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potential teams whose members then either accept or reject the offers. The games in-
duce no-delay subgame perfect equilibria with unique outcomes that are individually
rational and match soulmates. We provide sufficient conditions for equilibria to imple-
ment core coalition structures. When each player can make a sufficiently large number
of proposals, we obtain the novel and surprising result that outcomes are Pareto opti-
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“They used to tell me you have to use your five best players, but I've found that you win with the

five who fit together best.”
—Red Auerbach

1. Introduction

Whether business, social, or recreational, activity is often organized into groups
through informal, decentralized processes. In school, students find their own study
groups, roommates, project partners, and homecoming dates. Similar informal proce-
dures are often responsible for matching business partners, research collaborators, and
tennis doubles teams.

We model decentralized matching as a sequential bargaining gam with the re-
striction that our game has non-transferable utility. In our game, a proposer invites a
subset of players to join her in a team. Players in the proposed team then sequentially
accept or reject the invitation. If all accept, the team is formed, and all associated play-
ers are removed from the game. Then another player (or potentially the same player
if her team was rejected) becomes the proposer, and the process continues for a prede-
fined number of rounds or until no players remain who have not become members of
a team. At a terminal node, players who remain unassigned to a team at that node, are
assigned to singleton teams.

We analyze this game under the condition that players have perfect information
about each other’s preferences. First, we demonstrate two general properties that such
games possess: there is a unique subgame perfect Nash equilibrium (SPNE) team struc-
ture and every SPNE involves no delay in the formation of equilibrium teams. Both
are quite surprising, given that SPNE tends to be a weak criterion in most prior game
models (necessitating refinements, such as stationarity). Moreover, equilibrium out-
comes are always individually rational. Our final general positive result for games with
an arbitrary exogenous order of proposers, is that every SPNE matches soulmates, that
is, any team that is most preferred by all its members is formed. Indeed, our result

is stronger: it matches soulmates even in a recursive sense, where upon removing a

I'Sequential bargaining as in our model has its origins in Stahl|1972}|1977 and Rubinstein|1982|
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set of matched soulmates, new soulmate teams arise once player preferences no longer
include matched players, and so on, until no soulmate teams remain; all such teams are
formed in every SPNE of our game, independent of order over proposers. An important
consequence of this is that whenever all players are so matched, the SPNE outcome co-
incides with the unique core outcome. In general, however, the games we consider do
not select a core coalition structure.

Our results for Pareto optimal outcomes are especially interesting. We find that a
restriction on our game model dictating that any proposer in the specific order must be
able to propose at least n + 1 times, where n is the number of teams containing that
proposer, ensures Pareto optimality of outcomes. We term the resulting restricted set
of games “Rotating Proposer Games (RPGs)”.

Our games bear resemblance to a number of previously studied models of non-
cooperative coalition formation games, for example, [22, |19, 8} [11} [18} 9]. Most of
these are TU games [[11} [18} 22 [19], and all assume an infinite horizon. Moreover,
most make a consequential assumption about the order of proposers where the first
player to reject a proposal becomes the proposer in the next round. In contrast, we
consider finite-horizon games in which the proposer order is fully exogenous.

As an alternative to fully decentralized coalition formation, a planner may design
a centralized matching process in which players report their hedonic preferences over
teams, and a centralized mechanism returns a partition of players into teams and, if
need be, singleton sets. A significant advantage of the centralized process is that it
is now natural to allow for incomplete information about player preferences. This,
however, poses significant theoretical challenges, discussed below.

A natural option, which is unlike most approaches to the problem in prior literature,
is to simply centralize a decentralized mechanism that has good equilibrium properties.
In instances where preference reports are truthful, the outcome properties are the same
as those of the equilibrium of the decentralized mechanism.

We take this approach and introduce a new mechanism, the Rotating Proposer
Mechanism (RPM), that centralizes the rotating proposer game. RPM allows us to
achieve Pareto efficiency, individual rationality, and IMS. Our empirical work demon-

strates that these can be achieved with only a small relaxation of incentive compati-
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bility. While RPM involves a substantial computational burden to implement exactly,
we develop several approximations that, by construction, maintain individual rational-
ity and IMS (details provided in Supplementary Materials). Using an algorithm for
finding an upper bound on the number of untruthful players (also in Supplementary
Materials), we show that RPM and its approximate versions introduce few incentives
for manipulation in several classes of the roommate problem, as well as settings with
3-player teams. In extensive experiments, we evaluate the properties of RPM in both
exact and approximate versions, in terms of social welfare (a much stronger notion
than Pareto optimality, using cardinal preferences over coalitions) and fairness (using
several natural notions thereof). We show that in comparison with random serial dic-
tatorship, which serves as a calibration baseline for empirical results, RPM achieves
high social welfare and has desirable equity properties.

To place our contribution in the literature and highlight some of the problems faced,
we briefly note some of the literature. |Alcalde and Barbera prove that without restric-
tions on the sets of admissible preferences, there is no matching mechanism that is
Pareto optimal, individually rational, and strategyproof, even in two-sided problems (a
special case of our team-formation environment) [3]]. Rodriguez-Alvarez] shows that
any mechanism that is strategyproof and individually rational must either be bossy or
put restrictions on which partitions can form [20]. Moreover, [Leo et al| prove that
any mechanism that matches soulmates cannot be strategyproof on general preference
domains [[13]].

A number of mechanisms have been proposed to achieve subsets of the desired
properties of efficiency, incentive compatibility, individual rationality, and matching of
soulmates. |Aziz et al. present a class of mechanisms that are Pareto optimal and indi-
vidually rational [4]. Specific instances of this class can be selected to effect other
properties, such as improved fairness (without formal guarantees) and even strate-
gyproofness in restricted settings. In the context of roommate problems (teams of
two), IBiro et al.| exhibits mechanisms which are both Pareto optimal and implement

iterative matching of soulmates (IMS) [7] Pareto efficiency and individual rationality

2 Actually, these satisfy a more general property of maximum irreversibility.
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in roommate problems can also be achieved either by almost stable matchings [1] or
least-unpopular matchings [15]. [Wright and Vorobeychik| empirically evaluated sev-
eral mechanisms for team formation, but offer few theoretical guarantees [25]. The
literature thus shows that guaranteeing even individually rationality and efficiency re-
quires relaxing incentive compatibility, justifying our interest in the “small” relaxation

of incentive compatibility.

2. Modeling Decentralized Matching

2.1. Environment

We consider a well known model described in Banerjee et al. [6] of an environment
populated by a set of players N = {1,...,n} who must be partitioned into teamsE] A
team T € 2" is a set of players, and a team structure T is a partition of the total player
set into teams. For a player i, let 7; be the team in the partition 7 containing <.

In many situations teams face some feasibility constraints; for example, teams may
be constrained to consist of at most k individuals. Generically, let 7~ denote the set of
feasible teams, which we assume to always include singleton teams, {i}. For a player
i, we denote the subset of feasible teams that include i by 7; C T. Each player i € N
has a strict preference ordering >, over 7;. A profile of preferences > (or profile for
short) is a list of preferences for every i € N. Given a profile == ( >1, ..., >, ...,
>n ), the list of preferences for all players except 7 is denoted by > _;. In addition, we
assume that players have lexicographic preferences over time, that is, for all ¢ < ¢/,

joining a team 7T at time ¢ is strictly preferred to joining 7" at time ¢’ E]

2.2. Non-Cooperative Coalition Formation Game

We model the decentralized process of hedonic coalition formation using a natural

non-cooperative game with perfect informationE] In the game, players sequentially

3We use the terms teams and coalitions interchangeably throughout.
4Time can be measured by the number of actions that are taken to go from a node to a final outcome. Our

use of lexicographic preferences was inspired by Bloch and Diamantoudi (2006).
3 A hedonic game is simply a game with ordinal preferences over teams of membership.
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propose teams that are then accepted or rejected by their prospective members. We
term such games accept-reject games (ARGs).

Formally, an ARG is a game of perfect information in extensive form with player
set N, a set of feasible teams 7, a preference profile > over team structures, and an
ordered list of players O = (i1, %2, ..., im ), in which each player i € N is included at
least onceﬂ The ordering determines the order in which players can make proposals to
other players (or to themselves alone) to form teams. Each proposal and its responses
lead to a subgame. The game begins with the first player in the ordering, say ¢, propos-
ing a team 7' € 7;. The players in T then sequentially decide whether to accept the
proposal. If all players in 7" accept the proposal then those players have no decision
nodes in the remaining subgame and, in particular, they can no longer make propos-
als (they loose their places in the ordering) If one or more players in 7T reject the
proposal, we arrive at a subgame in which any players in 7" who still had proposals to
make can do so, when it is their turn in the ordering O, and can still accept or reject
proposals made to them to join teams. In either case, we arrive at a new subgame
where it is the next player’s turn in the ordering to make a proposal (provided that she
has not already joined a team).

The game proceeds to the next proposer in the ordering O. The process continues
until there are no more opportunities for teams to form - either (a) all players are in
teams or (b) the my, player in the order has made a proposal and players to whom the
proposal is made have responded. In case (b), the remaining players, if any, become
singleton teams. In either case, the outcome is a team structure.

We illustrate the mechanics of this game through a simple example.

Example 1. Consider an ARG with four players N = {1, 2, 3, 4}, and the order of

proposers O = (1, 2, 3,4) in which the size of each team is at most two (roommate

5The order of the players in O is arbitrary; for example, if N = {1, 2, 3} the ordering O may be (3, 1, 2).
"Informally, we can think of those players who all agree to be in some proposed team as leaving the

game; their assigned team is determined and they have no further actions in the game.



problem). Suppose that the profile of preferences is as follows:

{L4} =1 {12} =1 {1,3} =1 {1}
{2,1} =2 {2,4} =2 {2,3} =2 {2}
{3,2} =3 {3,1} >3 {3,4} >3 {3}
{4,3} =4 {4,2} =4 {4,1} =4 {4}

_~Ww NN =

The following is an example scenario:
135 1. Player 1 proposes to {1, 4}, and 4 rejects the proposal.

2. 2 proposes to {2,1} and 1 accepts the proposal. The group is formed and both 1

and 2 are removed from the game.

3. 3 proposes to {3,4} and 4 accepts the proposal. The group is formed and 3,4

are removed.

140 The partition that results from this sequence is T = {{1,2},{3,4}}. Note that this

partition is also a subgame perfect Nash equilibrium (SPNE) of this ARG.

2.3. Equilibrium Properties of ARGs

As we demonstrate below, there are several important properties that hold in any

subgame perfect Nash equilibrium of an arbitrary accept-reject game:

145 e individual rationality (players are not a part of any team if they would prefer to

be by themselves),

e matching of soulmates (players who all prefer to be together are matched, even

in a more general sense discussed below), and

e when the game is “IMS-complete” (see below), the outcomes are in the core of

150 the derived cooperative game.

Surprisingly, Pareto optimality is not necessarily satisfied by an SPNE outcome, as
we show presently.
An outcome 7 is Pareto optimal if there does not exist another feasible outcome

7’ that is strictly preferred by a nonempty subset of players N’ C N and to which
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all other players, N\ N’ are indifferent. In our context this means that an outcome is
Pareto optimal if there is no collection of players who can all be made better off by
a reshuffling of team memberships among these players while maintaining the same
team memberships of all remaining players, if any.

We begin our analysis with two examples that illustrate the subtleties involved in
analyzing ARGs. What is particularly revealing is that small and seemingly incon-
sequential changes solely to the order of proposals can effect significant changes in
equilibrium outcomes. The following example illustrates a SPNE with an outcome that

is not Pareto optimal.

Example 2. Consider a roommate problem with a set of 6 players, {1,...,6} who

have the following preferences:

1: {1,3} =1 {1,4} >=1 {1,5} =1 {L1,2} »=1 {1,6} =1 {1}
2: {2,1} =2 {2,5} =2 {2,4} =2 {2,3} =2 {2,6} =2 {2}
3: {3,2} =35 {3,4} >3 {3,1} =35 {3,5} =3 {3,6} =35 {3}
4. {4,3} =4 {4,1} =4 {45} =4 {4,2} =, {4,6} >4 {4}
5: {52} =5 {54} 5 {51} »5 {53} »s {56} 5 {5}
6: {6,5} =¢ {6,1} »¢ {6,2} =¢ {6,3} >»¢ {6,4} ¢ {6}

Suppose the order of proposers is O = (1,2,3,4,5,6). The SPNE outcome of this

game is {{1,5},{2,4},{3,6}}, as argued in[Appendix A| This outcome is not Pareto
optimal, as {{2,5},{1,4},{3,6}} is a Pareto improvement. []

Our next example illustrates that with a change in the ordering of players Pareto-

optimality may be achieved.

Example 3. Consider now a very minor modification of Example 2} we let player 1
move twice in the very beginning rather than just once. Specifically, the new order is
0 = (1,1,2,3,4,5,6); everything else (in particular, the set of players, their pref-
erences, and feasible teams) remains the same. We now show that this modification
results in teams in which players are completely reshuffled. First, it is immediate that
if any proposal by 1 is rejected in the very beginning, the subgame becomes identical

to the game in Example@ Having this in mind, suppose that 1 makes an offer to {1, 3}
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at the very beginning. If 3 rejects, it is teamed up with 6 in the resulting subgame.
Clearly, 3 strictly prefers to be on a team with 1, and would therefore accept. Once the
team {1, 3} is formed, 2 and 5 prefer to be with one another rather than with anyone
else, and the resulting team must be formed as well (see our discussion of this below,
in the context of iteratively matching soulmates). Consequently, the SPNE outcome is

{{1,3},{2,5},{4,6}}. It is easy to verify that this outcome is Pareto optimal.

It is instructive to observe that in the above example the SPNE outcome, if the first
proposal by 1 were rejected, serves as a kind of credible threat to player 3. This turns
out to have significant consequences for optimality, as we show below.

We next proceed to prove several interesting and useful characteristics of subgame
prefect Nash equilibria of ARGs, as well as some properties of their equilibrium out-
comes. We start with some additional notation. Define a T-subgame as the subgame
of an ARG in which an offer T" has been made and the players i € T'\{i} sequentially
decide whether to accept or reject this offer. For any proposal T, denote the subgame
in which T is rejected by Arg and the subgame in which 7' is accepted by Ar 4 . Note
that each such subgame of an ARG is itself an ARG, with the caveat that we lift the
restriction that each player appears at least once in the order O.

Recall that, as in any subgame of a game, if a player does not own any decision
nodes in that subgame, then the player simply has no more choices to make; this holds
for all those players who, at prior decision nodes, joined teams. A subgame allows the
possibility, however, that one or more players may no longer be able to make proposals
but still may own decision nodes requiring them to accept or reject proposals.

First, we make a simple observation.

Observation 1. For any strict subgame A, and for any two feasible proposals T, T,

Arr = A7

This follows immediately from the fact that if a proposal from a player i is rejected
the outcome is independent of the specific proposal 7' that was made.

The next lemma serves largely as a tool in subsequent results, but may be interesting
in its own right as it addresses the issue of coordination faced by players who had just

received a proposal to be on some team 7" and who all prefer T" to the outcome that
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would materialize if this team were rejected. We show that in an SPNE such a team T'
will always be accepted, but observe that this is entirely a consequence of the sequential
nature of the accept/reject decisions and the assumption of lexicographic preferences.
In particular, if players were to decide team membership simultaneously, the game
becomes one of coordination and a host of “bad” equilibria could emerge in which,
for example, a collection of players jointly reject the team that is better for all players
in the collection. In contrast, with sequential decision-making the team 7 is selected.
Lexicographic preferences ensure that in this situation players do not reject a proposal

to join 7" even if T would still be formed in a subsequent subgameﬁ

Lemma 1. Consider a T-subgame of an arbitrary subgame A for a proposal of team T.
Let AR be the subgame in which T is rejected and let 11 be the set of SPNE outcomes
of Ag. Suppose thatVrr € llg and Vi € T either T -; TR ;, or T = TR ;. E] Then all
1 € T will accept T in every SPNE of the T-subgame.

We relegate the proof of Lemma [I]to

Next we present one of the main results of this section: all subgame perfect Nash
equilibria involve no delay, and result in a unique outcome. It is an immediate corollary

to the following Theorem.

Theorem 1. In any SPNE of an arbitrary subgame A, all proposals are accepted along

the equilibrium path. Moreover, the SPNE outcome is unique.

The proof of Theorem [I] is obtained by backward induction and is relegated to
ApPp G A
Remark: The above result shows that an SPNE has the property that at every

proposer node along the equilibrium path, the SPNE offer is accepted. Of course a

8 A player 4 may make a proposal to all members of T but, if the player makes a proposal that is rejected,
she could receive a proposal from another member of the team 7" who appears later in the ordering. Note
also that it is possible for a player ¢ to make an offer to herself of team {¢} and she could then reject the
proposal, thus making herself available to join another team later in the game. In any case, as the reader will

see, this will not happen in an SPNE.
9Where TR, s the team to which 4 is assigned in 7 g.

10
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strategy must still specify what happens at every other node of the tree, including nodes

that would follow a non-SPNE proposal or rejection of am SPNE proposal.

2.4. The Coalitional Game

Having characterized the structure of subgame perfect Nash equilibria of an ARG,
we now consider whether the unique outcome satisfies important properties of the cor-
responding coalitional game. The first of these is individual rationality. This, it turns
out, is immediate, since the strategy of rejecting every proposal will, in our game
model, leave each player by themselves, and they can therefore do no worse in any

subgame perfect Nash equilibrium.

Proposition 1. In every SPNE outcome of any ARG, each player i is at least as well

off as in the singleton team {i}.

The set of players IV and their preferences > determines a (hedonic) cooperative
game of coalition formation. An assignment 7 of players to teams is in the core of this
cooperative team formation game if there does not exist a coalition of players T' C N
with the property that for all ¢ € T, T' >; m;. An interesting question is whether, if
the core of cooperative game that can be formed from the information on preferences
is nonempty, equilibrium outcomes always result in a core coalition structure. As the
following example demonstrates, this is not the case, even for bipartite matching prob-

lems.

Example 4. Consider a bipartite matching problem with a set of 6 players, {1, ...,6}

who have the following preferences:

{1,4} =1 {1,5} =1 {1,6} =1 {1} > {1,2} =1 {1,3}
{2,5} =2 {2,4} > {2,6} =2 {2} =2 {2,1} =2 {2,3}
{3,6} =3 {3,5} =3 {3,4} =3 {3} =3 {3,1} >3 {3,2}
{4,3} =4 {4,2} =4 {41} =4 {4} =4 {4,5} =4 {4,6}
{5,3 =5 {51} =5 {52} >s5 {5} =5 {5,4} 5 {56}
{6,2} =6 {63} ¢ {6,1} >¢ {6} ¢ {6,4} > {6,5}

Suppose that all of the above teams are feasible, and that the order of proposers is

S Ot e W N

O = (1,2,3,4,5,6). It is not difficult to ascertain that the unique SPNE outcome

11
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(under lexicographic preferences) of this game is {{1,5},{2,6},{3,4}}. However,
{83, 5} is a blocking pair, and this game has two core outcomes: {{1,5},{2,4},{3,6}}
and {{1,4},{2,5},{3,4}}.

However, we now show that ARG equilibria implement another important property,
iterated matching of soulmates (IMS) [13]. This, it turns out, leads to a sufficient
condition to guarantee that ARG outcomes are in the core.

IMS captures the idea that a set of players who, among the set of players not al-
ready in teams, all prefer to be with each other, are natually matched. Formally, a team
T is a team of (1st order) soulmates if foralli € T, T = T’ for all T € 7T;. Iter-
atively applying this criterion we obtain IMS: in every iteration, we match all teams
consisting of soulmates among players not matched in prior rounds. Informally, this
criterion may be of independent importance because any mechanism, centralized or de-
centralized, which does not match players who wish to be with one another might be ill
perceived A more formal motivation is that all teams matched by IMS are blocking
coalitions [13]], and players in blocking coalitions may create instabilityE] Moreover,
implementing IMS has important consequences for incentive compatibility and core
stability. Next, we show that ARG subgame perfect Nash equilibrium outcomes al-
ways match soulmates in this iterative sense. More precisely, let Tims be a collection
of teams produced by IMS. We say that ARG implements IMS in SPNE partition 7 if

Trms C 7.

Proposition 2. Every SPNE of an ARG implements IMS.

Proof. We prove this by induction.
Base Case: We show that every soulmate team must be formed by any SPNE. We

prove this by contradiction.

100f course, in some situations, it may not be desirable to match soulmates. For example, in forming
sports teams in a school, a “captains mechanism,” in which two captains sequentially choose team members,

may be preferable.
1 As shown by [13], the assumption that all players can be matched as soulmates is weaker than the top

coalition property of [6].

12
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Consider a SPNE s in which all proposals are accepted (sufficient, since such a
SPNE always exists and all SPNE result in a unique outcome by Theorem|T), and let
be the corresponding SPNE outcome. Let 7" be a team of soulmates and suppose that
it is not formed by s. Let ¢ € T be the earliest proposer in 7" and let 7; be the team to
which i is assigned by s. Suppose i proposes to 7. By Lemma(I]and the fact that T is
a team of soulmates, all members of 7" will accept this proposal. Because T' >; m;, @
strictly prefers to propose 7" than to propose 7;, s cannot be a SPNE.

Inductive Step: Suppose that all teams of kth order soulmates (i.e., from the first k&
rounds of IMS) are formed. We now show that all soulmate teams from k + 1st round
form as well. We do this by a similar contradiction argument as the base case.

Again, let s be an always-accept SPNE with outcome 7, and let 1" be the team
of k + 1st round (conditional) soulmates (i.e., soulmates if all soulmate teams from
previous k£ rounds form), and suppose T is not formed. Let ¢ € T be the earliest
proposer in 7" and let 7; be the team to which ¢ is assigned by s. Suppose ¢ proposes
toT. By Lemma the fact that 7" is a team of conditional k£ + 1st round soulmates,
and the inductive hypothesis, all will accept this proposal (since they cannot possibly
be on a team with anyone from the first £ IMS rounds, and strictly prefer 7 to all other
teams). Since 1" >; 7;, ¢ strictly prefers to propose 1" than to propose 7; (which cannot
contain any teams including soulmates from the first k£ rounds of IMS), s cannot be a

SPNE. O

As shown by [13]], if IMS matches all players, the resulting outcome is the unique

core coalition structure. The following corollary then follows.

Corollary 1. Suppose that all players are matched by IMS. Then every SPNE of an

arbitrary ARG yields the unique core coalition structure.

2.5. The Rotating Proposer Game

As we showed in Example[2] SPNE outcomes of an arbitrary ARG need not even be
Pareto optimal. Recall, however, that the SPNE outcome of Example [3is Pareto opti-

mal. Thus, as we had observed, ordering over the players can potentially restore Pareto

13
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optimality. We now use this insight to devise a restriction of ARGs—specifically, re-
stricting the orderings over proposers—which allows us to guarantee that the outcome
is always Pareto optimal.

Specifically, we propose a class of ARGs which we term rotating proposer games
(RPGs). In an RPG, the order O over players is such that each player ¢ can make | 7;|+1
proposals before we move on to another player. It turns out that this condition suffices

to guarantee Pareto efﬁciency

Example 5. Consider again Example 2] but now let the order allow each proposer to
propose seven times, that is, O = (1,1,1,1,1,1,1,2,2,...,5,5,6,6,6,6,6,6,6).

If the very first proposal by 1 is rejected, it is not difficult to show, through a slightly
modified argument as in Example [2] that the same SPNE outcome obtains as in that
example (i.e., {{1,5},{2,4},{3,6}}). Consequently, as in Example[3] if 1 proposes to
{1, 3}, 3 will accept, and the resulting SPNE outcome of the RPG is the Pareto optimal
outcome {{1,3},{2,5},{4,6}}.

Again, just as the Example [3] the last proposal by 1 serves as a credible threat of
the inefficient outcome if the proposal is rejected, which creates the incentive for 3 to

accept an offer it would otherwise have rejected.
Theorem 2. Every SPNE of a RPG is Pareto optimal.
Before we prove Theorem 2] we make several observations.

Observation 2. Consider a proposer i and consider k < |T;|+ 1 so that i is proposing
for the kth time (having been rejected k — 1 times). Let ;i be the team i is assigned to
in the SPNE of the game that starts with her kth proposal. Then either m;;; >=; T; p4+1

Or Tif = T k+1-

This follows from observing that if 7; ;11 >; m;x, then in SPNE, when % proposes
for the kth time, she should make a proposal which will be rejected, contradicting

Theorem

12Recall that in any ARG all proposals are accepted. Thus, the size of the set |7;| is immaterial here,
since players would only ever make a single proposal in equilibrium. It is only the potential of making these

proposals that matters.
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Corollary 2. It follows that there must be some k such that ,j, = T; k41, Since i can

propose more times than there are possible teams for her to propose to.

Observation 3. If my, is the SPNE outcome of the game beginning with player i’s kth

proposal and m;, = T; 41, then T, = Tp11.

This follows because the subgame that follows ¢ proposing to m;; and being ac-
cepted is the same whether it occurs following ¢’s kth or k + 1th proposal. Specifically,
the next proposer j is the same (the next player in the ordering O who is not in ;)

and the set of available players for j to propose to is the same.

Lemma 2. Let 7w, be the SPNE outcome of a subgame Ay with player i proposing for
the first time, and let o be the SPNE outcome of Ao, the subgame which results if i’s

first proposal is rejected. Then w1 = o.

Proof. We will show that if 7;;, = m; 1, then m; ;,_; = 7. The result then follows
from Observation 3} Assume 7 = 7 g1

From Observation 2| 7; x—1 >i ik OF T )1 = . If T g1 = 7y, then by
ObservationE]wk_l = m, and the result follows as shown below.

Assume instead, for contradiction, that 7; 1 >; ;. Then since the team 7; 1,1
is accepted by all its members, we have thatV j € m; 1,1, ™ k—1 >, Tjk.

Now since 7; 1 >; Tk, we must have that if ¢ proposes the team 7; 1 on her
kth proposal, it is rejected. Otherwise, if it were accepted in SPNE, she would propose
m;,k—1 and the team would be formed, with player 7 better off as a result, contradicting
the fact that it’s an SPNE outcome of the game starting with ¢’s kth proposal. This
implies that for some j € m; 1, T x+1 =; Tik—1. Butsince m, = mj41, we have
that 7;, >; m; p—1 =; Tjk, a contradiction. Thus, it is not the case that m; 1 >; T,
so it must be that 7; 1 = 7, implying that 71 = 7.

By recursively applying what we have shown thus far, that m;;, = 7; ;41 implies
Ti k—i = Tik, beginning with the k from our Corollary to Observation 2, we have that

T = o, as desired. O

We now proceed to prove Theorem 2 by contradiction. Let 7 be the SPNE outcome

of an RPG. Suppose, for contradiction, that the set of teams 7’ is a Pareto-improvement
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over 7. That is, each player j has 773» >=; m; with at least one player having 7r§ = .
We will show that this implies 7 is not an SPNE outcome.

Since 7 # 7', there are some players on different teams in 7 and 7’. Let ) be the
set of such players, and let i € () be the first such player to propose.

Claim. All players in 7; and 7} are still available when ¢ proposes for the first
time. If this were not the case, then there must have been some other player j who
proposed before ¢ who is in 7} but not ; (note that all members of 7; are in @, so i is
the first member of 7; to propose, which implies by Theorem 1 that all members of ;
are available when i first proposes). But then j € @, contradicting the premise that 7 is
the first player in () to propose.

Now, let A be the subgame starting with ¢’s first opportunity to propose. Since
7’ is a Pareto-improvement over 7, from strict preferences over teams it follows that
m, =; m; forall j € m,. By Lemma 2, if these players j reject a proposal of ], they
will be assigned, in SPNE, to 7; in the subgame A that begins if ¢’s first proposal is
rejected. Thus, if ¢’s first proposal is to the team 7/, all members of the team will accept.
Therefore, since 7, >; m;, ¢ will propose to 7} and this proposal will be accepted. Thus
m is not, in fact, an SPNE outcome of the RPG, since the SPNE outcome is unique by
Theorem 1. [

However, while RPGs do resolve the Pareto optimality issue, Example [4] can be
extended to use the RPG order and still results in the same outcome, which is not in the
core. Nevertheless, it has been argued that Pareto optimality may itself be a compelling
stability property in many coalitional settings [16]].

In summary, RPG equilibrium outcomes are individually rational and implement
IMS (inherited from general ARGs), and, in addition, are Pareto optimal. Moreover,
all equilibria have no delay of forming teams, and result in a unique outcome. From
the perspective of decentralized hedonic coalition formation with complete informa-
tion, this is a strong set of properties. However, complete information is a strong as-
sumption, one we would in practice wish to relax. To do so, we proceed to consider
a centralized (mechanism design) approach to team formation that turns RPGs into a
direct mechanism by implementing a SPNE in which, given a collection of reported

preferences, all offers are accepted.
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3. The Rotating Proposer Mechanism

In order to move to a centralized team formation setting, we need to formally define
a team formation mechanism. A team formation mechanism M maps every preference
profile > to a partition 7, i.e. 7 = M (>). Our goal is to exhibit such a mechanism, and
analyze its properties. The mechanism, termed Rotating Proposer Mechanism (RPM),
implements the subgame perfect Nash equilibrium of the RPG in which all proposals
are accepted. In this equilibrium, whenever it’s a player ¢’s turn to propose, ¢ makes a
proposal to her most preferred team among those that would be accepted.

For any profile, if all players report their preferences truthfully, equilibrium out-
comes of the game have a number of good properties which are thereby inhereted by
RPM. Of particular note is that RPM is individually rational, Pareto optimal, and im-
plements IMS. However, it is also immediate from known results that the RPM mecha-
nism is not in general strategyproof (this would conflict with individual rationality and
implementing IMS [[13]]).

The loss of incentive compatibility seems problematic. However, one side-effect of
RPM implementing IMS is that RPM is strongly incentive compatibl and yields a
unique core team structure on a restricted class of preference domains for which IMS
always matches all players [13]. As an example, these domains include other well-
known restrictions on preferences, such as top coalition [6] and common ranking [12]]
properties.

This, however, would seem to limit its practical consideration, as such restrictions
can rarely be guaranteed or verified. Moreover, we wish to make stronger efficiency
claims than Pareto optimality, and also view fairness as an important criterion. For the
former, we are particularly interested in utilitarian social welfare, a much stronger cri-
terion than Pareto efficiency. We will also consider several notions of fairness discussed
below.

While we cannot make strong theoretical guarantees about these for broad realistic

preference domains, we consider such properties empirically.

3More precisely, truth telling is a strong ex post Nash equilibrium.
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3.1. Empirical Methodology

In our empirical assessments, we use both synthetic and real hedonic preference
data. In both cases, preferences were generated based on a social network structure
in which a player i is represented as a node and the total order over neighbors is then
generated randomly. Non-neighbors represent undesirable teammates (¢ would prefer
being alone to being teamed up with them).

The networks used for our experiments were generated using the following models:

o Scale-free network: We adapt the Barabési-Albert model [2] to generate scale-
free networks. For each (n, m), where n is the number of players, m denotes the

density of the network, we generate 1, 000 instances of networks and profiles.

e Karate-Club Network [26]: This network represents an actual social network
of friendships between 34 members of a karate club at a US university, where
links correspond to neighbors. We generate 100 preference profiles based on the

network.

Finally, we used a Newfrat dataset [17] that contains 15 matrices recording weekly
sociometric preference rankings from 17 men attending the University of Michigan.
In order to quantitatively evaluate both the exact and approximate variants of RPM,
the ordinal preferences -; have to be converted to cardinal ones u;(-), upon which
both mechanisms operate. For this purpose, we introduce a scoring function suggested
by Bouveret and Lang [10] to measure a player’s utility. To compute a player ¢’s utility
of player j we adopt normalized Borda scoring function, defined as u;(j) = g(r) =
2(k —r+ 1)/k — 1, where k is the number of i’s neighbors, and r € {1,...,k}
is the rank of j in ¢’s preference list. Without loss of generality, for every player
we set the utility of being a singleton w;(i) = 0. We assume that the preferences of

players are additively separable [[6], which means that a player ’s utility of a team 7 is

Ui(T) = ZjeT ul(])

3.2. Summary of Empirical Results
We now summarize the main empirical results. Full details, including a discussion

of how we handle the computational complexity challenges associated with RPM can
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be found in the Supplementary Materials.

Under RPM, incentives to misreport preferences are rare. For the roommate problem,
we find that typically 1% of players or fewer have an incentive to misrepresent their
preferencs, and fewer than 3% of all randomly generated profiles have any such players.
Approximate versions of RPM (which enable implementation of this mechanism at a
larger scale) do not much degrade these results. With teams of (at most) three, our
experiment reflect only approximate RPM, and we find that no more than 5% of players

have an incentive to misreport preferences.

RPM is highly efficient. We compare utilitarian social welfare of RPM (using a cardi-
nal transformation of ordinal preferences) and its approximations to serial dicatorship
(which is also Pareto optimal). We observe that in all experiments RPM yields much

higher social welfare, with improvements typically ranging between 15 and 20%.

RPM yields equitable outcomes. As is well known, serial dictatorship results in highly
inequitable outcomes (in the ex post sense). We observe that RPM yields outcomes far
more equitable, with significant improvements in terms of the Gini coefficient, and a
dramatically lower correlation between a random proposer order and utility (for exam-

ple, correlation in some experiments drops from over 0.4 to well below 0.05).

4. Conclusions

We consider sequential non-cooperative coalition formation games with a finite
horizon. In these, players iteratively propose teams, which are then sequentially ac-
cepted or rejected. We analyze subgame perfect Nash equilibria of the resulting perfect
information game. Our first key result is that there is an essentially unique no-delay
equilibrium (all proposals are accepted in every equilibrium), and the equilibrium out-
come is unique. Our second major positive result is that in a subgame perfect Nash
equilibrium teams involving soulmates, even in a stronger iterative sense, are always

formed. While this result is of independent interest, we also use it to provide a sufficient
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condition for the core outcome to be implemented in an equilibrium of our game. Fi-
nally, we exhibit a restricted class of games, where the restriction is on the exogenously
specified order of proposers, in which equilibrium outcomes are Pareto optimal.

Our most significant results demonstrate that the number of proposals a player can
make affects the equilibrium outcome of the game. These culminate in Theorem 2,
which shows that with a sufficient number of proposals the equilibrium outcome is
Pareto optimal, which is not the case if a player can only propose once. This result
is both novel and surprising. While the intuition—illustrated by an example—is that
Pareto optimality results from the 1-proposal game serving as a credible threat, the
proof is quite subtle and requires all the rsults obtained before this theorem.

While Theorem 2 is an interesting result for the class of coalition formation games
considered, it also inspires a number of questions. Most important, can similar results
be obtained for other classes of games? Are there other situations in which the ability
of players to make multiple proposals can lead to Pareto improving outcomes? We have
in mind, in particular, political situations. The door is now open to the investigation of

these, and other, related questions.
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Appendix A. Additional Proofs

Details of Example [2] Suppose that all of the above teams are feasible, and that the
order of proposers is O = (1,2,3,4,5,6). For example, if 1’s offer is rejected, 2
makes an offer. If that gets rejected, then 3 makes an offer, and so on. We now derive
the subgame perfect Nash equilibrium outcome of this game (which turns out to be

unique, as we show later).

1. Consider any subgame in which player 6 makes an offer. Clearly, every offer will
be accepted, since rejection implies that the player who rejects an offer becomes
a singleton (and each player in our example prefers to be on a team with anyone

to being by themselves).

2. Consider a subgame in which players 1-4 have all been rejected, and it is player
5’s turn to make an offer. If any offer by 5 is rejected at this point, the outcome
will be {{1}, {2}, {3}, {4}, {5, 6} }, since 5 is 6’s most preferred teammate, and
by the preceding logic. Consequently, any offer by 5 to teams with players 1-4
will be accepted. Since 5 most prefers 2, who is still available, this is the offer
5 will make, and it will be accepted. Moreover, since 1 is the most preferred
remaining player by 6, the outcome in this subgame is {{1, 6}, {2,5}, {3}, {4}}.
SPNE outcome in this subgame: {{1,6},{2,5}, {3}, {4}}.

3. Consider a subgame in which players 1-3 have all been rejected, and it’s player
4’s turn to make an offer. If player 4 makes an offer to {3, 4}, the team {3,4}
will form if 3 accepts or teams {3}, {4} will form if it rejects (from subgame
(2) above). Since 4 prefers 3 to any others, he can do no better than making
an offer to {3,4}, with the outcome being {{1,6}, {2,5},{3,4}}. It is thus an
equilibrium of this subgame for 4 to offer to {3, 4}, and for 3 to accept. SPNE
outcome in this subgame: {{1,6},{2,5},{3,4}}.

4. Consider a subgame in which players 1 and 2 have been rejected, and now it’s
player 3’s turn. If player 3 makes an offer to {2,3}, 2 prefers to reject, be-

cause 2 prefers to be with 5 (the outcome of subgame (3)) than with 3. If
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player 3 makes an offer to {3,4}, this offer is accepted, and the outcome is
again {{1,6}, {2,5}, {3,4}}. Making any other offer cannot improve 3’s utility.
SPNE outcome in this subgame: {{1,6},{2,5},{3,4}}.

. Consider a subgame in which player 1 was rejected, and player 2 now makes

an offer. If 2 makes an offer to {1,2}, 1 will accept, because if 1 rejects, they
end up paired with 6 (subgame (4)), and 1 prefers being with 2. Since 1 is the
most prefered pick by 2, 2 would strictly prefer making this offer to any other.
Thus, team {1,2} will form. Once this happens, {3,4} will team up since they
are then conditional soulmates, which implies that {5, 6} will team up as well.

SPNE outcome in this subgame: {{1,2}, {3,4}, {5,6}}.

. Now, consider player 1’s options. If 1 makes an offer to {1, 3} or {1, 4}, it will be

rejected, because both 3 and 4 prefer to be with each other than to be with 1 (and
they end up together if they reject 1). If 1 makes an offer to {1,5}, 5 will accept,
since 5 prefers to be with 1 than to be with 6 (which is the outcome if 5 rejects
I’s offer). Consequently, 1 will make an offer to {1,5} in equilibrium, and 5
will accept, forming the team {1,5}. Now, by the time 2 gets to move, 1 and 5
are off the market. Suppose that 2 and 3 then make offers which are rejected. If
4 then makes an offer to {3,4}, 3 will accept, because otherwise both will end
up by themselves (since 6 will make an offer to {2,6}). Since 3 accepts, the
teams {3,4} and {2, 6} form in this subgame, with the resulting SPNE outcome
in this subgame being {{1,5},{3,4},{2,6}}. Backing up, suppose it’s 3’s turn
to make an offer. If 3 offers to {2, 3}, 2 will accept, because otherwise 2 ends
up with 6. Since 2 is 3’s most preferred player, the team {2, 3} will then form.
Consequently, the SPNE of the subgame in which 2 is rejected after 1 and 5 team
upis {{1,5},{2,3},{4,6}}. Finally, suppose that 2 makes an offer to {2, 4}, its
most preferred remaining teammate. 4 will then accept, since rejecting the offer
will cause 4 to be teamed up with 6, who is less preferred than 2. Consequently,
the teams {2,4} and {3, 6} will form. This means that the following outcome is

a SPNE outcome of the full game: {{1,5},{2,4}, {3,6}}.
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Proof of Lemma [I] We prove this by induction, after noting that Ag is unique by
Observation[dl

Base Case: Suppose that the team 7" has been proposed. Consider an arbitrary
sequential order of accept/reject decisions for players in 7. Suppose that ¢ is last in
that order and all players before ¢ have accepted. Then ¢ will clearly accept since for
any mr € llg, by assumption either T' ~; mg; or,if ' = 7 ; and, from lexicographic
time preferences this holds even if, in a further subgame, another proposer proposes 7'
and it is accepted.

Inductive Step: Consider a player ¢ such that none of the players k£ < i in the
accept/reject order have rejected. Our inductive hypothesis is that if ¢ accepts, then in
every SPNE of the residual T-subgame all players k&’ > i (which follow ¢ in the order)
accept. It is immediate that ¢’s unique optimal strategy is then to accept, since for any
mr € llg either T' ~; g ;, or T' = 7R ;, and acceptance is preferred by lexicographic
time preferences. The final step is to observe that when ¢ is the first player in the order,

none of the players before ¢ have rejected, because no one precedes i.

Proof of Theorem[I} We prove this by showing the result for a subgame with only one
remaining proposer and then appealing to backward induction.

Base Case: Consider an arbitrary subgame with only one player, ¢, who can still
make a proposal and the set of feasible teams for ¢, denoted by 7; (none of the others
matter). We show that in this subgame in every SPNE all proposals are accepted and
result in a unique outcome. First, define 7;'F = {T' € T;|T =; {j}Vj € T} U {i},
that is, a subset of feasible teams in which every team is preferred by all its members
over being by themselves unioned with {i}. Clearly, every team offer T' € T,/ other
than {i} will be accepted. Let T} be i’s most preferred team in T,/%. If T = {i},
by lexicographic preferences ¢ strictly prefers to propose to and to accept team {i}.
Otherwise, T;* >; {i¢}. Because all j € T; accept and form a team, teams which
have been formed thus far are fixed, and any remaining players become singletons, the
subgame has a unique SPNE outcome.

Now consider the player who is the next to last proposer. Standard backward in-

duction for extensive games with perfect information can now be applied and the above
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result holds for the “rolled back™ game. This can be continued until the first player in

the ordering O is to make an offer, which proves the resultﬂ

141t is interesting to note some differences between this Theorem and Zermelo’s Theorem and its exten-
sions presenting uniqueness results for SPNE of extensive form games with perfect information. Zermelo’s
Theorem [27] requires strict preferences and each terminal node of the game is unique. We do not neces-
sarily have uniqueness of each terminal node and players may be indifferent between some terminal nodes —

those that assign them to the same team.
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Supplementary Materials (For Online Publication)

Appendix B. Details of Computational Approaches to Implementing RPM

While RPM is a rather intuitive mechanism, it is quite challenging to implement the
associated subgame perfect Nash equilibrium. In particular, the size of the backward
induction search tree is O(22i=1|7il). Even in the roommate problem, in which the
size of teams is at most two, computing SPNE is O(2"%). We address this challenge in
three ways: (1) preprocessing and pruning to reduce the search space, (2) approxima-

tion for the roommate problem, and (3) a general heuristic implementation.

Appendix B.1. Preprocessing and Pruning

One of the central properties of RPM is that it implements iterative matching of
soulmates. In fact, it does so in every subgame in the backwards induction process.
Now, observe that computing the subset of teams produced through IMS is O(n?) in
general, and O(n?) for the roommate problem, and is typically much faster in practice.
We therefore use it as a preprocessing step both initially (reducing the number of play-
ers we need to consider in backwards induction) and in each subgame of the backwards
induction search tree (thereby pruning irrelevant subtrees).

Because IMS preprocessing is computationally efficient, it is always applied before
any of the approximate/heuristic versions of RPM below, with the direct consequence
that even these approximate versions implement IMS.

We show the computational value of IMS in preprocessing and pruning using syn-
thetic preference profiles based on the generative scale-free model.

Figure shows the ratio of time consumed by RPM with IMS to that without
IMS In all cases, we see a clear trend that using IMS in preprocessing and pruning

has increasing importance with increased problem size.

I5The simulations describes in this section were run on a 2.6 GHz Intel Core i5 Mac machine with 8 GB

RAM.
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Figure B.1: Time consumed ratio (with IMS/without IMS) for RPM on scale-free networks

Appendix B.2. Approximate RPM for the Roommate Problem

Using IMS for preprocessing and pruning does not sufficiently speed up RPM com-
putation in large-scale problem instances. Thus, we next developed a parametric ap-
proximation of RPM that allows us to explicitly trade off computational time against
approximation quality. We leverage the observation that the primary computational
challenge of applying RPM to the roommate problem is determining whether a pro-
posal is to be accepted or rejected. If we are to make this decision without exploring
the full game subtree associated with it, considerable time can be saved. Our approach
is to use a heuristic to evaluate the “likely”” opportunity of getting a better teammate in
later stages: if this heuristic value is very low, the offer is accepted; if it is very high,
the offer is rejected; and we explore the full subgame in the balance of instances.

More precisely, consider an arbitrary offer from player 7 to another player j. Given
the subgame of the corresponding RPM, let I{; (i) denote the set of feasible teammates
that j prefers to 4, and let I{;(j) be the set of feasible teammates who j prefers to be
alone. We can use these to heuristically compute the likelihood R;(¢) that j can find a
better teammate than the proposer 4:

R, (i) :M 1. 3 (1_ |Uk(j)|) _ 1. 3 (1_ |Uk(j)>
U (DI 1;(3)] Ui (F)| 45 (5)] (Ui ()]

(B.1)

Intuitively, we first compute the proportion of feasible teammates that j prefers to .

Then, for each such teammate k, we extract the proportion of feasible teammates who
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are not more preferred by £ than the receiver j. Our heuristic then uses an exogenously
specified threshold, «, (0 < o < 0.5) as follows. If I, (i) < «, player j accepts the
proposal, while if R;(i) > 1 — «, the proposal is rejected. In the remaining cases,
our heuristic proceeds with evaluating the subgame at the associated decision node.
Consequently, when oo = 0, it is equivalent to the full backwards induction procedure,
and computes the exact RPM. Note that for any «, this approximate RPM preserves
IR, and we also maintain IMS by running it as a preprocessing step.

The parameter « of our approximation method for RPM in the roommate problem
allows us to directly evaluate the trade-off between running time and quality of approx-
imation; small o will lead to less aggressive use of the acceptance/rejection heuristic,
with most evaluations involving actual subgame search, while large « yields an in-

creasingly heuristic approach for computing RPM, with few subgames fully explored.

!
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Figure B.2: Time consumed and average proportion of same teams

Figure[B.2a] depicts the fraction of time consumed by RPM with different values of
a compared to exact RPM (when o« = 0) on scale-free networks (m = 3). Based on
this figure, even a comparatively small value of o dramatically decreases computation
time.

Figure[B.2b|compares similarity of the final team partition when using the heuristic
compared to the exact RPM. Notice that even for high values of «, there is a signif-
icant overlap between the outcomes selected by RPM with and without the heuristic.
We note that o = 0.1 appears to trade off approximation quality and running time
particularly well: for comparatively sparse networks (i.e., m = 2) it yields over 99%

overlap with exact RPM (this proportion is only slightly worse for denser networks), at
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a small fraction of the running time. Henceforth, we use o = 0.1 when referring to the

approximate RPM in the reminder of this section.

Appendix B.3. Heuristic Rotating Proposer Mechanism (HRPM)

Unlike the roommate problem, general team formation problems have another source
of computational complexity: the need to iterate through the combinatorial set of po-
tential teams to propose to. Moreover, evaluating acceptance and rejection becomes
considerably more challenging. We therefore develop a more general heuristic which
scales far better than the approaches above, but no longer has the exact RPM as a spe-
cial case. We term the resulting approximate mechanism Heuristic Rotating Proposer
Mechanism (HRPM), and it assumes that the sole constraint on teams is their cardinality
and that preferences can be represented by an additively separable utility function [6]].
With the latter assumptions, we allow preferences over teams to be represented simply
as preference orders over potential teammates, avoiding the combinatorial explosion in
the size of the preference representation.

In HRPM, each proposer ¢ attempts to add a single member to their team at a
time in the order of preferences over players. If the potential teammate j accepts ¢’s
proposal, j is added to ¢’s team, and ¢ proposes to the next prospective teammate until
either the team size constraint is reached, or no one else who ¢ prefers to being alone is
willing to join the team. Player j’s decision to accept or reject ¢’s proposal is based on
calculating R; (1) for each member { of 4’s current team 7" using Equation and then
computing the average for the entire team, R;(T") = ﬁ > er Ri(l) (see Algorithm
for the precise description of HRPM). We then use an exogenously specified threshold
B € [0,1], where j accepts if R;(T") < f8 and rejects otherwise. The advantage of
HRPM is that the team partition can be found in O(wn?), where w is the maximum
team size. The disadvantage, of course, is that it only heuristically implements RPM.

Crucially, it does preserve IR, and IMS is implemented as a preprocessing step.

Appendix C. Properties of Exact and Approximate RPM

Over truthful preference reports, RPM inherits the properties of the game, includ-

ing IR, IMS, and Pareto efficiency. In general, however, these properties conflict with
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Algorithm 1 Heuristic Rotating Proposer Mechanism (HRPM)
input: (N,>,0),w,

return: Team formation outcome 7

Lr=0
2: while O is non-empty do

3: i < the first player in O

4: m; < {i}

5: while |7;| < w do

6: if >, is empty or the first player in >, is ¢ then

7: O + O\{i}

8: break

9: player ¢ proposes to the first player j in =;

10: Ry(m) = 11 Cier, i Sherw o (1~ )
11: if R;(m;) < [ then > player j accepts the proposal
12: m — m U{j}

13: remove j from O and N

14: remove j from >, for each player k € NV

15: remove ¢ from O, N and >, for each player k € N

16: while [V is non-empty do > add singletons into the outcome.
17: pick an arbitrary instance ¢ from N

18: remove ¢ from O and N

19: return 7
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incentive compatibility. Moreover, when it comes to efficiency, Pareto optimality is
a weak criterion and we would wish to know how well a mechanism fairs in terms
of stronger efficiency criteria, such as utilitarian social welfare (with cardinal prefer-
ences). Fairness, too, is an important consideration in matching, particularly when it

comes to forming teams. Next, we explore these issues using empirical tools.

Appendix C.1. Incentive Compatibility

In spite of the known impossibility results, the fact that RPM is not incentive com-
patible may be intuitively surprising, given that it implements an equilibrium of the
complete information game. To gain further intuition into this, consider the following

example.

Example 6. Consider a roommate problem with 3 players having the following pref-

' 1o {1,2} =1 {1,3} =1 {1}
2: {2,3} =5 {2,1} =o {1}
3: {3,1} =3 {3,2} »3 {1}

Suppose that the order in RPM is O = (1,1,1,1,2,2,2,2.3,3,3,3). In the sub-
game perfect Nash equilibrium of the corresponding RPG, 1 will propose 1o {1,2}, 2
will accept, and the resulting teams are {{1,2},{3}}. This is because 2 is 1’s most
preferred roommate, and if 2 rejects, then 1 would offer to 3 who would accept (since
they like 1 more than 2), and 2 would be left alone.

Now, if player 3 misreports preferences to claim that she prefers 2 to 1, then 2 and
3 are soulmates and would be matched, with the resulting outcome {{1},{2,3}}. The

latter outcome is clearly preferred by 3, and consequently 3 has the incentive to lie.

Despite the general failure of incentive compatibility in RPM, we now explore em-
pirically how frequently this failure actually occurs. We use the roommate problem, as
in this case the special structure of RPM allows us to use Algorithm 2]to compute an
upper bound on the number of players who could possibly benefit by misreporting pref-
erences. In applying the algorithm, we use 7; to denote the set of feasible teammates

(since teams are of size at most 2).
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At the high level, this algorithm considers all the players who have accepted or re-
jected a proposal and checks whether reversing this decision improves their outcomes.
The following theorem shows that this method indeed finds the upper bound on the

number of untruthful players.

Theorem 3. Algorithm 2| returns an upper bound on the number of players who can

gain by misreporting their preferences.

Proof. We divide the players into proposers and receivers. Proposers are those who
propose in RPM and were thus teamed up (including singleton teams). Receivers ac-

cept or reject someone’s offer.

Algorithm 2 Computing Upper Bound of Untruthful Players

input: (N, >, T,0) , teammate vector teammate[] which results from RPM

return: number of potential untruthful players Sum

1: sum < 0

2: while |O| > 2 do

3: proposer < the first player in O

4: receiver + teammate[proposer]

5: for player i € T,roposer dO

6: if @ > proposer TeCEIVEr and proposer -; teammate[i] then

7: sum < sum + 1 > 4 is potentially untruthful

8: for player j € Treceiver dO

9: if j > eceiver proposer and receiver - ; teammatelj] then
10: sum  sum + 1 > receiver is potentially untruthful
11: remove proposer and receiver from N, O and T

12: return sum

There are 4 possible cases:

1. A proposer i untruthfully reveals her preference and remains a proposer. As

RPM implements subgame perfect Nash equilibrium in the corresponding sub-
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game, the proposer ¢ can match with the best roommate among those accept her

780 proposals by acting truthfully. Consequently, ¢ cannot improve by lying.

2. A receiver j untruthfully reveals her preference and is still a receiver. In this
case, if j has an incentive to lie, there has to be a proposer i’ who prefers j to
her teammate under RPM, while j must prefer ¢’ to her teammate. Steps 4 — 7

in Algorithm 2] count all such instances.

785 3. A proposer i untruthfully reveals her preference and becomes a receiver. In this
case, if ¢ has an incentive to untruthfully reveal her preference, there has to be a
proposer i’ who prefers 4 to their teammate under RPM, and who ¢ also prefers

to her teammate. Steps 4 — 7 in Algorithm 2] count all such instances.

4. A receiver j untruthfully reveals her preference and becomes a proposer. In this
790 case, if 7 has an incentive to misreport her preference, there must be a receiver
4" who prefers j to her tteammate, while j must prefer ;' to her teammate. Steps

8 — 10 in Algorithm [2]count all such instances.
O

This upper bound obtains for both the exact and approximate versions of RPM,
795 including HRPM. Next we evaluate the incentives to misreport preferences using our

RPM approximations in the context of the roommate problem.

Table C.1: Average upper bound of untruthful players for (Approximate) RPM

n 20 30 40 50 60 70 80
m=2,a=0 [0.015% |0.013% | 0.013% | 0.002% | 0.008% | 0.011% | 0.010%
m=2,a=0.1]0.015% | 0.010% | 0.015% | 0.004% | 0.022% | 0.029% | 0.036%
m=3,a=0 [0.105% |0.107% | 0.072% | 0.038% | 0.037% | 0.024% | 0.023%
m=3,a=0.1]0.115% | 0.103% | 0.085% | 0.076% | 0.065% | 0.074% | 0.093%

Table [C.] presents the upper bound on the number of players with an incentive to

lie, as a proportion of all players, on scale-free networks. We observe that the upper
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Table C.2: Lower bound of profiles where every player is truthful for (Approximate) RPM

n 20 30 40 50 60 70 80
m=2,a=0 {99.7%|99.6% | 99.5% | 99.9% | 99.6% | 99.2% | 99.2%
m=2,a=0.1[99.7%|99.7% | 99.4% | 99.8% | 98.8% | 98.1% | 97.2%
m=3,a=0 [97.9%|96.8% |97.1% | 98.1% | 97.8% | 98.4% | 98.3%
m=3,a=0.1[97.8%|96.9% |96.8% | 96.2% | 96.3% | 95.1% | 92.9%

bound is always below 0.2%, and is even lower when the networks are sparse (m = 2).
so On the Karate club data, we did not find any player with an incentive to lie in test
cases when we apply (Approximate) RPM. On the Newfrat data, the upper bounds are
less than 7% and 0.4% when we apply RPM with and without heuristics, respectively.
In addition, we also computed the lower bound on the fraction of preference profiles
where truth telling is a Nash equilibrium (Table[C.2). We find that without the heuristic,
ss  when m = 2 (sparse networks), RPM is incentive compatible in more than 99% of the
profiles; and when m = 3 (the networks are comparatively dense), RPM is truthful at

least 96% of the time.

Table C.3: Average upper bound of untruthful players for HRPM

n 20 30 40 50 60 70 80
m=2,8=0.5|144%|1.77% | 1.71% | 2.00% | 2.09% | 2.16% | 2.06%
m=2,8=0.6|1.62%|1.83% | 1.96% | 2.09% |2.25% | 2.11% | 2.11%
m=3,8=0.5|2.99% |3.36% | 3.76% | 3.90% | 4.18% | 4.02% | 4.33%
m=3,8=0.6]3.44%|3.69% |3.97% |3.98% | 4.40% | 4.24% | 4.52%

Table[C.3| presents the upper bound on the number of untruthful players for HRPM
(still for the roommate problem). Even with this heuristic, we can see that fewer than

si0 5% of the players have any incentive to misreport preferences in all cases.
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Appendix C.2. Efficiency

In terms of social welfare, ex post Pareto optimality, satisfied by both random se-
rial dictatorship (RSD) [3] and RPM, is a very weak criterion. Moreover, it is not
necessarily satisfied by our approximations of RPM. Conversion of ordinal to cardi-
nal preferences allows us to empirically consider utilitarian social welfare, a much
stronger criterion commonly used in mechanism design with cardinal preferences.

We define utilitarian social welfare as Wll > ien wi(m;), where ; is the team that

t was assigned to by the mechanism.
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Figure C.3: Utilitarian social welfare for roommate problem

Figures [C.3a] and [C.3b] depict the average utilitarian social welfare for RSD and
RPM in the roommate problem on scale-free networks, Karate club networks, and
the Newfrat data. In all cases, RPM yields significantly higher social welfare than
RSD, with 15% — 20% improvement in most cases. These results are statistically
significant (p < 0.01). Furthermore, there is virtually no difference between exact and
approximate RPM.

For the trio-roommate problem (in which the maximum size of team is 3), we
compare HRPM (8 = 0.6) with RSD on the same data sets. Figures [C.4a] and
show that HRPM yields significantly higher social welfare than RSD in all instances,
and HPRM performs even better when the network is comparatively dense (m = 3 in

the scale-free network). All results are statistically significant (p < 0.01).
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Figure C.4: Utilitarian social welfare for trio-roommate problem

Appendix C.3. Fairness

A number of measures of fairness exist in prior literature. One common measure,
envy-freeness, is too weak to use, especially for the roommates problem: every player
who is not matched with her most preferred other will envy someone else. Indeed, be-
cause RPM matches soulmates—in contrast to RSD, which does not—it already guar-
antees the fewest number of envious players in the roommates problem. We consider
two alternative measures that aim to capture different and complementary aspects of
fairness: the Gini coefficient, representing the inequality among values of player util-
ities, and the correlation between utility and rank in the random proposer order (i.e.,

Pearson correlation).
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Figure C.5: Gini coefficient for the roommate problem

The Gini coefficient measures the inequality of player’s utilities. It is extracted
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based on the Lorenz curve [14]E| A Gini coefficient of zero expresses perfect equality,
where all the players have the same utility, while a Gini coefficient of one expresses
maximal inequality among values (e.g., for a large number of players, where one team
is composed of soulmates and all the players are matched to their least preferred team).

Correlation between utility and rank considers each random ranking of players in O
used for both RSD and RPM, along with corresponding utilities u; () of players for the
partition 7 generated by the mechanism, and computes the correlation between these.
It thereby captures the relative advantage that someone has by being earlier (or later)
in the order to propose than others, and is a key cause of ex post inequity in RSD. We
view the correlation measure as perhaps the most meaningful criterion of fairness for
mechanisms based on random player rankings: for example, someone who is extremely
unpopular is likely to have lower utility than others, but that’s likely to remain the case
for any team formation mechanism with good efficiency properties. On the other hand,
this may be relatively invariant of the ex post position that the player has in the order

of proposers.

Pearson Correlation

2 30 40 50 60 70 8
number of players

Karate Newfrat

(a) scale-free network (b) Karate and Newfrat

Figure C.6: Pearson Correlation for the roommate problem

Our experiments on the roommate problem show that RPM is significantly more
equitable than RSD on scale-free networks (Figures [C.5a and [C.64), as well as on the
Karate club network and Newfrat dataset (Figures [C.5b] and [C.6b). The differences

between exact and approximate RPM are negligible in most instances.

16The proportion of the total utility of the players that is cumulatively earned by the bottom 2% of the

population.
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Figure C.8: Pearson Correlation for the trio-roommate problem
860 In the trio-roommate problem, HRPM (5 = 0.6) is much more equitable than RSD

as shown in Figures[C.7]and [C.8] These results are statistically significant (p < 0.01).
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