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Abstract

If Anne knows more than Bob about the state of the world, she may or may not know what Bob
thinks, but it is always possible that she does. In other words, if the distribution of Anne’s belief
about the state is a mean-preserving spread of the distribution of Bob’s belief, we can construct
signals for Anne and Bob that induce these distributions of beliefs and provide Anne with full
information about Bob’s belief. We establish that with more agents, the analogous result does
not hold. It might be that Anne knows more than Bob and Charles, who in turn both know
more than David, yet what they know about the state precludes the possibility that Anne knows
what Bob and Charles think and that everyone knows what David thinks. More generally, we
define an information hierarchy as a partially ordered set and ask whether higher elements being
Blackwell more informed always makes the hierarchy compatible with higher elements having
more information (under various notions of that term) than lower elements. We show that the
answer is affirmative if and only if the graph of the hierarchy is a forest. We discuss applications
of this result to rationalizing a decision maker’s reaction to unknown sources of information and
to information design in organizations.
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1 Introduction

There are various things we might mean when we say, “Anne is more informed than Bob.” We
might mean that Anne’s information about some state of the world is more accurate than Bob’s (in
the sense of Blackwell 1951). Or, we might mean that Anne knows everything that Bob knows. Of
course, the latter implies the former: if Anne knows everything that Bob knows, her information
is necessarily more accurate. Moreover, if Anne’s information is more accurate, then, whatever
the extent of Anne’s and Bob’s knowledge about the state, it is always possible that Anne knows
everything that Bob knows. In formal terms, if the distribution of Anne’s belief about the state!
is a mean-preserving spread of the distribution of Bob’s belief, we can always construct signals for
Anne and Bob that induce these belief distributions such that Anne’s signal is a refinement of Bob’s
signal. This fundamental result means that informational comparisons of belief distributions can
often be interpreted as comparisons of signals.

In this paper, we explore the relationship between various notions of “more informed” in the
presence of many agents. For each notion, we ask whether being more informed imposes the same
restrictions on the distribution of beliefs about the state as the Blackwell order does. Perhaps
surprisingly, we find that the observations from the previous paragraph do not extend to more than
three agents. We construct an example where Anne’s information is more accurate than Bob’s
and Charles’s, whose information is in turn more accurate than David’s, and yet it cannot be that
Anne knows everything that Bob and Charles know and that all three know everything that David
knows. Formally, we construct four distributions of posteriors, 74, 75, 7, and 7p such that 74 is a
mean-preserving spread of 7p and 7, which are in turn mean-preserving spreads of 7p, and show
there do not exist four signals w4, mp, m¢, mp that induce these four distributions of posteriors and
have the property that 74 refines 7g, m¢, and 7p, and 7w and w¢ refines wp. It is always the case
that a less-informed person cannot know what the more-informed people think; in our example, a
more-informed person cannot know what less-informed people think.

To examine this issue in full generality, we introduce the notion of an information hierarchy.

An information hierarchy is simply a partially ordered set. We consider allocations of distributions

!Throughout the paper, we use the terms “belief about the state” and “first-order belief” interchangeably, which —
when there is no risk of confusion with higher-order beliefs — we abbreviate to simply “belief.”



of beliefs to the elements of the hierarchy that are monotone, meaning that higher elements have
more accurate information in the sense of Blackwell. Given such a belief allocation, we ask whether
it is constructible under refinement, i.e., whether it can be induced by a refinement-monotone
signal allocation in which higher elements know the signal realizations of lower elements. If every
monotone belief allocation is constructible in this way, we say that the information hierarchy is
universally constructible under refinement.

A partially ordered set (and thus an information hierarchy) is associated with an undirected
graph, whose nodes are the elements of the set and whose edges are determined by the partial
order.? Our main theorem shows that an information hierarchy is universally constructible under
refinement if and only if its undirected graph is a forest, i.e., there is at most one path between
any two elements. Thus, if the undirected graph is a forest, requiring that higher elements’ signals
refine lower elements’ signals implies no additional restrictions on beliefs than that higher nodes’
beliefs are Blackwell more informative than lower nodes’ beliefs. If the undirected graph is not a
forest, then refinement does imply additional restrictions on beliefs relative to the Blackwell order.

The aforementioned four-person example entails an information hierarchy whose graph is not
a forest: there are two paths from Anne to David, one through Bob and one through Charles. In
contrast, the undirected graph in the two-person example, from the first paragraph, is a forest.?
This is precisely why in the four-person but not in the two-person example, it was possible for the
extent of knowledge about the state to preclude an individual with more accurate information from
knowing everything known by the less informed.

We also consider a number of other notions of “more informed,” which are weaker than the
requirement that Anne knows everything that Bob knows (refinement), but stronger than the mere
fact that Anne’s signal is more accurate than Bob’s (the Blackwell order). For instance, it may
be that Anne knows Bob’s belief about the state but does not know all of Bob’s information. Or,
it may be that Bob’s information does not add to Anne’s information—her belief about the state
would not change if she were to observe his information. These are examples of a class that we call

proper relations, which are binary relations on signals that are weaker than refinement and satisfy

2The standard representation of a partially ordered set as a directed graph encodes the partial order by placing
an edge from n to n' if n covers n’, i.e., if n > n’ and there is no n’’ such that n > n” > n’. We associate with each
information hierarchy the undirected version of this directed graph.

3Indeed, the graph of any information hierarchy with three or fewer elements is necessarily a forest.



a natural belief-martingale property.* Our theorem establishes that, given any proper relation, an
information hierarchy is universally constructible under that relation if and only if the undirected
graph of the hierarchy is a forest.

The proof of the “if” direction of the theorem is relatively straightforward, though it does
require establishing a novel information-theoretic result that might be of independent interest (see
Lemma 2). Under the hypothesis that the undirected graph is a forest, we use this result to
iteratively construct a refinement-monotone signal allocation inducing any given monotone belief
allocation. The “only if” direction is considerably more involved. The proof relies on three key
ideas: First, we show that a hierarchy is universally constructible only if its closed subhierarchies
are also universally constructible. (By closed, we mean that all of the elements in the hierarchy
that are between two elements of the subhierarchy are also in the subhierarchy.) Second, we show
that any hierarchy that is not a forest must contain a closed subhierarchy taking one of two forms:
either its undirected graph is a crown or it is a union of non-comparable paths. The latter can
be seen as a generalization of the four-person example described above. Finally, for both of these
subhierarchy forms, we present monotone belief allocations that are not constructible.

We discuss two applications of our Theorem. First, suppose there is an agent who observes
information from several sources. Consider an econometrician who does not know the data gener-
ating process behind the information sources, but observes the agent’s reaction to the information.
In particular, the econometrician sees the distribution of the agent’s beliefs given any subset of in-
formation sources. We know these reactions must satisfy two simple properties. Bayes plausibility
requires that the agent’s average belief is equal across the subsets. Blackwell monotonicity requires
that when an agent observes a superset of sources, her beliefs are more dispersed than when she
observes a subset. A natural conjecture might be that these two are the only constraints imposed
by Bayesian rationality. Our Theorem implies that this conjecture is false.

Second, we apply the Theorem to constrained information design. For instance, take a Sender
who selects what information to provide to members of an organization but must ensure that
managers have access to all information provided to their subordinates. Our result identifies the

types of organizational structures under which this requirement is strictly more binding than the

4The property says that the expectation of Anne’s belief given Bob’s belief is equal to Bob’s belief.



weaker requirement that higher-ups should have more accurate information.

In a broad sense, this paper explores the relationship between different orders on experiments,
building on Blackwell (1951). Relatedly, Bergemann and Morris (2016) study an extension of the
Blackwell order to type spaces. Mu et al. (2019) consider comparisons of repeated experiments.

One way to frame our contribution is as a study of the implications that the common prior
assumption imposes on the universal type space (Mertens and Zamir, 1985; Brandenburger and
Dekel, 1993). In particular, given a set of players, we examine whether a collection of restrictions of
the form “player ¢ knows player j’s type” places constraints on ¢’s and j’s first-order beliefs (beyond
the obvious constraint that 4 must be Blackwell more informed than j5).?

We study how signals can be combined to produce more informative signals. Gentzkow and
Kamenica (2017) study this issue in the context of a communication game with a receiver who
combines information provided by multiple senders. Borgers, Hernando-Veciana and Kriahmer
(2013) study the interaction between signals from the perspective of whether signals are substitutes
or complements.

We also contribute to the growing literature on information design (Kamenica and Gentzkow,
2011; Bergemann and Morris, 2016). Arieli et al. (2020) characterize feasible joint belief distri-
butions of a group of agents in a binary state case. Mathevet and Taneva (2020) analyze the
implications of information design for organizational structure.

Finally, our inquiry leads us to a pure graph-theoretic question of whether a partially ordered
set contains subsets of a particular form. This subject has been studied in combinatorics and
graph theory (e.g., Lu, 2014); within economics, it is used by Curello and Sinander (2019) to study
rankings on preference relations.

The rest of the paper proceeds as follows. Section 2 describes our model of information hierar-
chies. Section 3 presents several examples of hierarchies and discusses which ones are universally
constructible; it also presents examples of proper relations. Section 4 presents our main result and
a sketch of the proof. Section 5 discusses the applications of our results. Section 6 briefly concludes.

All omitted proofs are in the Appendix.

°In the language of type spaces, “player i knows player j’s type” is analogous to the refinement order. As discussed
above, we also study relations that are weaker than refinement.



2 Set-up

2.1 States, signals, and distributions of posteriors

Given a finite state space Q and a prior pg € A (), a signal = is a finite partition of € x [0, 1]
s.t. m C 5, where S is the set of non-empty Lebesgue-measurable subsets of 2 x [0,1] (Green and
Stokey, 1978; Gentzkow and Kamenica, 2017).6 An element s € S is a signal realization.

The interpretation of this formalism is that a random variable z drawn uniformly from [0, 1]
determines the signal realization conditional on the state. Let p(slw) = A ({z| (w,z) € s}) and
p(s) = X eqP(s|w)po (w), where A(-) denotes the Lebesgue measure. That is, p(s|w) is the
conditional probability of s given w and p (s) is the unconditional probability of s. We denote the
set of all signals by II.

A distribution of beliefs, denoted by 7, is an element of AAS that has finite support and satisfies
E; [u] = po. We partially order distributions of beliefs by informativeness in the sense of Blackwell
(1951) and write 7 = 7" if 7 is a mean-preserving spread of 7. We let 7 denote the maximally
informative distribution of beliefs (whose support contains only degenerate beliefs) and 7 denote
the minimally informative distribution of beliefs (that puts probability one on the prior).

Observing a signal realization s s.t. p(s) > 0 generates a unique posterior belief ys, where the

probability of w given s is’

{semlps=p}

We denote the refinement order on IT by >, i.e., given 7, n’ € II, we write w > 7’ if every element
of 7 is a subset of some element of 7’. The pair (II,>) is a lattice and we let V denote the join,

i.e., mV 7’ is the coarsest refinement of both 7w and 7’/. For any set P, we denote the join of all its

5Throughout we assume || > 2.
"For those s with p(s) = 0, set us to be an arbitrary belief.



elements by \/ P.
Given signal 7, let fir denote the belief-valued random variable that reflects the posterior induced
by the observation of the signal realization from w. We define a belief-martingale relation on II,

8 (We use the word relation rather than order because this

denoted m B 7" if E [fir|ftn] = finr
relation is not transitive.)”
Note that the refinement order implies the belief-martingale relation, which in turn implies the

Blackwell order on the induced distributions of posteriors; i.e.,
n>r =1 Br = ()= ().

We say a binary relation R on II is proper if 1 > 7/ = 7 R #’ = © B «/. We provide some

examples of proper relations in Section 3.3.

2.2 Information hierarchies

An information hierarchy H is a finite partially ordered set (N, >) with the corresponding strict
order >. Since we will heavily rely on graph-theoretic representations of (NN, >), we refer to elements
of N as nodes. Nodes n and n’ are comparable if n > n’ or n’ > n. Given n,n’ € N, n covers n’ if
n > n’ and there does not exist n”” € N with n > n” > n’.

The directed graph of H, denoted G (H), is the pair (N, FE), where N is the set of nodes,
E C N x N is the set of directed edges, and (n,n’) € E if n covers n’. A directed path from n to n/
in G (H) is an alternating sequence of vertices and directed edges (ng, €g, ..., n,—1,€r—1,n1,), where
L>0,n=mn,n,=n",n €N foralll € {0,...,L}, e, = (n;,ny41) € E for all l € {0,..., L — 1},
and [ # ' = ¢; # ey. The undirected graph of H, denoted G (H), is the pair (N, E), where N is
the set of nodes, E C {& C N’||é| = 2} is the set of undirected edges, and {n,n’} € E if n covers
n’ or n/ covers n. An undirected path from n to n/ in (N , E) is an alternating sequence of vertices
and undirected edges (no, €o,...,n5—1,€r-1,nr), where L > 0, ng = n, n, = n/, n; € N for all
1€{0,...L}, & = {n,myy1} € Eforalll € {0,...,L —1}, and | # ' = & # éy. A cycle in G (H)

is an undirected path from n to n. We say H is cyclic if G (H) contains a cycle. The graph depicts

8Throughout the paper, when we say two random variables are equal, we mean almost surely.
?See Brooks et al. (2020).



what is often termed the transitive reduction of H: if n > n/, there is a path from n to n’, but
there is an edge from n to n/ only if there is no node between them.

A subset of nodes N’ C N induces the information hierarchy H' = (N’,>), which we refer to
as a subhierarchy of H, with the partial order being the restriction of > on N’. Note that if H' is
a subhierarchy of H, G (H') = (N’, E') need not be a subgraph of G (H) = (N, E); specifically, F’
may contain edges that are not in F.

An undirected graph is a tree if there is exactly one undirected path between any two nodes.
An undirected graph is a forest if there is at most one undirected path between any two nodes, i.e.,

there are no cycles. Thus, a forest is a union of disjoint trees.

2.3 Beliefs and signals in hierarchies

A belief allocation on H given (2, up) is a map that assigns a distribution of beliefs to every node
in N. A belief allocation f is monotone (with respect to H) if n > n’ = B (n) 7 B(n)), ie., if
higher nodes are Blackwell more informed than lower nodes.

A signal allocation on H given 2 is a map that assigns a signal to every node in N. Given a
binary relation R on the set of signals II, we say that a signal allocation o is R-monotone (with
respect to H) if n > n' = o (n) R o (n’). For instance, a signal allocation is >-monotone if higher
nodes have signals that refine lower nodes’ signals. Given {2 and po, a signal allocation o induces

a belief allocation g if for all n, 8 (n) = (o (n)).

2.4 Universal constructibility

Given (2, up) and a proper relation R, we say that a monotone belief allocation 5 on H is con-
structible under R if 3 is induced by some R-monotone signal allocation on H.'® The main question
we explore in this paper is whether, given a proper R, every monotone § on H is constructible
under R. As we will see, the answer will not depend on the choice of R. However, the answer
can depend on the cardinality of €. Accordingly, given ), say that the information hierarchy H
is Q-universally constructible under R if for any ug € AS), every monotone belief allocation on H

is constructible under R. A hierarchy is said to be universally constructible under R if it is -

19Tt is immediate that only a monotone f is R-constructible for any proper R (because # R 7’ = 7 B 7' = (m) =

(')). -



universally constructible under R for any 2. Note that under any R, if a hierarchy is (2-universally
constructible, then it is '-universally constructible if |Q| < |Q].

While the definition of universal constructibility requires a condition to hold across all priors,
our characterization of universally constructible hierarchies would remain unchanged if we fixed

any particular interior prior.'!

3 Examples

In this section, we present several examples of information hierarchies and discuss which of them are
universally constructible. Along the way, we establish some Lemmas and intuitions that will play
a central role in the proof of our main result. We also present some examples of proper relations.
Whenever we show that a hierarchy is universally constructible under the refinement order, this
will immediately imply that it is universally constructible under any proper relation. Conversely,
when we show a hierarchy is not universally constructible under the belief-martingale relation,
this will immediately imply that it is not universally constructible under any proper relation.
Consequently, we focus on establishing that certain hierarchies are universally constructible under
the refinement order and some other hierarchies are not universally constructible under the belief-

martingale relation.

3.1 Examples of information hierarchies

Example 1 (Chain). There are four individuals—A, B, C, and D—ranked in alphabetical order.
The set of nodes is N = {A, B,C, D}, and > reflects the ranking relation, A > B > C > D. Figure

la depicts the directed graph of the information hierarchy (N, >).

Example 2 (Tree). There is a small organization that consists of a president (P) who has two
deputies (D1 and D2), each of whom has two assistants (Al and A2; A3 and A4). The partial
order reflects the organizational hierarchy, with P > D1, D2; D1 > Al, A2; and D2 > A3, A4.

Figure 1b depicts the directed graph.

H¥ormally, fix any H, Q, R, and an interior u§ € AQ. If every monotone belief allocation on H given (£, uf) is
constructible under R, then for all po € A, every monotone belief allocation on H given (2, uo) is constructible
under R.
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Example 3 (Diamond). Returning to the example from the introduction, there is an organization
whose president (A) has two deputies (B and C) that share an assistant (D). We refer to this

hierarchy—with A > B,C and B,C > D—as the diamond, depicted in Figure 1lc.

Example 4 (Set-inclusion). Elements of an information hierarchy need not represent individuals.
Suppose there are three sources of information: X, Y, and Z. A decision maker has access to
some of these sources. The nodes in this set-inclusion hierarchy are the possible collections of the
information sources, i.e., N = {X,Y,Z, XY, XZ YZ XY Z}, and > denotes the inclusion order:
XYZ>XY, XZ,YZ, XY >X,Y; XZ>X,Z;YZ >Y,Z. Figure 1d depicts the directed graph

of the hierarchy.

Example 5 (Crown). There are two parents, F' and M, who have two children, S and D. We refer
to this information hierarchy, with > reflecting the parenting relation (F' > S, D; M > S, D), as

the crown, depicted in Figure le.!?

Example 6 (Cross). The parents from the crown in Example 5 have hired a governess G, who
manages the children and reports to the parents. The new partial order is F;M > G; G > S, D.
The resulting cross hierarchy is depicted in Figure 1f. Note that the subhierarchy of the cross
induced by the subset {F, M, S, D} is a crown. However, the subgraph obtained by dropping the
node G is not the graph of the crown. As we will see, this observation will play an important role

when we consider universal constructibility of the crown versus the cross.

3.2 Universal constructibility of the example hierarchies
A chain is universally constructible under the refinement order

Every information hierarchy that is a chain (i.e., that is totally ordered) is universally constructible

under the refinement order. To see why, it is helpful to note the following result.'?

Lemma 1 (Lemma 4 from Gentzkow and Kamenica, 2017). For any 7’ and 7 with 7 7 (7'), 37 s.t.

(i) (w) =7 and (ii) m > 7.

12More specifically, this hierarchy is a 4-crown, where an n-crown is defined as a partially ordered set in which half
of the nodes are maximal and half are minimal, and there is a single cycle that contains all of the nodes. Since this
is the only crown we consider in this paper, we refer to it as the crown. Note that “crown” also has distinct meanings
in graph theory.

3 This result first appears as Theorem 1 in Green and Stokey (1978). The proof in Gentzkow and Kamenica (2017)
uses the same notation as this paper.
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In other words, take any signal, which induces some distribution of beliefs. There is a refinement
of this signal that induces any more-informative distribution of beliefs.

Now, consider the chain hierarchy H from Example 1. Consider some monotone belief allocation
B on H. Given (D), let o (D) be any signal that induces 8 (D). Since 8 (C) zZ § (D), by Lemma
1, there exists some signal 7c > o (D) that induces S (C); let o (C) = me. Similarly, since
B (B) zZ B(C), there is a signal 7 > o (C) that induces § (B); let o (B) = 7p. Finally, there is a

mA > o (B) that induces 5 (A); let o (A) = 74.

A tree is universally constructible under the refinement order

Establishing that a tree is universally constructible under refinement is somewhat more compli-
cated than for a chain. The proof relies on the following result, which might be of independent
information-theoretic interest. We say that 7’ is statistically redundant given 7 if (7 V «') = (%),

i.e., observing 7 and 7’ yields the same beliefs as observing # only.

Lemma 2. For any 7, 7, and 7" with @ > 7 and (7) zZ 7/, 3In’ s.t. (i) (x') = 7', and (ii) V7 s.t.

T > 7> w, ' is statistically redundant given 7.

In words, given a signal 7 and a distribution of beliefs 7/ that is less informative than (r), there
is a signal 7’ that induces 7/ but is statistically redundant given 7 (or given any signal that refines
7 up to an upper bound 7).'* We sketch the proof of Lemma 2 in Section 4.2.

To better understand the content of Lemma 2, it is helpful to note that the following, stronger,
conjecture does not hold. One might think that, analogously to Lemma 1, for any 7 and 7" with
() = 7', 37’ s.t. (i) (#') = 7/ and (ii) 7 > /. This is not the case.!® Lemma 2 implies, however,
that we can nonetheless find a 7’ s.t. (7') = 7’ and 7’ is statistically redundant given m, even
though we cannot guarantee that = > «’. Moreover, the Lemma further implies we can find a 7/
so that 7’ is statistically redundant given any 7 such that 7 <7 < 7.

With Lemma 2 in hand, we can now establish the universal constructibility of trees. Consider

the tree hierarchy H from Example 2. Take some monotone § on H. We construct a >-monotone

14The upper bound is a technical condition related to the fact that signals are finite partitions. Given that 7’ is
finite, it cannot be statistically redundant given all refinements of 7.

15For example, suppose that () 7 7' but the support of 7’ has more elements than the number of signal realizations
in 7. Then, no 7’ that induces 7" could be a coarsening of 7.
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o that induces 3 as follows. Given (8 (Al), let o (A1) be any signal that induces 8 (A1l). We follow
the same procedure as in the case of the chain to (tentatively) assign suitable o (D1) and o (P).
Now, consider assigning a signal to A2. The complication is that there may not exist a signal 7
such that (7) = §(A2) and yet o (D1) > 7. This is where Lemma 2 comes into play. By Lemma
2, we know there is a signal 7’ such that (7') = 5(A2), (o (D1) VvV «') = (¢ (D1)) = §(D1), and
(o (P)V 7'y = (c(P)) = (P). Thus, we can replace the initial assignment of signals to D1 and
P with ¢ (D1) V 7’ and o (P) V 7/, respectively. A similar procedure (with repeated reassignment
of the previously assigned signals) can then be used to sequentially assign signals to D2, A3, and
A4. The details of this procedure, applied to any hierarchy whose graph is a forest, are the heart

of the proof of Proposition 1 below.

The diamond is not universally constructible under the belief-martingale relation

Consider the diamond hierarchy from Example 3. We will show this hierarchy is not Q-universally
constructible for any €.

Suppose 2 = {0,1} with an equiprobable prior. Since the state space is binary, we associate
each belief with Pr (w = 1); a belief is depicted as a number in the unit interval.

Consider the belief allocation S8 that respectively assigns to nodes A, B, C', and D the distribu-
tions of beliefs g, 75, T, and 7o, as indicated in Figure 2. (We will refer these four distributions of
beliefs again below, so it is helpful to give them names.) In the figure, we depict each distribution
of beliefs as a collection of circles with matching markings. Each circle represents a belief in the
support of the distribution, where the area of a circle is proportional to the probability mass on

that belief. Denote a distribution that puts probability p; on belief u; by (p1, f1; P2, 425 vy ; Pry fin);

we have 7o = (§,0: 3,53 5:1): 70 = (355 55 1) 7o = (§5:0:%:5:5:5) and 70 = (5,535 )

It is easy to see that 3 is monotone.' We will now argue that 3 is not constructible under the
belief-martingale relation B.

Suppose o is a B-monotone signal allocation that induces 5. Consider the joint distribution of

To see that 8 (B) = 7y is a mean-preserving spread of (D) = 7o, note that we can obtain 7, from 7o by
spreading the realization u = 2 in 7o to {,1} in 7 and leaving the realization p = % in 7o unchanged. To see
that 8 (A) = 7 is a mean-preserving spread of 8 (B) = 7, note that we can obtain 7g from 74 by spreading the
realizations u = % and p = % in 7y to {07 %} in 7 and leaving the realization ¢ = 1 in 75 unchanged. The argument
for why 8 (A) = 8(C) Z B(D) is symmetric.

13



Figure 2: Distributions over 2 = {0,1} showing the diamond hierarchy is not universally con-
structible under B

0 1/6  1/3  1/2  2/3  5/6 1

beliefs on {A, B, C, D} induced by o. Specifically, consider the conditional probability of fo(a) =1
given fiy(py = %. Since o (B) B o (D), we must have that fi,p) = % whenever [i,p) = %.17
Similarly, since o (A4) B o (B), we must have fi;(4y = 1 whenever fi,gy = 1. Finally, since
Pr (fig(ay = 1) = Pr(fig(py = 1), we must have that Pr (fi;(a) = 1|fis(5) # 1) = 0. Combining
these observations, we obtain Pr ([la(A) = lfig(p) = %) =0.

However, applying a similar logic to the assumption that o (A) B o (C) and o(C) B o (D) tells
us that Pr (ﬂg(c) = %WU(D) = %) > (0 and Pr (/]J(A) = gy = % & fig(py = %) > 0. Combining
these two inequalities yields Pr (/]a( A) = 1]/10( D) = %) > 0, which contradicts the conclusion we
derived from the fact that o (A) B o (B) and o(B) B o (D). Therefore, no B-monotone signal
allocation can induce £.

In addition to the formal argument above, here is a simple intuition for why the diamond is not
universally constructible. The belief allocation we constructed is such that along each edge of the
diamond, there is a unique way to spread the less-informative belief distribution to produce the

more-informative belief distribution. In particular, there is a unique conditional distribution over

beliefs at B given the realized belief at D, a unique conditional distribution over beliefs at A given

'"Because the support of 3 (B) is {é, %, 1}, the only way to have E [ﬂa(B)\ﬁa(D) = é] = é is to have fi,(p) = %
whenever fiy(py = %

14



a realized belief at B, etc. Thus, given a belief realization at D, we can derive a distribution of
belief realizations at A by integrating over beliefs at B or by integrating over beliefs at C. If there
were a B-monotone signal allocation that induced these beliefs, then the conditional distribution of
the belief at A given the realized belief at D must be “independent of path” up the diamond. As
we showed above, this cannot be the case.

Since we established that the diamond is not constructible for @ = {0, 1}, it is not constructible

for any Q.18

A set-inclusion hierarchy is not universally constructible under the belief-martingale relation

Consider the environment, described in Example 4, where a decision maker has access to three
unknown sources of information. This environment induced the set-inclusion hierarchy depicted in
Figure 1d. Note that the graph of the diamond hierarchy can be seen as a subgraph of the graph
in Figure 1d, if we associate A with XY Z, B with XY, C' with YZ, and D with Y. Consequently,
under the belief-martingale relation, the set-inclusion hierarchy is not universally constructible for
the same reason that the diamond hierarchy is not universally constructible. In particular, any belief
allocation /3 on the set-inclusion hierarchy that assigns g (XY Z) = 7, 8 (XY) =10, (Y Z) = 15,
and 3 (Y) = 7o is not constructible under B.!?

It is worthwhile to note that the mere fact that A, B, C, and D in the diamond are ordered
the same way as XY Z, XY, YZ, and Z in the set-inclusion hierarchy does not by itself mean
that non-constructibility of the diamond implies non-constructibility of the set-inclusion hierarchy.
More broadly, it may be that a hierarchy H is universally constructible under some R, but H' is a
subhierarchy of H and H’ is universally constructible under R. The next two examples illustrate

this possibility. Section 4.3.1 discusses the issue in detail.

The crown is not universally constructible under the belief-martingale relation

Consider the crown hierarchy from Example 5. We will show that this hierarchy is not Q2-universally

constructible under B if |Q2] > 3. (As we discuss below, it is Q-universally constructible if || = 2.)

18Recall that if a hierarchy is universally constructible for some state space, it is universally constructible for any
state space of lower cardinality.

9Moreover, it is easy to see that there is a monotone belief allocation on the set-inclusion hierarchy that assigns
these distributions of beliefs to these nodes. For example, we could set 8(X) =8 (Z) =8(XZ) =1.
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Figure 3: Distributions over 2 = {0, 1,2} showing the crown is not universally constructible under

B

1
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Suppose Q = {0,1,2} with a prior po(w=0) = 1, po(w=1) = %, and po(w=2) = 3. We

represent each belief as a pair (x,y) in the unit square with z +y < 1, where Pr (w =1) = z and
Pr(w = 2) = y. Consider the belief allocation 5 that assigns to F, M, S, and D the distributions
of belief indicated in Figure 3. As before, we depict each distribution of beliefs as a collection of
circles. If a letter n € {F, M, S, D} appears inside a circle, then the belief indicated by this circle is
in the support of 3 (n). If a belief is in the support of both 8 (n) and 3 (n’), both n and n’ appear
inside that circle; moreover, these two distributions put the same probability mass on that belief
(with the mass indicated by the area of the circle).?"

It is easy to see from Figure 3 that /3 is monotone.?! We will now argue that 3 is not constructible

20Formally, the belief allocation is given by B(F) = (é,(O,Q)'%

By = (1.0.3)51,(34): 0 (1932 (53), B = (5,(3,0);3
(Z? (07 4) 192 (47 4) ) 4> (57 4))

21To see that 8 (F) is a mean-preserving spread of 3 (S ) note that we can obtain 8 (F') from § (S) by (i) spreading
the realization (5,0) in 8(S) to {(0 0) ( )} in B(F), (11) leaving the realization (i, i) in B8(S) unchanged, and
(iii) spreading the realization (}1, ;) in B (S) to {(0, 2) , 27 2)} To see that 8 (M) is a mean-preserving spread of
B (S), note that we can obtain 3 (M) from 3 (S) by (i) leaving the realization (,0) in 3 (S) unchanged, (i) spreading
the realization (%, i) in B (S) to {(0, i) (2, 4)} in (M), and (iii) leaving the reahzatlon B(S) = (%, %) unchanged.
The argument for why g (F) and 8 (M) are mean-preserving spreads of 3 (D) is symmetric.

e
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under B. As before, consider the joint distribution of beliefs on {F, M, S, D} induced by any B-
monotone signal allocation o. Specifically, consider the conditional probability of fis(g) = po given
flo(py = po- Since o (M) B o (S), we have that fi,gy = 1o < fiy(ar) € {(0, %) ) (%, %)} Since
o (M) B o (D), we have that jiy(p)y = fio < fie(ar) € {(%, 0) ) (i, %)} Hence, the joint probability
of fig(s) = po and fi,(p)y = po must be zero, i.e., Pr (ﬂg(s) = polfie(p) = po) = 0. But, o (F) Bo (S)
implies fiy(s) = Ho < fig(r) = Mo, and o (F') B o (D) implies fi,(py = pio < fie(r) = po- Hence,
Pr (ﬂg(s) = pio|fie(p) = ,uo) = 1. We have reached a contradiction: no B-monotone ¢ can induce
the belief allocation £.

For future reference, we summarize this discussion with the following formal result:

Lemma 3. A crown is not Q-universally constructible under B if |Q] > 3.

The cross is universally constructible under the refinement order

The cross hierarchy from Example 6 is universally constructible under I>. The argument is anal-
ogous to the argument for why the tree hierarchy from Example 2 is universally constructible.
The procedure we discussed in that example for how to construct a >-monotone ¢ to induce any
monotone 3 applies to the cross as well.

Note that the subhierarchy ({F, M, S, D},>) is a crown, which is not universally constructible
under >, even though the cross is. This might seem puzzling at first. One might think that the
impossibility of constructing a >-monotone o that induces the belief allocation 8 on {F, M, S, D}
in the previous example means that the cross is also not universally constructible under >>. But,
even though that [ is monotone with respect to the crown, there is no way of extending that
belief allocation to the cross (by assigning some ((G) to node GG) in a way that would preserve
monotonicity.

That the cross is universally constructible under > does, however, imply that the crown is (-
universally constructible under &> if |Q2] = 2. This follows from the fact that the set of distributions
of beliefs under the Blackwell order is a lattice when the state space is binary (Kertz and Rosler,
2000; Miiller and Scarsini, 2006). Take an arbitrary monotone belief allocation 8 on {F, M, S, D}.

If the state space is binary, the lattice property implies there exists a unique distribution of beliefs

B(S)Vv B (D) such that 5 (S)V (D) Z B(S),B(D)and T Z 5(S)V S (D) for any 7 Z (S), B (D).
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Now, let 3 be the belief allocation on the cross that sets 3 (n) = B(n) for n € {F,M,S,D} and
B(G) = B(S)V B (D). Tt is immediate that 3 is monotone. By the universal constructibility of
the cross under refinement, there is a >-monotone & that induces 3. Restricting ¢ to {F, M, S, D}

yields a I>-monotone signal allocation on the crown that induces 5.

3.3 Examples of proper relations

As we mentioned at the outset, there are various things one might mean by “Anne is more informed
than Bob.” One is that Anne’s signal is Blackwell more informative than Bob’s, i.e., (ma) 5 (7p).
Another is that Anne has observed all of Bob’s information, i.e., m4 > wg. These, however, are not
the only economically relevant comparisons of signals. For instance, it might be that Anne knows
Bob’s belief about the state. Or, it might be that if Anne were to observe Bob’s information, she
would not change her belief about the state of the world, i.e., that mp is statistically redundant
given m4. In a companion paper (Brooks et al. 2020), we explore these and other relations on
signals in more detail.

It is easy to see that m4 > 7p implies that Anne knows Bob’s belief about the state, which
in turn implies the belief-martingale relation, m4 B 7. Similarly, it is easy to see that m4 > 7p
implies that mp is statistically redundant given 74, which in turn implies 74 B wg. Hence, Anne
knowing Bob’s belief about the state is a proper relation. Similarly, statistical redundancy is a
proper relation.

Thus, the fact we have established that trees are universally constructible under refinement, a
fortiori establishes they are universally constructible under these other relations: given any mono-
tone belief allocation § on a tree, we can construct a signal allocation ¢ that induces § and has the
property that for every n > n’, observing o (n) suffices to know the beliefs at o (n'). Likewise, we
can construct a signal allocation o that induces 8 such that for every n > n’, o (n’) is statistically
redundant given o (n).

In the other direction, since a diamond and the crown are not universally constructible under
B, we know there are monotone belief allocations 3 on those hierarchies such that it is impossible
to construct a signal allocation o that induces § and has the property that for all n > n/, observing

o (n) suffices to know the beliefs at o (n’). Moreover, there are monotone belief allocations § such
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that it is impossible to construct a signal allocation ¢ that induces 8 and has the property that for

all n > n’/, o (n') is statistically redundant given o (n).

4 Universal constructibility

4.1 Main result

We now present our main result, a characterization of universally constructible hierarchies under

any proper relation.

Theorem 1. Fiz any proper relation R on signals. An information hierarchy is universally con-

structible under R if and only if its undirected graph is a forest.

The proof of Theorem 1 is broken up into two propositions, which separately establish sufficiency

and necessity of the forest condition.

Proposition 1. An information hierarchy is universally constructible under the refinement order if

its undirected graph is a forest.

Proposition 2. Suppose |Q| > 3. An information hierarchy is Q-universally constructible under the

belief-martingale relation only if its undirected graph is a forest.

Rigorous proofs are in the Appendix. The next two subsections provide outlines of these proofs.

4.2 Outline of the proof of Proposition 1

Since a forest is a union of disjoint trees, Proposition 1 is a straightforward consequence of the
fact that trees are universally constructible under the refinement order. As we discuss in Section
3, universal constructibility of trees follows from Lemma 2. Here we provide the intuition behind
Lemma 2.

Consider the example in Figure 4. The state is either L or R. Each of the four rows represents
a signal, i.e., a partition of {L, R} x [0,1]. The two rectangles in each row represent the unit
interval crossed with the two states. For every signal, each signal realization, i.e., each element of
the partition, is indicated by its shading. Note that 7 > 7, and while (r) = (7), it is not the case

that = &> 7 nor that (7 vV 7) = (7).
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Figure 4: Illustration of Lemma 2
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To establish the claim in Lemma 2, we need to construct a signal 7’ that induces the same beliefs
as 7, but is statistically redundant given 7, and given any refinement of m up to w. The bottom
row illustrates such a construction. Each signal realization of n’ corresponds to a signal realization
of 7, with the same likelihood in each state. However, the “location” of the signal realizations in 7’
are re-arranged so that the conditional probability of each signal realization of 7’ in state w given
7 is (i) the same for w = L and w = R, and (ii) the same for any elements of 7 that refine the
same element of . The first property ensures that 7’ is statistically redundant given 7, while the
addition of the second property ensures that it is also redundant given any 7 s.t. @ &> 7« > w. The

proof in the Appendix provides an algorithm for constructions that satisfy these two properties in

general.

4.3 Outline of the proof of Proposition 2

Recall that in Section 3, we gave two examples of hierarchies which are not universally constructible
under B, the diamond and the crown. For each of these hierarchies, we presented monotone belief
allocations that are not constructible. These two belief allocations turn out to be “canonical” in the
sense that for any hierarchy that is not universally constructible under B, we can generalize one of

those belief allocations to establish non-universal constructibility.
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4.3.1 Constructibility and closed subhierarchies

Sometimes, we can establish that a hierarchy is not universally constructible by noting that it has
a subhierarchy that is not universally constructible. As a simple example, suppose we take the
diamond in Figure lc, and form a new hierarchy H’ by adding nodes that are above A or below
D. Then, we can extend any monotone belief allocation S on the diamond to H' by assigning
full information to the nodes above A and no information to the nodes below B. The resulting
belief allocation 8’ will be monotone on H’, and it is constructible under B if and only if 8 was
constructible under B on the diamond. Thus, any hierarchy which “embeds” the diamond in this
sense is not (2-constructible under B for any €.

A natural conjecture might therefore be that a hierarchy is not universally constructible under
B if it contains a subhierarchy that is not universally constructible under B. Without further con-
ditions, this conjecture is false. This was previously demonstrated by the crown and the cross: the
cross is universally constructible under B, but if we drop its center node, the resulting subhierarchy
is a crown, which is not universally constructible under B.

The conjecture is true, however, if we add an additional hypothesis on the subhierarchy. Given
H = (N, >), a subhierarchy H' = (N',>) is closed (in H) if for every n’,n” € N' and n € N,
n’ > n > n” implies n € N’. In other words, N’ contains all the nodes from N that are between
the nodes of N’. Lemma 4 in the Appendix establishes that a hierarchy is universally constructible
under B only if its closed subhierarchies are universally constructible under 5. (This observation
holds for any proper relation, but for the purposes of proving Proposition 2, it suffices to establish
it for B.)

The basic idea behind the proof is as follows. Consider some hierarchy H that is universally
constructible under B. Let H' be a closed subhierarchy and let 5’ be a monotone belief allocation
on H'. We extend /3’ to a monotone belief allocation 3 on H as follows. Since H' is closed, any node
in H that is not in H' falls into one of three mutually exclusive categories: (i) it is above some node
in H', (ii) it is below some node in H’, or (iii) it is not comparable with any node in H'. In case (i),
we allocate full information to the node, and in cases (ii) and (iii), we allocate no information to the
node. The resulting § is monotone. Moreover, since H is universally constructible under B, there

is a B-monotone signal allocation o that induces 8. The restriction of o to H' is also B-monotone
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and induces f’. Since ' was arbitrary, we conclude that H' is universally constructible under B.
Thus, to prove Proposition 2, it suffices to show that if H is not a forest, it contains a closed

subhierarchy that is not universally constructible under B.

4.3.2 Unions of non-comparable paths

The next step in the argument utilizes an important class of hierarchies, termed unions of non-
comparable paths (UNPs). We adapt the belief construction for the diamond to establish that
UNPs are not universally constructible under B. UNPs do not necessarily contain a diamond as a
closed subhierarchy, so establishing non-constructibility of UNPs does not directly follow from the
observations in Section 3.2.

An information hierarchy is a UNP if its graph is a union of at least two undirected paths
between the pair of nodes A’ and D’ satisfying three properties: (i) node A’ is maximal; (ii) node
D’ is minimal; and (iii) a pair of nodes are comparable only if they are in the same undirected
path. Such a graph is depicted in Figure 5. Note that we have not assumed that all the nodes in
the same path are comparable.

Lemma 8 in the Appendix formally establishes that UNPs are not Q-universally constructible
under B for any 2. Here, we provide a sketch of that proof.

We first establish that if a belief allocation on a UNP allocates the same belief distribution on
any pair of nodes n and n’ that are in the same path (neither node being A" or D’), then any
B-monotone signal allocation that induces it yields beliefs at n and n’ that are perfectly correlated.

Now, consider some belief allocation 8 on a UNP H based on the belief allocation on the
diamond from Section 3. In particular, set 8 (A") = 7g; B(D’) = 70; for nodes n in one of the
paths of H, say the path including B’ in Figure 5 (excluding A’ and D’), set 5(n) = 7p; and
for all remaining nodes n (namely the nodes in the paths including C’ and C” in Figure 5) set
B (n) = 7. We show that (3 is not constructible under B. Roughly speaking, the nodes in the path
with B" (whose belief realizations are perfectly correlated) collectively serve the role of node B in

the diamond, and the other paths serve the role of node C' from the diamond.??

22Note, however, that this argument relies on details of this particular belief allocation. The argument does not
go through if we replace 7 with an arbitrary non-constructible belief allocation on the diamond. There exist belief
allocations on the diamond that are non-constructible but whose “extension” to a UNP is constructible. The reason
why this is possible is that in the diamond A > D, but the UNP does not require that A’ > D’; thus signal allocations
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Figure 5: An example of a UNP. Here, the curves depict undirected paths between A’ and D', and
slopes of the curve denote “local” comparisons between nodes. For example, the path through B’
is decreasing, indicating that it is a directed path with B’ below A’ and above D’. In contrast,
the paths through C’ and C” are not directed; while C’ is above D’ it is non-comparable with A’.
This a UNP because it satisfies three properties: (i) node A’ is maximal; (ii) node D’ is minimal;
and (iii) a pair of nodes are comparable only if they are in the same undirected path.

C//

D/
4.3.3 Minimal cyclic closed (MCC) subhierarchies

Given the observations from the previous two subsections, the proof of Proposition 2 is completed
by showing that if a hierarchy is not a forest, then it contains a closed subhierarchy that is either
a UNP or a crown. Below are the main steps in the argument.

Suppose that H is not a forest, so that it contains a cycle. Since any hierarchy is a closed
subhierarchy of itself, H also contains a subhierarchy that is cyclic and closed. Given that N is
finite, it follows that H contains a minimal cyclic closed subhierarchy (MCC), i.e., a subhierarchy
H' = (N’,>) such that: (i) H' is cyclic and closed, and (ii) there does not exist a subhierarchy
H" = (N",>) with N” C N’ such that H” is cyclic and closed.

We show that any MCC must be either a UNP or a crown. This result takes considerable effort
to prove formally, but the basic idea is as follows. An MCC H’ contains maximal nodes, which
are not covered by any other node, and minimal nodes, which do not cover any other nodes. We

distinguish two cases on these maximal and minimal nodes.

& on the diamond and o on H with 6 (4) = 0(A’) and 6 (D) = o (D’) might be B-monotone on H but not on the
diamond.
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Figure 6: A between set which is not an MCC. Since the nodes A and B are comparable, there is
a smaller closed cyclic subhierarchy, namely the nodes that are between A and n.

n

n

In the first case, every maximal node in H' covers every minimal node. Then, the fact that H’
is minimal, together with the existence of a cycle, implies that H’ contains exactly four nodes and
is in fact a crown.

Alternatively, there is a maximal node 7 that does not cover a minimal node n. Then, we show
that H' is a UNP. To see this, note the following two subcases. First, it may be that H’ is simply the
set of nodes that are between 7 and n, i.e., a between set. Then, H' consists of a series of directed
paths between  and n. Now, if nodes in distinct paths were comparable, then it would be possible
to find a smaller cyclic closed subhierarchy, as illustrated in Figure 6, violating the fact that H' is
minimal. Thus, nodes must not be comparable across paths and H' is a UNP. The second subcase
is that H’ is not a between set. Lemma 6 in the Appendix shows that then every cycle in H' must
contain every node in N’. Any such spanning cycle can be decomposed into two undirected paths
between a maximal node and a minimal node. If any nodes in these two paths were comparable, we
could find a smaller cycle that does not contain every node in N’, which would contradict Lemma

6. As a result, H' is a UNP. This completes the outline of the proof of Proposition 2.
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5 Applications

5.1 Rationalizing reaction to unknown sources of information

Consider an agent who obtains information from multiple sources. If we do not know the information-
generating process, what restrictions does the agent’s rationality impose on her potential reactions
to this information? Concretely, suppose Anne is a decision maker with access to a set of Blackwell
experiments {x1,x9,...,x5}. Suppose further that we see the distribution of Anne’s beliefs that

arises after she observes any subset of these experiments; our dataset D = {75} ¢c (e1,n) bells

ST
us the distribution of Anne’s beliefs for every non-empty subset of experiments that she observes.
When can we rationalize a given dataset D in the sense that we can associate each experiment x;
with some signal (i.e., an element of II) and conclude that Anne’s belief formation is consistent
with Bayes’ rule?

To be rationalized, belief distributions in D have to satisfy two obvious properties. First, there is
Bayes plausibility: the average belief cannot differ across sets of experiments, i.e., Erg[u] = Er, [1]
for any two subsets S and S’. Second, there is Blackwell monotonicity: observing a larger set of
experiments necessarily induces a more dispersed distribution of beliefs, i.e., 75 is a mean-preserving
spread of 7g/ if 8" C S. A natural question is whether these are the only properties imposed by
Bayesian updating.

Theorem 1 tells us that the answer is No. When there are three or more experiments,?? Bayesian
updating requires more than just Bayes plausibility and Blackwell monotonicity. To see why,
consider the set-inclusion information hierarchy H where each non-empty collection of experiments
S C{z1,...,xpr} is associated with a node ng and the partial order is the superset order: ng > ng
if S C S. As illustrated in Figure 1d, the undirected graph of this information hierarchy H
contains a cycle. By Theorem 1, this means that there is some monotone belief allocation on H,
call it 3, that cannot be induced by any refinement-monotone signal allocation on H. Now, we

can associate with this 8 a dataset D = {Ts}sg{xlw by setting 7¢ = S (ng). Note that D

ST}

necessarily satisfies Bayes plausibility and Blackwell monotonicity (since 8 is monotone). If we

23When there are only two experiments, M = 2, it is easy to show that the answer is indeed affirmative. Any reaction
to two unknown sources of information that satisfies Bayes plausibility and Blackwell monotonicity is consistent with
Bayesian updating.
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could rationalize D by associating each x; with some signal « (x;) € II, then the signal allocation
o(ns) = V,.csm (i) would induce S and yet be refinement-monotone (since S’ C S implies
Vaes ™ (wi) B V. cq m(xi)). This would contradict Theorem 1. Thus, we know that there are
datasets that satisfy Bayes plausibility and Blackwell monotonicity, yet cannot be rationalized.

A potentially fruitful direction for future research would be to fully characterize which reactions

to unknown sources of information are rationalizable.

5.2 Information design

Consider a Sender who provides information to a set of agents. Moreover, suppose the designer
faces certain types of monotonicity constraints such as some agents must know the beliefs of some
other agents or some agents must have access to others’ information. Then, we can think of agents
as elements of an information hierarchy, and the information design problem consists of selecting
a (suitably monotone) signal allocation on this hierarchy. Our results shed light on how such
monotonicity constraints affect the information design problem.

For example, consider organizations. A long literature in organization economics emphasizes
the importance of the hierarchical structure of managerial relationships (Williamson, 1967). One
important aspect of organizational design is deciding how much information to provide — about
individuals’ prospects for promotion, about the overall performance of the organization, etc. — to
each member of the organization. It is often suboptimal to provide full transparency and share full
information with everyone (Fuchs, 2007; Jehiel, 2015; Smolin, 2017). A natural constraint that an
information designer might face is that anyone in the organization ought to have access to the infor-
mation that is available to her subordinates, i.e., that a superior’s signal refines every subordinate’s
signal. This constraint interacts with the organization structure. Proposition 1 implies that, if an
organization has the feature that every subordinate has at most one superior, the aforementioned
constraint can always be satisfied as long as individuals who are higher up in the organization are
more informed in the Blackwell sense. With richer managerial relationships,?* however, Propo-
sition 2 tells us there could be desirable allocations of information which are incompatible with

the constraint, even though they provide (Blackwell) more information to those higher up in the

24For instance, suppose that the CEO oversees two middle managers who share the oversight of an employee.
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organization.

6 Conclusion

We study the relationship between various notions of informativeness in a general model of dis-
tributed information. Take some information hierarchy, i.e., a specification of which elements should
be more informed than others. We analyze whether every belief allocation on this hierarchy that
is monotone in the Blackwell order (higher elements know more about the state of the world) is
compatible with a signal allocation that is monotone in a stronger sense, e.g., higher elements know
everything lower elements know. Our main result is that the answer is affirmative if and only if the
undirected graph of the information hierarchy is a forest.

Importantly, our analysis has focused on whether every monotone belief allocation is con-
structible. Another natural goal would be to characterize, given an arbitrary information hierarchy

and a proper relation, the set of monotone belief allocations that are constructible.?®

25 An additional, narrower, question is: which information hierarchies are universally constructible when the state
space is binary? The answer must be non-trivial, since the crown is universally constructible in the binary state case,
while the diamond is not.
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A  Proofs

A.1 Proof of Lemma 2

Proof of Lemma 2. Let 7 be asignal s.t. () = 7/. Since (7) = 77, there exists a garbling g : 7 X7 —
[0,1] such that > . ~g(s,5) = 1Vs €7, and p(3lw) = > .. 9(5,8)p(slw). For every 5 € 7, let
s (5) denote the element of 7 s.t. 5 C s(35). (This element exists since 7 > 7.) Now, Vs € 7, let
{Xég}geM? be a partition of 5 s.t. Vw, A ({z] (z,w) € XF}) = A({2] (z,w) €5}) g (s(5),35), where

M?®={5€7|g(s(s),8) > 0}. Such a partition exists because > - g(s(5),5) =1 for all s (5) € 7.

s€7r

Let 7/ = {Z%} __ with Z% = U X% We now show that ' satisfies (i) and (ii). To show
sem 5€T s.t.5€M®

(i), it suffices to show that p (Z*|w) = p (§|w) for every § and w. We have

= Y A({zl(z,w) € XT})

5€T s.t.5€M®

= Z A({z|(z,w) €5})g(s(5),5)
SET s.t.5eM®

- Z)\ ({z|(z,w) €5}) g (s(5),3)

=Y > A{zl(zw eshg(s(5),8)

senl 5 s.t. 5(3)=s

=Y 09 Y Al € s

serl 5 s.t. s(3)=s
—ngs ({z| (z,w) € s})
sem
=> 9(5,8)p(slw)
sem
=p(Slw).

To show (ii), consider some 7 s.t. T > 7 > 7w and some § € 7. Since 7 V @’ &> 7, there is a partition

of 3, say {s/},c; s:t. s/ € @V a' for all i. It will suffice to show that for every w, ', and sy, we

77

have
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Consider some siv. Note that there exists s € m with § C s since 7 > 7. Let Q) = {E € WH\E - §}
Since T &> 7, for every w, A(z|(z,w) € 8) = 3 5o A (2] (z,w) €3). Note that s C s for all 5 € Q.
Now, we know that s/ = s'N§ for some s’ € 7. By definition of 7/, we know that s’ = u X3

SET s.t.5€ M?
for some § € 7. Hence,

s/ = u X:|ns
SET s.t.5€MS

— 5A e
 sew s.EnJ.§EM§ (XS M S)

~

= u  XZ
5€Q s.t.3€ M

where the last equality follows from the fact that X C 3, and hence X:N§ = X?if s € Q and

XN s is empty if 5 ¢ Q. Hence,

P (sy|w) =\ ({m! (r,w) € szv})

—A({x!(x,w) € U Xj})
5€Q s.t.5€M®

= Z A({z] (z,w) € X5})

5€Q s.t.5e M5

= > A{zl(zw) eshg(s5)

5€Q s.t.5e M®

=Y A({z|(z,w) €5} g (s,3)

5€Q

=9(538) ) A({z](z,w) €5})

5€Q
=9(s,5) A({z](z,w) € 5})

=9(5,8)p(8lw).

Hence,
p(silw)  g(55pBlw) _ pBlw)
p(silw)  g(s,8)p(3lw)  p(8lw)’
which completes the proof of Lemma 2. O
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A.2 Proof of Proposition 1

Proof of Proposition 1. Let H be an information hierarchy and suppose G(H ) is a forest. Let (3 be
a monotone belief allocation on H. We will construct a >-monotone signal allocation that induces
5. To do so, we construct a sequence of subhierarchies of H, adding nodes of H one by one, until we
reach the full hierarchy H. At each step, we assign a signal to the newly added node and potentially
reassign the signals allocated to the previously added nodes.

We begin with some notation and terminology. A construction procedure f is a bijection from
{1,...,|N|} to N that specifies the order in which the nodes are added. Let le ={f),....f(O} If
f (1) = n, we say that n was added at time [, and we refer to N, l]: 1 as the previously added nodes. For
any subset N C N, let CoveredBy (N') = {n € N\ N'|3n’ € N’ that covers n}, Covering (N') =

{n € N\ N'|3n’ € N’ that is covered by n}, and
Disconnected (N') = {n € N\ N'|pn' € N’ s.t. there is a path from n to n’ in G(H)} .

Now, consider a construction procedure f of the following form. Let f (1) be any node in N.
Forl € {2,3,...,|N|}, let f(I) be an arbitrary element of CoveredBy (le_1> U Covering (le_1> U
Disconnected (le_l). Note that for any N’ C N, CoveredBy (N')UCovering (N')UDisconnected (N')
is not empty.

Claim 1. For each [ > 2, there is at most one edge in G(H) between f (I) and nodes in le_l.

Proof of Claim 1. Suppose toward contradiction that f (1) has an edge in G (H) with distinct n,n’ €
NlJil. Since n and n/ both have an edge with f ({), they must belong to the same tree in G(H).
Moreover, there must be a path between n and n’ in G ((le_l, 2)) To see this, let n be the
node that was added earliest to le_ , among the nodes in the tree to which n and n’ belong.
For every other node f (I') € le—1 from this tree, we must have f (') € CoveredBy (Nlj,c_l) U
Covering (Nl’,:1>, which in turn means that there is a path from f (I') to n in G ((Nlj,:l, 2)) and
thus in G <(le_1, 2)) Hence, there is a path from both n and n’ to n and thus a path between
nand n’ in G ((Nljil, Z)) So, there must be a path between n and n’ in @(H) that does not go
through f (1). But, because f (1) has an edge with both n and n’, there is another path from n to

n’ that goes through f (1). However, é(H ) is a forest, so there cannot be multiple paths between
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two nodes; we have reached a contradiction. &

Now, given this construction procedure f, we assign signals to nodes as follows. At step [, we
expand le_l to le = le_l U f (1) and assign signals according to o' : le — II. 'We proceed
by induction and show that, as long as the signals previously allocated to nodes in le_ 1 induce
appropriate beliefs (i.e., for all m € le_l, (c"=Y(m)) = B(m)) and are >-monotone (i.e., for
any m,m’ € le_l such that m > m’/, we have o!=! (m) > o/=1 (m’)), the o' we specify induces
appropriate beliefs and is >-monotone on le .

First, to node f (1), we assign an arbitrary signal o' (f (1)) such that (! (f(1))) = B(f (1)).
Note we are vacuously satisfying the base case of the induction argument: the signal allocation to
the single node in le induces appropriate beliefs and is >-monotone. For [ > 2, there are three
cases: f (I) € CoveredBy (le_1>, f (1) € Covering (le_1>, and f (I) € Disconnected (le_l).

We first consider the case f (1) € Covering (le_l). Note that, by Claim 1, f (I) covers exactly
one node in le_l (call this node m) and is not covered by any nodes in le_l. Since B(f (1)) == B (m),
there exists some m > ¢!~! () such that (1) = 3(f (1)) (cf: Lemma 1). We set o' (f (I)) = 7 and
we keep the signal allocation to nodes in Nljil unchanged, i.e., o' (m) = o'~! (m) for all m € le,l-
It is clear that o! induces appropriate beliefs (by the inductive hypothesis for m € Nl]: , and by
construction for f(1)). We also need to show that this signal allocation on le is >-monotone.
Consider any m,m’ € le such that m > m’. Since f (I) € Covering (le_l), either m,m’ € le_l
or f(I) = m. In the former case, we know o' (m) = o/=1 (m) > o'=' (m/) = o' (m') by the
inductive hypothesis. If f(I) = m, we know f () > m > m’. By the inductive hypothesis,
ol (m) = o=t > o1 (m/) = o (m/) and thus o' (f (1)) > o' (m) > ol (m'). That completes the
proof for this case.

Now consider the case where f (1) € CoveredBy (le—1)- Let m be the node in le_l that covers

f (). Denote 7/ = B(f (1)), 7 = o'~ (m), and 7@ = \/ o'=1 (m). By Lemma 2, we know 37/

menj
such that (i) (7') = 7/, and (ii) V& s.t. 7 > & > 7, (7 V.«') = (7). We set o' (f(I)) = . For
m € le_l, if m > f (1), we set o' (m) = o'~ (m) V7'; otherwise, we set o (m) = ¢!~! (m). We need
to show that ¢! induces appropriate beliefs and is >-monotone. We have that (o' (f (1))) = (7) =
7 =8(f (). For m € Nljil, first consider cases where m > f (1), so (¢! (m)) = (¢'=! (m) v 7).

Since m > m (recall that m covers f (1)), by the inductive hypothesis, o!~! (m) > ¢'~! (m) = =;
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moreover, T = \/ =1 (/) > o=t (m); hence, (o' (m)) = (¢!~ (m) vV ') = (¢~ (m)). For

ment | ¢
m € le_l st. m # f(1), (¢! (m)) = (¢!=1 (m)). Since by the inductive hypothesis, (/=1 (m)) =
B (m), we have established that (o' (m)) = B (m) for all m € le,l- We now need to show that o'
is >-monotone. Consider any m,m’ € NlJi , s.t. m > m’. There are three cases. First, suppose
m >m' > f(I). In that case, we know that o' (m) = ¢!~! (m)va’ and ! (m’) = o'~1 (m/)va’. Since
(by the inductive hypothesis) o!=! (m) > o'=! (m/), we know that ¢!=! (m) Vv 7' > o/=1 (m/) v 7,
and hence ¢! (m) > o! (m’). The second case is where m > f (1) and m/ # f (I). Then, o' (m) =
o=t (m) v 7’ and o' (m') = o!~! (m’). Since (by the inductive hypothesis) o'~ (m) > o!=1 (m/),
we have that o' (m) = ¢!='(m) v 7' > o= (m) > o/='(m') = o' (m/). Finally, suppose that
m # f(I) and m’ # f(I). Then, o' (m) = o/~ (m) and o' (m/) = o/~ (m/). Since (by the
inductive hypothesis) o/~ (m) > o!=! (m/), we have that o' (m) > o' (m/) .

Finally, suppose f (1) € Disconnected (le_1>. We assign an arbitrary signal o' (f (1)) to f (1)
such that (o' (f (1)) = B (f (1)), and we keep the signal allocation to nodes in le_l unchanged, i.e.,
ol (m) = o!=1 (m) for all m € le_ |- It is clear that o' induces appropriate beliefs (by the inductive
hypothesis for m € le_ , and by construction for f (1)). Since f () is not comparable to any node

in le_ 1» the fact that the signal allocation on le_ 1 is >-monotone implies that the signal allocation

on le is also >-monotone. This completes the proof. ]

A.3 Proof of Proposition 2

Lemma 4. If an information hierarchy H is Q-universally constructible under B and H' is a closed

subhierarchy of H, then H' is Q-universally constructible under B.

Proof of Lemma 4. Fix . Suppose H is an information hierarchy that is Q-universally con-
structible under B. Consider some p. Suppose H' = (N’,>) is a closed subhierarchy of H.
Let 8’ be a monotone belief allocation on H’. We need to construct a B-monotone signal allocation
on H' that induces 3. Let § be a belief allocation on H defined as follows: (i) if n € N’ let
B(n)=p"(n); (ii) if n ¢ N’ and 3In’ € N’ such that n > n’, let 8 (n) = 7; and (iii) if n ¢ N and
An’ € N’ such that n > n’, let 8 (n) = .

Claim 2. 3 is monotone on H.
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Proof of Claim 2. Consider n,n’ € N with n > n’. We show that §(n) zz 8 (n’) by considering
four exhaustive cases:

If n and n’ are both in N’, this follows from the fact that 3’ is monotone on H’.

If n and n’ are both not N’, consider two subcases. If In” € N’ such that n > n”, then
B(n) =7 z B(n). Otherwise, since n > n’ and An” € N’ such that n > n”, it must be that
An” € N’ such that ' > n”,so f(n) z B (n') =1.

Ifn¢ N andn' € N, B(n) =72z B(n).

Finally, if n € N’ and n’ ¢ N’, then there cannot exist an n” € N’ with n’ > n”. If such an

n” did exist, then since H' is closed and n,n” € N’, we would have that n’ € N/, a contradiction.

Thus, 8 (n) Z B (n)) =1 ¢

Since  is monotone on H, and H is Q-universally constructible under B, there exists a B-
monotone signal allocation ¢ on H that induces 3. Clearly, the restriction of o to N’ induces 3

and is B-monotone on H'. O

The next result shows that if H' is a closed subhierarchy of H, then G (H') is the subgraph of

G (H) obtained by dropping edges with nodes that are not in H'.

Lemma 5. Fiz a hierarchy H = (N, >) and a closed subhierarchy H' = (N',>). Let E be the set of
edges in G (H). Then G(H') = (N', E'), where E' = {(n,n’) € Eln,n’ € N'}.

Proof of Lemma 5. Fix n,n’ € N'. We need to show that (n,n’) € E’ if and only if (n,n’) € E. If
(n,n’) € E, then n covers n' in H, i.e., n > n’ and there is no n” € N with n > n” > n’. A fortiori,
there is no n” € N’ C N with n > n” > n/; hence, n covers n’ in H', so (n,n’) € E'. If (n,n') € E’
, then n covers n/ in H'. As a result, n > n/. If there exists n” € N such that n > n” > n’, then,
since H' is closed, n” € N’, so n must not cover n’ in H’, a contradiction. As a result, n covers n/

in H as well, so (n,n’) € E. O

The between set of (n,n’) in H = (N,>) is defined as

Btw (n,n',H) ={h e Nn>n>n'}.
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Clearly, the subhierarchy induced by the between set of any pair of nodes is closed. Moreover, a
subhierarchy H' = (N’, >) is closed if and only if N’ contains Btw (n,n’, H) for all n,n’ € N'. We
say that Btw (n,n/, H) is simple if every node in Btw (n,n’, H) \ {n,n'} belongs to exactly one
directed path in G(H) from n to n’. H' is a minimal cyclic closed subhierarchy (MCC) of H if it
is cyclic, closed, and there is no cyclic and closed subhierarchy H” = (N”,>) of H with N” C N'.

We say that a cycle in G(H "} is a spanning cycle if every node in N’ is in the cycle.

Lemma 6. Fiz a hierarchy H = (N,>) and a subhierarchy H' = (N',>). Suppose H' is an MCC
of H. Then, either (i) N is a simple between set in H, or (ii) every cycle in G (H') is a spanning

cycle.

Proof of Lemma 6. For this proof, all between sets are defined relative to H, and we simply write
Btw (n,n’) for Btw (n,n’, H). Similarly, by closed we mean closed in H. Note that by Lemma 5,
G (H') is the subgraph of G (H) obtained by dropping edges with nodes that are not in H'. In
particular, H' is cyclic if and only if H contains a cycle whose nodes are in H’. This fact is used
freely below.

We consider two cases. First, suppose there are two nodes n,n’ € N’ such that n > n/ and there
are two distinct paths from n to n’ in the directed graph G(H). Note that Btw (n,n’) is closed,
so that these paths are in G ((Btw (n,n’),>)) as well, so that (Btw (n,n’),>) is cyclic. Moreover,
since H' is closed, we have that Btw (n,n') C N’. Hence, since H' is an MCC, we must have that
N’ = Btw (n,n’). It remains to show that the between set N’ is simple. Suppose to the contrary
there is some node 17 € N’ \ {n,n'} such that n belongs to two distinct paths from n to n’ in G(H).
Then, there are either two distinct directed paths from n to n or two distinct directed paths from n
to n/; thus, either Btw (n,n) or Btw (f,n') must be cyclic. Since both Btw (n,n) and Btw (n,n’)
are closed and strict subsets of N/, H' must not be an MCC, so we have reached a contradiction.
Thus, we have established that N’ must be a simple between set.

Now consider the second case where for every n,n’ € N’, there is at most one path from n
to n’ in the directed graph G(H). Given a path P (either directed or undirected), let Np denote
the set of nodes that appear in P. Since H' is an MCC, G (H') = (N’,E) contains a cycle
C = (ng,ép,..n—1,€r-1,nr) where L > 1, ng = ny. We will argue that (N¢,>) is closed. The

fact that No = N’ will then follow directly from the hypothesis that H' is an MCC.
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Let us then suppose that (N¢,>) is not closed, in order to reach a contradiction. Given a di-
rected path (ng, g, ...,np—1,er—1,nr), its undirected analog is the undirected path (ng, g, ...np—1,€r-1,n1)
where é; = {n;,n;y+1}. Say that a directed path P in G (H) only contains edges in C' if every edge
in the undirected analog of P isin C. A directed path P in G(H) is an external directed connection
(EDC) from n to n' if (i) P is a directed path from n to n/; (ii) n,n’ € N¢; and (iii) P does not only
contain edges in C. Say that (n,n’) € N¢ are an externally connected pair (ECP) if there is an
external directed connection from n to n’ or from n’ to n. An ECP (n;,n;) is said to be minimally
close if for every i <1 <1< j, (nb ni) is an ECP only if =4 and | = j.
Claim 3. Given any two nodes n,n’ € N', if P is the unique directed path in G (H) from n to n’,

then Np = Btw (n,n’).

Proof of Claim 3. If there are two non-comparable nodes in Btw (n,n’), there would be two distinct
directed paths from n to n’. Hence, all nodes in Btw (n,n’) are comparable. Therefore, there is a
directed path from n to n’ whose nodes are Btw (n,n’). Since there is a unique directed path from

n to n/, the set of nodes in P is Btw (n,n’). O
Claim 4. There exist 4, j such that (n;,n;) is a minimally close ECP.

Proof of Claim 4. We know there is a pair of nodes in N¢ that are an ECP. Otherwise, (N¢,>)
would be closed. Moreover, since L is finite, there is a pair of nodes in N that are a minimally

close ECP. &

Let (n;,n;) be a minimally close ECP s.t. {n;,n;t1,....,n;} € N¢. Let m = max {n;,n;} and n =
min {n;,n;}. Let P® denote the external directed connection from 7 to n. Let P be the undirected
path (n;, &, ...,€;1,n;) in G (H) from n; ton; in C. Let Q denote the undirected path from n; to n;
that “goes in the other direction” from P in C, i.e., Q = (My €i—1, M1,y ovey €0, N0, EL—1, VL1, ooy €5, T05).
Let S = Nz U Btw (n,n).

Claim 5. (S, >) is cyclic.

Proof of Claim 5. It suffices to show there are two distinct undirected paths from n; to n; in
G ((S,>)). One path is P. The other path is the undirected analog of the external directed

connection P€. Since P€ is external, these two undirected paths must be distinct. &
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Claim 6. S is closed.

Proof of Claim 6. Let Y = Uy pen, Btw (n,n’). We will show that Y is closed and that Y = S.

First we show that Y is closed. Consider any n’,n” € Y and n € Btw (n’,n”). By definition of
Y, n’ € Btw (n1,n2) and n” € Btw (n3,n4), where nj € N for 1 =1,2,3,4. Hence, ny >n’ >n >
n” > ny and thus n € Btw (n1,n4) C Y.

It remains to show that S =Y. Givenn € N, n € Btw (n,n) C Y. Moreover, Btw (n,n) C Y.
Hence, S CY.

Now, consider some n € Y. We need to show that n € S. If n € Nj, then we are done.
Otherwise, n ¢ Ns. We know n € Btw (n’,n") for some n/,n"” € Np. If (n,n") = (7,n), n €
Btw (m,n) C S. Suppose instead that (n’,n”) # (m,n). We will reach a contradiction. Let P
denote the directed path from n’ to n” whose nodes include n. Because (7,n) is a minimally close
ECP, path P must only include edges in C. Since n ¢ N, the nodes in path P cannot be a subset
of Np. Thus, the nodes in P contain the nodes in Q, including 7 and n. The sequence of nodes and
edges in P between n and n is a directed path between those nodes, and thus is equal to P¢ (by

uniqueness of the directed path). Since P€ contains an edge which is not in C, we have contradicted

the hypothesis that P only contains edges in C'. Thus, we have established that Y C S. &

We have established that (5,>) is cyclic and closed and that S C N’. Since H' is an MCC,
it must be that S = N'. But since S = Np U Btw (%, n), it must be that Ny C Btw (7, n). All
nodes in a between set are comparable, by the hypothesis that directed paths are unique, and so all
nodes in NQ are comparable. Hence, Q must be the undirected analogue of P¢. This contradicts

the hypothesis that (7,n) is an ECP. O

Lemma 7. If the hierarchy H = (N,>) is such that every cycle in G (H) is a spanning cycle, then
for any pair of nodes n,n' € N, there ewist two undirected paths from n to n’ such that the union

of the nodes in the two paths is N and the intersection of the nodes in the two paths is {n,n’}.

Proof of Lemma 7. Since there exists a spanning cycle G (H), for any pair of nodes n,n’ € N, there

: ; _ spP P P =P / _ Q Q Q ~Q
exist two undirected paths P = (n, €0 MY s WP _ 1 eLpfl,n> and Q) = (n, €Ny s R IRTLL

y LR 1

such that N = NpUNg and EpNEg = 0, where Ep = {éOP, ...,éfp_l} and Eg = {éOQ, ""éi)ﬂ?q}'

We need to show that Np N Ng = {n,n’}. Suppose to the contrary that there exists n € Np N Ng
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with 7 € {n,n'}. We know there exist (¥ € {1,....LF — 1} and 19 € {1, ..., L9 — 1} such that 7 =
nﬁg = nl%. Now, consider the undirected path (n, éOP,nf, ""éﬁ”—l’nﬁj’é%fl’nl%fl’él%fw ,n)
Since E’p N Eq = (), this is a well-defined path. But it is a cycle that is not spanning and thus we

have reached a contradiction. ]
Suppose a hierarchy H has nodes

!

N={m ok, {nd)

k=1

with L > 2, such that for all [ = 1,..., L, (i) K; > 1, (ii) 7 > n!, (iii) anl > n, (iv) nf and nﬁc_H
are comparable for every k =1,...,K; — 1, and (v) nﬁc is not comparable to ng, if [ #I'. In this

case, we say that H is a union of non-comparable paths (UNP).

Lemma 8. If the hierarchy H is a UNP, then H is not Q-universally constructible under B for any
Q.

Proof of Lemma 8. To establish the Lemma, it suffices to show that if the hierarchy is a UNP, it is
not Q-universally constructible under B for @ = {0, 1}. We will present a monotone belief allocation
(3, based on the belief allocation on the diamond in Section 3, and show that 3 is not constructible
under B. Let 8(n) = 1g; B(n) = 70; for k=1,..., K, let B(n}ﬁ) = 1g; and for all [ =2,..., L and
k=1,...,K), let 8(nl) = 75. Recall that 75 has support {0, 3.1}, 70 has support {%, %}, To has
support {O, %, %}, and 7 has support {%, %, 1}. By the argument in footnote 16, 8 is monotone.
Toward a contradiction, suppose o is B-monotone signal allocation that induces 5. We begin
by establishing that, it must be that case that, along any undirected path from 7 to n, the realized

beliefs must be equal across the interior nodes on that path.

Claim 7. Foralll =1,... L, Wehaveﬂa( ):[L ( )forallkzl,...,Kl.

l l
n a\ny

Proof of Claim 7. It suffices to establish that for any &k =1, ..., K; — 1, we have ﬂa(nkﬂ) = ’&U(”k)'

l ! ! l. l l
We know n; and n; , are comparable. Assume that nj , > n;; the case where n; > nj

is analogous and omitted. Since o is B-monotone, we have E[ﬂo(n§€+l)|ﬂa(ni)] = fig(nt): Now

suppose toward contradiction that ﬂa( # ﬂa(nl ) We would conclude that ,&U( is a strict
k

n%ﬁ—l) ”24-1)

39



. ~ 26 ~ . ~ .
mean-preserving spread of Bo(nl)- But that would mean that Bo(nl,,) 18 not equal to Bio(nt) in

distribution and thus that (o (”2+1)> # (o (nl)).

o

We will now reach a contradiction by establishing that Pr (ﬂa(ﬁ) =0& figm) = %) is equal to

zero and is strictly bigger than zero.

Step 1: We show that Pr (ﬂg(ﬁ) =0& figm) =

%) = 0. First, note that Pr (,uo(n) =0, (nl) = O)

1since E [ﬂg(ﬁ) |ﬂg( nt) = 0} = 0 and the support of i, () lies above 0. Moreover, since Pr (,ug )

3 _ ~ _ ~

g = Pr </¢U(n%) = O), we must also have Pr (u(f( = 0 fto(m) = O) 1. A similar argument es-
5
6

tablishes that Pr <ﬂa(n1 ) = %|ﬂo(@) = 2) =1

Ky

tells us that Pr(ﬂa(n%) =0 & fig ) = g) —0.
1

Step 2: We show that Pr (ﬂa(ﬁ) =0& Po(n) =

and Pr <~ (n) = ‘
Hence, Pr (ﬂg(ﬁ) =

%) > 0. It suffices to show that (a) Pr ( i 2) = %‘Me(g) =

0, and (b) Pr (ﬂg(ﬁ) = 0l (n2) = 5 & fio) = %) > 0.

Arguments analogous to the ones in Step 1 yield Pr (/1 (n2 ) = %|ﬂg(n) = é) = 1. Be-
g K2 —

cause Supp (,ug n)) {6, 6} this in turn implies that Pr (,ug(n) = %]ﬂa< , \ = é) = 1. Thus,

Claim 7 tells us that Pr ([L(,(ﬂ) = %],&U(n%) = %) = 1. Therefore Pr Bo(n2) = %WU(@) = %) =

Pr(7,()=4)

> 0, establishing part
Pr(fio(n)=5) g part (a).

Now, note that Pr (ﬁg(ﬂ) = %mg(n%) = 7) = limplies Pr (ua (m) = Olit, (n2) = 5 & flow) = %) =
1
3

Lol

Pr (ﬁo(ﬁ) = 01ty (n2) =

) . Moreover, since Supp ([Lo(n ) {0, o 1} we have E [

‘f;:
’5
\';
=
q
—
3
o
N—
Il

5= P (fiom) = Olity(,2) = 3) > 0, establishing (b). O

Lemma 9. If the hierarchy H = (N, >) is cyclic and N is a simple between set in H, then H is not

Q-universally constructible under B for any (2.

Proof of Lemma 9. Since H = (N, >) is cyclic and N is a simple between set, H must be a UNP.

Therefore Lemma 8 establishes that H is not 2-universally constructible under B for any Q. [

Lemma 10. If the hierarchy H is cyclic and not

a crown, and every cycle in G(H) 18 a spanning

cycle, then H is not Q-universally constructible under B for any 2.

26For any two random variables X and YV, if E[X|Y] =
of Y.

Y and X # Y, X must be a strict mean-preserving spread
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Proof of Lemma 10. Suppose that H = (N, >) is cyclic and not a crown, and that every cycle in
G (H) is a spanning cycle. We say an element 7 of N is maximal if there is no n € N such that

n > n. We say an element n of N is minimal if there is no n € N such that n > n.

Claim 8. There exist m and n in N that are maximal and minimal, respectively, such that 7 does

not cover n.

Proof of Claim 8. Suppose toward contradiction that every maximal element covers every minimal
element. Hence, G (H) is a complete bipartite graph of maximal and minimal elements. If there
were only one maximal element or only one minimal element, there could not be a cycle. So, there
must be at least two of each. Take any N’ C N consisting of exactly two maximal and two minimal
elements, and let H' = (N',>). H' is a crown and therefore is cyclic. Moreover, H' is clearly
closed, so that by Lemma 5, the nodes in H’ are part of a cycle in G (H) as well. Since every cycle
in G (H) is a spanning cycle, we must have N = N’, and thus H is a crown subhierarchy, and we

have reached a contradiction. O

By Claim 8, we can find @ and n in NV that are maximal and minimal, respectively, such that
7 does not cover n. By Lemma 7, there are two distinct undirected paths P and Q in G (H) from
7 to n such that the union of the nodes in the two paths is IV and the intersection of the nodes
in the two paths is {m,n}. As a result, H is a UNP. Lemma 8 therefore implies that H is not

Q-universally constructible under B for any 2. O

Proof of Proposition 2. Suppose G(H) is not a forest, i.e., it contains a cycle. Since N is finite, H
contains a subhierarchy H' = (N’,>) that is an MCC of H. By Lemma 6, either (i) N’ is a simple
between set in H, or (ii) every cycle in G (H') is a spanning cycle. Consider case (i). Because H’
is closed and N’ is a simple between set in H, N’ is also a simple between set in H’. Thus, Lemma
9 implies that H' is not Q-universally constructible under B for any Q. Now consider case (ii).
If H' is not a crown, then Lemma 10 implies that is not Q-universally constructible under B for
any Q. If H' is a crown, Lemma 3 implies it is not Q-universally constructible under B if |Q] > 3.
Hence, if || > 3, H' is not Q-universally constructible under B. Therefore, by Lemma 4, H is not

Q-universally constructible under B if || > 3. O
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