Bargaining with Evolving Private Information

Juan Ortner

Introduction

I study a bilateral bargaining game in which:

- (i) buyer is privately informed about her value
- (ii) seller privately observes her stochastically changing cost $c_t \in \{c_L, c_H\}$
- (iii) seller makes all the offers

Introduction

I study a bilateral bargaining game in which:

- (i) buyer is privately informed about her value
- (ii) seller privately observes her stochastically changing cost $c_t \in \{c_L, c_H\}$
- (iii) seller makes all the offers

Main novelty: arrival of new private information

Introduction

I study a bilateral bargaining game in which:

- (i) buyer is privately informed about her value
- (ii) seller privately observes her stochastically changing cost $c_t \in \{c_L, c_H\}$
- (iii) seller makes all the offers

Main novelty: arrival of new private information

How does the arrival of new private information affect bargaining outcomes?

Results I

Focus on PBE under which price offers reveal seller's cost

Provide characterization of set of revealing PBE

Results I

Focus on PBE under which price offers reveal seller's cost

Provide characterization of set of revealing PBE

Under revealing PBE:

- (i) trade is inefficiently delayed while costs are high
- (ii) trade is fast when costs fall

Inefficiencies driven by seller's info revelation constraints

Equilibria rationalize observed pricing patterns in markets for new durable goods.

Results II

Frequent-offers limit of most efficient revealing PBE

Results II

Frequent-offers limit of most efficient revealing PBE

Limit characterized by system of ODEs describing evolution of prices and trade probabilities

Comparative statics:

- An increase in seller's high cost increases prices and leads to slower trade
- An increase in value dist increases prices and leads to slower trade
- Inefficiencies increase as lowest buyer value goes to zero

Results III

Compare results with setting in which seller's costs are public (Ortner, 2017)

Results III

Compare results with setting in which seller's costs are public (Ortner, 2017)

Model with public costs retains key Coasian elements:

- (i) equilibrium outcome is efficient
- (ii) seller can't extract rents

High value buyer better-off under public costs low value buyer indifferent

Related literature

- One sided priv information Coasian bargaining: FLT (1985), GSW (1985), etc.
- Inefficiencies with one-sided priv info:
 Ausubel and Deneckere (1989), Deneckere and Liang (2006), McAffee and Wiseman (2008), etc.
- Inefficiencies with two-sided priv info: Cramton (1984, 1992), Cho (1990), Ausubel and Deneckere (1992), etc.
- Bargaining with arrival of public info:
 Fuchs and Skrzypacz (2010), Daley and Green (2020)

Bargaining between buyer and seller; discrete time $t = 0, \Delta, 2\Delta, ...$

Bargaining between buyer and seller; discrete time $t = 0, \Delta, 2\Delta, ...$

At time t = 0,

- ▶ buyer privately learns value $v \in [\underline{v}, \overline{v}]$
- ▶ seller privately learns cost $c_0 \in \{c_L = 0, c_H\}$
- seller makes offer p₀; buyer accepts or rejects

Bargaining between buyer and seller; discrete time $t = 0, \Delta, 2\Delta, ...$

At time t = 0,

- ▶ buyer privately learns value $v \in [\underline{v}, \overline{v}]$
- ▶ seller privately learns cost $c_0 \in \{c_L = 0, c_H\}$
- seller makes offer p₀; buyer accepts or rejects

If agreement is not reached by t > 0,

- ▶ seller privately observes $c_t \in \{c_L, c_H\}$
- seller makes offer p_t; buyer accepts or rejects

Bargaining between buyer and seller; discrete time $t = 0, \Delta, 2\Delta, ...$

At time t = 0,

- ▶ buyer privately learns value $v \in [\underline{v}, \overline{v}]$
- ▶ seller privately learns cost $c_0 \in \{c_L = 0, c_H\}$
- seller makes offer p₀; buyer accepts or rejects

If agreement is not reached by t > 0,

- ▶ seller privately observes $c_t \in \{c_L, c_H\}$
- seller makes offer p_t; buyer accepts or rejects

If agreement reached at t:

- buyer gets $e^{-rt}(v-p_t)$
- seller gets $e^{-rt}(p_t c_t)$

Values, costs

▶ Buyer's value v drawn from dist F supp $F = [\underline{v}, \overline{v}], F'(v) = f(v) > 0 \forall v \in [\underline{v}, \overline{v}], \underline{v} > c_L = 0$

Values, costs

- ▶ Buyer's value v drawn from dist F supp $F = [\underline{v}, \overline{v}], F'(v) = f(v) > 0 \forall v \in [\underline{v}, \overline{v}], \underline{v} > c_L = 0$
- For talk, seller's cost c_t evolves as:

$$ext{Prob}(c_0=c_H)=q\in(0,1) \ orall t>0, \quad ext{Prob}(c_t=c_H|c_{t-\Delta}=c_H)=e^{-\lambda\Delta} \ ext{Prob}(c_t=c_H|c_{t-\Delta}=c_L)=0 \ ext{}$$

Results generalize if c_L is not absorbing

Histories, strategies

- seller history at t: $h_t^S = \{c_{\tau}, p_{\tau}\}_{\tau=0}^{t-1}$
- ▶ buyer history at t: $h_t^B = \{v, p_\tau\}_{\tau=0}^{t-1}$
- (pure) strategy profile (σ^S, σ^B) :

$$\sigma^{S}(h_{t}^{S}): \{c_{L}, c_{H}\} \rightarrow \mathbb{R}_{+}$$

 $\sigma^{B}(h_{t}^{B}): \mathbb{R}_{+} \rightarrow \{accept, reject\}$

• beliefs $\mu = (\mu^S, \mu^B)$

Focus on PBE (σ, μ) such that:

1. for all h_t^S , supp $\sigma^S(h_t^S)(c_H) \cap \operatorname{supp} \sigma^S(h_t^S)(c_L) = \emptyset$

Focus on PBE (σ, μ) such that:

- 1. for all h_t^S , supp $\sigma^S(h_t^S)(c_H) \cap \operatorname{supp} \sigma^S(h_t^S)(c_L) = \emptyset$
- 2. if $\mu^B(h_t^B) = \text{Prob}(c_t = c_L | h_t^B) = 1$, then $\mu^B(h_\tau^B) = 1$ for all h_τ^B that follow h_t^B

Focus on PBE (σ, μ) such that:

- 1. for all h_t^S , supp $\sigma^S(h_t^S)(c_H) \cap \operatorname{supp} \sigma^S(h_t^S)(c_L) = \emptyset$
- 2. if $\mu^B(h_t^B) = \text{Prob}(c_t = c_L | h_t^B) = 1$, then $\mu^B(h_\tau^B) = 1$ for all h_τ^B that follow h_t^B

Let Σ^R denote set of PBE satisfying (1)-(2) such that, for all on-path h_t^S , $\sigma^S(h_t^S)(c_H)$ is a pure action

Focus on PBE (σ, μ) such that:

- 1. for all h_t^S , supp $\sigma^S(h_t^S)(c_H) \cap \operatorname{supp} \sigma^S(h_t^S)(c_L) = \emptyset$
- 2. if $\mu^B(h_t^B) = \text{Prob}(c_t = c_L | h_t^B) = 1$, then $\mu^B(h_\tau^B) = 1$ for all h_τ^B that follow h_t^B

Let Σ^R denote set of PBE satisfying (1)-(2) such that, for all on-path h_t^S , $\sigma^S(h_t^S)(c_H)$ is a pure action

Paper also considers mixed strategies and other equilibria.

First-best

Define

$$\rho \equiv \frac{e^{-r\Delta}(1 - e^{-\lambda\Delta})}{1 - e^{-(r+\lambda)\Delta}}$$

Let v^* be the solution to

$$\mathbf{V}^* - \mathbf{C}_{H} = \rho \mathbf{V}^*.$$

First-best

Define

$$\rho \equiv \frac{e^{-r\Delta}(1 - e^{-\lambda\Delta})}{1 - e^{-(r+\lambda)\Delta}}$$

Let v^* be the solution to

$$\mathbf{V}^* - \mathbf{C}_H = \rho \mathbf{V}^*.$$

Proposition 1 (first-best).

Under the first-best outcome, the buyer buys at time t = 0 if $v \ge v^*$, and buys at $\tau_L \equiv \min\{t : c_t = c_L\}$ if $v < v^*$.

First-best

Define

$$\rho \equiv \frac{e^{-r\Delta}(1-e^{-\lambda\Delta})}{1-e^{-(r+\lambda)\Delta}}$$

Let v^* be the solution to

$$\mathbf{V}^* - \mathbf{C}_H = \rho \mathbf{V}^*.$$

Proposition 1 (first-best).

Under the first-best outcome, the buyer buys at time t = 0 if $v \ge v^*$, and buys at $\tau_L \equiv \min\{t : c_t = c_L\}$ if $v < v^*$.

Assumption 1.

$$v^* \in (\underline{v}, \overline{v}).$$

Any PBE in Σ^R satisfies:

1. skimming property: at any t, there exists $\kappa_{t+\Delta}$ s.t. buyer accepts offer iff $v \geq \kappa_{t+\Delta}$;

 $\kappa_{t+\Delta}$ is seller's belief cutoff: $\operatorname{Prob}(v \leq \kappa | h_{t+\Delta}^{S}) = \frac{F(\kappa)}{F(\kappa_{t+\Delta})}$.

Any PBE in Σ^R satisfies:

- 1. skimming property: at any t, there exists $\kappa_{t+\Delta}$ s.t. buyer accepts offer iff $v > \kappa_{t+\Lambda}$; $\kappa_{t+\Delta}$ is seller's belief cutoff: $\operatorname{Prob}(v \leq \kappa | h_{t+\Delta}^S) = \frac{F(\kappa)}{F(\kappa_{t+\Delta})}$.
- 2. if $c_t = c_l$, cont play coincides with eq'm play of one-sided
- priv info game (FLT, GSW)

Any PBE in Σ^R satisfies:

- 1. skimming property: at any t, there exists $\kappa_{t+\Delta}$ s.t. buyer accepts offer iff $v \geq \kappa_{t+\Delta}$; $\kappa_{t+\Delta}$ is seller's belief cutoff: $\operatorname{Prob}(v \leq \kappa | h_{t+\Delta}^S) = \frac{F(\kappa)}{F(\kappa_{t+\Delta})}$.
- 2. if $c_t = c_L$, cont play coincides with eq'm play of one-sided priv info game (FLT. GSW)

For $\kappa \in [\underline{v}, \overline{v}]$, let:

- $p^L(\kappa)$ = price offered by seller in one-sided priv info game
- $\pi^L(\kappa)$ = seller's profits in one-sided priv info game

A PBE $(\sigma, \mu) \in \Sigma^R$ induces sequences $\{p_{\tau}^H, \kappa_{\tau}^H\}$, with $\{\kappa_{\tau}^H\}$ decreasing, s.t.:

- if $c_t = c_H$, seller posts price p_t^H buyer trades at time t iff $v \in [\kappa_{t+\Delta}^H, \kappa_t^H)$,
- if $c_t = c_L$ and $c_{t-\Delta} = c_H$, seller posts price $p^L(\kappa_t^H)$ earns cont profits $\pi^L(\kappa_t^H)$.

A PBE $(\sigma, \mu) \in \Sigma^R$ induces sequences $\{p_{\tau}^H, \kappa_{\tau}^H\}$, with $\{\kappa_{\tau}^H\}$ decreasing, s.t.:

- if $c_t = c_H$, seller posts price p_t^H buyer trades at time t iff $v \in [\kappa_{t+\Lambda}^H, \kappa_t^H)$,
- if $c_t = c_L$ and $c_{t-\Delta} = c_H$, seller posts price $p^L(\kappa_t^H)$ earns cont profits $\pi^L(\kappa_t^H)$.

Seller's profits under $\{p_{\tau}^H, \kappa_{\tau}^H\}$ at time t with $c_t = c_H$:

$$\begin{split} \pi_t^H(\{p_\tau^H, \kappa_\tau^H\}) &= (p_t^H - c_H) \left(\frac{F(\kappa_t^H) - F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)}\right) \\ &+ e^{-(r+\lambda)\Delta} \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} \pi_{t+\Delta}^H(\{p_\tau^H, \kappa_\tau^H\}) \\ &+ e^{-r\Delta} (1 - e^{-\lambda\Delta}) \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} \pi^L(\kappa_{t+\Delta}^H) \end{split}$$

Theorem 1.

(i) Suppose $(\sigma, \mu) \in \Sigma^R$ induces $\{p_{\tau}^H, \kappa_{\tau}^H\}$. Then, $\{\kappa_{\tau}^H\}$ is decreasing, and for all t:

$$\kappa_{t+\Delta}^{H} - p_{t}^{H} = e^{-(r+\lambda)\Delta} (\kappa_{t+\Delta}^{H} - p_{t+\Delta}^{H}) + e^{-r\Delta} (1 - e^{-\lambda\Delta}) (\kappa_{t+\Delta}^{H} - p^{L} (\kappa_{t+\Delta}^{H}))$$
(1)

Theorem 1.

(i) Suppose $(\sigma, \mu) \in \Sigma^R$ induces $\{p_{\tau}^H, \kappa_{\tau}^H\}$. Then, $\{\kappa_{\tau}^H\}$ is decreasing, and for all t:

$$\kappa_{t+\Delta}^{H} - p_{t}^{H} = e^{-(r+\lambda)\Delta} (\kappa_{t+\Delta}^{H} - p_{t+\Delta}^{H}) + e^{-r\Delta} (1 - e^{-\lambda\Delta}) (\kappa_{t+\Delta}^{H} - p^{L}(\kappa_{t+\Delta}^{H}))$$
(1)

$$\frac{F(\kappa_t^H) - F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} p_t^H \le \pi^L(\kappa_t^H) - \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} e^{-r\Delta} \pi^L(\kappa_{t+\Delta}^H)$$
(2)

Theorem 1.

(i) Suppose $(\sigma, \mu) \in \Sigma^R$ induces $\{p_{\tau}^H, \kappa_{\tau}^H\}$. Then, $\{\kappa_{\tau}^H\}$ is decreasing, and for all t:

$$\kappa_{t+\Delta}^{H} - p_{t}^{H} = e^{-(r+\lambda)\Delta} (\kappa_{t+\Delta}^{H} - p_{t+\Delta}^{H}) + e^{-r\Delta} (1 - e^{-\lambda\Delta}) (\kappa_{t+\Delta}^{H} - p^{L}(\kappa_{t+\Delta}^{H}))$$
(1)

$$\frac{F(\kappa_t^H) - F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} p_t^H \le \pi^L(\kappa_t^H) - \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} e^{-r\Delta} \pi^L(\kappa_{t+\Delta}^H)$$
(2)

$$\pi_t^H(\{\boldsymbol{p}_{\tau}^H, \kappa_{\tau}^H\}) \ge \rho \pi^L(\kappa_t^H) \tag{3}$$

Theorem 1.

(i) Suppose $(\sigma, \mu) \in \Sigma^R$ induces $\{p_{\tau}^H, \kappa_{\tau}^H\}$. Then, $\{\kappa_{\tau}^H\}$ is decreasing, and for all t:

$$\kappa_{t+\Delta}^{H} - p_{t}^{H} = e^{-(r+\lambda)\Delta} (\kappa_{t+\Delta}^{H} - p_{t+\Delta}^{H}) + e^{-r\Delta} (1 - e^{-\lambda\Delta}) (\kappa_{t+\Delta}^{H} - p^{L}(\kappa_{t+\Delta}^{H}))$$
(1)

$$\frac{F(\kappa_t^H) - F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} p_t^H \le \pi^L(\kappa_t^H) - \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} e^{-r\Delta} \pi^L(\kappa_{t+\Delta}^H)$$
(2)

$$\pi_t^H(\{p_\tau^H, \kappa_\tau^H\}) \ge \rho \pi^L(\kappa_t^H) \tag{3}$$

(ii) $\exists \overline{\Delta} > 0$ s.t., if $\Delta \leq \overline{\Delta}$, for any $\{p_{\tau}^H, \kappa_{\tau}^H\}$ with $\{\kappa_{\tau}^H\}$ decreasing satisfying (1)-(3), $\exists (\sigma, \mu) \in \Sigma^R$ inducing $\{p_{\tau}^H, \kappa_{\tau}^H\}$.

Proof sketch: part (i)

- ▶ Why does (2) hold? Consider hist. h_t^S with $c_{t-\Delta} = c_H$ and suppose $c_t = c_L$.
- Seller has incentives to reveal her cost if

$$\frac{F(\kappa_t^H) - F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} p_t^H + e^{-r\Delta} \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} \pi^L(\kappa_{t+\Delta}^H) \le \pi^L(\kappa_t^H)$$

Proof sketch: part (ii)

If $\{p_{\tau}^H, \kappa_{\tau}^H\}$ satisfies (1)-(3), construct PBE (σ, μ) s.t.:

- on eq'm path, if $c_t = c_H$: seller charges p_t^H buyer accepts if $v \in [\kappa_{t+\Delta}^H, \kappa_t^H)$
- if $c_t = c_L$, play cont eq'm with one-sided priv info
- if seller deviates while $c_t = c_H$, buyer assigns prob. 1 to $c = c_L$; only accept low prices $(\approx \underline{v} \text{ if } \Delta < \overline{\Delta})$.
- ▶ PBE (σ, μ) is weakly stationary (as in FLT, GSW)

Equilibria: inefficiencies

Proposition 2.

Suppose $\{p_{\tau}^H, \kappa_{\tau}^H\}$ is induced by an equilibrium $(\sigma, \mu) \in \Sigma^R$. Then, for all t, $\kappa_t^H \ge v^*$.

Inefficiencies due to too much delay.

Equilibria: inefficiencies

Proposition 2.

Suppose $\{p_{\tau}^H, \kappa_{\tau}^H\}$ is induced by an equilibrium $(\sigma, \mu) \in \Sigma^R$. Then, for all $t, \kappa_t^H \ge v^*$.

Inefficiencies due to too much delay.

Proof.

Suppose
$$\kappa_{t+\Delta}^H < v^* \Longleftrightarrow (1-\rho)\kappa_{t+\Delta}^H < c_H = (1-\rho)v^*$$
.

Equilibria: inefficiencies

Proposition 2.

Suppose $\{p_{\tau}^H, \kappa_{\tau}^H\}$ is induced by an equilibrium $(\sigma, \mu) \in \Sigma^R$. Then, for all $t, \kappa_t^H \ge v^*$.

Inefficiencies due to too much delay.

Proof.

Suppose $\kappa_{t+\Delta}^H < v^* \Longleftrightarrow (1-\rho)\kappa_{t+\Delta}^H < c_H = (1-\rho)v^*$. Price p_t^H satisfies

$$\kappa_{t+\Delta}^{H} - p_{t}^{H} \ge \rho(\kappa_{t+\Delta}^{H} - p^{L}(\kappa_{t+\Delta}^{H}))$$

$$\iff p_{t}^{H} \le (1 - \rho)\kappa_{t+\Delta}^{H} + \rho p^{L}(\kappa_{t+\Delta}^{H})$$

$$< c_{H} + \rho p^{L}(\kappa_{t+\Delta}^{H})$$

Seller would rather sell to type $\kappa_{t+\Delta}^H$ at τ_L (i.e. (3) fails).

Frequent-offers limit: preliminaries

Under most efficient eq'm in Σ^R , for all t with $\kappa_{t+\Delta}^H > v^*$,

$$\frac{F(\kappa_t^H) - F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} p_t^H = \pi^L(\kappa_t^H) - e^{-r\Delta} \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} \pi^L(\kappa_{t+\Delta}^H)$$

Frequent-offers limit: preliminaries

Under most efficient eq'm in Σ^R , for all t with $\kappa_{t+\Delta}^H > v^*$,

$$\frac{F(\kappa_t^H) - F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} p_t^H = \pi^L(\kappa_t^H) - e^{-r\Delta} \frac{F(\kappa_{t+\Delta}^H)}{F(\kappa_t^H)} \pi^L(\kappa_{t+\Delta}^H)$$

For each Δ , let $\{p_{\tau}^{H}(\Delta), \kappa_{\tau}^{H}(\Delta)\}$ be induced sequences under most efficient eq'm in Σ^{R} .

Define $\hat{\mathbf{v}} \equiv \lim_{\Delta \to 0} \mathbf{v}^* = \frac{r+\lambda}{r} \mathbf{c}_H$.

Frequent-offers limit: characterization

Theorem 2.

There exists $p^H : \mathbb{R}_+ \to \mathbb{R}_+$ and $\kappa^H : \mathbb{R}_+ \to [\underline{v}, \overline{v}]$ s.t. $\lim_{\Delta \to 0} p_t^H(\Delta) = p^H(t)$ and $\lim_{\Delta \to 0} \kappa_t^H(\Delta) = \kappa^H(t)$.

Frequent-offers limit: characterization

Theorem 2.

There exists $p^H : \mathbb{R}_+ \to \mathbb{R}_+$ and $\kappa^H : \mathbb{R}_+ \to [\underline{\nu}, \overline{\nu}]$ s.t. $\lim_{\Delta \to 0} p_t^H(\Delta) = p^H(t)$ and $\lim_{\Delta \to 0} \kappa_t^H(\Delta) = \kappa^H(t)$.

Functions $p^H(t)$ and $\kappa^H(t)$ solve

$$-\frac{dp^{H}(t)}{dt} = r(\kappa^{H}(t) - p^{H}(t)) + \lambda(\underline{v} - p^{H}(t))$$
(4)

$$-\frac{d\kappa^{H}(t)}{dt} = \frac{F(\kappa^{H}(t))}{f(\kappa^{H}(t))} \frac{r\underline{v}}{(p^{H}(t) - \underline{v})}$$
(5)

Boundary conditions: $\kappa^H(0) = \overline{v}$, and $p^H(\hat{t}) = \hat{v} - \frac{\lambda}{r+\lambda}(\hat{v} - \underline{v})$, where $\hat{t} \equiv \inf\{t \geq 0 : \kappa^H(t) = \hat{v}\}$.

Frequent-offers limit: characterization

Theorem 2.

There exists $p^H : \mathbb{R}_+ \to \mathbb{R}_+$ and $\kappa^H : \mathbb{R}_+ \to [\underline{\nu}, \overline{\nu}]$ s.t. $\lim_{\Delta \to 0} p_t^H(\Delta) = p^H(t)$ and $\lim_{\Delta \to 0} \kappa_t^H(\Delta) = \kappa^H(t)$.

Functions $p^H(t)$ and $\kappa^H(t)$ solve

$$-\frac{dp^{H}(t)}{dt} = r(\kappa^{H}(t) - p^{H}(t)) + \lambda(\underline{v} - p^{H}(t))$$
(4)

$$-\frac{d\kappa^{H}(t)}{dt} = \frac{F(\kappa^{H}(t))}{f(\kappa^{H}(t))} \frac{r\underline{\nu}}{(p^{H}(t) - \underline{\nu})}$$
(5)

Boundary conditions: $\kappa^H(0) = \overline{v}$, and $p^H(\hat{t}) = \hat{v} - \frac{\lambda}{r+\lambda}(\hat{v} - \underline{v})$, where $\hat{t} \equiv \inf\{t \geq 0 : \kappa^H(t) = \hat{v}\}$.

For all
$$t > \hat{t}$$
, $\frac{dp^H(t)}{dt} = \frac{d\kappa^H(t)}{dt} = 0$.

Frequent-offers limit: intuition

Equation (4) follows from buyer's indifference equates benefit and cost of delay:

$$-\frac{dp^{H}(t)}{dt} - \lambda(\underline{v} - p^{H}(t)) = r(\kappa^{H}(t) - p^{H}(t)).$$

Frequent-offers limit: intuition

Equation (4) follows from buyer's indifference equates benefit and cost of delay:

$$-\frac{dp^{H}(t)}{dt} - \lambda(\underline{v} - p^{H}(t)) = r(\kappa^{H}(t) - p^{H}(t)).$$

Equation (5) follows from seller IC

$$-\frac{d\kappa^H(t)}{dt}\frac{f(\kappa^H(t))}{F(\kappa^H(t))}(p^H(t)-\underline{v})=r\underline{v}.$$

De-coupling price ODE

Let $P^H(\kappa)$ be price at which buyer with value $\kappa \geq \hat{v}$ buys For all $t \leq \hat{t}$, $P^H(\kappa^H(t)) = p^H(t)$.

De-coupling price ODE

- Let $P^H(\kappa)$ be price at which buyer with value $\kappa \geq \hat{v}$ buys For all $t \leq \hat{t}$, $P^H(\kappa^H(t)) = p^H(t)$.
- ▶ Using (4)-(5), for all $\kappa \ge \hat{\mathbf{v}}$,

$$\frac{dP^{H}(\kappa)}{d\kappa} = \left(r(\kappa - P^{H}(\kappa)) + \lambda(\underline{v} - P^{H}(\kappa))\right) \frac{f(\kappa)}{F(\kappa)} \frac{(P^{H}(\kappa) - \underline{v})}{r\underline{v}},$$

with
$$P^H(\hat{\mathbf{v}}) = \hat{\mathbf{v}} - \frac{\lambda}{r+\lambda}(\hat{\mathbf{v}} - \underline{\mathbf{v}}).$$

Comparative statics

Proposition 3.

The following comparative statics hold:

(i) As F increases in terms of its reverse hazard rate, price $P^H(\kappa)$ increases for all $\kappa > \hat{\mathbf{v}}$, and the rate of trade $-\frac{d\kappa^H(t)}{dt}\frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ falls.

Comparative statics

Proposition 3.

The following comparative statics hold:

- (i) As F increases in terms of its reverse hazard rate, price $P^H(\kappa)$ increases for all $\kappa > \hat{\mathbf{v}}$, and the rate of trade $-\frac{d\kappa^H(t)}{dt}\frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ falls.
- (ii) As c_H increases, price $P^H(\kappa)$ increases for all $\kappa > \hat{v}$, and the rate of trade $-\frac{d\kappa^H(t)}{dt}\frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ falls.

Comparative statics

Proposition 3.

The following comparative statics hold:

- (i) As F increases in terms of its reverse hazard rate, price $P^H(\kappa)$ increases for all $\kappa > \hat{\mathbf{v}}$, and the rate of trade $-\frac{d\kappa^H(t)}{dt}\frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ falls.
- (ii) As c_H increases, price $P^H(\kappa)$ increases for all $\kappa > \hat{v}$, and the rate of trade $-\frac{d\kappa^H(t)}{dt} \frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ falls.
- (iii) As λ increases, price $P^H(\kappa)$ increases for all $\kappa \in [\hat{v}, \tilde{v})$, and decreases for all $\kappa \in (\tilde{v}, \overline{v}]$. The rate of trade $-\frac{d\kappa^H(t)}{dt}\frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ falls for all $t > \tilde{t}$, and increases for all $t < \tilde{t}$.

No gap limit

Proposition 4.

In the limit as $\underline{v} \rightarrow 0$,

- (i) the rate of trade $-\frac{d\kappa^H(t)}{dt} \frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ goes to zero;
- (ii) the seller's profits go to zero.

No gap limit

Proposition 4.

In the limit as $\underline{v} \rightarrow 0$,

- (i) the rate of trade $-\frac{d\kappa^H(t)}{dt} \frac{f(\kappa^H(t))}{F(\kappa^H(t))}$ goes to zero;
- (ii) the seller's profits go to zero.

As $\underline{v} \rightarrow 0$:

- seller profits go to zero (as in FLT, GSW)
- inefficiencies grow

Suppose costs $\{c_t\}$ is publicly observable, as in Ortner (2017).

Suppose costs $\{c_t\}$ is publicly observable, as in Ortner (2017).

For each $\Delta > 0$, let

- $(\sigma^{\Delta}, \mu^{\Delta})$ be weakly stat eq'm of game with public costs
- $\pi^{\text{pub}}(\Delta)$ be seller's profits at t=0 under $(\sigma^{\Delta}, \mu^{\Delta})$ conditional on $c_0=c_H$.

Suppose costs $\{c_t\}$ is publicly observable, as in Ortner (2017).

For each $\Delta > 0$, let

- $(\sigma^{\Delta}, \mu^{\Delta})$ be weakly stat eq'm of game with public costs
- $\pi^{\text{pub}}(\Delta)$ be seller's profits at t=0 under $(\sigma^{\Delta}, \mu^{\Delta})$ conditional on $c_0=c_H$.

Note: when $c_t = c_L$, cont play coincides with eq'm play of one-sided priv info game in FLT, GSW.

Theorem 3.

Suppose the seller's costs are publicly observable. As $\Delta \to 0,$

- (i) the limiting outcome under $(\sigma^{\Delta}, \mu^{\Delta})$ is efficient: buyer with $v \geq \hat{v}$ buys at t = 0; buyer with $v < \hat{v}$ buys at τ_L
- (ii) if $c_0 = c_H$, the seller's initial price under $(\sigma^{\Delta}, \mu^{\Delta})$ converges to $c_H + \frac{\lambda}{r+\lambda} \underline{v}$
- (iii) if $c_0=c_H$, seller's profits $\pi^{pub}(\Delta)$ converge to $\frac{\lambda}{r+\lambda}\underline{v}$

Publicly observable costs, cont'd

Eq'm with public costs retains key Coasian features.

As $\Delta \rightarrow 0$:

- efficient outcome
- seller doesn't extract rents from high-value buyers

Publicly observable costs, cont'd

Eq'm with public costs retains key Coasian features.

As $\Delta \rightarrow 0$:

- efficient outcome
- seller doesn't extract rents from high-value buyers

High value buyers are better-off under public costs low value buyers are indifferent.

Discussion I: other equilibria

Game admits other equilibria

Semi-separating equilibria:

- ▶ Low cost seller mixes between $p^L(\kappa_t^H)$ and p_t^H
- Seller IC constraints binds
- Evolution of prices adjusted

Discussion I: other equilibria

Game admits other equilibria

Semi-separating equilibria:

- ▶ Low cost seller mixes between $p^L(\kappa_t^H)$ and p_t^H
- Seller IC constraints binds
- Evolution of prices adjusted

Pooling equilibria

- ► High and low cost seller pool for \(\tau \geq 1 \) periods separate afterwards
- ► Can construct more efficient pooling eq'm (if $Prob(c_0 = c_H)$ is large); don't need to deter c_L -seller from mimicking.

Discussion II: increasing costs

Suppose $\{c_t\}$ evolves as:

$$ext{Prob}(c_0=c_H)=q\in(0,1) \ orall t>0, \quad ext{Prob}(c_t=c_H|c_{t-\Delta}=c_H)=e^{-\lambda\Delta} \ ext{Prob}(c_t=c_L|c_{t-\Delta}=c_L)=e^{-\gamma\Delta}.$$

Discussion II: increasing costs

Suppose $\{c_t\}$ evolves as:

$$ext{Prob}(c_0=c_H)=q\in(0,1) \ orall t>0, \quad ext{Prob}(c_t=c_H|c_{t-\Delta}=c_H)=e^{-\lambda\Delta} \ ext{Prob}(c_t=c_L|c_{t-\Delta}=c_L)=e^{-\gamma\Delta}. \$$

In any weakly stationary revealing PBE as $\Delta \to 0$, seller's profits converge to \underline{v} when $c_t = c_L$

Discussion III: efficient mechanism

In many bargaining models with inefficient delay: # IC, IR and BB mechanism achieving efficiency

▶ e.g., two-sided priv info (Cho (1990)), correlated values (Deneckere-Liang (2006), Fuchs-Skrzypacz (2010)).

Discussion III: efficient mechanism

In many bargaining models with inefficient delay: # IC, IR and BB mechanism achieving efficiency

 e.g., two-sided priv info (Cho (1990)), correlated values (Deneckere-Liang (2006), Fuchs-Skrzypacz (2010)).

Not necessarily true in current model:

Proposition 5.

If $(1 - \rho)\underline{v} \ge (1 - F(v^*))c_H$, there exists a mechanism satisfying IC, IR and BB, that implements the first-best.

Under mechanism: buyer reports $\tilde{v} \in [\underline{v}, \overline{v}]$ at t = 0; seller reports $\tilde{c}_t \in \{c_L, c_H\}$ at each $t = 0, \Delta, ...$

```
Under mechanism: buyer reports \tilde{v} \in [\underline{v}, \overline{v}] at t=0; seller reports \tilde{c}_t \in \{c_L, c_H\} at each t=0, \Delta, ... If \tilde{c}_0 = c_L: buyer buys t=0, pays \underline{v} (regardless of \tilde{v}).
```

```
Under mechanism: buyer reports \tilde{v} \in [\underline{v}, \overline{v}] at t = 0; seller reports \tilde{c}_t \in \{c_L, c_H\} at each t = 0, \Delta, ... If \tilde{c}_0 = c_L: buyer buys t = 0, pays \underline{v} (regardless of \tilde{v}). If \tilde{c}_0 = c_H:
```

- ▶ if $\tilde{v} \ge v^*$, buyer buys at t = 0, pays $c_H + \rho \underline{v}$
- if $\tilde{v} < v^*$, buyer does not buy at t = 0, pays $\rho \underline{v}$ buyer buys at $\hat{\tau}_L = \min\{t : \tilde{c}_t = c_L\}$, and pays $c_L = 0$

Under mechanism: buyer reports $\tilde{v} \in [\underline{v}, \overline{v}]$ at t = 0; seller reports $\tilde{c}_t \in \{c_L, c_H\}$ at each $t = 0, \Delta, ...$

If $\tilde{c}_0 = c_L$: buyer buys t = 0, pays \underline{v} (regardless of \tilde{v}).

If $\tilde{c}_0 = c_H$:

- ▶ if $\tilde{v} \ge v^*$, buyer buys at t = 0, pays $c_H + \rho \underline{v}$
- if $\tilde{v} < v^*$, buyer does not buy at t = 0, pays $\rho \underline{v}$ buyer buys at $\hat{\tau}_L = \min\{t : \tilde{c}_t = c_L\}$, and pays $c_L = 0$

Seller has incentives to report c_L truthfully at t = 0 if

$$\underline{v} \ge (1 - F(v^*))(c_H + \rho \underline{v}) + F(v^*)\rho \underline{v}$$
$$\iff (1 - \rho)\underline{v} \ge (1 - F(v^*))c_H$$

