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Abstract

What normative constraints should bind parents (or policy makers) if they intervene in the choices
of children (or constituencies) whose preferences evolve over time? For a sophisticated child who
anticipates correctly his preference change, we prove that generically there exist parental interventions
that are Pareto improving over the backward induction path that the child will follow on his own. If,
in contrast, the child misperceives his future preferences, Pareto improving interventions might not
exist, and even nudges might be painfully sobering. The parent may then choose to minimize the
maximal disappointment along time that her benevolent intervention would cause.

1 Introduction

Parents, in the wide sense of the term, should want their children to be happy. This is so within nuclear
families, as well as between governments and their constituencies. To this effect, parents may convey to
their children information that the children do not have in the first place. But after all is said, should
parents, if they can, intervene in their children’s choices to make them happier?
If children’s preferences over action paths do not change over time, there is no such need: by the

principle of optimality in dynamic programming, a child will follow from one period to the next the same
overall plan that already from the very start he would like there to be implemented, and in particular no
parental intervention can further enhance the child’s happiness.
But what if the child’s preferences over action paths do change over time? In each period, based on his

current belief about his future preferences and beliefs, the child would anticipate his own future reactions1

to any choice he can make today, and then make a choice that together with these anticipated reactions
would be optimal according to his current preferences. With a finite horizon, like when choosing education
or vocational training before adulthood, or saving up to retirement, this is done, implicitly if not explicitly,
by backward induction. In other words, the choices along time would constitute a Strotz-Pollak equilibrium
(Strotz 1956, Pollak 1968, Goldman 1980), i.e. a subgame-perfect equilibrium (SPE) in the ‘intrapersonal
game’(Laibson 1997) among the selves of the child across the time periods.
The mature and experienced parent, in contrast, may forecast the preference evolution more accurately

than the child. In addition, she may have her own perspective on how to ‘responsibly’average or aggregate
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1Or, more generally, when the future is uncertain, the distribution of his own future reactions.

1



the child’s evolving preferences along time into one preference relation over action plans, so as to balance
youthful vivacity with adult thriving. The optimal plan according to this aggregated preference relation
may very well differ from the path that the child will follow by backward induction on his own.
So the normative question poses itself once again2: if the parent can, should she intervene and induce the

optimal plan according to her overall, aggregate view of the child’s evolving preferences? The question is
accentuated by the fact that if the parent can intervene, non-intervention becomes one out of many possible
decisions that the parent can make, and as such non-intervention need not necessarily be considered to be
normatively neutral.
Some of the literature thus far (Phelps and Pollak 1968, Laibson 1997, Jackson and Yariv 2014, 2015,

Kang 2019, Kang and Ye 2019) suggests that the parent should restrict herself to interventions that are
Pareto-improving, i.e. to inducing action paths that the child deems at least as good as the backward
induction path in each and every period, and strictly better in at least one period. Such an intervention
may be thought of as normatively non-controversial, because in all periods the child will welcome such a
change, enforced by the commitment power of the parent that the child himself lacks. The parent may
then decide to induce the plan which is optimal according to her aggregated preferences subject to the
Pareto-improvement constraint.
With this perspective, it is important to know whether Pareto-improving interventions exist in the first

place. In section 2 we therefore present a framework that makes explicit that even though bygones are
bygones, current well-being may well depend also on remembered, past experience. In this framework we
present a general result: when the child is sophisticated, i.e. when in each period he anticipates correctly his
own future preference change, then Pareto-improving interventions generically exist. That is, if for some
preference evolution along time, the subgame-perfect equilibrium path that a sophisticated child will follow
on his own so happens to be Pareto optimal, then with slightly perturbed preferences his subgame-perfect
equilibrium path will no longer be Pareto optimal, and, moreover, neither will it be with further, smaller
perturbations of the child’s preferences. In other words, a sophisticated child chooses Pareto optimally by
himself only with knife-edge profiles of preferences3.
A more realistic assumption, though, is that a child with evolving preferences is not perfectly sophisti-

cated, but rather at least partially naive (O’Donoghue and Rabin 1999), that is uncertain about his own
future preferences, if not outright wrong about them. In section 3 we therefore define a simple but general
type-space framework to encompass also such forms of naivité. Nudges (Thaler and Sunstein 2008), or
more generally interventions that are purely informational, are modeled in this type-space framework by
a change in the state of the world that expresses the new beliefs the child would then hold across the time
periods.
We then show by example that with at least some naivité, even when the optimal path from the

parent’s perspective differs from the backward induction path, a Pareto-improving intervention might not
exist, neither by inducing a different path nor by a nudge. What should the parent do in such cases?
In section 4 we propose one possible answer, namely a normative approach by which the parent should

only intervene in a way that minimizes the maximal disappointment of the child across the time periods,
relative to the backward induction benchmark. We show by way of example that subject to this minimax
constraint, there may indeed exist such an intervention that enhances the child’s aggregated well-being
from the parent’s perspective.

2See e.g. Ericson and Laibson 2019, open question 9.
3In particular, stable preferences which do not change over time is one such knife-edge case, in which by the principle of

optimality a sophisticated child chooses Pareto optimally.
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In fact, this normative approach may be applied also to cases in which Pareto-improving interventions
do exist. In these cases, the normative criterion would call the parent to choose only among interventions
that maximize the minimal well-being enhancement across the time periods. We show, again by way
of example, how this may (not surprisingly) alter the optimal path that the parent would induce given
this additional constraint, in comparison with her intervention subject only to the Pareto-improvement
constraint.
We conclude in section 6 with a discussion. Example details appear in the appendix, and the genericity

proof is in the online appendix.

2 Sophisticated children rarely choose Pareto optimally on their
own

For each period i = 1, ..., n, let Xi ⊂ Rki be the compact, convex choice set of the child at period i,
henceforth dubbed ‘self i’. A current self cannot ‘pre-program’future selves’choices.4

Denote X = X1 × ... × Xn, and X≤i =
∏

j≤iXj the space up-to-i initial paths.5 Let ui : X → R be
the utility function of self i, where ui ∈ C2 (X,R) , the space of twice continuously differentiable functions,
endowed with the topology of the norm ‖u‖ = supx∈X {‖u (x)‖ , ‖Du (x)‖ , ‖D2u (x)‖}. The space of utility
profiles

u = (u1, ..., un) ∈ U ≡
(
C2 (X,R)

)n
is endowed with the product topology. Sophistication means that with a utility profile u, implicitly each
self i anticipates correctly the future selves’utility functions ui+1, ..., un, knows that each future self j > i
will also anticipate correctly its own future selves’utility functions uj+1, ..., un, etcetera.6

Without intervention, a sophisticated child is assumed to choose by backward induction, i.e. to follow
the path x̂ = (x̂1, ..., x̂n) induced by a Strotz-Pollak equilibrium of best replies (bi : X≤i−1 → Xi)

n
i=1, which

is a subgame-perfect equilibrium of the perfect-information dynamic game between the selves.7 At such
an equilibrium

bn (x≤n−1) ∈ arg max
Xn

un (x≤n−1, ·)

bn−1 (x≤n−2) ∈ arg max
Xn−1

un−1 (x≤n−2, ·, bn (x≤n−2, ·))

bn−2 (x≤n−3) ∈ arg max
Xn−2

un−2 (x≤n−3, ·, bn−1 (x≤n−3, ·) , bn (x≤n−3, ·, bn−1 (x≤n−3, ·)))

...

b1 (∅) ∈ arg max
X1

u1 (·, b2 (·) , b3 (·, b2 (·)) , ...)

4Put differently, whatever device a particular self does have, if at all, for influencing future selves’behavior, choosing to
influence future behavior in such a way is encoded within the available choices xi ∈ Xi, and by the utility functions (as
defined next) of future selves j̇ > i, that depend in particular on xi.

5Or, more generally, X ⊆ X1 × ... × Xn and X≤i ⊆
∏
j≤iXj —in case the past choice path (x1, ..., xj−1) of the selves

k < j may limit the feasible choices of self j.
6In section 3 below we will present an extended framework where this assumption can be made explicit, a framework that

also allows for various deviations from such perfect sophistication.
7For proofs of equilibrium existence see Harris (1985), Hellwig and Leininger (1987), Hellwig et al. (1990), Alós-Ferrer

and Ritzberger (2016). If best replies are not unique, breaking ties in different ways may lead to multiple equilibria.
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The corresponding backward induction path x̂ = (x̂1, ..., x̂n) is then defined inductively by

x̂1 = b1 (∅)
x̂2 = b2 (x̂1)

x̂3 = b3 (x̂1, x̂2)

...

x̂n = bn (x̂1, x̂2, ..., x̂n−1)

It yields the utility levels û = (û1, ..., ûn) where ûi = ui (x̂) .
The parent has an average/aggregation function V : Rn → R over the utility levels of the different

selves i = 1, ..., n. This defines, indirectly, the utility function of the parent v : X → R over choice paths,
v (x) = V (u1 (x) , ..., un (x)).
For simplicity we assume that the parent can oblige the child to follow any path x ∈ X that the parent

likes.8 Still, the parent may like to limit herself to a subset of paths with some normatively desirable
properties.
A path x ∈ X is a called a Pareto improvement over a path x̄ ∈ X if ui (x) ≥ ui (x̄) for every i = 1, ..., n,

and uj (x) > uj (x̄) for some 1 ≤ j ≤ n. Suppose, first, that the parent would like to limit herself to
inducing the child only to choice paths x that are Pareto improvements over the backward induction path
x̂ that the child would follow on his own.

Example 1. A sophisticated child has to finish a chore of size 3 in three days i = 1, 2, 3. Carrying out
quantity xi of the chore on day i takes x2i hours, and the child enjoys his remaining leisure time 24− x2i .9
The child’s time preference is captured by β − δ quasi-hyperbolic discounting, with β = 1

2
and δ = 1. At

days 2, 3 the child’s memory of his past leisure augments his well-being, with no discounting. Thus, if
the child’s division of the chore along days i = 1, 2, 3 is x = (x1, x2, x3), his corresponding selves’utility
functions are

u1 (x1, x2, x3) =
(
24− x21

)
+

1

2

(
24− x22

)
+

1

2

(
24− x23

)
u2 (x1, x2, x3) =

(
24− x21

)
+
(
24− x22

)
+

1

2

(
24− x23

)
u3 (x1, x2, x3) =

(
24− x21

)
+
(
24− x22

)
+
(
24− x23

)
Across the three days the parent values equally the child’s happiness10, leading to the parent’s utility
function

v (x1, x2, x3) =
1

3

3∑
i=1

ui (x1, x2, x3) =
(
24− x21

)
+

5

6

(
24− x22

)
+

2

3

(
24− x23

)
8We note that leading the child to follow a particular path x need not necessarily involve direct coercion by the parent.

Instead, the parent may be able to provide incentives for the child to follow x, e.g. via taxes or subsidies accompanied by an
unconditional lump-sum transfer, as in Kang (2019).

9This example is similar to the ‘cake-eating’problem under changing tastes, as analyzed e.g. in Goldman (1979). Here,
in contrast, the felicity from the good (leisure) is linear whereas the ’cost’of leisure (time put aside for the chore) is convex.
10Not the child’s leisure time — that would have amounted to a complete identification of the parent with the child’s

perspective on day 3, waving off the child’s perspectives on days 1 and 2.
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With the constraint x3 = 3− x1 − x2, one can verify (see the details in the appendix) that

x̄ = arg max
x1,x2

v (x1, x2, 3− x1 − x2)

is not a Pareto improvement over the backward induction path x̂.
However, Pareto improvements over x̂ do exist:
(a) The child would be happy to work somewhat more on day 1 if only he could know that he will be

bound to work somewhat more also on day 2, and not leave so much of the chore to the last day, as he
correctly anticipates on day 1 that he would be doing on day 2 without intervention;
(b) On day 2 the child would be happy to be committed to a package deal in which he works somewhat

more on both days 1 and 2; and
(c) On day 3 the child would definitely be happy if less of the largest share of the chore is left for him

to finish.

Moreover, the Pareto improving path x̆ that maximizes v satisfies v (x̆) > v (x̂) , so the parent would
like to intervene and induce x̆ (even though implementing the non-Pareto improving x̄ would entail an
even higher utility, v (x̄) > v (x̆)).

A path x̃ ∈ X is called Pareto optimal if there does not exist a Pareto improvement x ∈ X over x̃.

Theorem. There is an open and dense subset of utility profiles U0 ⊆ U of sophisticated children, for
whom no interior backward induction path x̂ is Pareto optimal.

The proof, based on a transversality argument, appears in the online appendix.

Thus, for sophisticated children with typical or generic utility profiles, namely utility profiles in U0,
there exists a Pareto improving path x ∈ X over any interior backward induction path x̂. If the parent
can induce the child to follow a Pareto improving x instead of x̂, this will be weakly preferred by the child
in all time periods, and strictly preferred in some time period(s). Moreover, if the parent’s utility is some
weighted average of the child’s utility levels at the different time periods, then also the parent will prefer
to induce x instead of letting the child follow the backward induction path x̂ on his own.
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3 A type space for possible misperceptions about future pref-
erences

But children are not always sophisticated, and might anticipate their future preferences, and therefore
their future choices, differently than they will actually be. Examples of such naivité or partial naivité
were discussed e.g. by O’Donoghue and Rabin (1999). The following type space framework is intended to
capture such states of affairs in general.
For each self i = 1, ..., n, let Ti be a measurable space of self i’s types. Types τi ∈ Ti are measurably

associated with

1. a belief (i.e. a probability measure) βτi on the states of the world T ⊆
∏n

j=1 Tj, where βτi features per-

fect recall, i.e. has the property that in each state τ = (τ1, ..., τn) ∈ T , βτi
(
{(τ1, ..., τi)} ×

∏n
j=i+1 Tj

)
=

1;11 ,12

2. a measurable utility function uτi : X → R, that not only represents preferences over choice paths
x ∈ X, but also meaningfully expresses well-being comparably across selves;13 ,14 and

3. a measurable best-reply function bτi : X≤i−1 → Xi, where

11So when no confusion may arise, we will interchangeably refer to βτi as a belief on
∏n
j=i+1 Tj .

12The space of beliefs µ on a measurable space Y is endowed with the σ-algebra generated by the sets of the form
{µ : µ (E) ≥ p} for p ∈ [0, 1] and measurable events E ⊆ Y .
13To the latter effect, in the background there may e.g. be for each type τj of self j an instantaneous felicity function

fτj : Xj → R, so that

uτi (x1, ..., xn) =

n∑
j=1

ωτi (j)

(∫
T

(
fτj (xj)

)
dβτi

)
for some positive weights ωτi (j) (these weights may represent, for example, time discounting by the type τi); or, more
generally

uτi (x1, ..., xn) =

n∑
j=1

(∫
T

∫
Xj

ωτi (x̃j ;xj) fτj (x̃j) dµτi (x̃j ;xj) dβτi

)
where for x̃j = xj the weight ωτi (xj ;xj) for experienced felicity is positive, and for x̃j 6= xj the weight ωτi (x̃j ;xj) for forgone
or counterfactual, unexperienced felicity is non-positive (representing regret); and where the probability measure µτi (·;xj)
on Xj expresses the relative importance that τi attaches to the experienced felicity of xj by self j versus the unexperienced,
forgone felicity of other x̃j 6= xj by self j.
14The space of utility functions is endowed with the Borel σ-algebra of the topology of pointwise convergence.
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bτn (x≤n−1) ∈ arg max
Xn

uτn (x≤n−1, ·)

bτn−1 (x≤n−2) ∈ arg max
Xn−1

∫
Tn

uτn−1 (x≤n−2, ·, bτ̃n (x≤n−2, ·)) dβτn−1 (τ̃n)

bτn−2 (x≤n−3) ∈ arg max
Xn−2

∫
Tn−1×Tn

uτn−2
(
x≤n−3, ·, bτ̃n−1 (x≤n−3, ·) , bτ̃n

(
x≤n−3, ·, bτ̃n−1 (x≤n−3, ·)

))
dβτn−2 (τ̃n−1, τ̃n)

...

bτ1 (∅) ∈ arg max
X1

∫
T2×...×Tn

uτ1 (·, bτ̃2 (·) , bτ̃3 (·, bτ̃2 (·)) , ...) dβτ1 (τ̃2, ..., τ̃n)

for i = n, ..., 1.15 ,16

For (a particularly simple) example, each utility profile u = (u1, ...un) of a sophisticated child, together
with a Strotz-Pollak equilibrium (bi : X≤i−1 → Xi)

n
i=1 defines a type space with a single state τ = (τ1, ..., τn)

where uτi = ui, βτi ({τ}) = 1 and bτi = bi for i = 1, ..., n.
In the state of the world τ = (τ1, ..., τn) the backward induction path x̂τ = (x̂τ,1, ..., x̂τ,n) is defined

inductively by

x̂τ,1 = bτ1 (∅)
x̂τ,2 = bτ2 (x̂τ,1)

x̂τ,3 = bτ3 (x̂τ,1, x̂τ,2)

...

x̂τ,n = bτn (x̂τ,1, x̂τ,2, ..., x̂τ,n−1)

Since each type remembers correctly past types and choices, the (expected) well-being levels at τ under
backward induction are

ûτ = (ûτ1 , ..., ûτi , ..., ûτn)

=

 ∫
T2×...×Tn

uτ1
(
x̂(τ1,τ̃2,...τ̃n)

)
dβτ1 (τ̃2, ..., τ̃n) , ...,

∫
Ti+1×...×Tn

uτi
(
x̂(τ1,...τi,τ̃i+1,...τ̃n)

)
dβτi (τ̃i+1, ..., τ̃n) , ..., uτn (x̂τ )


We assume, for simplicity, that the parent knows the true, prevailing state of the world τ , i.e. the

parent knows how the beliefs, preferences and best replies of the child are about to evolve.17 We further
15We need to specify bτi explicitly for each type τi ∈ Ti, because uτi and βτi on their own (i) might sometimes be compatible

with several best reply functions (when ties can be broken in several ways), and (ii) might sometimes be compatible with no
best reply function at all, when uτi has discontinuities, or when for some j > i discontinuities in the best replies bτj of types τj
in the support of βτi hinder the expectation of uτi with respect to βτi from attaining a maximum in Xi (see examples of such
situations in Hellwig and Leininger 1987 and Hellwig et al. 1990). Thus, τi being measurably associated with (βτi , uτi , bτi)
means in particular that βτi , uτi , bτi are mutually compatible.
16The space of best-reply functions is endowed with the Borel σ-algebra of the topology of pointwise convergence.
17See the discussion in section 6 on relaxing this assumption.

7



assume that if the parent intervenes and induces a path x ∈ X, the parent is open and honest to the child
from the very start about the path that the child is henceforth about to follow,18 which would therefore
induce the well-being levels

uτ1 (x) , ..., uτn (x) .

At the state of the world τ = (τ1, ..., τn) ∈ T , a path x ∈ X that the parent may induce is a Pareto
improvement over backward induction if uτi (x) ≥ ûτi for i = 1, ..., n, and uτj (x) > ûτj for some 1 ≤ j ≤ n.
The state τ represents the utilities and beliefs of the child’s selves after any information exchange

between the parent and the child has already taken place. Ex ante information exchange, to the extent
that it influences the beliefs of the child, amounts to altering the prevailing state of the world to some
other state τ ′ ∈ T .
As before, the parent has an average/aggregation function V : Rn → R over the utility levels of the

different selves i = 1, ..., n, that the parent wants to maximize. In each state of the world τ = (τ1, ..., τn) ∈
T , this induces a utility function of the parent vτ : X → R over choice paths, defined by

vτ (x) = V (uτ1 (x) , ..., uτn (x))

4 With misperceptions, Pareto-improving interventions might
resiliently lack

For naive or partially naive types, who misperceive their future preferences, there might exist no path that
all selves will at least weakly prefer over (their anticipation from) backward induction choices, with strict
preference for some self. This is demonstrated in the following example.

Example 2. With the feasible action paths and utility functions specified in example 1 above, consider a
type space with two states of the world, (τ̇1, τ̇2, τ̇3) and (τ̇1, τ̈2, τ̈3), with the beliefs

βτ̇1 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇2 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈2 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇3 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈3 {(τ̇1, τ̈2, τ̈3)} = 1

and the utility functions

uτ̇1 = u1

uτ̇2 = u2, uτ̈2 = u3

uτ̇3 = uτ̈3 = u3

The best replies of the types are uniquely determined by these beliefs and utilities, and are computed in
the appendix.

18In section 6 we will discuss an extension, where even though the parent actually knows the prevailing state of the world
τ = (τ1, ..., τn), she can openly and honestly announce a state-contingent policy, by which the induced action xi in period i
may depend on the realized type τ̃i in that period.
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In state (τ̇1, τ̇2, τ̇3) the selves have the same utility functions as in the previous example, but self 1
naively believes that as of tomorrow the present bias will miraculously disappear (uτ̈2 = u3); he moreover
wrongly believes that this is commonly known: the state (τ̇1, τ̈2, τ̈3) , in which τ̇1 believes, is common
knowledge at (τ̇1, τ̈2, τ̈3).
Moreover, in state (τ̇1, τ̈2, τ̈3) the selves of all three periods, uτ̇1 , uτ̈2 and uτ̈3 , value equally the leisure

time at periods 2 and 3. Therefore, by the principle of optimality, the backward induction path x̂(τ̇1,τ̈2,τ̈3)
already maximizes uτ̇1 over all possible paths. Since uτ̇1 is strictly concave, any other path x 6= x̂(τ̇1,τ̈2,τ̈3)
would actually decrease uτ̇1 , i.e. uτ̇1 (x) < ûτ̇1 . In other words, there exists no intervention by the parent
which would not decrease the well-being of τ̇1 in the state (τ̇1, τ̈2, τ̈3).
But this means that also in the state (τ̇1, τ̇2, τ̇3) there exists no Pareto-improving parental intervention,

because in period 1 type τ̇1 is mistakenly certain there that the state is (τ̇1, τ̈2, τ̈3) and expects the backward
induction path there x̂(τ̇1,τ̈2,τ̈3). However, if the parent attaches equal importance to the well-being of the
child in all three periods, i.e. has the same utility v as in example 1, there do exist x 6= x̂(τ̇1,τ̈2,τ̈3) with which
v (x) > v

(
x̂(τ̇1,τ̇2,τ̇3)

)
(see the details in the appendix). Nevertheless, as long as the parent confines herself

to interventions that all selves would consider to be Pareto-improving given their (possibly misguided)
beliefs, the parent’s hands are tied.
This is not a knife-edge phenomenon. Rather, it is resilient to some perturbations of self 1’s beliefs.

For example, for ε > 0 small enough (in fact, for ε ≤ 1
2
), even if τ̇1 ascribes probability ε to the prevailing

state of the world (τ̇1, τ̇2, τ̇3), i.e.

βτ̇1 {(τ̇1, τ̇2, τ̇3)} = ε, βτ̇1 {(τ̇1, τ̈2, τ̈3)} = 1− ε
βτ̇2 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈2 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇3 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈3 {(τ̇1, τ̈2, τ̈3)} = 1

there still do not exist parental interventions which would be Pareto-improving over backward induction.
The details are elaborated in the appendix.

4.1 Nudge

Instead of influencing the choice path given the misperceptions of the child, the parent can try to intervene
ex ante with information, by drawing the attention of the child at the state (τ̇1, τ̇2, τ̇3) to the actual
utilities there (uτ̇1 , uτ̇2 , uτ̇3). That would amount to altering the belief βτ̇1 of the type τ̇1, by increasing the
probability ε that it ascribes to (τ̇1, τ̇2, τ̇3).
Such informational, non-coercive interventions are a particular form of a nudge (Thaler and Sunstein

2008). In case the nudge is fully successful, ε = 1, the child becomes sophisticated and anticipates correctly
his forthcoming preference change.
However, as ε increases, τ̇1 becomes more disillusioned, and as a result its expected backward-induction

well-being ûτ̇1 decreases (see the details in the appendix). Thus, even though the nudge does not interfere
with the choice x of the child by coercion or incentives, the sobering effect of the nudge causes a backlash
to the well-being of the child in period 1, and for no ε > 0 would the nudge induce a Pareto improvement.
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5 Minimally disappointing interventions

Situations as in example 2 put the parent in a very frustrating position: due to the child’s misperceptions
about his future preferences, there is no way for the parent to ameliorate the aggregate well-being of
the child without upsetting him at least in one period. This raises the question whether the Pareto-
improvement constraint is not too stringent under such misperceptions.
A path x which is Pareto-improving at a state of the world τ vis-à-vis backward induction satisfies, by

definition, uτi (x)− ûτi ≥ 0 for i = 1, ..., n. A natural way to minimally relax this constraint is to require

uτi (x)− ûτi ≥ −δ, i = 1, ..., n (])

for the minimal δ with which a path x satisfying (]) exists.
Then, if for this

δmin (τ) ≡ min {δ : ∃x s.t. uτi (x)− ûτi ≥ −δ, i = 1, ..., n}

it is the case that

max
{x: mini=1,...,n(uτi (x)−ûτi)≥−δmin(τ)}

v (x) > v (x̂τ )

then the parent may find it legitimate to intervene and induce

x̃ ∈ arg max
{x: mini=1,...,n(uτi (x)−ûτi)≥−δmin(τ)}

v (x)

in order to augment the aggregate well-being of the child, even though at some period the child will be
minimally disappointed, by δmin (τ).

Example 2 (continued). In the state of the world (τ̇1, τ̇2, τ̇3) there turns out to be a unique path x̃
satisfying

uτ̇i (x)− ûτ̇i ≥ −δmin (τ̇1, τ̇2, τ̇3) i = 1, 2, 3

(see the details in the appendix). With this path x̃,

uτ̇1 (x̃)− ûτ̇1 = −δmin (τ̇1, τ̇2, τ̇3)

uτ̇2 (x̃)− ûτ̇2 = −δmin (τ̇1, τ̇2, τ̇3)

but
uτ̇3 (x̃)− ûτ̇3 > 2δmin (τ̇1, τ̇2, τ̇3)

Thus,
v (x̃) > v

(
x̂(τ̇1,τ̇2,τ̇3)

)
i.e. in terms of average well-being across the three periods, which is the parent’s perspective, the minimally
disappointing intervention is superior to backward induction.

The approach proposed here may actually be applied also when Pareto improving interventions over
backward induction do exist. With this approach, δmin would have the opposite sign and measure the
minimal utility enhancement across the periods. The parent would then consider inducing only Pareto
improving paths that maximally improve the minimal well-being enhancements across the different periods.
In the appendix we demonstrate how this idea is made operative in example 1.
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6 Discussion

Parent uncertainty. We assumed, for simplicity, that the parent knows correctly the state of the world,
i.e. that the parent knows the child’s preferences and beliefs in all periods. We saw that even under such
a simplifying assumption, Pareto improving interventions might not be available to the parent. A fortiori,
a parent who, more realistically, only has some belief about the states of the world, might have an even
narrower scope for interventions which would be Pareto improving or minimally disappointing in all the
states that she considers possible. How this scope narrows down with the parent’s uncertainty remains
open for follow-up inquiry.

State-contingent parental interventions. We assumed, again for simplicity, that if the parent induces
the child to follow a particular path x, this forthcoming path becomes known to the child, and that very
fact might upset the child in some periods. Such upsetting could be potentially attenuated if the parent
were allowed to make state-contingent empty promises, like

‘I know you are certain that tomorrow your present bias will disappear. I am certain that you
are too optimistic about this, but if it so happens that I was wrong and you were right, then
as of tomorrow I will alter the path so as to make it up for you as much as possible.’

Notice, though, that comes tomorrow, it might be costly or even impossible to verify the time preference
of the child, and in such case such a promise would be not only empty (under our assumption that the
parent anticipates correctly the future preferences of the child), but also not credible in the first place.

Alternative normative guidelines. When Pareto improving interventions are lacking, we proposed one
possible normative constraint, namely minimizing the disappointment of the child across the time periods
relative to the benchmark of its (expected) utility under the backward induction path, that he would
follow absent of any parental intervention. An alternative normative constraint could be maximizing the
minimal overall well-being across the time periods. Or one could even claim that in the absence of Pareto
improving interventions, the parent should simply take the lead and induce a path that maximizes the
parent’s own view of how to balance the considerations of the child’s well-being across the time periods,
without imposing on herself any further normative constraints.

To conclude, we introduced a type-space framework for beliefs (and beliefs about beliefs, etc.) about
one’s future preferences, with the implied backward induction choice that each type will make given its
belief. We proved that with sophistication, i.e. when the state of the world is common knowledge, with all
types agreeing with one another about future preferences and beliefs, then generically a parent has room
for committing to induce paths which will Pareto-improve well-being across the time periods.
In contrast, with misperceptions about future preferences, such Pareto-improving interventions need

not exist, and even informational nudges might be necessarily disillusioning at least in some time period.
For such cases we proposed a possible normative alternative to the Pareto criterion, namely minimizing
the maximal disappointment that the intervention entails across the time periods.
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7 Appendix

7.1 Example 1 analysis

7.1.1 Backward induction

Self 3 has no effective choice but to complete what its preceding selves haven’t done, b3 (x1, x2) = 3−x1−x2.
By backward induction, self 2 solves

max
x2

u2 (x1, x2, b3 (x1, x2)) = max
x2

((
24− x21

)
+
(
24− x22

)
+

1

2

(
24− (3− x1 − x2)2

))
leading to

b2 (x1) = 1− 1

3
x1

Accordingly, self 1 solves

max
x1

u1 (x1, b2 (x1) , b3 (x1, b2 (x1)))

= max
x1

((
24− x21

)
+

1

2

(
24−

(
1− 1

3
x1

)2)
+

1

2

(
24−

(
3− x1 −

(
1− 1

3
x1

))2))

leading it to choose

x̂1 =
15

23
= 0.652 2

Consequently,

x̂2 = b2 (x̂1) =
18

23
= 0.782 6

and
x̂3 = b3 (x̂1, x̂2) =

36

23
= 1. 565 2

Altogether, the backward induction path is x̂ =
(
15
23
, 18
23
, 36
23

)
. The corresponding utilities are

û1 = u1 (x̂) = 46. 044

û2 = u2 (x̂) = 57. 737 (∗)
û3 = u3 (x̂) = 68. 512

whose average is
V (û) = v (x̂) = 57.431 (♣)

7.1.2 The parent’s problem

With no normative constraints on interventions, the parent would maximize the average utility of the three
selves

v (x1, x2, x3) =
1

3

3∑
i=1

ui (x1, x2, x3) =
(
24− x21

)
+

5

6

(
24− x22

)
+

2

3

(
24− x23

)
12



subject to the physical constraint x1 + x2 + x3 = 3. This yields

x̄ ≡ (x̄1, x̄2, x̄3) =

(
30

37
,
36

37
,
45

37

)
= (0.811, 0.973, 1. 216)

The utility levels are

u1 (x̄) = 46.13

u2 (x̄) = 57.656 (∗∗)
u3 (x̄) = 68.917

whose average
v (x̄) = 57.568 (♣♣)

is higher than without intervention, (♣).
However, comparing (∗∗) to (∗) reveals that x̄ is not a Pareto improvement relative to the backward

induction path without intervention x̂, because u2 (x̄) < û2.

7.1.3 Pareto-improving interventions

If the parent restricts herself to interventions that are Pareto-improving relative the backward induction
path x̂, the parent solves

max
x1+x2+x3=3

v (x1, x2, x3) s.t. ui (x1, x2, x3) ≥ ûi, i = 1, 2, 3

yielding
x̆ ≡ (x̆1, x̆2, x̆3) = (0.780, 0.828, 1. 392)

with the utility levels would be

u1 (x̆) = 46. 080

u2 (x̆) = 57. 737 (∗ ∗ ∗)
u3 (x̆) = 68. 768

with the lower average
v (x̆) = 57.528 < v (x̄) (♣♣♣)

In particular, along the choice path x̆ self 1 does more of the chore relative to the backward induction
path x̂, but (comparing (∗) with (∗ ∗ ∗) ) self 1 it is more than happy to do so knowing that self 2 will also
work harder; self 2 is just indifferent working harder given that self 1 works harder; and self 3 is happier
that less of the largest share of the chore is left for it to complete.

7.1.4 Maximin intervention

If the parent restricts herself further, to an intervention that maximizes the minimal utility enhancement
across the three selves relative to the no-intervention backward induction path x̂,

max
x1+x2+x3=1

min
i=1,2,3

[ui (x1, x2, x3)− ûi]

13



The maximin is attained at
x̃ ≡ (x̃1, x̃2, x̃3) = (0.739, 0.784, 1. 477)

with utility levels

u1 (x̃) = 46. 056

uı̂τ2 (x̃) = 57. 748 (∗ ∗ ∗∗)
uı̂τ3 (x̃) = 68. 657

accruing a utility increment of 0.0115 to both self 1 and self 2 relative to the no-intervention backward
induction path, even if with an average utility across the selves

v (x̃) = 57.487 (♣♣♣♣)

which is lower than (♣♣♣). Nevertheless, comparing with (♣) the parent realizes that v (x̃) > v (x̂), so
she judges the maximin intervention as preferable to no intervention at all.

7.2 Example 2 analysis

7.2.1 Backward induction

Both τ̇3 and τ̈3 have no choice but to complete the part of the chore that the previous selves haven’t
completed,

bτ̇3 (x1, x2) = bτ̈3 (x1, x2) = 3− x1 − x2
As for self 2, type τ̈2, who has no present bias and the same utility function u3 as that of τ̈3, will divide
the remaining chore equally among them,

bτ̈2 (x1) =
3− x1

2

whereas type τ̇2, who does have a present bias with the utility function u2 will, like self 2 in example 1,
choose only

bτ̇2 (x1) = 1− 1

3
x1

The naive type τ̇1, who is certain that the subsequent types are τ̈2,τ̈3 will solve

max
x1

u1 (x1, bτ̈2 (x1) , bτ̈3 (x1, bτ̈2 (x1)))

= max
x1

((
24− x21

)
+

1

2

(
24−

(
3− x1

2

)2)
+

1

2

(
24−

(
3− x1

2

)2))
leading him to choose

bτ̇1 (∅) = x̂τ̇1 =
3

5

believing that τ̈2 and τ̈3 will divide the remaining chore equally, each choosing 6
5
. However, at the state

(τ̇1, τ̇2, τ̇3) , type τ̇2 will actually choose

x̂τ̇2 = bτ̇2 (x̂τ̇1) = 1− 1

3
· 3

5
=

4

5

14



leaving

x̂τ̇3 =
8

5
of the chore to τ̇3. At (τ̇1, τ̇2, τ̇3) the (expected) utilities will therefore be

ûτ̇1 = uτ̇1

(
3

5
,
6

5
,
6

5

)
= 46.2

ûτ̇2 = uτ̇2

(
3

5
,
4

5
,
8

5

)
= 57. 72 (∗ ∗ ∗ ∗ ∗)

ûτ̇3 = uτ̇3

(
3

5
,
4

5
,
8

5

)
= 68. 44

Thus, with no intervention by the parent, the resulting average utility at (τ̇1, τ̇2, τ̇3) will then be

V (ûτ̇1 , ûτ̇2 , ûτ̇3) =
ûτ̇1 + ûτ̇2 + ûτ̇3

3
= 57.453 (♣♣♣♣♣)

7.2.2 There exists no Pareto improving intervention

At state (τ̇1, τ̇2, τ̇3) no intervention can be Pareto improving over the backward induction utility profile
(ûτ̇1 , ûτ̇2 , ûτ̇3), because τ̇1 believes that the state is (τ̇1, τ̈2, τ̈3) in which there is (common knowledge of)
time consistency of preferences, and therefore by the principle of optimality in dynamic programming any
alteration of the action profile

(
3
5
, 6
5
, 6
5

)
chosen sequentially by τ̇1, τ̈2, τ̈3 would be in particular unbeneficial

from the perspective of τ̇1. Moreover, since u1 is strictly concave, any such alteration would actually
decrease u1.
The absence of Pareto improvements does not hinge on the fact that τ̇1 is (wrongly) certain of (common

knowledge of) the selves’time consistency. To see this, amend the above example so that type τ̇1 does
assign probability ε > 0 that there is time inconsistency, thus:

βτ̇1 {(τ̇1, τ̇2, τ̇3)} = ε, βτ̇1 {(τ̇1, τ̈2, τ̈3)} = 1− ε
βτ̇2 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈2 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇3 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈3 {(τ̇1, τ̈2, τ̈3)} = 1

The maximization problem of τ̇1 will now be

max
x1

(εuτ̇1 (x1, bτ̇2 (x1) , bτ̈3 (x1, bτ̇2 (x1))) + (1− ε)uτ̇1 (x1, bτ̈2 (x1) , bτ̈3 (x1, bτ̈2 (x1))))

= max
x1

 ε
(

(24− x21) + 1
2

(
24−

(
1− 1

3
x1
)2)

+ 1
2

(
24−

(
3− x1 −

(
1− 1

3
x1
))2))

+ (1− ε)
(

(24− x21) + 1
2

(
24−

(
3−x1
2

)2)
+ 1

2

(
24−

(
3−x1
2

)2))


leading τ̇1 to choose

x̂τ̇1 =
3ε+ 27

ε+ 45
and subsequently

x̂τ̇2 = bτ̇2 (x̂τ̇1) = 1− 1

3

3ε+ 27

ε+ 45
=

36

ε+ 45

x̂τ̈2 = bτ̈2 (x̂τ̇1) =
3− 3ε+27

ε+45

2
=

54

ε+ 45
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leaving to the last self

x̂τ̇3 =
72

ε+ 45

x̂τ̈3 =
54

ε+ 45

Accordingly, the backward induction expected utilities at (τ̇1, τ̇2, τ̇3) will be

ûτ̇1 = εuτ̇1

(
3ε+ 27

ε+ 45
,

36

ε+ 45
,

72

ε+ 45

)
+ (1− ε)uτ̇1

(
3ε+ 27

ε+ 45
,

54

ε+ 45
,

54

ε+ 45

)
=

39ε+ 2079

ε+ 45

ûτ̇2 = uτ̇2

(
3ε+ 27

ε+ 45
,

36

ε+ 45
,

72

ε+ 45

)
=

3 (17ε2 + 1746ε+ 38 961)

(ε+ 45)2

ûτ̇2 = uτ̇2

(
3ε+ 27

ε+ 45
,

36

ε+ 45
,

72

ε+ 45

)
=

9 (7ε2 + 702ε+ 15 399)

(ε+ 45)2

Then one can verify that for ε ≤ 1
2
there exist no Pareto improvements (x1, x2, 3− x1 − x2) over this

utility tuple.

Nudge One can interpret an increase in ε as the result of an ex ante nudge, that sobers up self 1 at least
partially, and makes it consider the possibility that its present bias need not disappear tomorrow (type τ̈2
has no present bias), but might rather persist (type τ̇2) with probability ε.
Such a nudge, though, will decrease the well-being ûτ̇1 of self 1 at the no-intervention backward induction

path, because
dûτ̇1
dε

= − 324

(ε+ 45)2
< 0

Thus, even such an informational intervention, involving no coercion or incentives, is not Pareto improving.

7.2.3 Minimax intervention

With the lack of Pareto-improvements, it may still be the case, though, that by disappointing some of the
selves while cheering up others the parent can improve upon the average utility (♣♣♣♣♣) at (τ̇1, τ̇2, τ̇3).
One possibility to use the same criterion as before, that amounts in this case to choosing a path that will
minimize the maximal disappointment vis-a-vis (∗ ∗ ∗ ∗ ∗) across the 3 selves:

min
x1+x2+x3=3

max
i=1,2,3

[ûτ̇i − uτ̇i (x1, x2, x3)]

The solution is
(
x̃τ̇1 , x̃τ̇2 , x̃τ̇3

)
= (0.673 4, 0.979 8, 1. 346 8) , with which τ̇1 and τ̇2 lose 0.04 04 of their utility,

each, but τ̇3 gains 0.333, overall leading to the higher average utility

v
(
x̃τ̇1 , x̃τ̇2 , x̃τ̇3

)
= 57. 537 > v

(
x̂τ̇1 , x̂τ̇2 , x̂τ̇3

)
as comparing with (♣♣♣♣♣) reveals. Thus, from the parent’s perspective this is a worthwhile interven-
tion.
This intervention is in some sense even more ‘benign’than the informational nudge considered above,

because it makes sure to smooth as much as possible the sobering pain of disillusionment across the different
periods, rather than weighing its entire toll on the child in the first period only.
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