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Abstract

We characterize a receiver-optimal test when manipulations are possible in the form
of type falsification. When falsification unobservable, but costless, trivially, no test can
generate information. When falsification is costly, the optimal test consists of a high-
est possible passing probability, p, and the smallest positive state that passes with that
probability, s∗. All lower positive states below falsify to s∗, whereas all negative pass
with a probability that makes them indifferent between falsifying to s∗ and obtain the
highest possibility approval minus the falsification costs, and not falsifying. There is a
range of negative states that are not approved. Falsification and cheating can create neg-
ative externalities, so we characterize the optimal test that prevents falsification and it
is worse: it approves negative states with higher probability while approves positive ones
with lower probability. We also derive an optimal test when falsification is observable (or
committed to) in a binary state setting with linear costs. The optimal test is falsification
proof and “rich” in that it has a continuum of passing signals. It leverages the endogenous
depreciation of signals (caused by observability) to generate information even if explicit
falsification costs are zero. Both the agent and the receiver strictly benefit from falsifica-
tion being observable or detectable. Keywords: Information Design, Falsification, Tests,

Manipulation, Cheating, Persuasion.
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1 Introduction

Tests are prevalent, and stakes are often high for all concerned parties. Teachers prepare their

students to pass tests in order to gain admission to selective schools and universities. Issuers

seek to obtain a good rating for their assets. Pharmaceutical companies seek FDA’s approval

for new drugs. Car manufacturers need to have their vehicles pass emission tests. The list

is suggestive of how wide-ranging and relevant tests are, and why it is important that test

results are reliable: Fairness, inadequacy, financial distraught, and environmental pollution are

at stake when tests are compromised.

However, manipulations are equally prevalent, and often successful. They are common in

standardised graduate admission tests. Pharmaceuticals have come under scrutiny for using

sub-standard clinical trial designs in order to obtain FDA’s approval as in Sarepta’s case (The

Economist, October 15, 2016).1 Car manufacturers sometimes cheat on pollution emission tests.

Some manipulations can be socially acceptable and observable such as universities hiring part-

time prominent scholars to increase their ranking,2 or parents excessively tutoring their children.

This is the first paper to study the optimal design of tests in the presence of manipulations.

We consider a agent-receiver relationship, in which the agent would like to convince the

receiver to approve his items. The receiver—or several identical receivers, employers, investors,

consumers each facing one item—wishes to approve items selectively, depending on their hidden

state. In particular, no approval yields zero to the receiver, while approving an item of type

s yields s. The prior mean of the state is negative, so without any additiobal information

the receiver rejects. To uncover the types of the items, the receiver benefits from information

generated by a test to which each item is subjected. This test is modeled as a Blackwell

experiment: a probability distribution over signals (test results, grades) as a function of the

type of an item. The receiver decides whether or not to approve after observing these signals,

but cannot commit in advance to an approval policy contingent on signals.

The agent has a manipulation technology at his disposal. He can, possibly at a cost (explicit

or psychological), falsify the type of some of his items for testing purposes, so that, for example,

an item of quality s generates the same signal distribution as state t. A manipulation strategy

is therefore a choice of falsification rates: with what probability an item of quality s is disguised

1http://www.economist.com/news/leaders/21708726-approving-unproven-drug-sets-worrying-precedent-bad-
2https://liorpachter.wordpress.com/2014/10/31/to-some-a-citation-is-worth-3-per-year/
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any other quality t. Good illustrations of this manipulation technology are a teacher teaching

a student to the test, or the way Volkswagen compromised emission tests.3

Typically falsification is unobserved and deviations are not detectable. We call this the

unobservable case (and sometimes “non-committed” to contrast it with the case that follows).

When the agent’s deviations are undetected the receiver’s belief after each signal is based on the

“equilibrium” anticipated falsification rather than the actual. In contrast, when falsification is

observable the “meaning” of signals reacts to deviations so a passing signal may become a failing

one. Depending on the situation, both benchmarks are relevant so we derive receiver-optimal

tests for both the observable and unobservable falsification settings and compare their features

and payoffs they yield to the agent and the receiver. It is interesting to note that the insights

we can leverage to establish the optimum in each of the two cases differ quite substantially.

When falsification unobservable, but costless, trivially, no test can generate additional in-

formation: if there is a test that passes some state at a higher rate than others, the agent will

falsify all items as that state. When falsification is costly, the optimal test consists of a highest

possible passing probability, p, and the smallest positive state that passes with that probabil-

ity, s∗. These two parameters, together with falsification costs, dictate the smallest state that

passes with positive probability. All positive states below s∗ falsify to s∗, whereas all negative

pass with a probability that makes them indifferent between falsifying to s∗ and obtaining the

highest possibility approval minus the falsification costs, and not falsifying. There is a range of

negative states that are not approved.

We also characterize the optimal test that prevents falsification.4 The shape of the optimal

test is reflects the falsification costs and its derivation relies on identifying the optimal falsi-

fication target for each negative state. The target is a positive state, so non-local incentive

constraints bind. The falsification proofness constraint binds for all negative states above a

threshold, so there is a continuum of binding constraints. Mathematically, the program char-

acterizing the optimal test in this case, is equivalent to a mechanism design problem, and in

particular, an optimal allocation problem, without transfers and costly reporting. The lack

3On January 11, 2017, “VW agreed to pay a criminal fine of $4.3bn for selling around 500,000 cars fitted with
so-called “defeat devices” that are designed to reduce emissions of nitrogen oxide (NOx) under test conditions.”
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal

4The presence of falsification and more general other forms of cheating to documented to negative externalities
to society see, for example, Galbiati and Zanella (2012); Ajzenman (2018); Alm, Bloomquist, and McKee (2017);
Rincke and Traxler (2011).
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of transfers, the fact that we cannot rely on the usual approach that focuses on the “relaxed

problem” (which ignores the incentive constraint), as well as the fact that local IC does not

imply global IC, renders previous solution methodologies unsuitable.5 To solve the problem we

relied on the following steps: TO ADD

When falsification is observable, information can be generated even if it is costless. Optimal

design exploits the following manipulator trade-off: while falsification may lead to better grades,

it devalues their meaning. We consider a version of the model where state is binary, one is

negative −s and the other is positive s > 0. We take the falsification cost function to be linear

in the probability φ that −s falsifies as s. For this setting, we show that optimal tests can

be derived among falsification-proof ones. The optimal test has a single ‘failing’ grade, and a

continuum of ‘passing’ grades. It makes the manipulator indifferent across all moderate levels

of falsification. The positive state never fails, but the negative sometimes may pass. An optimal

test delivers at least half of the full-information value to the receiver, even if the explicit cost

of falsification is zero. A three-grade optimal test also performs well.

We now discuss some key features of our model. First, we look at the falsification technology.

Falsification can only make the receiver less informed, in a Blackwell sense, but does not make

every garble of the test attainable. For example, the falsification technology allows the agent to

render any test uninformative. If the prior mean is positive so that the receiver approves when

her belief is equal to the prior, making the test uninformative is actually the optimal choice of

the agent. This is why, in what follows, we focus on the interesting case where the prior mean

is negative. For a given test, however, the agent cannot generate all the information structures

that are less Blackwell informative than this test. This limitation is what makes the test design

problem interesting. Indeed, if the agent could generate any such garbling, then the optimal

design problem would always result in the optimal information structure of the agent. The

reason we picked this technology is because it is natural and fits well a number of examples

mentioned. However, other manipulation choices interesting and relevant for other settings.

We discuss this further in the related literature section.

Unobservable and non-committed falsification can be viewed as (costly) communication:

The agent’s faslification strategy is like the sender’s reporting rule in a sender-receiver game

5Severinov and Tam (2019) solve a related problem, with costly reports but they have transfers and following
a different approach leveraging Hamiltonians (see also Rochet (1985)).
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where the sender is faced with an exogenous communication device, the test τ . As in the

communication games, the receiver, observes the output message x, forms beliefs about the

state given the test and sender’s strategy and chooses an action ex-post. In readily follows from

the revelation principle that staring from an abstract “test” τ :→ ∆(X) with an arbitrary set of

output messages X , one can take to be action recommendations. In our binary-action settings

this implies that X = { “approve”, “reject”}. The proof follows from standard arguments

making sure that in addition to inducing the receiver to choose the same action as in the

original test, the agent does not have new falsification opportunities.

Committed or observable falsification can be viewed as constrained “persuasion.” Indeed,

here the agent is “constrained” by the test put in place by the receiver (or, for that matter,

by another party who shares the same preferences as the receiver(s)), and chooses a faslifica-

tion/persuasion rule. The set of feasible information structures are constrained by the test in

place. The illustrative example in Section 2 highlights that action recommendations are insuf-

ficient when falsification is committed. In fact, we establish in Section 5 that even with two

actions and two states the optimal test involves a continuum of different signals associated with

“approve”. Commitment (observable) falsification is better for everyone, since as we establish

in Section 2 in the binary state example, even without costs we can design tests that approve

all good items and some of bad ones. This is impossible with non-committed falsification.

Hence, the agent benefits in the same way the sender benefits from commitment in the usual

Bayesian persuasion case: Commitment to a falsification rule is analogous to the corresponding

assumption in (Kamenica and Gentzkow, 2011) where the agent chooses and commits to a test.

Commitment can be justified in a number of ways. Falsification rates can be inferred from

the empirical distribution of grades if falsification strategy is chosen once and for all and used

for multiple items. We explore the limit version of this argument by looking at the case of

a continuum of items in Perez-Richet and Skreta (2018). It is also possible that the chosen

falsification strategy is applied to multiple items that are tested sequentially allowing test users

to learn the falsification strategy, either because the type of each item is revealed at the end

of a period, or by looking at the distribution of past grades. In the case of a single item,

falsification is a probability. This does not preclude observation as this probability may be the

consequence of observable actions such as an effort or an investment. Also, even in the case

of socially unacceptable manipulations, information about the level of manipulations may leak
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and become publicly known because of bragging, whistleblowing or mere conversations.

Finally, we comment on the lack of commitment assumption by receivers. When falsification

is unobservable, the receiver cannot benefit from commitment it follows simply from our analysis

that the receiver does not benefit from commitment. With observability, it would be possible

to generate perfect information by committing to reject items regardless of signals whenever

manipulations are observed. Such commitment is often problematic in practice: In reality,

employers, consumers, investors see test scores first, and only then decide which workers to

hire, which assets to buy and so on. If receivers are aware of a limited amount of manipulation

that is insufficient to lower their belief below approval threshold, they are unlikely to reject.

Our framework can accommodate commitment by a regulator to punish manipulations. Such

punishments are a particular case of falsification costs. Suppose, for example, that the regulator

is willing to punish the agent when she observes manipulations, but that she would not go so

far as to force any item to be rejected regardless of the signal generated, or that, in order to

do so, she would have to provide justifications, whether legal or internal. Then the expected

punishment would incorporate the probability that such justifications are available and can be

written as a falsification cost. Unsurprisingly, if such costs are sufficiently high even the fully

informative test is not manipulated.

OLD parts of intro While this manipulation technology allows the agent to garble the

information generated by the test, and to turn any test completely uninformative, it does not

make all garbles available.6 This limitation of available garbles helps receivers only if the set

of signals generated by the test is sufficiently rich. Indeed, we show that the agent can garble

any sufficiently informative binary test (such as the fully informative one) into his optimal

information structure. Hence, receiver-optimal tests must use more than two signals.

The model, while stylized, captures a key trade-off: manipulations can increase the rate of

approval, by increasing the chance that “bad” items generate good test results, but, in excess,

they can make test results so unreliable that they nullify approvals. So, even if manipulations

bear no cost, or punishment, excessive manipulations can hurt the agent. A rational agent,

therefore, manipulates moderately. Manipulability complicates test design, as one has to take

into account how manipulations alter the information structure generated by the original test.

6If all garbles were attainable, the agent could garble any sufficiently informative test into his optimal
information structure—the one he would pick if he were the information designer, thus making the test worthless.

6



Our analysis shows how receiver-optimal design can exploit the aforementioned trade-off to

obtain informative tests in spite of manipulations, even in the absence of explicit punishments

or unrealistic commitment on the side of the receiver.7

The receiver-optimal test we derive has a number of remarkable features and delivers some

practical insights. First, it is manipulation-proof in the sense that all agent types find it

optimal to choose falsification rates equal to zero. Second, despite the fact that there are only

two actions to take, it is “rich” in the sense that it generates a continuum of signals that lead to

approval and only one that leads to rejection. Hence, the receiver side revelation principle that

usually holds in Bayesian persuasion (Kamenica and Gentzkow, 2011) and mediation problems

(Myerson, 1991, Chapter 6), which allows to reduce the information design problem to the

problem of designing a recommendation system, does not hold in our environment. Third, all

items that would be approved under full information are approved under the receiver-optimal

test, but some items that should be rejected are also approved. That is, the optimal test leads to

some false positives, but no false negatives. Fourth, it is ex-ante Pareto efficient, and gives the

receiver at least 50% of the payoff she would get under full information. Fifth, the distribution

of signals generated by the good type first-order stochastically dominates that generated by the

bad type. Furthermore, our optimal test makes the agent indifferent between not manipulating,

and any other approval threshold he could induce through manipulations.

To see why tests with more signals can be beneficial, it is useful to consider adding a third

“noisy” signal to the fully informative test. We can choose the probabilities that the good and

bad type generate this signal so that, in the absence of manipulations, it leads the receiver to

a belief equal to the approval threshold µ̂. With such a test, any amount of falsification leads

the receiver to lower the belief associated with the intermediate signal, and thus reject items

that generate this signal. Then the agent has to weigh the benefit of manipulating (bad types

are more likely to generate the top signal), with its endogenous cost (losing the mass of good

and bad types that generate the intermediate signals ). To make such a test as good as possible

for the receiver, we can pick the test so that these two effects compensate each other, thus

making the agent indifferent between his optimal amount of falsification, and no falsification.

The resulting test is manipulation-proof, and generates valuable information for the receiver.

7With commitment or with richer contracts (or mediation schemes) it is possible to achieve the receiver-first-
best in our model. We focus on test-design given the prevalence of tests, and given that they perform very well
even without commitment on the side of the receiver.
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In fact, we establish a general no-falsification principle, which shows that, for any test,

there is an equivalent manipulation-proof test that generates the same information and payoffs

to all parties. This result is a version of the revelation principle adapted to our environment.

Combined with the representation of experiments as convex functions introduced in Kolotilin

(2016), and further studied in Gentzkow and Kamenica (2016b), it allows us to reformulate the

receiver-optimal design problem as a maximization problem over convex functions representing

tests, under a no-manipulation incentive constraint. The no-manipulation incentive constraint

can be formulated as a condition bearing on the payoff of approval thresholds induced by

manipulations.

The optimal test we derive has a single signal associated with rejection generated by bad

items only and it makes the agent indifferent between not manipulating, and inducing any other

approval threshold through cheating. This test is characterized by a differential equation that

we solve in closed form. We derive receiver-optimal tests under two conditions that we later

relax: The first one is that falsification is perfectly observable, and the second is that falsification

rates are constrained so that pB + pG ≤ 1. The latter constraint rules out falsification rates

so high that they would lead to an inversion of the meaning of signals. Both assumptions are

useful in allowing us to focus on the main trade-offs, and are compelling in some cases but not

always, so we show how to relax them in Section ??

When manipulations are costly—the agent incurs a psychological or technological cost when

manipulating, or is subject to fines when caught—the no-falsification principle holds if the

marginal cost of increasing pB does not increase too fast. We show that the fully informative

test is optimal whenever the cost is sufficiently high. When it is not, we derive the optimal

test under a linear cost function, and show that it satisfies the same properties as without cost.

Furthermore, the receiver-optimal test becomes more informative as manipulations become

more costly. In Appendix ??, we show how to find an optimal test for a larger class of cost

functions.

1.1 Related Literature

Manipulations in information design. Nguyen and Tan (2020) consider a Bayesian

persuation setting where the sender privately observes the experiment’s result and can send

costly messages to the receiver. The cost function is a metric and it satisfies properties analogous
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to the triangular inequality. In that paper the agent manipulates the experiment’s output–

whereas in our paper the experiment’s input. There the designer, leverages the endogenous

meaning of messages to assign expensive messages to desirable states. They show that sender-

preferred equilibrium exists, then there exists an equilibrium where the Sender fully reveals.

Li (2020a) is similar to Nguyen and Tan (2019), albeit in setting that is closer to that of

Crawford and Sobel (1982); again the focus is on inducing full revelation by the agent.

Manipulations:

Hu, Immorlica, and Vaughan (2019) Zhang, Cheng, and Conitzer (2019a), Zhang, Cheng, and Conitzer

(2019b) Guo and Shmaya (2018); Ball and Kattwinkel (2019) Frankel and Kartik (2019b,a)

Mechanism design with reporting costs. The papers Kephart and Conitzer (2016), Nguyen and Tan

(2020) and Deneckere and Severinov (2017), investigate what is the shape of lying costs to get

the revelation principle.

Deneckere and Severinov (2017) consider both costly signaling games and screening when

signalling can happen with various dimensions (tests). Their main theorem shows that under

certain assumptions (Assumption 1) on the costs structure, implementation can be achieved

with almost no reporting costs–so there is essentially truth-telling in the limit. When they

derive optimal mechanisms they impose sub modularity and increasing differences (assumption

2). aside: this paper has a very nice literature review Severinov and Tam (2019) consider a

standard principal-agent screening model with transfers and fixed lying costs. In that setting

given the nature of the costs and they fact that they have transfers, imply that they can restrict

attention to direct mechanisms where truth-telling is a best response. They show that local IC

is typically not binding–thus the standard approach of leveraging binding local IC to “replace”

transfers and obtain a virtual surplus representation that only depends on the allocation seems

inapplicable. The main contribution of the paper is to develop a method relying on optimal

control theory to solve for the optimum. In our setting, we have no transfers, so the optimum

involves falsification and our derivation of the optimal falsification-proof test cannot leverage

the fact that there are transfers.

Kephart and Conitzer (2016) derive conditions that reporting costs must satisfy in order

for get truth-telling without loss. They consider both transferable and non-transferable utility

settings. A key condition is the triangular inequality that suffices with transferable utility.
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Without transfers they require a stronger condition–for any ordered triplet a,b,c it must be the

case that ac ≤ ab (FTVU), where they use ab ≡ c(b|a) –the cost a incurs when reporting b.

They have a counterexample to truthful implementation when this condition fails.

aside: this paper motivates the problem also with the rise of AI and algorithmic detection

that uses big data to make inferences thus making lies harder / easier to detect.

Foundations of falsification and lying costs. There is ample empirical evidence that

lying is costly, for a thorough study see Abeler, Nosenzo, and Raymond (2019). There are

also works on identify the “shape” of costs and in particular documenting strictly positive

marginal costs of lying Gneezy, Kajackaite, and Sobel (2018). The assumptions we make on

the falsification cost functions are consistent with what is identified in that literature. Sobel

(2020) explores lying in game theory.

Lying costs: Kartik (2009), Kartik, Ottaviani, and Squintani (2007),

Optimal allocation without transfers. There are several paper studying optimal assign-

ment problems in the absence of transfers. They can be categorized according to the “tool” the

designer leverages to elicit the agents’ private information. One such tool is ex-post (costly)

inspection or verification. This is the case in Ben-Porath, Dekel, and Lipman (2014); Lipman

(2015); Mylovanov and Zapechelnyuk (2017); Chua, Hu, and Liu (2019); Epitropou and Vohra

(2019); Li (2020b). Patel and Urgun (2017) add money burning (as in Condorelli (2012))

to the framework of Ben-Porath et al. (2014) with ex-ante identical agents. Both money

burning and verification are part of the (Bayesian incentive compatible) optimal mechanism.

Bhaskar and Sadler (2019) study the extent to which the designer, who wishes to maximize

social surplus, can exploit the agents’ limited preference alignment to extract information from

the players. Guo and Hörner (2018) have an infinite discrete time horizon over which a prin-

cipal and an agent interact. The authors solve for the optimal allocation mechanism. Unlike

with transfers, efficiency decreases over time. Kattwinkel (2019) relies on the correlation to

elicit information whenever possible and shows that actually in many cases random assignment

is optimal. This is similar in spirit to Chakravarty and Kaplan (2013) where the agent can send

a costly signal about type. The authors identify conditions under which ignoring these costly

signals and using lotteries is optimal. In contrast to all these papers, in our paper there are

reporting costs and we cannot rely on a revelation principle.

10



Theoretical work on Bayesian Persuasion. We introduce falsification in the information

design literature. Kamenica and Gentzkow (2011) examine a party (sender) who wishes to

design the best way to disclose information so as to persuade a decision-maker who may have

different objectives.8 In our paper the receiver chooses the experiment and the sender may

tamper with the chosen experiment by falsifying the state.

We relate to recent works that study Bayesian persuasion in the presence of moral hazard.

In Boleslavsky and Kim (2017), Rodina (2016), and Rodina and Farragut (2016), the prior

distribution of the state is endogenous and depends of the agent’s effort. The aforementioned

papers differ in the principal’s objective. Related to these works is Hörner and Lambert (2016),

who find the rating system that maximizes the agent’s effort in a dynamic model where the

agent seeks to be promoted. In Rosar (2017) the principal designs a test that the agent decides

whether or not to take. In our paper, participation to the test is not optional, and the agent

cannot alter the distribution of types, but he can tamper with the test itself.

We also relate to Bizzotto, Rudiger, and Vigier (2016) and to Cohn, Rajan, and Strobl

(2016), since there, like in our paper, certifiers designing tests need to take into account the fact

that firms are not passive, but react to the certification environment. In Bizzotto et al. (2016)

agents choose what additional information to disclose, whereas we investigate what happens

when firms manipulate the information structure.

Our analysis is somewhat reminiscent to that of recent papers that study optimal informa-

tion design in specific contexts. Chassang and Ortner (2016) design the optimal wage scheme

to eliminate collusion between an agent and the monitor. The optimal wage scheme is simi-

lar to the buyer-optimal signal in Condorelli and Szentes (2016). In that paper as well as in

Roesler and Szentes (2017), the buyer-optimal signal is such that the seller is indifferent across

all prices he can set. Our paper uncovers a similar property, as the optimal test under observable

falsification makes the agent indifferent across all moderate falsification levels.

On the technical side, we represent experiments as convex functions as in Kolotilin (2016)

and Gentzkow and Kamenica (2016b). The latter study costly persuasion in a setup where the

decision-maker cares only about the expectation of the state of the world. In our setup the

receiver’s decision also depends on a single-dimensional object: his belief that the state is good.

8There are several extensions of this leading paradigm including Gentzkow and Kamenica (2014), who allow
for costly signals and Gentzkow and Kamenica (2016a) where two senders “compete” to persuade.
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PUT THIS IN OBSERVABLE

Costly state falsification/Hidden income/Hidden Trades. Lacker and Weinberg (1989)

incorporate costly state falsification in a risk-sharing model. Cunningham and Moreno de Barreda

(2015) model manipulations as costly state falsification in a context similar to ours, but they

study equilibrium properties under a fixed testing technology, whereas we focus on receiver-

optimal test design. Hidden trades can also be viewed as a form of manipulation and are

studied in Golosov and Tsyvinski (2007), and references therein. Grochulski (2007) models tax

avoidance using a general income concealment technology analogous to the costly state falsifi-

cation technology of Lacker and Weinberg (1989). In Landier and Plantin (2016), agents can

hide part of their income which can be interpreted both as tax evasion and as tax avoidance.

2 Binary State Example

Throughout the paper, we consider a decision maker or receiver who can choose between two

actions which we label approve and reject for simplicity. The rejection payoff to the receiver is

normalized to 0, whereas the approval payoff is given by the state of the world. In this example,

we consider a binary state of the world s ∈ S = {−s, s}, with −s < 0 < s. The prior probability

of the high state is given by π0, with 0 < π0 <
s
s+s

, so that rejection is receiver-optimal at the

prior. To take her decision, the receiver can rely on a test, that is a Blackwell experiment

τ : S → ∆X , where X is a measurable space of signals. We take this test as exogenously

given and known to the players, and study how the test can make the receiver better or worse

off. Normally, a fully informative test would be optimal for the receiver. But we assume that

there is an agent who can manipulate the test by falsifying the state of the world that is fed to

it. Specifically, in this example, the agent can choose the probability φ that state s generates

signals according to τ(s) instead of τ(−s). In this example, falsification cost is linear, so the

ex-ante cost of falsifying state −s as s , with probability φ, is (1 − π0)φc. We assume that

0 ≤ c < 1, so that falsification may be worthwhile.

The agent chooses φ before knowing the state of the world. We discuss interim falsification

choices in Section 3.
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The fully informative test. Suppose first that the test is fully informative, so τ(−s) and

τ(s) have disjoint support, which would be a receiver-optimal test in the absence of manipula-

tion.

If φ is observable by the receiver she does not need to form beliefs about the choice of the

agent, but takes φ into account when interpreting the results of the test. In particular, when

seeing a signal that the state is high, x ∈ supp τ(s), the receiver expects a payoff

π0s− (1− π0)φs

π0 + (1− π0)φ

from approving, which she therefore chooses if φ ≤ π0s
(1−π0)s

. When seeing a signal x ∈ supp τ(−s),

the receiver is certain that the state is −s and rejects. The payoff of the agent is therefore given

by

π0 + φ(1− π0)(1− c)1

(

φ ≤
π0s

(1− π0)s

)

,

so the agent optimally chooses φ = π0s
(1−π0)s

, which is the falsification level that makes the

receiver indifferent between both actions when receiving a signal indicative of the high state.

The resulting information structure is agent-optimal and receiver-pessimal: It is the test the

agent would optimally design if given the possibility (as in Kamenica and Gentzkow (2011)),

and it gives the receiver the same null payoff as she would get without any information.

If instead falsification is not observable, the receiver must first form a belief about φ. How-

ever, all signals are on the equilibrium path for every choice of φ, so this belief is unaffected by

the realized signal. Furthermore, it is correct in equilibrium. Because a signal in supp τ(−s)

can only be generated by the low state regardless of φ, such a signal always leads her to reject in

equilibrium. She may approve after seeing a signal in supp τ(s) only if the equilibrium choice of

the agent satisfies φ ≤ π0s
(1−π0)s

. However, if the equilibrium strategy of the receiver is such that

she approves for some signals, then the unique best response of the agent is to choose φ = 1.

Therefore the equilibrium strategy of the receiver must be to always reject. If c = 0, choosing

any φ > π0s
(1−π0)s

is a possible best response of the agent, and then this is an equilibrium in which

both the agent and the receiver get their worst possible payoff. If c > 0, the only best response

of the agent to the strategy of the receiver of always picking action 0 is to choose φ = 0, but

these are not mutual best-responses so an equilibrium does not exist.
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A three-signal test for the observable case. Consider a test with discrete signal space

X = {x, o, x}, and τ(s) is the probability distribution (0, τ , 1 − τ), and τ(−s) = (1 − τ , τ , 0),

with τ = π0s
(1−π0)s

τ . These values ensure that, in the absence of falsification:

Eτπ(s|x) = s, Eτπ(s|o) = 0, Eτπ(s|x) = −s,

leading the receiver to choose action 1 after signals o and x, and 0 otherwise.

With falsification, we have:

Eτφπ(s|x) ∝ (1− τ )
(
π0s− (1− π0)φs

)
,

Eτφπ(s|o) ∝ φ
(
π0s− (1− π0)s

)
≤ 0,

Eτφπ(s|x) = −s.

Therefore, any positive level of falsification leads the receiver to reject following signal o. The

agent trades off this negative effect of falsification with the positive effect of increasing the

probability that signal −s generates signal x. If the agent chooses φ > 0, he must ensure that

Eτφ(s|x) ≥ 0 to induce the receiver to choose approve after signal x, which yields φ ≤ φ =

π0s
(1−π0)s

. The gain from falsification for the agent for 0 < φ ≤ φ is therefore given by

(1− π0)φ
{
1

(
φ ≤ φ

)
(1− τ )− c

}
− π0τ − (1− π0)τ .

Hence, setting τ = s(1−c)
s+2s

, or τ ≥ 1−c ensures that the agent has no incentive to falsify. Because,

the agent is then certain that the state is high when she gets the high signal, the receiver is

strictly better off under this test than with no information, or with an optimally falsified fully

informative test. Furthermore, the receiver is better off with smaller values of τ (and hence τ )

so as to minimize her probability of picking action 1 in the low state. Therefore the best test

she can pick in this class of falsification-proof tests is obtained by setting τ = s(1−c)
s+2s

.

A two-signal test for the unobservable case. Consider a test with binary signal space

X = {x, x}, and conditional distributions τ(s) = (1 − c, c) and τ(−s) = (1, 0). Then, it is an

equilibrium for the agent to choose φ = 0, and for the receiver to choose approve after signal x
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Figure 1: Information structures in payoff space. Each player’s payoff is expressed in percent-
age of her maximum attainable payoff. The grey triangle is the space of attainable payoffs, and
the dots represent the payoffs achieved by different information structures.

and 0 after signal x. Indeed, in the absence of falsification, we have

Eτ (s|x) = s

and

Eτ (s|x) ∝ π0(1− c)s− (1− π0)s < 0,

so the strategy of the receiver is a best response to no falsification. Furthermore, deviating

from no falsification to φ > 0 would increase the probability that the receiver chooses approve

by (1 − π0)φc, but also cost (1 − π0)φc. If c = 0, this test is just the uninformative test, but

otherwise it gives valuable information to the receiver and prevents falsification.

I think we should just merge this with the two state case below

3 Model

As in the example, we consider a receiver who can choose between two actions labelled approve

and reject for simplicity. The rejection payoff to the receiver is normalized to 0, whereas the

approval payoff is given by the state of the world s ∈ S ⊆ [−s, s], with −s < 0 < s, and

{−s, s} ⊆ S. We refer to the case S = {−s, s} as the binary state case. The incremental payoff

of the agent from approval is positive and independent of the state of the world. We assume
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Figure 2: A Better Test for the observable case. The expectation column shows how expecta-
tions associated with each signal shift under falsification.

that the agent approves whenever she is indifferent.

Prior. The prior distribution for the state of the world has probability measure π, with full

support on S. We denote its cdf Fπ. We assume that µ0 = Eπ(s) < 0, so that the receiver-

optimal action under the prior is to reject. We let S− = S ∩ (−∞, 0) and S+ = S ∩ [0,∞)

denote the sets of negative and nonnegative states. We define

µ−
0 = Eπ(s|s ∈ S−) < µ0 < 0 < µ+

0 = Eπ(s|s ∈ S+),

and let π0 = π(S+) be the prior probability of nonnegative states. Finally, we let

s0 = max
{
s′ ∈ S : Eπ(s|s ≥ s′) ≤ 0

}
.

In particular, if π has no atom at s0, then Eπ(s|s ≥ s0) = 0.

Timing. We first describe the timing of the game and then proceed to define tests, falsification

and how the receiver’s beliefs are formed.

1. Test: A test τ is exogenously given and publicly observable.

2. Falsification: The agent chooses a falsification strategy φ.

3. State: The state s is realized according to π.

4. Testing and results: The falsification strategy generates a falsified state of the world
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t ∈ S according to φ(s|t), and the test generates a public signal x about the falsified state

of the world according to τ(x|t).

5. Receiver decision: The receiver forms beliefs and chooses to approve or reject.

Tests. A test is a Blackwell experiment (Blackwell, 1951, 1953): a measurable space of signals

X , and a Markov kernel τ from S to ∆(X).

General Notations. The prior π and the test τ together define a joint probability measure

on X × S that we simply denote by τπ. Then, conditional on observing x, and in the absence

of falsification, a receiver forms a belief about S that is given by the conditional probability

measure which we denote by τπx. Conditional on the state of the world s, and in the absence

of falsification, the distribution of signals depends on τ only, and we denote it by τs.

Falsification. The agent can falsify the state of the world that is fed to the test. This is

modeled as the choice of a falsification strategy φ which is a Markov kernel from S to ∆S. If T

is a Borel subset of S and s ∈ S a state of the world, then φ(T |s) denotes the probability that

the true state s, or source, is falsified as a target state in T . The truth-telling strategy is the

Markov kernel δ that maps each state s to the Dirac measure δs on S, which puts probability

1 on target state s when the true state is s.

Falsification comes at a cost given by a measurable non-negative real function c : S × S →

R+, where we denote by c(t|s) the cost of falsifying source state s as target state t. Together,

the prior π and the falsification strategy φ define a joint probability measure that we denote

φπ on S × S. The cost of falsification strategy φ is then given by C(φ) =
∫

S×S
c dφπ. The

following are maintained assumptions about the cost function.

Assumption 1 (Maintained Cost Assumptions). We assume that truth telling is costless,

that is c(s|s) = 0 for all s ∈ S. We also assume that c is either uniformly null or satisfies

the following monotonicity properties: c(t|s) < c(t′|s) for all s, t, t′ such that t′ < t ≤ s or

s ≤ t < t′; and c(t|s) > c(t|s′) for all s, s′, t such that s′ < s ≤ t or t ≤ s < s′. Finally, we

assume that the cost function is continuous in t.

While the former are maintained assumptions, the following properties are not always as-

sumed but are important for some results. The first two are familiar properties, and the last
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one is a specific smoothness assumption that suits our purpose and that we call regularity.

Definition 1. The cost function:

(i) satisfies the triangular inequality if, for every triple of states s,m, t ∈ S,

c(t|m) + c(m|s) ≥ c(t|s); (TRI)

(ii) has upward increasing differences if, for every s < s′ ≤ t < t′,

c(t′|s′)− c(t|s′) ≥ c(t′|s)− c(t|s); (UID)

(iii) is regular if c(t|s) is continuously differentiable in t on [s, s] and in s on [−s, t], and there

exists K > 0 such that, for every t > s,

c(t|s) ≤ K(t− s).

When they exist, we denote the partial derivatives of the cost function by ct and cs. Next,

we provide examples of cost functions that satisfy our assumptions.

Example 1 (Valid Cost functions). All cost functions below satisfy all our maintained assump-

tions, as well as (TRI) and (UID) (proofs are available in APPENDIX REF).

1. Monotonically Scaled Subadditive Cost:

c(t|s) = α(s)f(|t− s|)1 (t ≥ s) +
1

β(s)
g(|t− s|)1 (t < s) ,

where f, g : R+ → R+ are continuous, increasing and subadditive functions with f(0) =

g(0) = 0, and α, β : S → R+ are strictly positive and nondecreasing. Furthermore, c is

regular if f , g, α and β are continuously differentiable on their domain.

This class of cost functions includes the case where f and g are concave functions, and,

in particular, the linear cost function c(t|s) = |t− s|. However, some convexity of f and

g can also be accommodated if α and β increase sufficiently fast, as the next example

illustrates.
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2. A Monotonically Scaled Convex Example:

c(t|s) = αe2βs
(
|t− s|+ β(t− s)2

)
1 (t ≥ s) + α′e−2β′s

(
|t− s|+ β ′(t− s)2

)
1(t < s),

with α, β, α′, β ′ > 0, and where s and s satisfy...

Furthermore, c is regular.

⋄

Posterior beliefs, actions and resulting payoffs. Together, the prior, the falsification

strategy and the test define a joint distribution over X×S that we denote τφπ. For each signal x

occurring with positive probability according to τφπ, the receiver forms a posterior belief in ∆X

which we denote by τφπx. Let µ(x|τ, φ) =
∫

S
s dτφπx(s) denote the expected state according to

this belief. The receiver approves whenever µ(x|τ, φ) ≥ 0. We let X̄(τ, φ) = {x : µ(x|τ, φ) ≥ 0}

denote the approval set of the receiver. Then, the ex ante probability of approval is given by

A(τ, φ) =

∫

X̄(τ,φ)×S

dτφπ,

and the agent’s payoff by

U(τ, φ) = A(τ, φ)− C(φ),

whereas the receiver’s payoff is given by the expected state conditional on approval

V (τ, φ) =

∫

X̄(τ,φ)×S

µ(x|τ, φ)dτφπ(x, s).

Solution Concept and Equilibrium Definition. Our equilibrium concept is perfect Bayesian

equilibrium. In equilibrium falsification is correctly anticipated. However, deviations from a

falsification strategy can go undetected since by construction any signal x can arise from some

state and the latter is unknown.

Non-committed versus committed falsification Typically falsification is not observed

and deviations are not detectable. We call this the unobservable case (and sometimes “non-

committed” to contrast it with the case that follows). When the agent’s deviations are un-

detected the receiver’s belief after each signal remains unchanged and the ex-ante approval
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probability resulting from a deviation to φ′ when the receiver anticipates φ therefore yields the

approval probability:

A(τ, φ, φ′) =

∫

X̄(τ,φ)×S

dτφ′π.

Then, given a test τ , there exists an equilibrium with falsification strategy φ if and only if, for

every falsification strategy φ′,

U(τ, φ) ≥ A(τ, φ, φ′)− C(φ′).

The interim probability that state s is approved given τ, φ is: a(s; τ, φ) ≡
∫

X̄(τ,φ)
dτφ.

If falsification is observable deviations are detected.9 This case can also be casted as com-

mitment to a particular ‘manipulation’ technology: The agent is akin or to a “constrained

information designer” and can only induce information structures that are feasible given the

(exogenous) test in place and his falsification capabilities. When deviations are observable and

the agent deviates from φ, to φ′ each signal realization x changes “meaning,” from µ(x|τ, φ) to

µ(x|τ, φ′) and the set of “aprove” signals becomes X̄(τ, φ′). In this case, given a test τ , there

exists an equilibrium with falsification strategy φ if and only if, for every falsification strategy

φ′,

U(τ, φ) ≥ U(τ, φ′).

Both benchmarks are relevant depending on the situation. We derive receiver-optimal tests

for both the observable and unobservable falsification settings and compare their features and

payoffs they yield to the agent and the receiver.

Receiver-optimal tests We are mainly interested in optimizing the test for the receiver

when the agent can falsify. When falsification is unobservable, a receiver optimal test solves:

sup
τ,φ

V (τ, φ)

s.t. U(τ, φ) ≥ A(τ, φ, φ′)− C(φ′), ∀φ′,

9They are also detectable when there is a very large number of items and the receiver can infer the actual
degree of falsification from the empirical distribution of results. Details of how detection works can be found in
Perez-Richet and Skreta (2018).
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and when falsification is observable, a receiver optimal test solves:

sup
τ,φ

V (τ, φ)

s.t. U(τ, φ) ≥ U(τ, φ′), ∀φ′.

Note that we consider ex ante falsification–i.e. the agent chooses φ before observing the state.

For the case of unobservable falsification, there exist a receiver optimal test for which the ante

and interim falsification choices coincide (so imposing the more demanding interim falsification

constraint does not reduce the value of the program, as we establish in Proposition 2). For

committed falsification our analysis extends to interim manipulations by the agent with small

modifications. Details are available upon request.

These programs are intricate because, the ultimate information structure is a composition of

the test τ and the falsification strategy φ. It would be helpful to have a revelation-principle type

of result that would allow us to restrict attention to truth-telling strategy, that is falsification

strategies that map each state s to the Dirac measure δs. Under costly falsification, there is no

general falsification proofness principle akin to the revelation principle in mechanism design. In

fact, we show that, in general, the receiver optimal test requires falsification by positive states.

However, there are some important cases in which the principle holds: when falsification is

costless, or when the state space is binary:

Proposition 1 (Costless falsification: Falsification Proofness Principle). If falsification is cost-

less or the state space S is binary, then, for every test τ such that φ is an equilibrium falsification

strategy, there exists a test τ ′ under which truth-telling δ is an equilibrium and U(τ, φ) = U(τ ′, δ)

and V (τ, φ) = V (τ ′, δ). This is true regardless of whether falsification is observable or unob-

servable.

Pareto frontier, Bergemann Morris perspective etc.
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4 Unobservable Falsification

4.1 Preliminary Results

Recommendation Principle. When falsification is unobservable, the falsification strategy is

analogous to a costly reporting strategy. Mimicking standard results as those in Myerson (1982)

and Kamenica and Gentzkow (2011), we can establish a recommendation principle according

to which signal realizations of any test can be garbled into two signal realizations that are

action recommendations (so in our case “approve” or “reject”) without changing equilibrium

falsification strategy, payoffs and interim approval probabilities. The proof of this result can be

found in Appendix A.

Lemma 1 (Recommendation Principle). Let φ be an equilibrium falsification strategy under τ .

Then the test τ ′ with binary signal space X ′ = {approve, reject} defined by

τ ′(approve|s) = τ(X̄
(
τ, φ)|s

)

is such that φ is an equilibrium under τ ′ and

1. Receiver follows recommendation: X̄(τ ′, φ) = {Pass},

2. Equilibrium interim approval probabilities are unchanged: a(s; τ, φ) = a(s; τ ′, φ),

3. Equilibrium payoffs are unchanged: U(τ, φ) = U(τ, φ′) and V (τ, φ) = V (τ ′, φ).

Note that, as is usual in this type of results, by definition the new test yields the same

interim probability of approval for fixed measure of states fed to it: φπ. However, in our

setting, in addition to making sure the receiver follows the “new” recommendation, we have to

make sure that the new test does not yield a new falsification strategy as a best response. This

part of the proof leverages the fact that when falsification is unobservable, the set of passing

signals does not “react” to deviations from φ.

Lemma 1 allows us to restrict our discussion to binary tests such that the receiver follows

recommendations. Therefore, for the remainder of our analysis of unobservable falsification,

we redefine tests as measurable functions τ : S → [0, 1], where τ(s) is the nominal passing

probability of state s. Falsification may of course induce a true passing probability that differs
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from the nominal one. A receiver optimal test solves the following program:

sup
τ,φ

∫

S×S

sτ(t)dφπ(t, s) (EP)

s.t.

∫

S×S

{
τ(t)− c(t|s)

}
dφπ(t, s) ≥

∫

S×S

{
τ(t)− c(t|s)

}
dφ′π(t, s), ∀φ′ ( EOF)

∫

S×S

sτ(t)dφπ(t, s) ≥ 0 (RO)

where the constraint, ( EOF) is the ex-ante optimal falsification constraint for the agent, and

the (RO) constraint it the receiver’s obedience constraint.

First, note that the left-hand side term in the obedience constraint is equal to the expected

payoff of the receiver, which is also the objective function. Since the uninformative test that

always recommends fail yields a null payoff for the receiver and satisfies both constraints for

any falsification strategy, it is clear that the obedience constraint is redundant and can be

omitted from the program. A corollary of this remark is that, under unobservable falsification,

the receiver does not benefit from commitment to an approval strategy, as the program of such

a receiver is exactly the one above without the obedience constraint.

A second remark is that the value of the program when we impose the ex ante optimal

falsification constraint is identical to the value of that with the interim one (IOF):

sup
τ,φ

∫

S×S

sτ(t)dφπ(t, s) (IP)

s.t. φ (Φ(s; τ)|s) = 1, ∀s ∈ S (IOF)

where Φ(s; τ) = argmaxt τ(t)− c(t|s) (optimal falsification targets)

Proposition 2. When falsification is unobservable, a receiver-optimal test yields the same

payoff to the receiver, regardless of whether the agent chooses his falsification strategy ex-ante

or at the interim stage. That is, the value of program (EP) is equal to that of (IP).

In what follows, we thus focus on Program (IP). This program is analogous to that of a

principal seeking to allocate a good to an agent of type s, where: s is the value for the principal

of allocating the good to the agent; the principal also has an outside option (not allocating the

good) worth 0; the agent gets a state independent premium from getting the good; the principal

can commit to a probabilistic allocation rule τ contingent on reported state, misreporting has
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a cost given by c. As mentioned in the introduction, there is a relatively small literature

studying allocation problems without transfers. Our problem differs because misreporting is

costly. This, on one hand makes lies harder, on the other, restricting attention to tests that

induce truth-telling is with loss of generality.

These types of problems where transfers are not available are studied under various condi-

tions in the literature. REVIEW HERE BRIEFLY.

There is, however, a Falsification Proofness Principle when falsification is costless, as we

have established in Proposition 1. And, is this case it provides a direct solution to our problem:

nothing can be achieved. Indeed, we can then restrict attention to obedient pass-fail tests that

are falsification proof. If such a test recommends to pass some state with positive probability,

then it is optimal for the agent to falsify every other state with lower passing probability as

this state. Hence the only falsification-proof tests recommend all states to pass with uniform

probability. But such a test conveys no information.

we are using approve/ pass/ action 1 interchangeably–I rewrote action 1 but we have to

settle.

Corollary 1. If falsification is costless and the agent cannot commit, no information can be

conveyed in equilibrium, and U∗ = V ∗ = 0.

4.2 The Binary State Case

In the binary state case, the recommendation principle makes it particularly easy to characterize

the set of feasible tests and payoffs. Indeed, by Lemma 1, we can focus on tests with only a

passing and a failing signal. Hence, we can describe a test as a pair of “aproval” probabilities

τ = (τ , τ ) that satisfy the obedience constraint τπ0s − τ(1 − π0)s. Then, we can also easily

obtain a trivial falsification-proofness: If τ − τ > c then −s falsifies as s and no state passes, so

the probability of passing s is bounded above c+ τ and without loss we can focus on tests that

satisfy τ − τ ≤ c, where c denotes the cost of falsifying the low type as the low type.10 For such

tests, the indifference curves of the receiver are described by the equation U = τπ0s−τ (1−π0)s,

and the indifference curves of the agent by V = π0τ + (1 − π0)τ . Then, elementary algebra

yields the following characterization:

10Note that the cost of falsifying the high type as the low type plays no role in this case.
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Proposition 3. With a binary state space, the set of falsification proof and obedient tests is

given by

T =







co{τA, τR, τ0} if c ≤ 1− π0s
(1−π0)s

co{τA, τR, τ0, τP} if c ≥ 1− π0s
(1−π0)s

,

where, k = min(c, 1), τA =
(
min

(
−kπ0s/µ0, π0s/(1− π0)s

)
,min

(
k − kπ0s/µ0, 1

))
is the agent-

optimal test, τR =
(
0, k
)
is the receiver-optimal test, τ0 = (0, 0) is the uninformative test which

is pessimal for both players, and τP = (1−k, 1) is feasible only in the high cost case, and is then

the preferred test of a planner with equal weights on both players. The corresponding feasible

payoff set is given by

U =







co{uA, uR, u0} if c ≤ 1− π0s
1−π0)s

co{uA, uR, u0, uP} if c ≥ 1− π0s
1−π0)s

,

where uA =
(
0,min(−kπ0s/µ0+1−π0, π0(s+ s)/s)

)
, uR =

(
kπ0s, kπ0

)
, u0 = (0, 0), and, in the

high cost case, uP =
(
µ0 − k(1− π0)s, 1− (1− π0)k

)
.

Figure 3
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4.3 Continuus State: Space A Receiver Optimal Test

Next, we find a receiver optimal test when S is the full interval [−s, s], and falsification is costly.

Our characterization requires that the cost function satisfies the triangular inequality. Using

Proposition 2, we proceed by solving (IP). Our first result is a weak and partial Falsification

Proofness Principle. In the usual revelation principle, the idea is to give a falsifying agent

directly the allocation and payoff he gets by falsifying, thus not modifying the payoff of the

principal. In the absence of transfers, it is impossible to maintain both allocation and payoff,

hence we only give the falsifying agent the same payoff. But, we make sure to do so in a way

that favors the receiver (which is our equivalent of a principal). This is the sense in which the

falsification proofness principle of this result is weak. It is partial because this operation only

works for negative types. The role of the triangular inequality for the revelation principle with

costly misreporting and transferable utilities is pointed out in Kephart and Conitzer (2016).

Because we do not have transfers, our proof differs, but relies on a similar intuition.

Lemma 2. If the cost function satisfies (TRI), then, for every test τ and incentive compatible

falsification strategy φ, there exists a test τ̃ and an incentive compatible falsification strategy φ̃,

such that φ̃(s) = δs 1(s < 0) +φ(s)1(s ≥ 0), and no player is worse off: U(τ̃ , φ̃) ≥ U(τ, φ) and

V (τ̃ , φ̃) ≥ V (τ, φ).

Remark 1. The role of the triangular inequality property of costs in the proof of Lemma 2 is

analogous to that in the revelation principle in Kephart and Conitzer (2016) for the FUVT–

“fixed utilities” variable transfers case.” Here we are keeping the sender’s utility fixed but

varying the social choice function: When we replace the original measure τφπ with τFPπ the

agent saves on falsification costs. To keep the payoff the same, τFP has a smaller probability

of passing. This benefits the receiver for negative states but is worse for positive states and

the overall effect is ambiguous. Thus in our setting, because we don’t have transfers, we don’t

have enough flexibility to design a test that is at the same time falsification proof and leaves

both the agent’s and the receiver’s payoffs unchanged. Indeed, the result is false if we insist

on falsification-proofness also for the positive states and as we establish next the optimal test

involves falsification by the positive states.

Lemma 2 implies that we can restrict attention to tests that are falsification-proof for neg-

ative states. Next, we show that we can further restrict attention to tests such that positive
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states do not have any incentive to falsify as negative states.11

Lemma 3. Let τ be a test and φ an optimal falsification strategy, such that, for every s < 0,

φ(s) = δs. Then there exists a test τ̃ and an optimal falsification strategy φ̃ such that, for every

s < 0, φ̃(s) = δs, and, for every s ≥ 0, φ
(
S−|s)

)
= 0, and, furthermore, no player is worse off:

U(τ̃ , φ̃) ≥ U(τ, φ) and V (τ̃ , φ̃) ≥ V (τ, φ).

An optimal class of tests We now consider a class of tests defined by two parameters: the

highest nominal passing probability p ∈ [0, 1], and the cutoff state ŝ ∈ S+ above which nominal

probabilities are set to p. Let š(p, ŝ) = min {s ≤ ŝ : c(ŝ|s) ≤ p}, and define the lower, middle

and upper intervals IL =
[
−s, š(p, ŝ)

)
, IM =

[
š(p, ŝ), ŝ

]
and IU =

(
ŝ, s
]
. Our class consists of

the tests defined by

τp,ŝ(s) = p1(s ∈ IU) +
(
p− c(ŝ|s)

)
1(s ∈ IM),

and such that š(p, ŝ) ≤ 0.

These tests satisfy a number of interesting properties: First, the nominal passing probability

is continuous, strictly increasing on IM , and constant on each of the remaining intervals. Second,

truth-telling is an optimal falsification strategy if (TRI) holds. However, truth-telling is not

receiver-preferred optimal falsification strategy. Indeed, third, all states in IM are indifferent

between truth-telling and falsifying as ŝ. The receiver-preferred equilibrium feasible falsification

strategy is that all such states do falsify as ŝ if positive, and not falsify if negative. As a

consequence, all positive states pass with probability p, whereas negative states pass with their

nominal probability. These results are summarized in the following lemma:

Lemma 4. For every p ∈ [0, 1], and every ŝ ∈ S+, the test τp,ŝ satisfies the following properties:

(i) τp,ŝ is continuous on S, strictly increasing on IM and constant on each of the intervals IL

and IU .

(ii) If the cost function satisfies (TRI), then s ∈ Φ(s; τp,ŝ) for every s ∈ S.

(iii) For every s ∈ IM , ŝ ∈ Φ(s; τp,ŝ).

We show that, when looking for a receiver optimal test, we can restrict attention to tests

within this class.

11This is the step of the proof that requires S to be the full interval.
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Proposition 4. Suppose the cost function satisfies (TRI). Then, for every test τ , and every

incentive compatible falsification strategy φ, there exists a test τp,ŝ such that the falsification

strategy

φp,ŝ(s) = δs 1
(
s ∈ S− ∪ IU

)
+ δŝ 1

(
s ∈ S+ ∩ IM

)

is optimal, and V
(
τp,ŝ, φp,ŝ

)
≥ V (τ, φ).

Finally, we characterize the receiver optimal test within our class, and use the steps above

to conclude that it is a receiver optimal test among all tests.

Theorem 1. Suppose the cost function satisfies (TRI). Then (τp∗,s∗, φp∗,s∗) maximizes (EP),

where

p∗ = min
{
c(s|s0), 1

}
,

and

s∗ = max
{
s ∈ S : c(s|0) ≤ 1

}
.

Furthermore, the receiver gets her first-best payoff if and only if c(s|0) ≥ 1. However, the pair

of resulting payoffs (U∗, V ∗) never lies on the Pareto frontier.

With this optimal test, types in S+ ∩ IM are indifferent between falsifying as s∗ and truth-

telling, and are made to falsify only for the benefit of the receiver. It is easy to find other

tests that achieve the same receiver payoffs and strengthen the incentive of types in S+ ∩ IM

to falsify by lowering their nominal passing probability. For example, consider any test τ such

that τ(s) = τp∗,s∗(s) for every s ∈ S− ∪ IU , and τ(s) ≤ τp∗,s∗(s) for s ∈ S+ ∩ IM . It is incentive

compatible for all states in S+ ∩ IM to falsify as s∗, and for all other states not to falsify. Both

tests generate the same information structure under this falsification strategy, and receiver and

agent get the same payoffs.

4.4 An Optimal Falsification Proof Test

Cheating may have a negative effect on society as illustrated in Galbiati and Zanella (2012);

Ajzenman (2018); Alm et al. (2017); Rincke and Traxler (2011), among many others. Because

of this negative externality, a test designer may want to employ only tests that do not generate

falsification. Motivated by this, we now characterize the receiver-optimal falsification proof

test. In this section, we make the following additional assumptions

28



Assumption 2. c(t|s) is regular in the sense of Definition 1 and satisfies(UID) and (TRI).

Furthermore, the state space is the whole interval S = [−s, s], and the prior is atomless.

Building on Proposition 2, we can write the corresponding program as follows12:

sup
τ

∫

S

sτ(s)dFπ(s) (FPProg)

s.t. τ(t)− τ(s) ≤ c(t|s), ∀s, t ∈ S (FPIC)

We start by showing that we can restrict attention to K-Lipschitz and nondecreasing test

functions. Indeed, continuity is implied by (FPIC). For monotonicity, we show that replacing a

falsification proof test by the highest monotonic function below it for negatives states, and the

highest monotonic function above it for nonnegative states generates a test that is monotonic,

yields more favorable passing probabilities for the receiver, and preserves falsification proofness.

Lemma 5. Suppose that c is regular. Let τ be a test that satisfies (FPIC). Then τ is continuous,

and there exists a K-Lipschitz and nondecreasing test function τ̂ that also satisfies (FPIC) and

makes the receiver better off.

Lipschitz continuity implies that we can now focus attention on tests that are almost ev-

erywhere differentiable with derivative τ ′ bounded in [0, K], and such that, for every s ∈ S,

τ(s) = τ +
∫ s

−s
τ ′(z)dz. So, instead of optimizing on the function τ , we can optimize on the

scalar τ ∈ [0, 1] and the function {τ ′(s)}s∈S. Then, we can use integration by part to rewrite

the objective function in (FPProg) as

τµ0 +

∫

S

τ ′(z)J(z)dz,

where J : S → R

J(z) =

∫ s

z

sdFπ(s)

is easily seen to be negative for z < s0, and nonnegative otherwise, continuous, increasing on

S−, and decreasing and S+, and therefore single-peaked at 0.

12Strictly speaking, we first need to make sure that there is a falsification-proof test that gives the receiver
an expected payoff above 0 to ensure that the obedience constraint is redundant, but the uninformative test
clearly achieves that.
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In addition, we face the probability constraint that τ must be bounded from above by

1, which we can rewrite as τ +
∫

S
τ ′(z)dz ≤ 1, and the incentive constraint that, for every

s < t,
∫ t

s
τ ′(z)dz ≤ c(t|s). Reducing τ increases the objective function as µ0 < 0, relaxes the

probability constraint, and has no effect on the incentive constraints, implying that it is optimal

to set τ = 0.

Next, we treat the probability constraint with the Lagrangian method, and therefore asso-

ciate it with a Lagrange multiplier λ ≥ 0 and rewrite the objective function accordingly which

yields the Lagrangian problem:

L(τ ′, λ) =

∫

S

τ ′(z)J(z)dz + λ

(

1−

∫

S

τ ′(z)dz

)

=

∫

S

τ ′(z)
(
J(z)− λ

)
dz + λ

The Lagrangian problem is to maximize L(τ ′, λ) where τ ′ : S → [0, K] is feasible if, for every

s < t,
∫ t

s
τ ′(z)dz ≤ c(t|s), and

∫ s

s0
τ ′(z)dz ≤ 1. Clearly, any solution to this Lagrangian problem

must satisfy τ ′(s) = 0 for almost every s such that J(s) < λ, that is, by continuity and

single-peakedness of J , outside of an interval [s∗, s
∗] such that J(s∗) = J(s∗) = λ.

The following result combines these observations with a version of the Lagrangian sufficiency

theorem.

Lemma 6. Suppose that there exists λ̂ ≥ 0, and a feasible τ̂ ′ such that:

(a) λ̂ = 0 or
∫

S
τ ′(z)dz = 1;

(b) For every feasible τ ′, L(τ̂ ′, λ̂) ≥ L(τ ′, λ̂).

Then there exists an interval [s∗, s
∗] such that:

(i) s0 ≤ s∗ ≤ 0 ≤ s∗ ≤ s and J(s∗) = J(s∗) = λ̂;

(ii) τ̂ ′(s) = 0 for every s /∈ [s∗, s
∗];

(iii) The test τ̂ (s) =
(∫ s∗∧s

s∗
τ̂ ′(z)dz

)

1(s ≥ s∗) is a falsification-proof receiver optimal test.

First, note that each choice of s∗ ∈ [s0, 0] uniquely pins down s∗ = m(s∗), where the

decreasing matching function m : [s0, 0] → [0, s] is implicitly defined by J(s∗) = J(m(s∗)), or

equivalently by
∫ m(s∗)

s∗
sdFπ(s). In particular, note that s0 is matched with m(s0) = s. This

matching function will play an important role in the characterization of the optimal test.
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Following the Lagrangian method, we next choose a value for the Lagrange multiplier, which

is equivalent to choosing s∗ by the first point of Lemma 6. We choose

s∗ = min{s ∈ [s0, 0] : c(m(s)|s) ≤ 1}, (1)

so that s∗ = s0 whenever c(s|s0) ≤ 1. Let λ∗ = J(s∗) be the corresponding Lagrange multiplier.

Instead of solving the Lagrangian problem, we go back to the original program, but focusing

on tests τ that are constant outside of [s∗, s
∗], and such that τ(s∗) = 0. However, we also relax

the program by getting rid of the constraint that τ(s∗) ≤ 1, and only keeping the incentive

constraints for pairs (s, t) such that s∗ ≤ s ≤ 0 ≤ t < s∗. We also change variables and let

y = −s ∈ Y = [0,−s∗] and z = t ∈ Z = [0, s∗]. Finally, we let ρ : Y → R, and ψ : Z → R be

the functions defined by ρ(y) = τ(−y) = τ(s), and ψ(z) = τ(z) = τ(t). With these notations,

the remaining incentive constraints become

ψ(z)− ρ(y) ≤ c(z| − y), ∀(y, z) ∈ Y × Z.

And, up to multiplication by the constant µ∗ =
∫ s∗

0
sdFπ(s), the objective function of the

program becomes
∫

Z

ψ(z)dQ(z)−

∫

Y

ρ(y)dP (y),

where Q(z) = 1
µ∗

∫ z

0
xdFπ(x), and P (y) =

1
µ∗

∫ y

0
xdFπ(−x) define atomless cumulative distribu-

tion functions on, respectively, Z and Y .

To summarize, the new relaxed and reformulated program is

sup
ρ,ψ

∫

Z

ψ(z)dQ(z)−

∫

Y

ρ(y)dP (y)

s.t. ψ(z)− ρ(y) ≤ c(z| − y), ∀(y, z) ∈ Y × Z,

which we recognize as the dual of the following well known Monge-Kantorovich optimal trans-

port problem

inf
ϕ∈M(P,Q)

∫

Z×Y

c(z| − y)dϕ(z, y),

where M(P,Q) is the set of joint distributions on Z × Y with marginals Q on Z, and P on Y .

By (UID), the transportation cost function of this problem, c(z| − y) is submodular, implying
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a well known solution for both problems13. Rewriting this solution14 in terms of our initial

notations, and completing for states outside of [s∗, s
∗], we obtain the test

τ ∗(s) =

(

−

∫ s

s∗

cs
(
m(x)|x

)
dx

)

1 (s ∈ [s∗, 0])+

(

c(s∗|s∗)−

∫ s∗

s

ct
(
x|m−1(x)dx

)
)

1 (s ∈ (0, s∗])+1 (s > s∗) .

The folllowing theorem shows that τ ∗ solves our initial problem.

Theorem 2. The test τ ∗ solves (FPProg) and is therefore a receiver-optimal falsification-proof

test. The corresponding receiver’s payoff is given by

U(τ ∗, δ) =

∫ 0

s∗

−sc
(
m(s)|s

)
dFπ(s) =

∫ s∗

0

tc
(
t|m−1(t)

)
dFπ(t).

Furthermore, the outcome (τ ∗, δ) is Pareto inefficient.

Proof of Theorem 2. need to make sure that test satisfies all constraints, then go back the chain

to apply Lemma 6.

To understand the logic of the proof, note that, either s∗ = s0, and then λ∗ = 0, and

τ ∗(s∗) = c(s|s0) ≤ 1, so that τ ∗ satisfies the probability constraint, or s∗ > s0, and then λ∗ > 0

and τ(s∗) = c(s∗|s∗) = 1 so the probability constraint is satisfied with equality. Hence, τ ∗

satisfies the probability constraint, and, in addition, point (a) of Lemma 6 holds. To show

point (b), note that, by point (ii) of the same lemma, optimizing the Lagrangian is equivalent

to solving our initial problem restricted to tests that are constant outside of [s∗, s
∗]. The dual

Monge-Kantorovich problem we obtained is a relaxed version of that, so we need to verify that

τ ∗ satisfies the omitted incentive constraints. In the proof, we show that this is ensured by

(TRI). Then Lemma 6 allows us to conclude.

The payoff characterization is a consequence of duality. Note that the solution of the primal

Monge-Kantorovich problem is given by the degenerate transport map that transports y to

Q−1
(
P (y)

)
= m(−y). In terms of our original problem, this means that the only binding

incentive constraints are those between source states s ∈ [s∗, 0] and target states t = m(s)

in [0, s∗] obtained by applying the matching function. We show in SECTION REFF that the

primal Monge-Kantorovich problem has a nice interpretation as it corresponds to the optimal

13See, for example, Galichon (2018, Chapter 4).
14In fact, the solution to the dual Monge-Kantorovich problem is determined up to a constant which, for our

purpose, we choose to ensure that τ∗(s∗) = 0.
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falsification problem of a committed agent facing a fully revealing test, with a modified cost

function.

5 Falsification with Commitment

We assume upward only falsification.

5.1 Preliminary Results

Falsification Proofness Principle. With committed falsification, we have a Falsification

Proofness Principle that exists under the same exact conditions as in the uncommitted case

Normalization by the mean.

Commitment or Not. We show that any feasible equilibrium outcome without commitment

can be replicated with commitment. More precisely

Proposition 5. Any uncommitted equilibrium falsification strategy φ under test τ that is up-

ward, is also an uncommitted upward only equilibrium falsification strategy under τ . Any un-

committed upward only equilibrium falsification strategy under τ is also a committed (upward

only) equilibrium falsification strategy under τ .

Proof. The first implication is obvious as the agent simply has less available deviations when

feasible falsification strategies are required to be upward. For the second implication, we note

that, by the recommendation principle, we can

In particular, since the receiver optimal tests (falsification-proof or not) we characterized in

SECTION REFERENCE lead to an equilibrium falsification strategy that is upward, we have

the following corollary.

Corollary 2. With receiver-optimal testing or receiver-optimal falsification-proof testing, the

receiver is better off under committed falsification.

33



5.2 Fully Revealing Tests: Interpreting Duality

5.3 The Binary State Case

In the binary state case, it is possible to characterize an optimal test in closed form. Our

characterization relies on the falsification-proofness principle, and on the representation of tests

as the distribution of expectations they generate for the receiver, which amounts to relabelling

signals as expectations and possibly involves some garbling, as signals with the same associated

expectation are merged. Lemma 7 (WILL BE MOVED TO APPENDIX – this can probably

be proved beyond the binary case) shows that this is without loss of generality. It is well known

that this representation is without loss of generality in the absence of falsification, so the key

is to show that it does not affect the set of optimal falsification strategies, nor their payoff for

the agent.

For a test τ , let Hτ be the corresponding cdf of associated expectations on [−s, s], that is

Hτ (y) = τ
(
{x ∈ X : Eτπ(s|x) ≤ y} × S

)
.

The martingale property implies that
∫ s

−s
xdHτ (x) = µ0, or equivalently, integrating by part,

that
∫ s

−s

Hτ (x)dx = s− µ0. (MP)

In the other direction, to any cdf H on [−s, s] that satisfies (MP), we can associate a unique

test τEH with signal space XE = [−s, s] such that HτE
H
= H . Note that uniqueness is satisfied

only in the binary case. To see this, first define the function H(x) =
∫ x

−s
H(y)dy from [−s, s] to

[0, s− µ0], which is nondecreasing and convex, with H(0) = 0 and H(s) = s− µ0. Then, define

τEH by

τEH
(
{x ∈ X : Eτπ(s|x) ≤ y}|s

)
=

1

µ0 + s

{
(y + s)H(y)−H(y)

}
= H(y)

and

τEH
(
{x ∈ X : Eτπ(s|x) ≤ y}| − s

)
=

1

s− µ0

{
(s− y)H(y) +H(y)

}
= H(y),

so that H and H are the cdfs of signals respectively generated by the high and low states s and

−s.

Lemma 7 (Normalization by the Mean). Let τ be a falsification-proof test. Then τEHτ
is also
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falsification-proof and generates the same payoffs, that is U(τ, δ) = U(τEHτ
, δ), and V (τ, δ) =

V (τEHτ
, δ). Furthermore, it satisfies the normalization by the mean property EτE

Hτ
π(s|x) = x.

As a consequence, we can restrict attention to tests of the form τEH , where H is a cdf on XE

that satisfies the martingale property. For any such cdf H , we define the function

Hℓ(x) = lim
y→x
y<x

H(y),

which is also the left derivative of H at x, and gives the probability of the set [0, x) under H .

In the absence of falsification, the payoffs obtained by the receiver and the agent under H

are respectively given by15

U(τEH , δ) =

∫ s

0

xdH(x) = µ0 +H(0),

and

V (τH , δ) = 1−Hℓ(0).

Next, we consider the effect of falsification on the receiver. Here, we use φ ∈ [0, 1] to denote

the probability that the low state falsifies as the high state. For any φ ∈ (0, 1), falsification

pushes the low state towards nonegative signals x ≥ 0 at a higher rate than in the absence of

falsification, thus lowering the expectation formed by the receiver when observing x, and result-

ing in the receiver no longer approving following some nonnegative signals. In fact, falsification

results in a new threshold signal x̂(φ) such that the receiver only approves for signals x ≥ x̂(φ).

Interestingly, this threshold is independent of the test.

Lemma 8. With falsification, there exists a threshold x̂(φ) such that the receiver approves for

signals x ≥ x̂(φ), and rejects otherwise, where

x̂(φ) =
−µ0sφ

π0(s+ s)− φs
1

(

φ ≤
π0s

(1− π0)s

)

+ s1

(

φ >
π0s

(1− π0)s

)

is continuous, increasing in φ on [0, π0s/(1− π0)s], constant elsewhere, and ranges from 0 to

s.

15The second expression for the receiver’s payoff is obtained using integration by part.
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This result has simple but very useful implications for the formulation of the optimal falsi-

fication problem of the agent.

Corollary 3. Falsification levels outside of [0, π0s/(1−π0)s] are dominated. Furthermore there

is a one-to-one relationship between any φ in this range and the threshold if generates, implying

that we can reformulate the receiver’s optimal falsification problem as the choice of a threshold

x ∈ [0, s], which induces a falsification level

φ̂(x) =
(s+ µ0)x

(x− µ0)s
.

The agent’s payoff is then given by

V
(
τH , φ̂(x)

)
= 1−

(

1 +
x

s

)

Hℓ(x) +
x

s(x− µ0)
H(x)−

(1− π0)(s+ µ0)x

(x− µ0)s
c.

Using the Falsification Proofness Principle, we can now reformulate the program for finding

a receiver-optimal test as that of choosing a test function H to maximize H(0), under the

falsification proofness constraint that, for every x ∈ [0, s],

Hℓ(x)−
x

(s+ x)(x− µ0)
H(x) ≥

s

s+ x
Hℓ(0)−

γx

(x− µ0)(s+ x)
, (CFPIC)

where γ = (s− µ0)(s+ µ0)c/(s+ s).

A first remark is that we can focus on test functions that are linear on [−s, 0]. Indeed, for

any test function H that satisfies (CFPIC), the test function

H̃(x) =
H(0)

s
(x+ s)1(x ≤ 0) +H(x)1(x > 0)

is linear below 0, delivers the same payoff to the receiver as H̃(0) = H(0), a higher payoff to

the agent as H̃(0) = H(0)/s ≤ Hℓ(0) by convexity of H, and satisfies (CFPIC) by the same

argument.

Next, we characterize the unique test function that is linear below 0, and makes the agent

indifferent across all thresholds induced by undominated falsification levels φ. Denoting by κ
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its slope below 0, this test function must solve the indifference differential equation16

H(x)−
x

(s+ x)(x− µ0)
H(x) =

κs

s+ x
−

γx

(x− µ0)(s+ x)
(IDE)

on [0, s], with initial conditionH(0) = κs. This linear differential equation has a unique solution

parameterized by κ. For this solution to be a test function, it must satisfy H(s) = s−µ0 which

pins down the κ to a value that we denote by κ∗γ yielding a unique test function

H∗
γ(x) = κ∗γ(x+ s) +

(
κ∗γ(µ0 + s)− γ

)

{(
x− µ0

−µ0

) µ0
µ0+s

(
x+ s

s

) s

µ0+s

− 1

}

1(x > 0),

where

κ∗γ =

s− µ0 + γ

{(
s−µ0
−µ0

) µ0
µ0+s

(
s+s
s

) s

µ0+s

− 1

}

s− µ0 + (s+ µ0)
(
s−µ0
−µ0

) µ0
µ0+s

(
s+s
s

) s

µ0+s

.

We show that H∗
γ is also receiver-optimal.

Theorem 3. H∗
γ is the unique test function that solves (IDE) on [0, s], and it is a receiver-

optimal test function. It is strictly increasing in γ (and hence c) in the Blackwell informativeness

order, and converges to the fully informative test function as c→ 1. As a consequence, the payoff

of the receiver is also strictly increasing in γ. Furthermore, H∗
γ is more Blackwell informative

than any other receiver-optimal test function at γ. Finally, it is also Pareto efficient and delivers

at least half of the receiver’s payoff under full information, and this bound is tight when c = 0.

Proof. Here, we only show that H∗
γ is indeed receiver-optimal and leave the rest of the proof

for the appendix. To see why, suppose that H is another test function such that H(0) > H∗
γ(0).

Without loss of generality, we can take this function to be linear below 0, and let κ be its slope

below 0. Then κ > κ∗γ as κs = H(0) > H∗(0) = κ∗γs. Let x′ = min{x ∈ [0, s : H(x) = H∗
γ(x)}

be the smallest crossing point17 between H and H∗
γ . Then, we must have

Hℓ(x
′) = lim

x→x′

x<x′

H(x′)−H(x)

x′ − x
≤ lim

x→x′

x<x′

H∗
γ(x

′)−H∗
γ(x)

x′ − x
= H∗

γ(x
′).

16Note that we can get rid of the subscript ℓ as writing that Hℓ satisfies this equality implies that it is
continuous, and therefore Hℓ = H .

17It exists as the minimum of a nonempty (H(s) = H∗
γ(s)) compact (by continuity of H−H∗

γ) real subset.
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Then

Hℓ(x
′)−

x

(s + x)(x− µ0)
H(x′) ≤ H∗

γ(x
′)−

x

(s+ x)(x− µ0)
H∗
γ(x

′)

=
κ∗γs

s+ x
−

γx

(x− µ0)(s+ x)

<
κs

s+ x
−

γx

(x− µ0)(s+ x)
,

where the equality is due to the fact that H∗
γ satisfies (IDE). However, this implies that H does

not satisfy (CFPIC).

Hence, our optimal test uses a rich set of signals. The following proposition describes its

properties further.

Proposition 6. The signal (i.e. expectations) distribution generated by our optimal test has

support on {−s} ∪
[
0, s
]
, with atoms at −s and s, and a positive, continuously differentiable,

and decreasing density on
[
0, s
)
. The signal distribution generated by the high type has support

on
[
0, s
]
, with a positive, continuously differentiable, and decreasing density on

[
0, s
)
, and a

single atom at s. The signal distribution of the low type has support on {−s} ∪
[
0, s
]
, with

a single atom at −s, and a positive, continuously differentiable, and decreasing density on
[
0, s
)
. Furthermore, the signal distribution generated by the high type first-order stochastically

dominates that of the low type.

Our optimal test uses a continuum of signals despite the fact that types and actions are

binary. The richness of optimal tests is only in the “passing” signals as only one signal is

associated with failure. There is a clustering of signals close to the threshold as illustrated on

FIGURE. Intuitively, enriching the set of signals that lead to approval allows the receiver to

get better information while discouraging falsification. Increasing falsification would increase

the probability that the low type generates the continuum of nonegative signals rather than the

reject signal. But the receiver would react by rejecting some of the nonnegative signals above

in an amount that exactly offsets the advantage from the first effect.

Our optimal test makes the agent indifferent across all moderate levels of falsification as it

satisfies (IDE). Indifference of the “agent” at the optimal information structure also appears in

Roesler and Szentes (2017) or Chassang and Ortner (2016). In our context, a test which makes

no-falsification strictly better than some other falsification threshold cannot be optimal, since
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it is possible to increase the informativeness of that test and still maintain that no falsification

is a best response for the agent.

Both our optimal test and the three-signal test from SECTION EXAMPLE18 deliver at

least 50% of the full information payoff. A numerical analysis shows that the three-signal test

delivers at least around 80% of the optimal receiver payoff suggesting that most of the benefits

can be harvested with simple tests using a small number of signals.

5.4 The General Case without Falsification Cost

6 Concluding Remarks

Here I pasted some OLD materials

We study optimal tests in the presence of falsification. Our results deliver insights for how

to enhance the reliability of tests that agents can manipulate. First, fully revealing tests—

albeit optimal in the absence of falsification—are prone to manipulations, and yield the worst

possible results. More generally, our analysis of a binary-state, binary-action setup highlights

that simple (binary) tests can be fully manipulated by the agent: Any binary test can be turned

to deliver the agent-optimal information structure. Tests that perform well have more grades

than actions, and must assign intermediate grades with sufficiently high probability. In fact,

the simple addition of a third signal can go a long way towards optimality. We show that the

optimal three-signal test delivers at least around 80% of the payoff of the optimal test, and

50% of the full information payoff. This test contains a simple practical insight: introducing

a “noisy” (pooling) grade that is associated with approval in the absence of falsification, can

make falsification so costly that it prevents it, rendering this noisy test much better than the

(manipulated) fully informative test.

To illustrate the logic of the optimal test, consider how a four-signal approximation of our

optimal test could work in practice. Such a test could have grades A,B,C,D, where A,B,C all

lead to approval, but are associated with decreasingly strong beliefs about type, andD is a reject

signal. In the event that manipulations are observed, grades are devalued so as to counteract

the benefit of manipulations for the agent. For example, if manipulations are moderate, A,B

still lead to approval, but C is devalued to a reject grade. Under greater manipulation, B or

18We can show that this test is in fact the optimal three-signal test.
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even A and B can be devalued to reject grades as well.

Our analysis can be extended in several ways. First, falsification decisions can take place

after the agent knows the types of his item(s) (interim falsification). Second, we can accommo-

date multiple agents, each choosing falsification rates independently of one-another. Persuaders

then face a free-rider’s problem, as if others do not falsify, the “penalty” each falsifier faces in

terms of signal devaluation is smaller. We can account for this by modifying the non-falsification

constraint.

Other interesting extensions include the possibility of adding aggregate uncertainty and

endogenous priors. Suppose that receivers are uncertain about µ0, while the agent knows the

true µ0. Then using our optimal test for a particular value µ′
0 would lead each agent with

a different realization µ0 to falsify so as to generate the same grade distribution as a agent

with µ′
0 and no falsification. So a agent with µ0 > µ′

0 would set pG > 0, and a agent with

µ0 < µ′
0 would set pB > 0. This implies that using such a test with a value µ′

0 in the support

of possible µ0 would lead to small variations in performance when the support is sufficiently

narrow. However, deriving the optimal test would require a different analysis. One possibility

would be for the principal to design menus of tests leading different types µ0 to self select in

the spirit of Kolotilin, Li, Mylovanov, and Zapechelnyuk (2016). Such an analysis and whether

menus could be useful is beyond the scope of this paper.

Suppose, now, that µ0 is unobservable and endogenous in the sense that the fraction of

good items in the market depends on how much effort the agent exerts. If production costs are

sufficiently low, then the agent will set µ0 ≥ µ̂ as, with such a prior, all items are approved

regardless of the test, since any test can be turned to a completely uninformative one. If it

is sufficiently costly to increase µ0, then, in equilibrium, regardless of the test, only the least

costly prior–say µL– is chosen. Otherwise, µL-agent can mimic the empirical distribution of

grades of µH 6= µL by falsifying as described in the previous paragraph. Hence the optimal test

with moral hazard is our optimal test calibrated to µ0 = µL.
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Appendix

Proof of Proposition 1. Suppose that falsification is costless so C(φ) = 0 and that the test is τ

and the optimal falsification is φ, that is, for all φ̃ : S → ∆(S):

U(h, φ) ≥ U(h, φ̃). (2)

Define a new test as follows:

τFP (x|s) ≡

∫

t∈S

τ(x|t)φ(t|s)dt. (3)

With τFP and no falsification, that is φ(.|s) = δs, two things are true: First, the posterior after

a every signal x is the same as with test τ and falsification φ–that is, (3) implies:

τφπx(s) = τFP δπx(s) =
π(s)

∫

t∈S
τ(x|t)φ(t|s)dt

∫

s′∈S

∫

t∈S
τ(x|t)φ(t|s′)dtπ(s′)ds′

=
π(s)τFP (x|s)

∫

s′∈S
τFP (x|s′)π(s′)ds′

. (4)

Thus, the set of “approve” signals stays the same, regardless of whether falsification is observable

or unobservable:

X̄(τ, φ) = X̄(τFP , δ). (5)

Second, the probability that each state s is approved is the same under (τ, φ) and (τFP , δ).

Then, it follows that:

U(τ, φ) = U(τFP , δ) and V (τ, φ) = V (τFP , δ). (6)

We now need to verify that given test τFP the agent does not want to deviate from δ.

We argue by contradiction. Suppose that the agent benefits by falsifying τFP , say by using

falsification strategy φ
′

. The resulting posterior after a signal x is

τFPφ
′

πx(s) =
π(s)

∫

t∈S
τFP (x|t)φ′(t|s)dt

∫

s′∈S

∫

t∈S
τFP (x|t)φ′(t|s′)dtπ(s′)ds′

. (7)

In order that this to be profitable it must be the case that:

U(τFP , φ′) > U(τFP , δ). (8)
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The agent can achieve the same distribution over posteriors conditional on each signal realiza-

tion, by falsifying the original test τ with the following falsification strategy:

φ′′(t|s) =

∫

s′∈S

φ(t|s′)φ′(s′|s)ds′. (9)

First note that is a valid falsification strategy since:

∫

t∈S

φ′′(t|s)dt =

∫

t∈S

∫

s′∈S

φ(t|s′)φ′(s′|s)ds′dt =

∫

s′∈S

(∫

t∈S

φ(t|s′)dt

)

︸ ︷︷ ︸
=1

φ′(s′|s)ds′ = 1.

Second, note that φ′′ results in the same distribution of posteriors about s conditional on each

x ∈ X .

τFPφ
′

πx(s) =

∫

t∈S

τFP (x|t)φ′(t|s)dt =

∫

t∈S

τ(x|t)φ′′(t|s)dt = τφ
′′

πx(s). (10)

To see why (10) holds with φ′′, note:

∫

t∈S

∫

s′∈S

τ(x|s′)φ(s′|t)ds′

︸ ︷︷ ︸

τFP (x|t)

φ′(t|s)dt =

∫

s′∈S

τ(x|s′)

∫

t∈S

φ(s′|t)φ′(t|s)dtds′ =

∫

s′∈S

τ(x|s′)φ′′(s′|s)ds′.

Case 1: Unobservable falsification. In the case of unobservable falsification, we set of

passing signals, does not “react” so X̄(τ, φ′′) = X̄(τ, φ) and X̄(τFP , φ′) = X̄(τFP , δ) and by

construction of τFP , (5) holds. Then:

U(τ, φ′′) = U(τFP , φ′). (11)

Now, when falsifications costs as zero, (6), (8) and (11), imply:

U(τ, φ′′) > U(τ, φ),

which contradict (2).

Case 2: Unobservable falsification To obtain a contradiction in this case as well, we

need to establish that the set of passing signals stays the same. Note that (10), together with

(7) guarantees that the Receiver’s action after each x stays the same, so X̄(τ, φ′′) = X̄(τFP , φ′).
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A Uncommitted Proofs

Proof of Lemma 1. Consider a τ and let φ be an equilibrium falsification strategy under τ . The

receiver approves whenever µ(x|τ, φ) ≥ 0 and recall that we let X̄(τ, φ) = {x : µ(x|τ, φ) ≥ 0}

denote the approval set of the receiver. Define a new test such that

τ ′(approve|s) =

∫

X̄(τ,φ)

τ(dx|s).

Note that an equivalent formulation of τ ′ is τ ′(approve|s) = a(s; τ, φ) for all s ∈ S, so by

construction τ ′ and φ maintain the same interim probability of approval as the one achieved by

τ and φ.

This test generates: (i) the same distribution of actions as a function of each state s, (ii) a

given probability of approval under τ ′ has then the same falsification costs as τ . Point (i) is by

construction and it immediately implies that V (τ, φ) = V (τ ′, φ). Point (ii) is also easy to see,

since:

U(τ, φ) =

∫

X̄(τ,φ)×S

dτφπ −

∫

S×S

c dφπ

=

∫

S

∫

X̄(τ,φ)

τ(dx|t)dφπ −

∫

S×S

c dφπ

=

∫

S

τ ′(approve|t)dφπ −

∫

S×S

c dφπ

= U(τ ′, φ).

The last step to show is that there are no new falsification opportunities. Suppose there was

φ′ such that

U(τ ′, φ′) > U(τ ′, φ) ⇐⇒
∫

S×S

τ ′(approve|t)dφ′π −

∫

S×S

c dφ′π >

∫

S×S

τ ′(approve|t)dφπ −

∫

S×S

c dφπ ⇐⇒

∫

S×S

∫

X̄(τ,φ)

τ(x|t)dφ′π −

∫

S×S

c dφ′π >

∫

S×S

∫

X̄(τ,φ)

τ(x|t)dφπ −

∫

S×S

c dφπ ⇐⇒

U(τ, φ′) > U(τ, φ)

which contradicts the fact that the original falsification strategy φ was part of an equilibrium
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given τ . Note that given that falsification is unobservable, in the third line above we used that

X̄(τ, φ) = X̄(τ ′, φ).

Proof of Proposition 2. Given the first remark, we know that constraint (RO) is redundant so

the programs only differ in the falsification constraint. Let φEO, φIO denote respectively an ex-

ante and an interim falsification strategy. The interim program is more constrained so, trivially:

V EO ≥ V IO. To prove the result we need to argue that V EO ≤ V IO.

Suppose, otherwise. Then, V EO > V IO, this means that at a solution of (EP), the agent

has an ex-ante optimal falsification strategy, φEO, that is not optimal at the interim state, so

there are measurable sets of states S ′ such that

φEO(S ′) 6= φIO(S ′),

where φIO satisfies (IOF).

Case 1: If all these sets have measure zero, then V EO > V IO is not possible. To see this,

modify φEO(S ′), to get φ̂EO(S ′) as follows:

φ̂EO =







φEO when φEO = φIO

φIO otherwise

Note that V EO stays the same because φ̂EO and φEO differ on measure zero sets. Moreover φ̂EO

satisfies (IOF) by construction. Then, the test τEO together with φ̂EO is a solution to (IP).

Contradiction.

Case 2: Suppose that there is at least one strictly positive measure set of states S ′ where

φEO(S ′) 6= φIO(S ′). But then consider,

φ̃ =







φEO for s /∈ S ′

φIO(S ′) otherwise .

Note that given that this deviation is unobservable, given the test τEO, the receiver’s behavior

stays the same. Given that S ′ has strictly positive measure, the agent’s payoff strictly increases,
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since so
∫

S×S

{
τ(t)− c(t|s)

}
dφ̃π(t, s) >

∫

S×S

{
τ(t)− c(t|s)

}
dφEOπ(t, s)

contradicting the fact that φEO satisfies ( EOF).

Proof of Lemma 2. Consider a test and an optimal falsification strategy given the test (τ, φ).

Let

t(s; τ) ∈ argmaxs′∈S = τ(s′)− c(s′|s) (12)

be an optimal falsification target for s (in other words, t(s; τ) ∈ Φ(s; τ)). Suppose we define a

new test τ̃ as follows:

τ̃ (s) =







τ(t(s; τ))− c(t(s; τ))|s) ∀s ≤ 0

τ(s) for s > 0

(13)

Note that for every s > 0, the nominal probability of passing is higher under the new test:

τ̃ (s) ≥ τ(s). Also, (τ̃ , φ̃) yields by construction the same payoff for all s ≤ 0 as (τ, φ). Hence,

regardless of his type, the agent is weakly better off under τ̃ and any optimal falsification

strategy. We proceed to argue that

φ̃(s) = δs 1(s < 0) + φ(s)1(s ≥ 0)

is an optimal falsification strategy under τ̃ . First we show that τ̃ is falsification-proof for the

negative states. Suppose, by way contradiction, that s ≤ 0 strictly benefits by falsifying to s′,

then:

τ̃(s′)− c(s′|s) > τ̃(s). (14)

Consider s′ and its original target t(s′, τ) given τ . We show that it must be s′ < 0 and its

target t(s′, τ) 6= s′. Suppose otherwise, that is: either (i) s′ > 0, or (ii) s′ < 0 and t(s′, τ) = s′.

In both theses cases it must hold that: τ̃ (s′) = τ(s′). But then (14) implies that:

τ(s′)− c(s′|s) > τ(t(s, τ))− c(t(s, τ)|s)
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contradicting (12), that is the fact that t(s) is an optimal target for s given test τ . Now given

that t(s′) 6= s′, we have that

τ̃ (s′) = τ(t(s′; τ))− c(t(s′; τ)|s′).

Then (14) can be equivalently written as:

τ(t(s′; τ))− c(t(s′; τ)|s′)− c(s′|s) > τ̃ (s) = τ(t(s; τ))− c(t(s; τ)|s) ≥ τ(t(s′; τ))− c(t(s′; τ)|s)

where the weak inequality follows from (12), but then we obtain that

c(t(s′; τ)|s) > c(t(s′; τ)|s′) + c(s′|s)

which violates the triangular inequality, (TRI). Contradiction. Now we argue optimality of φ̃,

for positive states. By contradiction again, suppose that there exists a positive state s ≥ 0 and

some target state t ∈ Φ(s, τ̃)rΦ(s; τ). Then t must be negative, as the payoffs from falsifying

as positive states has not changed. Then,

τ(t′)− c(t′|t)− c(t|s) = τ̃ (t)− c(t|s) > max
u

τ(u)− c(u|s) ≥ τ(t′)− c(t′|s),

where t′ ∈ Φ(t; τ). By (TRI), this can only hold if t′ = t, and hence τ̃ (t) = τ(t), but then t

must also be an optimal falsification target under τ .

It remains to show that (τ̃ , φ̃) gives better payoffs than (τ, φ) to both players. We have

already argued that the agent is weakly better off, regardless of her type.

Next, consider the receiver. She must benefit whenever the passing probability of negative

states decreases, or that of positive states increases. This is the case when switching from (τ, φ)

to (τ̃ , φ̃). Under (τ̃ , φ̃), a negative state s < 0 passes with probability τ̃(s) = maxu τ(u)−c(u|s),

whereas, under (τ, φ), it passes with probability at most

max{τ(t) | t ∈ Φ(s; τ)} ≥ τ̃(s).

A positive state s ≥ 0, by contrast, obtains the sam passing probability from from (τ, φ) and

(τ̃ , φ̃), hence receiver is better-off overall.
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Proof of Lemma 3. For every s, let γ(s) be the unique state in S− such that c
(
γ(s)|0

)
= c(s|0)

if c(s|0) ≤ c(−s|0), and γ(s) = s otherwise. Note that for negative states, we also have γ(s) = s.

This function is well defined by continuity and monotonicity of the cost function. Then define

the test τ̃ by

τ̃ (s) = max
{
τ(s), τ

(
γ(s)

)}
.

Hence the nominal passing probability increases weakly for nonnegative states, and remains

the same for negative states. As a consequence the agent gets a better payoff under τ̃ with any

incentive compatible falsification strategy. Next, we build an incentive compatible falsification

strategy φ̃ such that nonnegative states do not falsify as negative states, and negative states do

not falsify.

Consider a negative state t ∈ S−. If there exists a nonnegative state t′ such that γ(t′) = t,

then, for every nonnegative state s ∈ S+, falsifying as t′ dominates falsifying as t as it yields a

higher passing probability τ̃ (t′) ≥ τ(t) at a lower cost since c(t′|s) < c(t′|0) = c(t|0) < c(t|s).

If there is no such t′, then it must be that c(t|0) > c(s|0). Suppose that, for some nonnegative

state s ∈ S+, falsifying as t is optimal under τ̃ . Then

τ(t)− c(t|γ(s)
)
> τ(t)− c(t|s) = τ̃ (t)− c(t|s) ≥ τ̃ (s) ≥ τ

(
γ(s)

)
,

where the first inequality is from cost monotonicity, the following equality is from the definitions

of τ̃ , the second inequality is due to the optimality of falsifying as t for s, and the last inequality

is due definition of τ̃ . But then, comparing the first and the last term contradicts the incentive

compatibility of φ under τ .

Because negative states do not falsify, their probability of passing is the nominal one, and

is therefore unchanged. Positive states have access to passing probabilities that were already

available under τ , but are now cheaper to obtain as they can be obtained by falsifying as

nonnegative states. We can therefore choose φ̃ so that each nonnegative state passes at least

with the same probability. As a consequence, the payoff of the receiver must be at least as high

as under the initial test.

Proof of Lemma 4. (i) being obvious, we only prove (ii) and (iii). First, test monotonicity

implies that, for all states, downward falsification is dominated by truth-telling. Second, for

all states in either IU or IL, truth-telling strictly dominates falsifiying as some other state
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in the same interval. Finally, if, for some state s ∈ IU , falsifying as some state t ∈ IM ∪ IU

strictly dominates truth-telling, then falsifying as min{t, ŝ} must strictly dominate truth-telling

for state š. Hence, to prove (ii), we only need to check that no state s ∈ IM strictly prefers

falsifying as some other state t ∈ IM to truth-telling. If that were the case, we would have

p− c(ŝ|t)− c(t|s) = τp,ŝ(t)− c(t|s) > τp,ŝ(s) = p− c(ŝ|s),

a violation of (TRI). Then, to prove (iii), just note that, for every s ∈ IM ,

τp,ŝ(ŝ)− c(ŝ|s) = p− c(ŝ|s) = τp,ŝ(s).

Proof of Proposition 4. By Lemma 2 and Lemma 3, we can assume that the pair (τ, φ) is such

that φ(s) = δs for all s ∈ S−, and suppφ(s) ⊆ S+ for all s ∈ S+. Let p = sups∈S+ τ(s), which

exists because τ(S+) is bounded. For every ε > 0, let S(ε) =
{
s ∈ S+ : τ(s) ≥ p− ε

}
, and let

S̄(ε) be the closure of S(ε). By definition of p, each S(ε), and hence each S̄(ε), is nonempty.

Furthermore, S̄(ε) is clearly nonincreasing in ε for the inclusion order. Therefore, by Cantor’s

intersection theorem, S̄ =
⋂

ε>0 S̄(ε) is a nonempty compact subset of S+. Hence, min S̄ is well

defined. Then we let

ŝ = min
{
min S̄,min{s ∈ S : c(s|0) ≤ p}

}
.

Now consider the test-falsification pair (τp,ŝ, φp,ŝ). Lemma 4 implies that φp,ŝ is indeed in-

centive compatible under τp,ŝ. Under (τp,ŝ, φp,ŝ), each nonnegative states passes with probability

p, which is at least as high as the passing probability of any state under (τ, φ). A negative state

s passes with its nominal probability in both cases, that is τ(s) under (τ, φ), and
(
p− c(ŝ|s)

)+

under (τp,ŝ, φp,ŝ). Next we show that this nominal probability is lower under (τp,ŝ, φp,ŝ). If

ŝ 6= min S̄, then the nominal probability is 0 for all negative states under τp,ŝ, which proves the

point. Otherwise, the definition of ŝ = min S̄ implies that there exists a sequence of nonneg-

ative states {tn} that converges to ŝ and such that the sequence τ(tn) converges to p. Then,

the sequence of falsification payoffs τ(tn)− c(tn|s) resulting from s falsifying as tn converges to

p− c(ŝ|s) by continuity of the cost function. Because truth-telling is optimal for negative states

under τ , we have τ(tn)−c(tn|s) ≤ τ(s). Going to the limit, this implies p−c(ŝ|s) ≤ τ(s). Since
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τ(s) must be nonnegative, this implies that negative states pass with lower probability under

(τp,ŝ, φp,ŝ). Altogether, this implies that the receiver is better off under (τp,ŝ, φp,ŝ).

Proof of Theorem 1. By Proposition 4, we only need to show that (p∗, s∗) solves the following

program

max
p,ŝ

p

∫ s

0

sdFπ(s) +

∫ 0

š(p,ŝ)

s
{
p− c(ŝ|s)

}
dFπ(s), (15)

s.t. š(p, ŝ) ≥ 0

where š(p, ŝ) = min {s ≤ ŝ : c(ŝ|s) ≤ p} is decreasing in p and increasing in ŝ.

Suppose first that c(s|0) ≥ 1. Then setting p∗ = 1 and s∗ = max
{
s ∈ S : c(s|0) ≤ 1

}

implies š(p∗, s∗) = 0, so that all nonnegative states pass with probability 1, while all negative

states pass with probability 0 which is the first-best outcome for the receiver. Since the value

of (15) cannot exceed the fist-best receiver payoff, (p∗, s∗) is indeed optimal.

Hence, suppose c(s|0) < 1. Fixing p, it is easy to see that increasing ŝ has no effect on

the first term of the objective in (15), but strictly increases the second term. Therefore, it is

optimal to set ŝ as high as possible. If p ≥ c(s|0), this means setting ŝ to s. If p < c(s|0), then

this means setting ŝ to satisfy š(p, ŝ) = 0. But then consider replacing p by p′ = c(s|0) > p and

ŝ′ to s. The passing probability of negative states is 0 in both cases, but the passing probability

of nonnegative states goes from p to p′ > p. This shows that the optimal value of ŝ is s∗ = s,

and that the optimal value for p lies between c(s|0) and 1.

These restrictions imply that š(p, s) lies in [s∗, 0], where s∗ = min{s ∈ S : c(s|s) ≤ 1} < 0

satisfies s∗ < 0. These remaining tests are characterized by the choice of š ∈ [s∗, 0], which then

implies p = c(s|š), and naturally ŝ = s. Then we can rewrite our program as

max
š∈[s∗,0]

c(s|š)

∫ s

š

sdFπ(s)−

∫ 0

š

sc(s|s)dFπ(s). (16)

Let Ω(š) denote the objective function in this program. Consider š′ > š ≥ s0. The difference

Ω(š′)− Ω(š) can be written as:

{
c(s|š′)− c(s|š)
︸ ︷︷ ︸

<0

}
∫ s

š

sdFπ(s)

︸ ︷︷ ︸
≥0

+

∫ š′

š

s
︸︷︷︸
≤0

{
c(s|s)− c(s|š′)
︸ ︷︷ ︸

≥0

}
dFπ(s) < 0.
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Hence, Ω(š) is decreasing over [s0, 0].

Now suppose s0 ≥ š′ > š, and write the difference Ω(š′)− Ω(š) as

{
c(s|š′)− c(s|š)
︸ ︷︷ ︸

<0

}
∫ s

š′
sdFπ(s)

︸ ︷︷ ︸
≤0

+

∫ š′

š

s
︸︷︷︸
≤0

{
c(s|s)− c(s|š)
︸ ︷︷ ︸

≤0

}
dFπ(s) > 0.

Hence, Ω(š) is increasing over [s∗, s0] if s∗ < s0.

Therefore, the optimal choice is to set š = max{s0, s∗}, which leads to p∗ = c(s|max{s0, s∗}) =

min{c(s|s0), 1}.

The equilibrium information structure is such that all positive states pass, and would there-

fore lead to payoffs on the Pareto frontier in the absence of falsification costs. But because

this optimal test requires some falsification by nonnegative types, the resulting payoffs must be

bounded away from the Pareto frontier.

Proof of Lemma 5. First note that continuity of any falsification-proof test is implied by (FPIC),

by invoking the continuity of the cost function. Next, we define the new test τ ′ by

τ̂(s) = τ (s)1s<0+τ(s)1s≥0,

where τ : S− → [0, 1] is the greatest nondecreasing function everywhere below τ on S−, and

τ : S+ → [0, 1] is the smallest nondecreasing function everywhere above τ on S+. Because τ̂

delivers higher nominal passing probabilities to nonnegative states, and lower ones to negative

states, it is better than τ for the receiver if it is indeed falsification proof. Furthermore, it

inherits the continuity of τ and is nondecreasing by construction. As such, if it violates (FPIC)

for some pair (s, t), then s < t and τ̂(s) < τ̂(t). Let s′ = max{s′ ≤ s : τ̂ (s′) = τ̂(s)}, and

t′ = min{t′ ≤ t : τ̂(t′) = τ̂(t)}. Then τ̂ (t′) = τ(t′) and τ̂ (s′) = τ(s′). Furthermore, we have

c(t′|s′) ≤ c(t|s) < τ̂(t′)− τ̂ (s′) = τ(t′)− τ(s′),

where the first inequality is due to cost monotonicity. However, this contradicts falsification

proofness of τ . Hence τ̂ is falsification proof. Lipschitz continuity follows, as, for any pair (s, t),

|τ̂(t)− τ̂ (s)| ≤ c(t ∨ s|t ∧ s) ≤ K|t− s|.
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Proof of Lemma 6.

Proof of Theorem 2.

B Committed Proofs

Proof of Lemma 7.

Proof of Lemma 8. Normalization by the mean implies that, in the absence of falsification, the

likelihood ratio informally defined by λ(x) = dH(x)
dH(x)

exists for every x < s and satisfies

λ(x) =
(1− π0)(x+ s)

π0(s− x)
,

which is strictly increasing in x. Hence, with falsification, this likelihood ratio is also well

defined and satisfies

λ(x, φ) =
dH(x)

φdH(x) + (1− φ)dH(x)
=

λ(x)

φλ(x) + 1− φ
,

which is strictly increasing in x whenever φ < 1. The receiver’s best response is clearly to

approve whenever λ(x, φ) ≥ λ(0), which implies that she uses a threshold approval strategy.

Note that, for φ > 0, we have

lim
x→s

λ(x, φ) =
1

φ
,

implying that the threshold is s, whenever 1
φ
≤ λ(0), that is, whenever φ ≥ π0s

(1−π0)s
. Otherwise,

the threshold is equal to the unique x that solves λ(x, φ) = λ(0). A little algebra then yields

our formula for x̂(φ), and the remaining claims are trivial.

Proof of Corollary 3. The only part that needs additional explanations is the calculation of the

agent’s payoff. To see this, note that the payoff is given by

V
(
τH , φ̂(x)

)
= 1− (π0 + (1− π0)φ̂(x))Hℓ(x) + (1− π0)(1− φ̂(x))Hℓ(x)− (1− π0)cφ̂(x).
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The rest is algebra using the formulas

Hℓ(x) =
1

µ0 + s

{
(x+ s)Hℓ(x)−H(x)

}
,

and

Hℓ(x) =
1

s− µ0

{
(s− x)Hℓ(x) +H(x)

}
,

as well as the identity µ0 = π0s− (1− π0)s.

Proof of Theorem 3. We proceed in steps. Note that optimality for the receiver is proved in

the main body of the paper.

Step 1: H∗
γ solves (IDE). (IDE) is a linear differential equation with a well known unique

solution given by

H(x) =

{

κs

(

1 +

∫ x

0

1

(s+ y)ζ(y)
dy

︸ ︷︷ ︸

χ(x)

)

− γ

∫ x

0

y

(y − µ0)(y + s)ζ(y)
dy

︸ ︷︷ ︸

ξ(x)

}

ζ(x),

where

ζ(x) = exp

(∫ x

0

y

(y − µ0)(y + s)
dy

)

.

A bit of algebra yields our closed form expression for H∗
γ . First,

log ζ(x) =

∫ x

0

y

(y − µ0)(y + s
dy =

[
µ0

µ0 + s
log(y − µ0) +

s

s+ µ0
log(y + s)

]x

0

,

leading to

ζ(x) =

(
x− µ0

−µ0

) µ0
µ0+s

(
x+ s

s

) s

µ0+s

.

Next

ξ(x) =

[

− exp

(

−

∫ y

0

z

(z − µ0)(z + s)
dz

)]x

0

= 1−
1

ζ(x)
.
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Finally, using the closed form for ζ ,

χ(x) = (−µ0)
µ0

µ0+s s
s

µ0+s

∫ x

0

(y − µ0)
−

µ0
µ0+s (y + s)

−
s

µ0+s
−1
dy

= (−µ0)
µ0

µ0+s s
s

µ0+s

[

1

s

(
y − µ0

y + s

) s

µ0+s

]x

0

=

(
−µ0

s

) µ0
µ0+s

(
x− µ0

x+ s

) s

µ0+s

+
µ0

s

Plugging these expressions back into out expression for H(x) yields our closed form expression,

and we get H∗
γ by choosing κ as indicated, yielding the expression. κ∗γ can be written in closed

form as in the body of the paper, or in the following form, which will be useful within the proof

κ∗γ =
s− µ0

s
(
1 + χ(s)

)
ζ(s)

+ γ
ζ(s)− 1

sζ(s)
(
1 + χ(s)

)

= κ∗0 + γ
ζ(s)− 1

sζ(s)
(
1 + χ(s)

) (17)

Step 2: H∗
γ is a test function. By construction, H∗

γ(s) = 0 andH∗
γ(s) = s−µ0. Furthermore,

we see on its closed form expression that H∗
γ is twice continuously differentiable, with

H∗
γ(x) = κ∗γ +

(
κ∗γ(µ0 + s)− γ

) x

(x+ s)(x− µ0)

(
x− µ0

−µ0

) µ0
µ0+s

(
x+ s

s

) s

µ0+s

1(x > 0),

and, differentiating once more,

h∗γ(x) =
(
κ∗γ(µ0 + s)− γ

) 1

(x+ s)(x− µ0)

(
x− µ0

−µ0

)− s

µ0+s
(
x+ s

s

)−
µ0

µ0+s

1(x > 0).

This density has the same sign as
(
κ∗γ(µ0+s)−γ

)
for x > 0, implying that it is strictly positive

since

κ∗γ(µ0 + s) > γ ⇔ s− µ0 > γ

(

1 +
s− µ0

s+ µ0

)

= c(s− µ0)

⇔ c < 1.

Hence H∗
γ is convex and increasing. This implies in particular that it lies below the fully

informative test function HFI . It remains to show that H∗
γ also lies above the uninformative
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test function HNI . Here we will only show that this is true when γ = 0. We will show in step

3 below that, for every c ∈ (0, 1), HFI ≥ H∗
γ ≥ H∗

0 which will expand the conclusion to any γ.

For γ = 0, it is sufficient to show that H∗
0 (s) ≤ 1 (note that in our notations, it can be

strictly below 1, denoting the presence of an atom at 1). To see that, first note that, by (IDE),

H∗
0 (s) =

s
s+s

+ κ∗0
s
s+s

. Hence, to show that H∗
0 (s) ≤ 1, it is sufficient to show that κ∗0 ≤ 1. We

can use our closed form solution to write

s− µ0 = H∗
0(s) = κ∗0(s+ s)− κ∗0(µ0 + s) + κ∗0(µ0 + s)

(
s− µ0

−µ0

) µ0
µ0+s

(
s + s

s

) s

µ0+s

= κ∗0(s− µ0) + κ∗0(s− µ0)

(
s+ µ0

−µ0

)(
s− µ0

−µ0

) −s

µ0+s
(
s+ s

s

) s

µ0+s

= κ∗0(s− µ0)

{

1 +

(
s+ µ0

−µ0

)(
s− µ0

−µ0

) −s

µ0+s
(
s+ s

s

) s

µ0+s

︸ ︷︷ ︸
≥0

}

implying the result.

Step 3: comparative statics with respect to γ. Note that (17) implies that, for x ∈ (s, 0),

H∗
γ(x) > H∗

0(x), as it is easy to see that ζ(x) > 1. Using (17), and the functions we defined in

step 1, we can write that, for x > 0,

H∗
γ(x) =

ζ(x)
(
1 + χ(x)

)

ζ(s)
(
1 + χ(s)

) (s− µ0) + γ
(
1 + χ(x)

)
ζ(x)

( (
ζ(s)− 1

)

ζ(s)
(
1 + χ(s)

) −
ζ(x)− 1

(
1 + χ(x)

)
ζ(x)

︸ ︷︷ ︸

A(x)

)

.

To show that A(x) > 0 on (0, s), we show that the function ζ(x)−1(
1+χ(x)

)
ζ(x)

is increasing by calcu-
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lating its derivative:

(

ζ(x)− 1
(
1 + χ(x)

)
ζ(x)

)′

∝ (1 + χ(x))ζ ′(x)− χ′(x)ζ(x)
(
ζ(x)− 1

)

=
x

(x− µ0)(x+ s)

(
1 + χ(x)

)
ζ(x)−

1

x+ s

(
ζ(x)− 1

)

∝
(
µ0 + xχ(x)

)
ζ(x) + (x− µ0)

=

{

µ0

s
(x+ s) +

(
−µ0

s

) µ0
µ0+s

(
x− µ0

x+ s

) s

µ0+s

}(
x− µ0

−µ0

) µ0
µ0+s

(
x+ s

s

) s

µ0+s

+ (x− µ0)

= µ0

(
x− µ0

−µ0

) µ0
µ0+s

(
x+ s

s

)1+
s

µ0+s

+
1 + s

s
(x− µ0)

∝ −

(
x− µ0

−µ0

)− s

µ0+s
(
x+ s

s

)1+ s

µ0+s

+
1 + s

s
≥

1

s

> 0,

where the last inequalities are obtained by noticing that −
(
x−µ0
−µ0

)− s

µ0+s
(
x+s
s

)1+ s

µ0+s

is increas-

ing (its derivative is proportional to (s− µ0)x+ (µ0 + s)2), and therefore bounded below by its

value at 0 which is equal to 1.

This shows that, for every x ∈ (0, s), H∗
γ(x) is increasing in γ and furthermore H∗

γ(x) >

H∗
0(x). The same holds on (−s, 0] by (17). This proves he comparative statics with respect to

the Blackwell informativeness ordering. The comparative statics for the receiver’s payoff also

follows.

Step 4: Optimality for the receiver. This argument is the main body of the text.

Step 5: Pareto efficiency. Consider any test function H that delivers a fixed receiver payoff

P , so H(0) = P . To maximize the agent’s payoff while giving at leat P to the receiver, one

needs to minimize Hℓ(0) while ensuring H(0) ≥ P . By convexity of H, this is achieved if and

only if H is linear between −s and 0. Therefore the set of Pareto efficient test functions is

exactly the set of test functions that are linear below 0.

Step 6: Payoff bound. The full information payoff of the receiver is π0s = s+µ0
s+s

s. First,

to obtain a lower bound on the payoff ratio, note that the three-signal test we obtained in

SECTION EXAMPLE yields a payoff equal to π0s
(
s+s
s+2s

)

≥ 1
2
π0s in the absence of cost. Since
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our optimal test does better, it delivers more than one half of the full information payoff in the

absence of falsification cost, and yet more with a positive cost. Next, we show that the bound

is tight in the absence of cost. To see this note that the payoff ratio can be written

µ0 +H∗
0(0)

s+µ0
s+s

s
=
µ0(s+ s)

(s+ µ0)s
+
κ∗0s(s+ s)

(s+ µ0)s

=
µ0(s+ s)

(s+ µ0)s
+

(s− µ0)s(s+ s)

(s+ µ0)s

(

s− µ0 + (s+ µ0)
(
s−µ0
−µ0

) µ0
µ0+s

(
s+s
s

) s

µ0+s

) .

Choosing the parameters: s = 1/n + 1/n2, µ0 = −1/n2 and s = 1 − 1/n + 1/n2, and

replacing, we get that this ratio is equal to

Rn =
n

n(n− 1)− 1
+

(n− 1)(n + 1)

n2(1− 1/n− 1/n2)
(

1− 1/n+
(

n2

n2−1

)1/n
(

n2

(n+1)n

)) ,

which converges to 1/2 as n→ ∞.

Step 7: H∗
γ is more informative than any other receiver-optimal test. First, if H is

another receiver-optimal test, we can linearize it to the left of 0 which makes it more informative.

Next, suppose that, for some x̂ ∈ (0, s), H(x̂) > H∗
γ(x̂). Then, we can replicate the optimality

argument of step 4 to find a contradiction. Therefore, for all x ∈ (0, s), we have H(x) ≤ H∗
γ(x).

Since the two test functions must be equal to the left of 0 as they are linear and deliver the

same receiver payoff, we can conclude that H is less informative than H∗
γ.

Proof of Proposition 6.

C Additional Proofs

Proofs for Example 1.
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