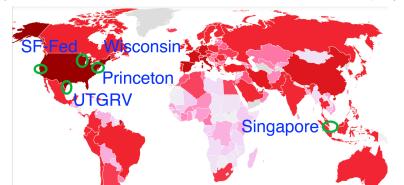
The Behavioral SIR Model, with Applications to the Swine Flu and COVID-19 Pandemics

Samuel Engle Jussi Keppo Marianna Kudlyak* Elena Quercioli Lones Smith Andrea Wilson NY Fed Seminar, 4PM on 6/30/2020

(*Views expressed are not those of the Federal Reserve Bank of San Francisco or the Federal Reserve System.)

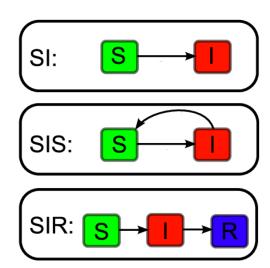


Plan of Talk: Deriving and Using a New Contagion Model

- ► The influential SIR contagion model
 - 1. is linear, and so tractable
 - 2. makes extreme predictions, especially later on in a contagion
 - 3. ignores human behavior
- ▶ We create a Behavioral SIR (BSIR) model that
 - 1. accounts for optimal avoidance behavior in a Nash equilibrium
 - 2. is log-linear, and so still tractable for analysis
 - 3. makes less extreme predictions (consistent with COVID so far)
 - 4. subsumes the SIR model as a special case for low infectiousness or small disease losses (crucial for statistical tests)
- ► For COVID19 and Swine Flu (2009), we reject the SIR model
- ► For COVID19, our BSIR model make sense of time series properties in countries and states, pre- and post-lockdown
- ▶ Data from the Swine Flu allows us to evaluate the BSIR model through the entire course of the contagion to herd immunity

- ► Contagion math in the best of times depends on
 - 1. Biology: how infectious is the infection?
 - 2. Sociology: networks, segregation, "Super spreaders"
 - 3. Geography: meeting rates are higher in dense cities
 - 4. Culture: in Italy, the kiss sometimes replaces the handshake
 - 5. Game theory: how we react to payoffs and each other
 - 6. Political economy: Do lockdowns or stay-in-place work? Are people responsive?

SI / SIS / SIR



The SIR Model (1927)

- ▶ The model takes place in continuous time $t \in [0, \infty)$
- ightharpoonup Population is the continuum [0,1] (no aggregate randomness)
- State transition process of people in the SIR model
- Mass $\sigma(t)$ of individuals are *susceptible* to a disease
- prevalence $\pi_t \in (0,1)$ is the mass of contagious individuals
 - ▶ Given: seed mass $\pi_0 > 0$, with $\sigma_0 = 1 \pi_0$
- ► *Incidence* is the inflow of new infections
- ► The *passing rate* is the mean number $\beta > 0$ of susceptible people per unit time each contagious person infects
 - \triangleright β increases in disease contagiousness, population density
 - \triangleright β reflects culture and social networks.

The SIR Model

Anyone infected gets better (or dies) at *recovery rate* r > 0.

 $\dot{\pi}(t)$ = incidence - recoveries = $\beta \pi(t) \sigma(t) - r \pi(t)$

random and independent meetings \Rightarrow incidence is $\beta\sigma\pi$ $\dot{\sigma}(t) = -{
m incidence} = -eta\pi(t)\sigma(t)$

Lemma

The susceptible mass $\sigma(t)$ monotonically falls, and prevalence $\pi(t)$ first rises and then falls.

- ▶ Proof: $\dot{\pi}(t) = [\beta \sigma(t) r]\pi(t)$
- \blacktriangleright A mass ρ is recovered/removed and immune
- lacktriangle We ignore ho(t), as it does not impact dynamics: $\dot{
 ho}(t)=r\pi(t)$

Herd Immunity

- ▶ Herd immunity: Epidemic dies out when enough of the population is immune (high ρ) that its spread stops naturally because too few people can transmit it (low σ)
- ▶ tipping point $\Leftrightarrow \dot{\pi}(t) \leq 0 \Leftrightarrow \beta \hat{\sigma} \hat{\pi} = r \hat{\pi}$.
- \Rightarrow basic reproduction number $R0 \equiv \beta/r$.

Lemma

Herd immunity happens if $\beta \sigma \pi \leq r\pi \Leftrightarrow \sigma \cdot R0 \leq 1$.

- ▶ Published COVID estimates $R0 = 2.3 \Rightarrow \rho_t > 1 1/2.3 \approx 0.56$
- ► "Newsom projection: 56% of California would be infected in 8 weeks without mitigation effort" (2020/03/19)

Goal: Marry Economics and Epidemiology

0000000

Our Goal: Behavioral SIR Model

- ▶ There is some $\pi > 0$ and $0 < \varphi < 1$ such that:
 - ▶ If $\pi \leq \underline{\pi}$, SIR dynamics apply (our "chill" regime)

$$\dot{\sigma}(t) = -\beta q(\pi)\sigma(t)\pi(t)
\dot{\pi}(t) = \beta q(\pi)\sigma(t)\pi(t) - r\pi(t)$$

• If $\pi > \underline{\pi}$, then the "vigilant" regime obtains:

$$\dot{\sigma}(t) = -\beta q(\pi)\sigma(t)\underline{\pi}^{1-\varphi}\pi(t)^{\varphi}
\dot{\pi}(t) = \beta q(\pi)\sigma(t)\underline{\pi}^{1-\varphi}\pi(t)^{\varphi} - r\pi(t)$$

 \blacktriangleright $\pi > 1$, then only the SIR dynamics obtain.

Incentives Matter in Contagions

- A disease does not pass the same
 - 1. among humans or animals in the SIR model.

- 2. among chill people as alert
 - Example: Measles outbreaks have much higher infection rate than measles pandemics.
- ► We will focus on optimizing strategic behavior, since it can change very rapidly in the contagion

Incentives Matter in Contagions

- ► A huge and longstanding literature in epidemiology (including some economists lately!) posits exogenous ways that people modify reduce the passing rate as the contagion worsens.
- ▶ This is like the adaptive expectations literature of the 1960s.
- The Lucas Critique: must close the loop with equilibrium
 - ▶ disease prevalence rises ⇒ more vigilant ⇒ realize others are more vigilant ⇒ relax (strategic substitutes)
 - equilibrium fully accounts for this (infinite) feedback cycle.
 - no arbitrary adjustment rule works
- ▶ We build on the model of "Contagious Matching Games" (2006 Quercioli and Smith), where people best reply to a prevalence, which acts like a price in an "implicit market"

Passing Games

► Counterfeit money vs disease: unwitting sharing of a rival "bad" vs unwitting sharing nonrival "bad"

We build on the model of "Contagious Matching Games" (2006 Quercioli and Smith), where people best reply to a prevalence, which acts like a price in an "implicit market"

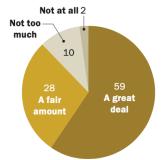
The Contagious Matching Game

- ► World's biggest game: Everybody is a player [0, 1]
- ► The highest stake game: life of death (or sickness): loss L
- Action: Vigilance $v \ge 0$ costs v and reduces the passing rate
- ► Players minimize expected total losses

Some Motivation for Our Model

Most say people's actions affect spread of COVID-19

% who say the actions of ordinary Americans affect how the coronavirus spreads in the U.S. ...



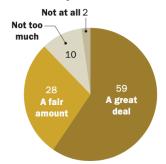
Note: No answer responses not shown. Source: Survey of U.S. adults conducted June 16-22, 2020.

PEW RESEARCH CENTER

Some Motivation for Our Model

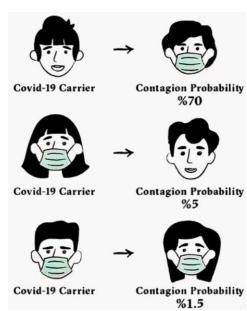
Most say people's actions affect spread of COVID-19

% who say the actions of ordinary Americans affect how the coronavirus spreads in the U.S. ...



Note: No answer responses not shown. Source: Survey of U.S. adults conducted June 16-22, 2020.

PEW RESEARCH CENTER



How Vigilance Reduces Passing: the Filter function

- Filter function $f(v) \in [0,1]$ linearly scales down passing rates
- \Rightarrow Passage rate is $\beta f(v)f(w)$ if vigilance v contagious person just meets vigilance w susceptible people
 - \Rightarrow diminishing returns: $f(0)=1>0=f(\infty) \& f'<0< f''$.
 - ► A symmetric function is a simplifying assumption
 - ▶ Intensive margin: a mask is equally protective of both parties.
 - Extensive margin: Not meeting also symmetrically protects both parties f(v) = fraction of meetings one keeps
 - ► This multiplicative (log-modular) form is for simplicity.
 - ► A vaccination is easy vigilance: one jab ⇒ nearly perfect filter
 - ▶ Posit hyperbolic filter function $f(v) = (1+v)^{-\gamma}$, for $\gamma > 0$
 - $ightharpoonup \gamma = filter elasticity$ in terms of "total vigilance" V = 1 + v.
 - ▶ 1% more total vigilance leads to γ % infection risk reduction

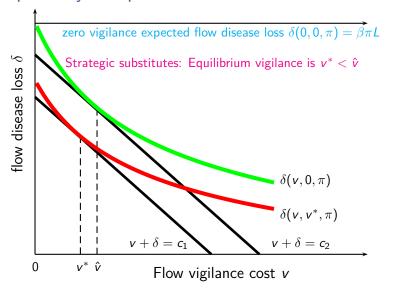
Vigilance Optimization

- ▶ People are first obliviously contagious, and next knowingly so.
- lacktriangleright $\pi=$ mass of unaware contagious individuals
- ▶ A *potentially susceptible* if infected with chance $q(\pi) = \frac{\sigma}{\sigma + \pi}$.
- ► Potentially susceptible people minimize selfish expected total losses:

$$\beta f(v)E[f(W)]q(\pi)\pi L + v$$

- ▶ $f' < 0 < f'' \Rightarrow \exists$ a corner solution or a unique interior optimum.
- ► Since everyone makes the same choice, only pure strategy symmetric Nash equilibria exist, with $W = v^* \ge 0$.
- flow disease loss as $\delta(v, v^*, \pi) = \beta f(v) f(v^*) g(\pi) \pi L$

Individual Optimality in Equilibrium



Nash Equilibrium Vigilance

▶ Vigilance vanishes for low prevalence $\pi \leq \underline{\pi}$, where

$$\underline{\pi} \approx [\beta L(1-\varphi)/(2\varphi)]^{-1}.$$

where $\varphi \equiv 1/(2\gamma + 1)$ does not depend on L, β

Theorem

There is a unique Nash equilibrium for any prevalence $\pi \geq 0$. Equilibrium vigilance $v^*(\pi)$ vanishes for $\pi \in [0, \underline{\pi}]$, and is increasing for $\pi \geq \underline{\pi}$, for some prevalence threshold $\underline{\pi} > 0$ that is falling in L and β , but rising in φ .

- ► Note: Any dynamic equilibrium of a continuum agent game requires static Nash play every period
- \Rightarrow The only assumption here is a constant loss L, which holds if
 - people are motivated by current losses, or
 - people are forward-looking but act as if in a steady-state.
 - ▶ Dynamics impossibly hard to forecast even experts disagree

Nash Equilibrium Passing Rate

▶ The behavioral passing rate $B(\pi|\varphi) = \beta f(v^*)^2$ is the innate passing rate β times any two individuals' equilibrium filter.

Theorem

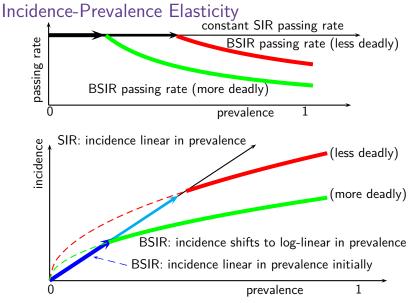
The behavioral passing rate has two regimes:

$$B(\pi|\varphi) = \begin{cases} \beta & \pi \leq \underline{\pi} & \textit{(chill)} \\ q(\pi)\beta(\underline{\pi}/\pi)^{1-\varphi} \approx \beta(\underline{\pi}/\pi)^{1-\varphi} & \pi > \underline{\pi} & \textit{(vigilant)} \end{cases}$$

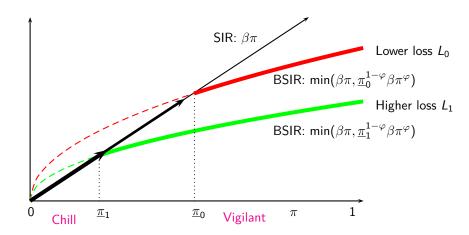
Given our filter, we have

incidence rate = \mathcal{SI} meeting rate \times passing chance

$$\Rightarrow$$
 incidence-prevalence elasticity $= 1 + {
m passing \ rate}$ elasticity $= 1 + (\varphi - 1)$ $= \varphi$



Incidence-Prevalence Elasticity



Prevalence Elasticity of Incidence

Corollary (Breakout Incidence)

Equilibrium incidence $B(\pi)\pi\sigma$ is log-linear in prevalence $\pi \geq \underline{\pi}$,

$$\log (incidence) = \log[B(\pi)\pi\sigma] = b + \varphi \log \pi + \log \sigma$$

where the incidence-prevalence elasticity is $\varphi \equiv 1/(2\gamma + 1) < 1$, and the intercept b increases in φ and β , and falls in L.

Corollary

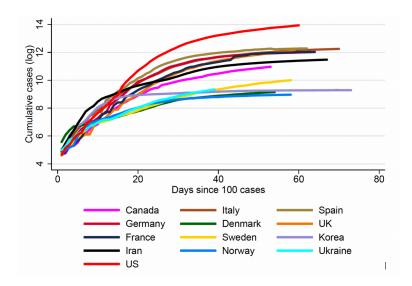
For the same number of cases, the passing rate rises in population.

Assume a lockdowns reduce β , by foreclosing on opportunities.

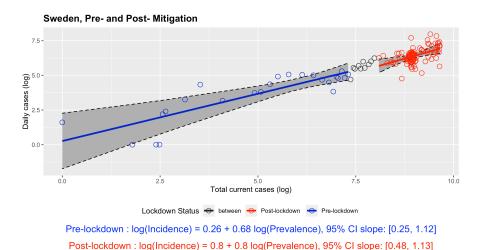
Corollary

Lockdown parallelly shifts the regression line of $\log(incidence)$ on $\log \pi$ down, for fixed σ .

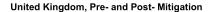
Breakout Theory, when $\sigma \approx 1$ and $\pi \approx 0$: Heterogeneity?

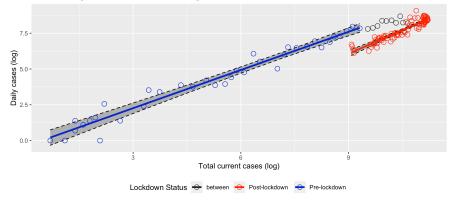


Sweden, Pre- and Post-Mitigation



UK, Pre- and Post-Lockdown

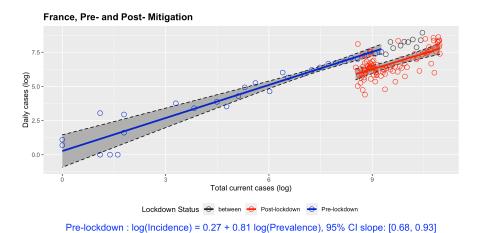




 $\label{eq:pre-lockdown} Pre-lockdown: log(Incidence) = -0.4 + 0.89 \ log(Prevalence), 95\% \ Cl \ slope: [0.83, 0.95]$

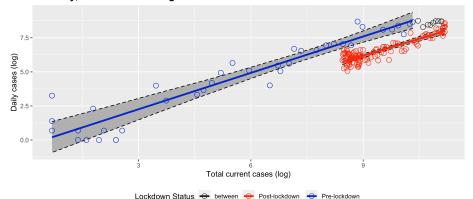
Post-lockdown: log(Incidence) = 1.1 + 1.1 log(Prevalence), 95% CI slope: [1.01, 1.19]

France, Pre- and Post-Lockdown



Post-lockdown: log(Incidence) = 0.77 + 0.77 log(Prevalence), 95% CI slope: [0.6, 0.93]

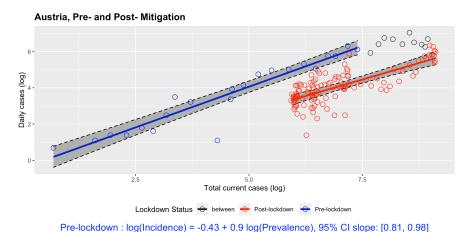
Germany, Pre-Lockdown



Pre-lockdown: log(Incidence) = -0.41 + 0.89 log(Prevalence), 95% CI slope: [0.77, 1.01]

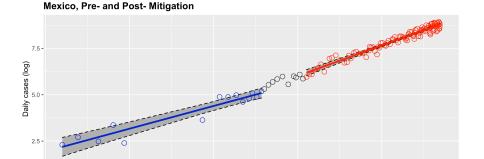
 $Post-lockdown: log(Incidence) = 0.83 + 0.83 \ log(Prevalence), \ 95\% \ CI \ slope: [0.75, \ 0.91]$

Austria, Pre- and Post-Lockdown



Post-lockdown: log(Incidence) = 0.73 + 0.73 log(Prevalence), 95% CI slope: [0.63, 0.83]

Mexico, Pre- and Post-Mitigation



Lockdown Status

→ between
→ Post-lockdown

→ Pre-lockdown

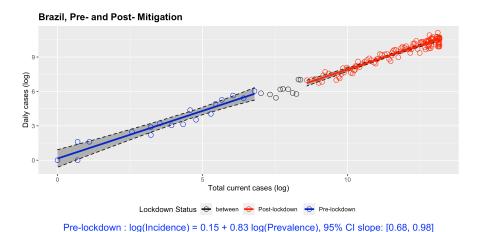
Pre-lockdown: log(Incidence) = 0.72 + 0.61 log(Prevalence), 95% CI slope: [0.51, 0.72]

Total current cases (log)

Post-lockdown: log(Incidence) = 0.82 + 0.82 log(Prevalence), 95% CI slope: [0.78, 0.86]

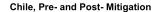
10

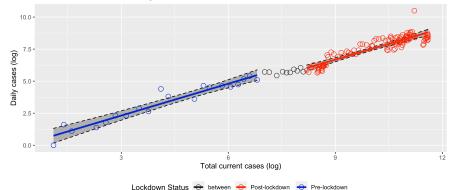
Brazil, Pre- and Post-Mitigation



Post-lockdown: log(Incidence) = 0.84 + 0.84 log(Prevalence), 95% CI slope: [0.79, 0.88]

Chile, Pre- and Post-Mitigation

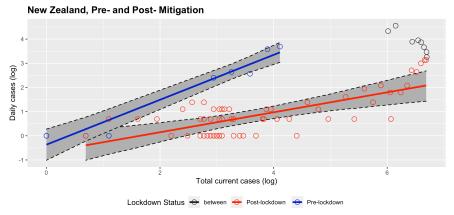




Pre-lockdown : log(Incidence) = -0.17 + 0.83 log(Prevalence), 95% CI slope: [0.69, 0.97]

Post-lockdown: log(Incidence) = 0.82 + 0.82 log(Prevalence), 95% CI slope: [0.75, 0.89]

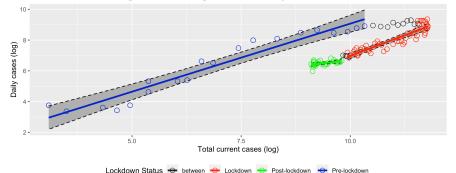
New Zealand, Pre- and Post-Lockdown



Pre-lockdown: log(Incidence) = -0.37 + 0.93 log(Prevalence), 95% CI slope: [0.64, 1.22]

Post-lockdown: log(Incidence) = 0.41 + 0.41 log(Prevalence), 95% CI slope: [0.28, 0.55]

New York, Pre- and Post-Lockdown



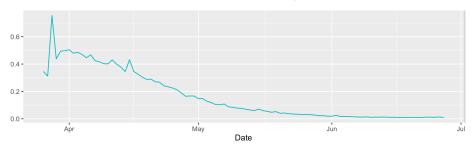
Pre-lockdown : log(Incidence) = 0.22 + 0.88 log(Prevalence), 95% CI slope: [0.75, 1.02]

Lockdown : log(Incidence) = 1.07 + 1.07 log(Prevalence), 95% CI slope: [0.96, 1.19]

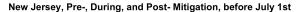
Post-lockdown: log(Incidence) = 0.35 + 0.35 log(Prevalence), 95% CI slope: [0.08, 0.61]

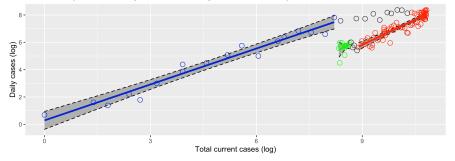
Upwardly Biased Slope arphi and Improving Testing

▶ Falling NY Positive-to-Test Ratio induces an omitted variable bias, that inflates the slope estimate φ



New Jersey, Pre- and Post-Lockdown



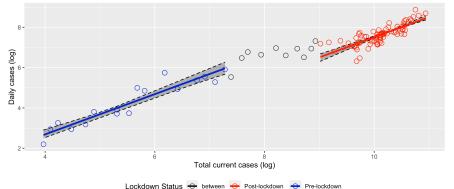


Lockdown Status - between - Lockdown - Post-lockdown - Pre-lockdown Pre-lockdown: log(Incidence) = 0.29 + 0.88 log(Prevalence), 95% CI slope: [0.76, 0.99]

Lockdown: log(Incidence) = 1.23 + 1.23 log(Prevalence), 95% CI slope: [1.12, 1.35]

Post-lockdown: log(Incidence) = 1.3 + 1.3 log(Prevalence), 95% CI slope: [-0.99, 3.59]

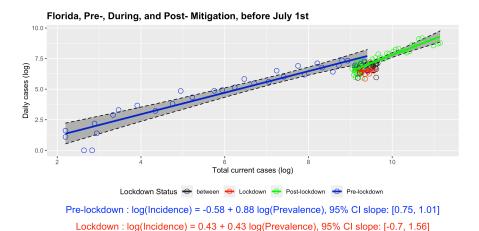
California, Pre- and Post-Lockdown/Mitigation



Pre-lockdown: log(Incidence) = -1.31 + 1 log(Prevalence), 95% CI slope: [0.81, 1.09]

Post-lockdown: log(Incidence) = 1 + 1 log(Prevalence), 95% CI slope: [0.85, 1.15]

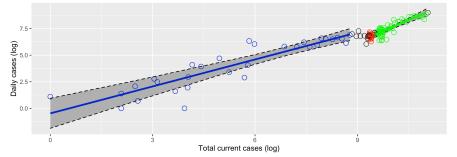
Florida, Pre- and Post-Mitigation (Riots!)



Post-lockdown: log(Incidence) = 1.33 + 1.33 log(Prevalence), 95% CI slope: [1.1, 1.56]

37 / 52

Texas, Pre- and Post-Mitigation (Riots!)



Lockdown Status

between

Lockdown

Post-lockdown

Pre-lockdown

Pre-lockdown

Pre-lockdown: log(Incidence) = -0.48 + 0.85 log(Prevalence), 95% CI slope: [0.65, 1.03]

Lockdown: log(Incidence) = -0.83 + -0.83 log(Prevalence), 95% CI slope: [-4.79, 3.15]

Post-lockdown: log(Incidence) = 1.4 + 1.4 log(Prevalence), 95% CI slope: [1.17, 1.62]

General Behavioral SIR Dynamics Nest the SIR Dynamics

- ▶ If $\pi_0 \leq \pi$, SIR dynamics apply
- ▶ If $\pi_0 > \underline{\pi}$, then the vigilant regime starts. At this point:

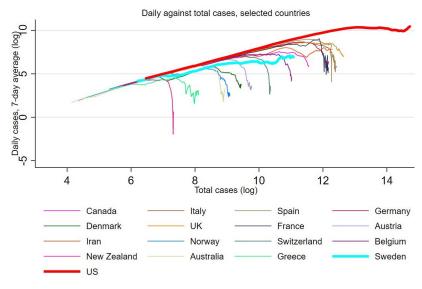
$$\dot{\sigma}(t) = -\beta q(\pi)\sigma(t)\underline{\pi}^{1-\varphi}\pi(t)^{\varphi}$$

$$\dot{\pi}(t) = \beta q(\pi)\sigma(t)\underline{\pi}^{1-\varphi}\pi(t)^{\varphi} - r\pi(t)$$

Theorem (Prevalence is Hump-Shaped)

In the BSIR, the susceptible share $\sigma(t)$ monotonically falls, while prevalence $\pi(t)$ either starts falling, or rises and then falls.

Famous Logarithmic Running Cases Plot



Breakout Theory

- SIR model: only immunity chokes off infections, and so bear breakout, log-linearity prevails
- For times $t < \tau$, the SIR dynamics apply:

$$\dot{\pi}(t) \approx \beta \pi(t) - r \pi(t) \quad \Rightarrow \quad \pi(t) \approx \pi_0 e^{(\beta - r)t}$$

For times $t < \tau$, we have a Bernoulli differential equation:

$$\pi'(t) = \beta \underline{\pi}^{1-\varphi} \pi(t)^{\varphi} - r \pi(t) \quad \Rightarrow \quad \pi(t) = \underline{\pi} \left(\frac{\beta}{r} \left(1 - k e^{-r(1-\varphi)t} \right) \right)^{\frac{1}{1-\varphi}}$$
 for the constant $k = (\beta/r - 1) \left(\underline{\pi}/\pi_0 \right)^{r(1-\varphi)/(\beta-r)}$.

National Breakout Case Plots Over Time

- ▶ In the SIR model, these are log-linear.
- ightharpoonup Assume a fraction α of non-spreading asymptomatics.

Theorem

Assume $\beta(1-\alpha) > r$.

- ▶ In the chill regime (SIR model), π is increasing and log-linear.
- In the vigilant regime, prevalence $\pi(t)$ is increasing and logconcave, and is initially convex, eventually concave. Concavity happens sooner the lower is $\beta(1-\alpha)$ or ϕ .

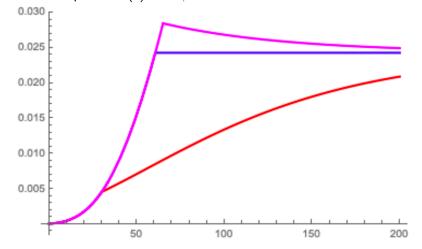
If $\beta(1-\alpha) < r$, then π is decreasing, logconcave, and convex.

Corollary

The sum of all past cases Υ is logconcave in time. It is convex when π is increasing, and concave when π is decreasing.

Mitigation or Lockdowns

- ▶ Think of mitigation or lockdown as a fall in the passing rate β .
- ▶ Here is a plot of $\pi(t)$ after β falls from 0.7 to 0.4.



Herd Immunity

► Herd immunity tipping point:

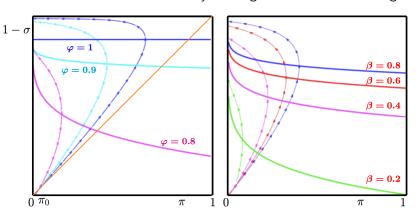
$$B(t)\check{\sigma}_{\varphi}\check{\pi}_{\varphi}^{\varphi}=r\check{\pi}_{\varphi}\quad\Leftrightarrow\quad\check{\sigma}_{\varphi}=(r/B(t))\check{\pi}_{\varphi}^{1-\varphi}>r/eta$$

$\mathsf{Theorem}$

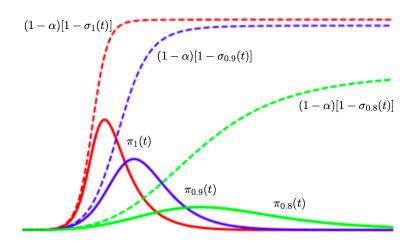
As the prevalence elasticity $\varphi \leq 1$ falls, (i) the herd immunity time τ_{φ} advances, (ii) the peak prevalence π_{φ} falls, (iii) the herd immunity infection share $1-\sigma_{\varphi}$ falls, and (iv) its ratio to the eventual infection share $(1-\sigma_{\varphi})/(1-\sigma_{\varphi}(\infty))$ rises.

The Road Ahead: SIR versus BSIR

- ► SIR Model: immunity chokes off contagions
- ▶ BSIR Model: immunity and vigilance choke off contagions

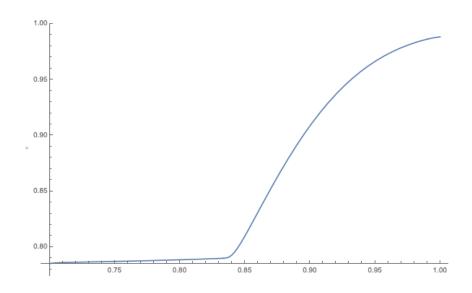


Herd Immunity — Behavioral SIR "Flattens the Curve"

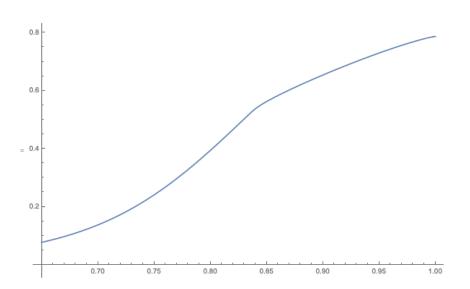


Herd Immunity Cases ≪ Eventual Total Cases

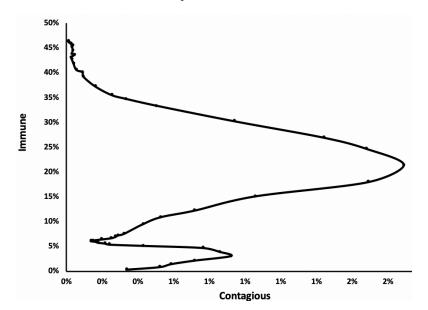
Eventual Infections



Herd Immunity Infections as a Share of Eventual Infections

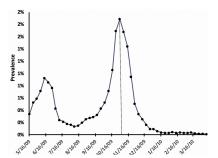


Swine Flu Herd Immunity



Swine Flu Herd Immunity

- ▶ Herd immunity on 10/31, 2009, with about 20% Immunity
- Lesson: about half of the sicknesses postdate herd immunity
- ▶ Lesson: the vaccine arrival in October was critical
- Lesson: seasonal component leads to "waves"



Swine Flu Herd Immunity

