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Plan of Talk: Deriving and Using a New Contagion Model
▶ The influential SIR contagion model

1. is linear, and so tractable
2. makes extreme predictions, especially later on in a contagion
3. ignores human behavior

▶ We create a Behavioral SIR (BSIR) model that
1. accounts for optimal avoidance behavior in a Nash equilibrium
2. is log-linear, and so still tractable for analysis
3. makes less extreme predictions (consistent with COVID so far)
4. subsumes the SIR model as a special case for low infectiousness

or small disease losses (crucial for statistical tests)
▶ For COVID19 and Swine Flu (2009), we reject the SIR model

▶ For COVID19, our BSIR model make sense of time series
properties in countries and states, pre- and post-lockdown

▶ Data from the Swine Flu allows us to evaluate the BSIR model
through the entire course of the contagion to herd immunity
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▶ Contagion math in the best of times depends on
1. Biology: how infectious is the infection?

2. Sociology: networks, segregation, “Super spreaders”

3. Geography: meeting rates are higher in dense cities

4. Culture: in Italy, the kiss sometimes replaces the handshake

5. Game theory: how we react to payoffs and each other

6. Political economy: Do lockdowns or stay-in-place work? Are
people responsive?
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SI / SIS / SIR
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The SIR Model (1927)
▶ The model takes place in continuous time t ∈ [0, ∞)

▶ Population is the continuum [0, 1] (no aggregate randomness)

▶ State transition process of people in the SIR model

▶ Mass σ(t) of individuals are susceptible to a disease

▶ prevalence πt ∈ (0, 1) is the mass of contagious individuals
▶ Given: seed mass π0 > 0, with σ0 = 1 − π0

▶ Incidence is the inflow of new infections

▶ The passing rate is the mean number β > 0 of susceptible
people per unit time each contagious person infects
▶ β increases in disease contagiousness, population density
▶ β reflects culture and social networks.
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The SIR Model
▶ Anyone infected gets better (or dies) at recovery rate r > 0.

▶ random and independent meetings ⇒ incidence is βσπ

σ̇(t) = −incidence = −βπ(t)σ(t)
π̇(t) = incidence − recoveries = βπ(t)σ(t) − rπ(t)

Lemma
The susceptible mass σ(t) monotonically falls, and prevalence π(t)
first rises and then falls.

▶ Proof: π̇(t) = [βσ(t) − r ]π(t)

▶ A mass ρ is recovered/removed and immune

▶ We ignore ρ(t), as it does not impact dynamics: ρ̇(t) = rπ(t)
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Herd Immunity

▶ Herd immunity: Epidemic dies out when enough of the
population is immune (high ρ) that its spread stops naturally
because too few people can transmit it (low σ)

▶ tipping point ⇔ π̇(t) ≤ 0 ⇔ βσ̂π̂ = r π̂.

⇒ basic reproduction number R0 ≡ β/r .

Lemma
Herd immunity happens if βσπ ≤ rπ ⇔ σ · R0 ≤ 1.

▶ Published COVID estimates R0 = 2.3 ⇒ ρt >1 − 1/2.3≈0.56

▶ “Newsom projection: 56% of California would be infected in 8
weeks without mitigation effort” (2020/03/19)
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Goal: Marry Economics and Epidemiology
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Our Goal: Behavioral SIR Model

▶ There is some π > 0 and 0 < φ < 1 such that:
▶ If π ≤ π, SIR dynamics apply (our “chill” regime)

σ̇(t) = −βq(π)σ(t)π(t)
π̇(t) = βq(π)σ(t)π(t) − rπ(t)

▶ If π > π, then the “vigilant” regime obtains:

σ̇(t) = −βq(π)σ(t)π1−φπ(t)φ

π̇(t) = βq(π)σ(t)π1−φπ(t)φ − rπ(t)

▶ π ≥ 1, then only the SIR dynamics obtain.
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Incentives Matter in Contagions

▶ A disease does not pass the same
1. among humans or animals in the SIR model.

2. among chill people as alert
▶ Example: Measles outbreaks have much higher infection rate

than measles pandemics.
▶ We will focus on optimizing strategic behavior, since it can

change very rapidly in the contagion
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Incentives Matter in Contagions

▶ A huge and longstanding literature in epidemiology (including
some economists lately!) posits exogenous ways that people
modify reduce the passing rate as the contagion worsens.

▶ This is like the adaptive expectations literature of the 1960s.
▶ The Lucas Critique: must close the loop with equilibrium

▶ disease prevalence rises ⇒ more vigilant ⇒ realize others are
more vigilant ⇒ relax (strategic substitutes)

▶ equilibrium fully accounts for this (infinite) feedback cycle.

▶ no arbitrary adjustment rule works
▶ We build on the model of “Contagious Matching Games”

(2006 Quercioli and Smith), where people best reply to a
prevalence, which acts like a price in an “implicit market”
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Passing Games

▶ Counterfeit money vs disease: unwitting sharing of a rival
“bad” vs unwitting sharing nonrival “bad”

▶ We build on the model of “Contagious Matching Games”
(2006 Quercioli and Smith), where people best reply to a
prevalence, which acts like a price in an “implicit market”

12 / 52



Introduction The Behavioral SIR Model COVID Regressions BSIR Dynamics Herd Immunity Swine Flu, 2009

The Contagious Matching Game

▶ World’s biggest game: Everybody is a player [0, 1]

▶ The highest stake game: life of death (or sickness): loss L

▶ Action: Vigilance v ≥ 0 costs v and reduces the passing rate

▶ Players minimize expected total losses
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Some Motivation for Our Model
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Some Motivation for Our Model
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How Vigilance Reduces Passing: the Filter function
▶ Filter function f (v) ∈ [0, 1] linearly scales down passing rates

⇒ Passage rate is βf (v)f (w) if vigilance v contagious person
just meets vigilance w susceptible people

⇒ diminishing returns: f (0)=1>0= f (∞) & f ′ < 0 < f ′′.

▶ A symmetric function is a simplifying assumption
▶ Intensive margin: a mask is equally protective of both parties.
▶ Extensive margin: Not meeting also symmetrically protects

both parties — f (v) = fraction of meetings one keeps
▶ This multiplicative (log-modular) form is for simplicity.

▶ A vaccination is easy vigilance: one jab ⇒ nearly perfect filter

▶ Posit hyperbolic filter function f (v) = (1 + v)−γ , for γ >0
▶ γ = filter elasticity in terms of “total vigilance” V = 1 + v .

▶ 1% more total vigilance leads to γ% infection risk reduction
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Vigilance Optimization

▶ People are first obliviously contagious, and next knowingly so.

▶ π = mass of unaware contagious individuals

▶ A potentially susceptible if infected with chance q(π) = σ
σ+π .

▶ Potentially susceptible people minimize selfish expected total
losses:

βf (v)E [f (W )]q(π)πL + v
▶ f ′ <0< f ′′ ⇒ ∃ a corner solution or a unique interior optimum.

▶ Since everyone makes the same choice, only pure strategy
symmetric Nash equilibria exist, with W = v∗ ≥ 0.

▶ flow disease loss as δ(v , v∗, π) = βf (v)f (v∗)q(π)πL
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Individual Optimality in Equilibrium

zero vigilance expected flow disease loss δ(0, 0, π) = βπL

Strategic substitutes: Equilibrium vigilance is v∗ < v̂

δ(v , 0, π)

δ(v , v∗, π)

v + δ = c2v + δ = c1

0 Flow vigilance cost vv∗ v̂
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Nash Equilibrium Vigilance
▶ Vigilance vanishes for low prevalence π ≤ π, where

π ≈ [βL(1 − φ)/(2φ)]−1.

where φ ≡ 1/(2γ + 1) does not depend on L, β

Theorem
There is a unique Nash equilibrium for any prevalence π ≥ 0.
Equilibrium vigilance v∗(π) vanishes for π ∈ [0, π], and is
increasing for π ≥ π, for some prevalence threshold π > 0 that is
falling in L and β, but rising in φ.

▶ Note: Any dynamic equilibrium of a continuum agent game
requires static Nash play every period

⇒ The only assumption here is a constant loss L, which holds if
▶ people are motivated by current losses, or
▶ people are forward-looking but act as if in a steady-state.
▶ Dynamics impossibly hard to forecast — even experts disagree
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Nash Equilibrium Passing Rate
▶ The behavioral passing rate B(π|φ) = βf (v∗)2 is the innate

passing rate β times any two individuals’ equilibrium filter.

Theorem

The behavioral passing rate has two regimes:

B(π|φ) =
{

β π ≤ π (chill)
q(π)β(π/π)1−φ ≈ β(π/π)1−φ π > π (vigilant)

Given our filter, we have

incidence rate = SI meeting rate × passing chance

⇒ incidence-prevalence elasticity = 1 + passing rate elasticity
= 1 + (φ − 1)
= φ
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Incidence-Prevalence Elasticity
constant SIR passing rate

BSIR passing rate (less deadly)

BSIR passing rate (more deadly)
0 1prevalence
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SIR: incidence linear in prevalence
(less deadly)

BSIR: incidence shifts to log-linear in prevalence
BSIR: incidence linear in prevalence initially

(more deadly)
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Incidence-Prevalence Elasticity

SIR: βπ

BSIR: min(βπ, π1−φ
0 βπφ)

BSIR: min(βπ, π1−φ
1 βπφ)

Lower loss L0

Higher loss L1

1ππ1 π00 Chill Vigilant
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Prevalence Elasticity of Incidence

Corollary (Breakout Incidence)
Equilibrium incidence B(π)πσ is log-linear in prevalence π ≥π,

log (incidence) = log[B(π)πσ] = b + φ log π + log σ

where the incidence-prevalence elasticity is φ ≡ 1/(2γ + 1) < 1,
and the intercept b increases in φ and β, and falls in L.

Corollary
For the same number of cases, the passing rate rises in population.

Assume a lockdowns reduce β, by foreclosing on opportunities.

Corollary
Lockdown parallelly shifts the regression line of log(incidence) on
log π down, for fixed σ.
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Breakout Theory, when σ ≈ 1 and π ≈ 0: Heterogeneity?
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Sweden, Pre- and Post-Mitigation
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UK, Pre- and Post-Lockdown
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France, Pre- and Post-Lockdown
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Germany, Pre-Lockdown
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Austria, Pre- and Post-Lockdown
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Mexico, Pre- and Post-Mitigation
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Brazil, Pre- and Post-Mitigation
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Chile, Pre- and Post-Mitigation
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New Zealand, Pre- and Post-Lockdown
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New York, Pre- and Post-Lockdown

33 / 52



Introduction The Behavioral SIR Model COVID Regressions BSIR Dynamics Herd Immunity Swine Flu, 2009

Upwardly Biased Slope φ and Improving Testing

▶ Falling NY Positive-to-Test Ratio induces an omitted variable
bias, that inflates the slope estimate φ
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New Jersey, Pre- and Post-Lockdown
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California, Pre- and Post-Lockdown/Mitigation
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Florida, Pre- and Post-Mitigation (Riots!)
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Texas, Pre- and Post-Mitigation (Riots!)
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General Behavioral SIR Dynamics Nest the SIR Dynamics

▶ If π0 ≤ π, SIR dynamics apply

▶ If π0 > π, then the vigilant regime starts. At this point:

σ̇(t) = −βq(π)σ(t)π1−φπ(t)φ

π̇(t) = βq(π)σ(t)π1−φπ(t)φ − rπ(t)

Theorem (Prevalence is Hump-Shaped)

In the BSIR, the susceptible share σ(t) monotonically falls, while
prevalence π(t) either starts falling, or rises and then falls.
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Famous Logarithmic Running Cases Plot
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Breakout Theory

▶ SIR model: only immunity chokes off infections, and so bear
breakout, log-linearity prevails

▶ For times t < τ , the SIR dynamics apply:

π̇(t) ≈ βπ(t) − rπ(t) ⇒ π(t) ≈ π0e(β−r)t

▶ For times t < τ , we have a Bernoulli differential equation:

π′(t) = βπ1−φπ(t)φ−rπ(t) ⇒ π(t) = π

(
β

r
(
1 − ke−r(1−φ)t

)) 1
1−φ

for the constant k = (β/r − 1) (π/π0)r(1−φ)/(β−r).
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National Breakout Case Plots Over Time
▶ In the SIR model, these are log-linear.
▶ Assume a fraction α of non-spreading asymptomatics.

Theorem
Assume β(1 − α) > r .
▶ In the chill regime (SIR model), π is increasing and log-linear.
▶ In the vigilant regime, prevalence π(t) is increasing and

logconcave, and is initially convex, eventually concave.
Concavity happens sooner the lower is β(1 − α) or ϕ.

If β(1 − α) < r , then π is decreasing, logconcave, and convex.

Corollary
The sum of all past cases Υ is logconcave in time. It is convex
when π is increasing, and concave when π is decreasing.
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Mitigation or Lockdowns
▶ Think of mitigation or lockdown as a fall in the passing rate β.
▶ Here is a plot of π(t) after β falls from 0.7 to 0.4.
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Herd Immunity

▶ Herd immunity tipping point:

B(t)σ̌φπ̌φ
φ = r π̌φ ⇔ σ̌φ = (r/B(t))π̌1−φ

φ > r/β

Theorem
As the prevalence elasticity φ ≤ 1 falls, (i) the herd immunity time
τφ advances, (ii) the peak prevalence πφ falls, (iii) the herd
immunity infection share 1 − σφ falls, and (iv) its ratio to the
eventual infection share (1 − σφ)/(1 − σφ(∞)) rises.
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The Road Ahead: SIR versus BSIR
▶ SIR Model: immunity chokes off contagions

▶ BSIR Model: immunity and vigilance choke off contagions
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Herd Immunity — Behavioral SIR “Flattens the Curve”
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Herd Immunity Cases ≪ Eventual Total Cases
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Eventual Infections
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Herd Immunity Infections as a Share of Eventual Infections
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Swine Flu Herd Immunity
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Swine Flu Herd Immunity
▶ Herd immunity on 10/31, 2009, with about 20% Immunity

▶ Lesson: about half of the sicknesses postdate herd immunity

▶ Lesson: the vaccine arrival in October was critical

▶ Lesson: seasonal component leads to “waves”
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Swine Flu Herd Immunity
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