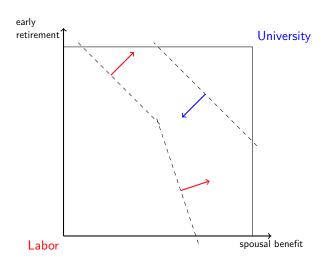
Bargaining with Incomplete Information

Marcin Pęski

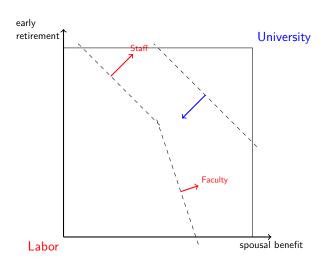
University of Toronto

July 22, 2020

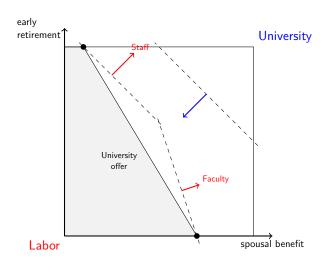
UofT pension bargaining



UofT pension bargaining



UofT pension bargaining



Alternating-offer bargaining over heterogeneous pie,

- one-sided incomplete information about preferences,
- mechanisms as offers.

- Mechanisms as offers:
 - menus,
 - menus of menus,
 - "I divide and you choose" vs "you divide and I choose",
 - arbitration and general mechanisms,
 - negotiations to create or alter the bargaining protocol,

Literature

- Complete information about preferences:
 - axiomatic: Nash (50, 53)
 - alternating-offer Rubinstein (82)
 - reputational: Myerson (91), Kambe (99), Abreu and Gul (00), Compte and Jehiel (02), Fanning (16)
 - all solutions the same -> Nash program success!
- Incomplete information:
 - axiomatic (mechanisms): Harsanyi and Selten (72), Myerson (84)
 - Coasian-bargaining with menus (2 types only): Wang (98), Strulovici (17)
 - alternating-offer with menus (2 types only + refinements): Sen (00), Inderst (03)
 - common knowledge of surplus: Jackson et al (18).
- Dynamic mechanism design without commitment: Skreta (06), Liu et al (19), Doval, Skreta (18).
- Informed principal (...)
 - dynamic informed principal?

- Main result: When N = 2, there is a unique PBE: Bob chooses optimal screening menu st. each Alice type receives complete info. payoff
 - no refinements needed,
 - ex ante, but not ex post efficient
 - constrained commitment solution, non-Coasian result,
 - equilibrium bounds when $N \ge 3$.
- Role of mechanisms:
 - menus help with screening and signaling (inscrutability),
 - menus of menus help with belief punishment,
 - no other mechanisms needed.

Environment

- Alice (informed) and Bob (uninformed).
- Pie $X = \left\{ x \in \left([0,1]^N \right)^2 : \sum_i x_{i,n} \le 1 \text{ for each } n \right\}.$ • mostly, N = 2.
- ullet Linear preferences $\mathcal{U}:=\left\{u\in\mathbb{R}_+^{ extsf{N}}:\sum u_n=1
 ight\}$
 - linear utilities $u \in \mathcal{U}$ from $x \in X$: $u(x) = \sum_{n} u_i x_{i,n}$,
 - Bob's preferences v,
 - Bob's beliefs $\mu \in \Delta \mathcal{U}$ about Alice's preferences u.
- Discounting $\delta < 1$.
- Alternating-offer bargaining with mechanisms as offers

Mechanisms as offers

- Each offer is a *mechanism*: a finite-horizon extensive-form game.
 - $m = \left(\left(S_A^t, S_B^t \right)_{t \leq T}, \chi \right)$
 - allocation: $\chi: \prod_{i,t} S'_{i,t} \to X$,
 - $T < \infty$ and S_i^t compact.
- Examples: single-offers, menu, menu of menus:
- ullet $\mathcal M$ "compact" space of all available mechanisms
 - \bullet main result hold as long as ${\cal M}$ contains menus and menus of menus.

Equilibrium

- Perfect Bayesian Equilibrium,
 - existence is an issue.
- (Payoff) outcomes:

$$e_B \in [0,1], e_A : \mathcal{U} \to [0,1].$$

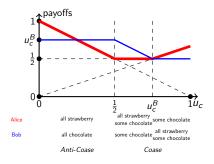
• Limit set of equilibrium outcomes $E^{j}(\delta,\mu)$:

$$E^{j}(\mu) = \lim_{\delta \to 1} E^{j}(\delta, \mu)$$

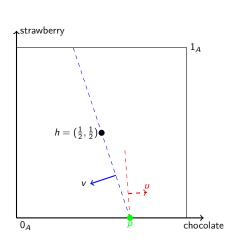
Commitment

- Coasian bargaining and dynamic mechanism design without commitment: Doval, Skreta (18), Liu et al (19)
- As in that literature,
 - players cannot unilaterally commit to future offers,
 - players are committed to an offer for the period in which the offer is made.
- But, players have also access to a large(-r) space of mechanisms,
 - including mechanism, which offered and accepted *bilaterally*, may commit players to an ex post inefficient allocation.

- Complete information bargaining: Alice u, and Bob v (fixed).
- Assume
 - N = 2 (chocolate, strawberry)
 - assume $v_c > v_s$ (Bob likes chocolate more).
- As $\delta \to 1$, Alice's payoffs converge to the Nash solution: $(\mathcal{N}_A(u), \mathcal{N}_B(u))$.



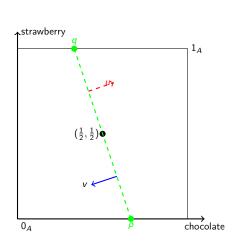
Nash allocations I



Nash allocations:

 p if u_c > v_c, i.e., if Alice likes chocolate more than Bob.

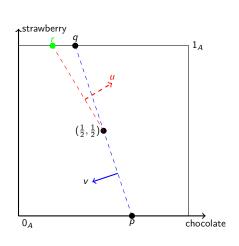
Nash allocations II



Nash allocations:

- p if $u_c > v_c$,
- \overline{pq} if $u_c = v_c$

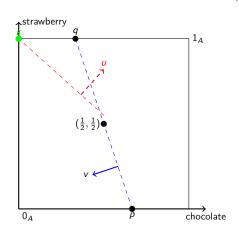
Nash allocations III



Nash allocations:

- p if $u_c > v_c$,
- \overline{pq} if $u_c = v_c$,
- ullet r if $rac{1}{2} < u_c < v_c$,

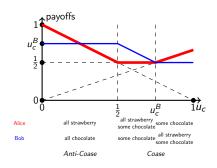
Nash allocations IV



Nash allocations:

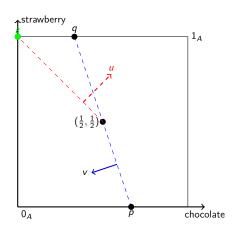
- p if $u_c > v_c$,
- \overline{pq} if $u_c = v_c$,
- r if $\frac{1}{2} < u_c < v_c$,
- s if $u_c < \frac{1}{2}$ (i.e., Alice likes strawberry more)

• Nash payoffs:



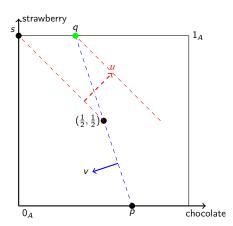
Incentive problem I

Incentive problem.

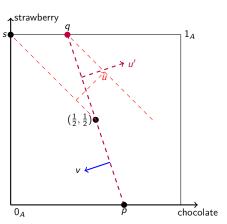


Incentive problem II

Incentive problem.



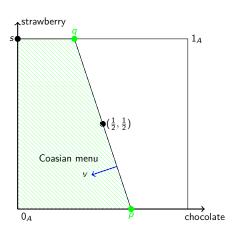
Incentive problem III



Incentive problem.

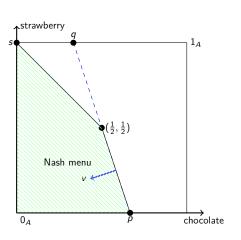
• types $u_c < v_c$ prefer to report $u_c' \approx v_c$

Coasian menu



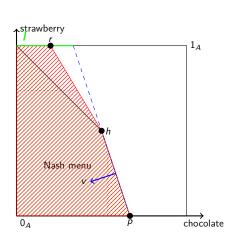
- If we ignore incentive problem, Alice chooses either p or q
- Coasian menu $\{p, q\}$.
- A companion paper studies the same environment,
 - bargaining with reputational types like in Abreu-Gul (00) and Kambe (98)
 - Coasian menu is the unique equilibium outcome.

Nash menu

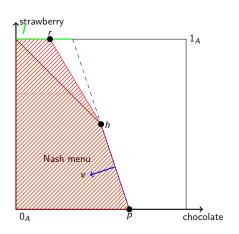


 If we want to ensure that each type of Alice receives her complete information payoff, we can offer Nash menu {s, h, p}.

Main result



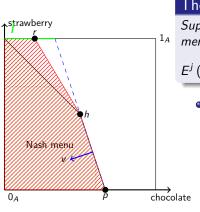
• Class of menus $m_r = \{p, h, r\}$ for $r \in I$



- Alice's payoff: $e_A(u; r) = \max_{x \in m_r} u(x)$
- Bob's payoff:

$$\begin{aligned} &e_{\mathcal{B}}\left(\mu;r\right) \\ &= \left(v_{c}\left(1-r_{c}\right)\right)\mu\left(u:u_{c}r_{c}+u_{s}\geq\frac{1}{2}\right) \\ &+\frac{1}{2}\left(1-\mu\left(u:u_{c}r_{c}+u_{s}\geq\frac{1}{2}\right)\right). \end{aligned}$$

• optimal menus $R^*(\mu) = \arg\max_{r \in I} e_B(\mu; r)$.

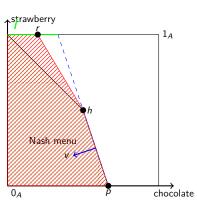


Theorem

Suppose N=2 and $\mathcal M$ contains all menus and menus of menus. Then,

$$E^{j}(\mu) = \{e_{A}(u;r), e_{B}(\mu;r) : r \in R^{*}(\mu)\}$$

 Bob offers an optimal screening menu.



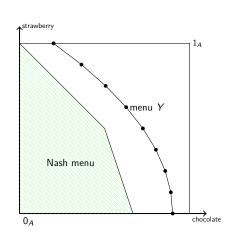
- Bob's payoff is unique and continuous in μ .
 - Alice's payoff is "generically" unique.
- Constrained "commitment".
 - not a Coasian menu,
 - not a reputational result.
- Not ex post efficient.

Complete information

- Suppose that Alice's type *u* is known.
- Let $\Pi(y) = \max_{x:u(x) \ge y} v(x)$ be Bob's payoff.
- Payoff y is too high for an equilibrium if Alice is not resistant to Bob's deviation:
 - Bob rejects, waits for one period and makes a counter-offer,
 - there exists $y' \ge \delta y$ such that $\delta \Pi(y') > \Pi(y)$.
- Let h be the highest

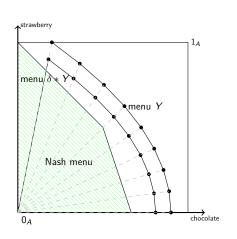
- Payoffs in menu $Y \subseteq X$:
 - Alice: $y(u; Y) = \max_{x \in Y} u(x)$,
 - Bob (ex post): $\pi(u; Y) = \max_{x \in x(u; Y)} v(x)$, where $x(u; Y) = \arg\max_{x \in Y} u(x)$
 - Bob's expected: $\Pi(\mu; Y) = \int \pi(u; Y) d\mu(u)$.
- Observation: if $(e_A, e_B) \in E^j(\delta, \mu)$ are equilibrium payoffs (or payoffs in any IC mechanism), then there is a menu Y such that $e_A = y(.; Y)$ and $e_B \leq \Pi(\mu; Y)$.

Upper bound



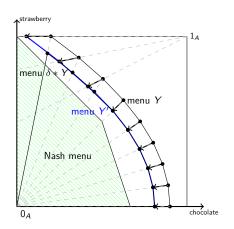
Menu Y is too high for Alice if

Upper bound



• Menu Y is too high for Alice if there exists $Y' \supset \delta Y$ s.t. $\delta \Pi(Y', \mu) > \Pi(Y, \mu)$.

Upper bound



- Menu Y is too high for Alice if there exists $Y' \supset \delta Y$ s.t. $\delta \Pi(Y', \mu) > \Pi(Y, \mu)$.
- Any Y that contains a neighborhood of Nash menu is too high.

Upper bound

- Show that no equilibrium payoff can be uniformly higher than Nash payoffs \mathcal{N}_A on the support of beliefs.
- If so, any menu with payoffs strictly above Nash must be accepted.
- But then, Bob's payoff cannot be lower than

$$\max_{Y\supseteq \mathsf{Nash\ menu}}\Pi\left(\mu;Y\right).$$

Because things are nice and linear, an optimal solution is

$$m_r$$
 for $r \in R^*(\mu)$.

Lower bound

- If Alice's payoffs are too low, then Alice should have a profitable deviation:
 - a signaling problem: find a deviation that is attractive for Bob with arbitrary beliefs,
 - solution: menu of menus

$$W(u,y_u) = \{y \in \mathcal{Y} : y(u) \ge y_u\}.$$

Lower bound

• Payoff y_u is too low for type u if for any menu Y such that $y_u \ge y(u; Y)$, any beliefs ψ , there exists menu Y' such that

$$\delta y\left(u;Y'\right)>y \text{ and } \Pi\left(\psi,Y'\right)>\Pi\left(\psi;Y\right).$$

- We show that
 - $y < \frac{1}{2}$ is too low for any type u,
 - $y < \overline{1}$ is too low for type who only likes strawberries
 - $y < \frac{1}{2v_c}$ is too low fortype who only likes chocolate.
- Any equilibrium menu must contain Nash menu.

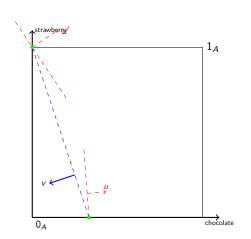
Comments

Single offer

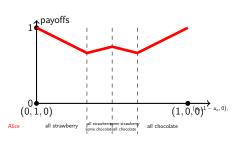
- The ability to offer mechanisms is important for the uniqueness.
- Assume that only single offers are allowed.
- Continuum of equilibria due to signaling issues and punishment with beliefs.

Comments

Single offer



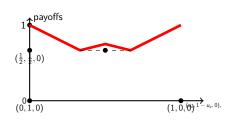
- Anti-Coasian equilibrium.
 - punishment of deviations with "bad" beliefs.
- This equilibrium does not survive if Alice can make menus of menus.



- Suppose N = 3 (chocolate, strawberry, vanilla).
- $v = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}),$
- \mathcal{N}_A is not a menu (it is not convex).

Comments

N > 2



There is an equilibrium st.

$$e_{A}\left(\frac{1}{2},\frac{1}{2},0\right) \leq \left(\text{Vex}\mathcal{N}^{A}\right)\left(\frac{1}{2},\frac{1}{2},0\right)$$

.

punishment with beliefs

Conclusion

- A model of bargaining with incomplete information about preferences and mechanisms as offers
- Main result: unique outcome (nice!)
 - role of mechanisms in bargaining
 - but not clear what to do about about Nash program,
 - also, a companion paper: reputational types lead to a different result.
- Proof of a concept that bargaining with mechanisms is possible and useful,
 - other environments, two-sided incomplete information