pref-

erences. In applying the algorithm, we use Ti to denote the set of feasible teammates765

(since teams are of size at most 2).
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At the high level, this algorithm considers all the players who have accepted or re-

jected a proposal and checks whether reversing this decision improves their outcomes.

The following theorem shows that this method indeed finds the upper bound on the

number of untruthful players.770

Theorem 3. Algorithm 2 returns an upper bound on the number of players who can

gain by misreporting their preferences.

Proof. We divide the players into proposers and receivers. Proposers are those who

propose in RPM and were thus teamed up (including singleton teams). Receivers ac-

cept or reject someone’s offer.775

Algorithm 2 Computing Upper Bound of Untruthful Players
input: (N,�, T , O) , teammate vector teammate[] which results from RPM

return: number of potential untruthful players Sum

1: sum← 0

2: while |O| ≥ 2 do

3: proposer← the first player in O

4: receiver← teammate[proposer]

5: for player i ∈ Tproposer do

6: if i �proposer receiver and proposer �i teammate[i] then

7: sum← sum+ 1 . i is potentially untruthful

8: for player j ∈ Treceiver do

9: if j �receiver proposer and receiver �j teammate[j] then

10: sum← sum+ 1 . receiver is potentially untruthful

11: remove proposer and receiver from N , O and T

12: return sum

There are 4 possible cases:

1. A proposer i untruthfully reveals her preference and remains a proposer. As

RPM implements subgame perfect Nash equilibrium in the corresponding sub-
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game, the proposer i can match with the best roommate among those accept her

proposals by acting truthfully. Consequently, i cannot improve by lying.780

2. A receiver j untruthfully reveals her preference and is still a receiver. In this

case, if j has an incentive to lie, there has to be a proposer i′ who prefers j to

her teammate under RPM, while j must prefer i′ to her teammate. Steps 4 − 7

in Algorithm 2 count all such instances.

3. A proposer i untruthfully reveals her preference and becomes a receiver. In this785

case, if i has an incentive to untruthfully reveal her preference, there has to be a

proposer i′ who prefers i to their teammate under RPM, and who i also prefers

to her teammate. Steps 4− 7 in Algorithm 2 count all such instances.

4. A receiver j untruthfully reveals her preference and becomes a proposer. In this

case, if j has an incentive to misreport her preference, there must be a receiver790

j′ who prefers j to her teammate, while j must prefer j′ to her teammate. Steps

8− 10 in Algorithm 2 count all such instances.

This upper bound obtains for both the exact and approximate versions of RPM,

including HRPM. Next we evaluate the incentives to misreport preferences using our795

RPM approximations in the context of the roommate problem.

Table C.1: Average upper bound of untruthful players for (Approximate) RPM

n 20 30 40 50 60 70 80

m = 2, α = 0 0.015% 0.013% 0.013% 0.002% 0.008% 0.011% 0.010%

m = 2, α = 0.1 0.015% 0.010% 0.015% 0.004% 0.022% 0.029% 0.036%

m = 3, α = 0 0.105% 0.107% 0.072% 0.038% 0.037% 0.024% 0.023%

m = 3, α = 0.1 0.115% 0.103% 0.085% 0.076% 0.065% 0.074% 0.093%

Table C.1 presents the upper bound on the number of players with an incentive to

lie, as a proportion of all players, on scale-free networks. We observe that the upper
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Table C.2: Lower bound of profiles where every player is truthful for (Approximate) RPM

n 20 30 40 50 60 70 80

m = 2, α = 0 99.7% 99.6% 99.5% 99.9% 99.6% 99.2% 99.2%

m = 2, α = 0.1 99.7% 99.7% 99.4% 99.8% 98.8% 98.1% 97.2%

m = 3, α = 0 97.9% 96.8% 97.1% 98.1% 97.8% 98.4% 98.3%

m = 3, α = 0.1 97.8% 96.9% 96.8% 96.2% 96.3% 95.1% 92.9%

bound is always below 0.2%, and is even lower when the networks are sparse (m = 2).

On the Karate club data, we did not find any player with an incentive to lie in test800

cases when we apply (Approximate) RPM. On the Newfrat data, the upper bounds are

less than 7% and 0.4% when we apply RPM with and without heuristics, respectively.

In addition, we also computed the lower bound on the fraction of preference profiles

where truth telling is a Nash equilibrium (Table C.2). We find that without the heuristic,

when m = 2 (sparse networks), RPM is incentive compatible in more than 99% of the805

profiles; and when m = 3 (the networks are comparatively dense), RPM is truthful at

least 96% of the time.

Table C.3: Average upper bound of untruthful players for HRPM

n 20 30 40 50 60 70 80

m = 2, β = 0.5 1.44% 1.77% 1.71% 2.00% 2.09% 2.16% 2.06%

m = 2, β = 0.6 1.62% 1.83% 1.96% 2.09% 2.25% 2.11% 2.11%

m = 3, β = 0.5 2.99% 3.36% 3.76% 3.90% 4.18% 4.02% 4.33%

m = 3, β = 0.6 3.44% 3.69% 3.97% 3.98% 4.40% 4.24% 4.52%

Table C.3 presents the upper bound on the number of untruthful players for HRPM

(still for the roommate problem). Even with this heuristic, we can see that fewer than

5% of the players have any incentive to misreport preferences in all cases.810
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Appendix C.2. Efficiency

In terms of social welfare, ex post Pareto optimality, satisfied by both random se-

rial dictatorship (RSD) [5] and RPM, is a very weak criterion. Moreover, it is not

necessarily satisfied by our approximations of RPM. Conversion of ordinal to cardi-

nal preferences allows us to empirically consider utilitarian social welfare, a much815

stronger criterion commonly used in mechanism design with cardinal preferences.

We define utilitarian social welfare as 1
|N |
∑
i∈N ui(πi), where πi is the team that

i was assigned to by the mechanism.
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Figure C.3: Utilitarian social welfare for roommate problem

Figures C.3a and C.3b depict the average utilitarian social welfare for RSD and

RPM in the roommate problem on scale-free networks, Karate club networks, and820

the Newfrat data. In all cases, RPM yields significantly higher social welfare than

RSD, with 15% − 20% improvement in most cases. These results are statistically

significant (p < 0.01). Furthermore, there is virtually no difference between exact and

approximate RPM.

For the trio-roommate problem (in which the maximum size of team is 3), we825

compare HRPM (β = 0.6) with RSD on the same data sets. Figures C.4a and C.4b

show that HRPM yields significantly higher social welfare than RSD in all instances,

and HPRM performs even better when the network is comparatively dense (m = 3 in

the scale-free network). All results are statistically significant (p < 0.01).
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Figure C.4: Utilitarian social welfare for trio-roommate problem

Appendix C.3. Fairness830

A number of measures of fairness exist in prior literature. One common measure,

envy-freeness, is too weak to use, especially for the roommates problem: every player

who is not matched with her most preferred other will envy someone else. Indeed, be-

cause RPM matches soulmates—in contrast to RSD, which does not—it already guar-

antees the fewest number of envious players in the roommates problem. We consider835

two alternative measures that aim to capture different and complementary aspects of

fairness: the Gini coefficient, representing the inequality among values of player util-

ities, and the correlation between utility and rank in the random proposer order (i.e.,

Pearson correlation).
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Figure C.5: Gini coefficient for the roommate problem

The Gini coefficient measures the inequality of player’s utilities. It is extracted840
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based on the Lorenz curve [14].16 A Gini coefficient of zero expresses perfect equality,

where all the players have the same utility, while a Gini coefficient of one expresses

maximal inequality among values (e.g., for a large number of players, where one team

is composed of soulmates and all the players are matched to their least preferred team).

Correlation between utility and rank considers each random ranking of players inO845

used for both RSD and RPM, along with corresponding utilities ui(π) of players for the

partition π generated by the mechanism, and computes the correlation between these.

It thereby captures the relative advantage that someone has by being earlier (or later)

in the order to propose than others, and is a key cause of ex post inequity in RSD. We

view the correlation measure as perhaps the most meaningful criterion of fairness for850

mechanisms based on random player rankings: for example, someone who is extremely

unpopular is likely to have lower utility than others, but that’s likely to remain the case

for any team formation mechanism with good efficiency properties. On the other hand,

this may be relatively invariant of the ex post position that the player has in the order

of proposers.855
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Figure C.6: Pearson Correlation for the roommate problem

Our experiments on the roommate problem show that RPM is significantly more

equitable than RSD on scale-free networks (Figures C.5a and C.6a), as well as on the

Karate club network and Newfrat dataset (Figures C.5b and C.6b). The differences

between exact and approximate RPM are negligible in most instances.

16The proportion of the total utility of the players that is cumulatively earned by the bottom x% of the

population.
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Figure C.7: Gini coefficient for the trio-roommate problem
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Figure C.8: Pearson Correlation for the trio-roommate problem

In the trio-roommate problem, HRPM (β = 0.6) is much more equitable than RSD860

as shown in Figures C.7 and C.8. These results are statistically significant (p < 0.01).
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