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Abstract

If Anne knows more than Bob about the state of the world, she may or may not know what Bob
thinks, but it is always possible that she does. In other words, if the distribution of Anne’s belief
about the state is a mean-preserving spread of the distribution of Bob’s belief, we can construct
signals for Anne and Bob that induce these distributions of beliefs and provide Anne with full
information about Bob’s belief. We establish that with more agents, the analogous result does
not hold. It might be that Anne knows more than Bob and Charles, who in turn both know
more than David, yet what they know about the state precludes the possibility that Anne knows
what Bob and Charles think and that everyone knows what David thinks. More generally, we
define an information hierarchy as a partially ordered set and ask whether higher elements being
Blackwell more informed always makes the hierarchy compatible with higher elements having
more information (under various notions of that term) than lower elements. We show that the
answer is affirmative if and only if the graph of the hierarchy is a forest. We discuss applications
of this result to rationalizing a decision maker’s reaction to unknown sources of information and
to information design in organizations.
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1 Introduction

There are various things we might mean when we say, “Anne is more informed than Bob.” We

might mean that Anne’s information about some state of the world is more accurate than Bob’s (in

the sense of Blackwell 1951). Or, we might mean that Anne knows everything that Bob knows. Of

course, the latter implies the former: if Anne knows everything that Bob knows, her information

is necessarily more accurate. Moreover, if Anne’s information is more accurate, then, whatever

the extent of Anne’s and Bob’s knowledge about the state, it is always possible that Anne knows

everything that Bob knows. In formal terms, if the distribution of Anne’s belief about the state1

is a mean-preserving spread of the distribution of Bob’s belief, we can always construct signals for

Anne and Bob that induce these belief distributions such that Anne’s signal is a refinement of Bob’s

signal. This fundamental result means that informational comparisons of belief distributions can

often be interpreted as comparisons of signals.

In this paper, we explore the relationship between various notions of “more informed” in the

presence of many agents. For each notion, we ask whether being more informed imposes the same

restrictions on the distribution of beliefs about the state as the Blackwell order does. Perhaps

surprisingly, we find that the observations from the previous paragraph do not extend to more than

three agents. We construct an example where Anne’s information is more accurate than Bob’s

and Charles’s, whose information is in turn more accurate than David’s, and yet it cannot be that

Anne knows everything that Bob and Charles know and that all three know everything that David

knows. Formally, we construct four distributions of posteriors, τA, τB, τC , and τD such that τA is a

mean-preserving spread of τB and τC , which are in turn mean-preserving spreads of τD, and show

there do not exist four signals πA, πB, πC , πD that induce these four distributions of posteriors and

have the property that πA refines πB, πC , and πD, and πB and πC refines πD. It is always the case

that a less-informed person cannot know what the more-informed people think; in our example, a

more-informed person cannot know what less-informed people think.

To examine this issue in full generality, we introduce the notion of an information hierarchy.

An information hierarchy is simply a partially ordered set. We consider allocations of distributions

1Throughout the paper, we use the terms “belief about the state” and “first-order belief” interchangeably, which –
when there is no risk of confusion with higher-order beliefs – we abbreviate to simply “belief.”
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of beliefs to the elements of the hierarchy that are monotone, meaning that higher elements have

more accurate information in the sense of Blackwell. Given such a belief allocation, we ask whether

it is constructible under refinement, i.e., whether it can be induced by a refinement-monotone

signal allocation in which higher elements know the signal realizations of lower elements. If every

monotone belief allocation is constructible in this way, we say that the information hierarchy is

universally constructible under refinement.

A partially ordered set (and thus an information hierarchy) is associated with an undirected

graph, whose nodes are the elements of the set and whose edges are determined by the partial

order.2 Our main theorem shows that an information hierarchy is universally constructible under

refinement if and only if its undirected graph is a forest, i.e., there is at most one path between

any two elements. Thus, if the undirected graph is a forest, requiring that higher elements’ signals

refine lower elements’ signals implies no additional restrictions on beliefs than that higher nodes’

beliefs are Blackwell more informative than lower nodes’ beliefs. If the undirected graph is not a

forest, then refinement does imply additional restrictions on beliefs relative to the Blackwell order.

The aforementioned four-person example entails an information hierarchy whose graph is not

a forest: there are two paths from Anne to David, one through Bob and one through Charles. In

contrast, the undirected graph in the two-person example, from the first paragraph, is a forest.3

This is precisely why in the four-person but not in the two-person example, it was possible for the

extent of knowledge about the state to preclude an individual with more accurate information from

knowing everything known by the less informed.

We also consider a number of other notions of “more informed,” which are weaker than the

requirement that Anne knows everything that Bob knows (refinement), but stronger than the mere

fact that Anne’s signal is more accurate than Bob’s (the Blackwell order). For instance, it may

be that Anne knows Bob’s belief about the state but does not know all of Bob’s information. Or,

it may be that Bob’s information does not add to Anne’s information—her belief about the state

would not change if she were to observe his information. These are examples of a class that we call

proper relations, which are binary relations on signals that are weaker than refinement and satisfy

2The standard representation of a partially ordered set as a directed graph encodes the partial order by placing
an edge from n to n′ if n covers n′, i.e., if n > n′ and there is no n′′ such that n > n′′ > n′. We associate with each
information hierarchy the undirected version of this directed graph.

3Indeed, the graph of any information hierarchy with three or fewer elements is necessarily a forest.
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a natural belief-martingale property.4 Our theorem establishes that, given any proper relation, an

information hierarchy is universally constructible under that relation if and only if the undirected

graph of the hierarchy is a forest.

The proof of the “if” direction of the theorem is relatively straightforward, though it does

require establishing a novel information-theoretic result that might be of independent interest (see

Lemma 2). Under the hypothesis that the undirected graph is a forest, we use this result to

iteratively construct a refinement-monotone signal allocation inducing any given monotone belief

allocation. The “only if” direction is considerably more involved. The proof relies on three key

ideas: First, we show that a hierarchy is universally constructible only if its closed subhierarchies

are also universally constructible. (By closed, we mean that all of the elements in the hierarchy

that are between two elements of the subhierarchy are also in the subhierarchy.) Second, we show

that any hierarchy that is not a forest must contain a closed subhierarchy taking one of two forms:

either its undirected graph is a crown or it is a union of non-comparable paths. The latter can

be seen as a generalization of the four-person example described above. Finally, for both of these

subhierarchy forms, we present monotone belief allocations that are not constructible.

We discuss two applications of our Theorem. First, suppose there is an agent who observes

information from several sources. Consider an econometrician who does not know the data gener-

ating process behind the information sources, but observes the agent’s reaction to the information.

In particular, the econometrician sees the distribution of the agent’s beliefs given any subset of in-

formation sources. We know these reactions must satisfy two simple properties. Bayes plausibility

requires that the agent’s average belief is equal across the subsets. Blackwell monotonicity requires

that when an agent observes a superset of sources, her beliefs are more dispersed than when she

observes a subset. A natural conjecture might be that these two are the only constraints imposed

by Bayesian rationality. Our Theorem implies that this conjecture is false.

Second, we apply the Theorem to constrained information design. For instance, take a Sender

who selects what information to provide to members of an organization but must ensure that

managers have access to all information provided to their subordinates. Our result identifies the

types of organizational structures under which this requirement is strictly more binding than the

4The property says that the expectation of Anne’s belief given Bob’s belief is equal to Bob’s belief.
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weaker requirement that higher-ups should have more accurate information.

In a broad sense, this paper explores the relationship between different orders on experiments,

building on Blackwell (1951). Relatedly, Bergemann and Morris (2016) study an extension of the

Blackwell order to type spaces. Mu et al. (2019) consider comparisons of repeated experiments.

One way to frame our contribution is as a study of the implications that the common prior

assumption imposes on the universal type space (Mertens and Zamir, 1985; Brandenburger and

Dekel, 1993). In particular, given a set of players, we examine whether a collection of restrictions of

the form “player i knows player j’s type” places constraints on i’s and j’s first-order beliefs (beyond

the obvious constraint that i must be Blackwell more informed than j).5

We study how signals can be combined to produce more informative signals. Gentzkow and

Kamenica (2017) study this issue in the context of a communication game with a receiver who

combines information provided by multiple senders. Börgers, Hernando-Veciana and Krähmer

(2013) study the interaction between signals from the perspective of whether signals are substitutes

or complements.

We also contribute to the growing literature on information design (Kamenica and Gentzkow,

2011; Bergemann and Morris, 2016). Arieli et al. (2020) characterize feasible joint belief distri-

butions of a group of agents in a binary state case. Mathevet and Taneva (2020) analyze the

implications of information design for organizational structure.

Finally, our inquiry leads us to a pure graph-theoretic question of whether a partially ordered

set contains subsets of a particular form. This subject has been studied in combinatorics and

graph theory (e.g., Lu, 2014); within economics, it is used by Curello and Sinander (2019) to study

rankings on preference relations.

The rest of the paper proceeds as follows. Section 2 describes our model of information hierar-

chies. Section 3 presents several examples of hierarchies and discusses which ones are universally

constructible; it also presents examples of proper relations. Section 4 presents our main result and

a sketch of the proof. Section 5 discusses the applications of our results. Section 6 briefly concludes.

All omitted proofs are in the Appendix.

5In the language of type spaces, “player i knows player j’s type” is analogous to the refinement order. As discussed
above, we also study relations that are weaker than refinement.
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2 Set-up

2.1 States, signals, and distributions of posteriors

Given a finite state space Ω and a prior µ0 ∈ ∆ (Ω), a signal π is a finite partition of Ω × [0, 1]

s.t. π ⊂ S, where S is the set of non-empty Lebesgue-measurable subsets of Ω× [0, 1] (Green and

Stokey, 1978; Gentzkow and Kamenica, 2017).6 An element s ∈ S is a signal realization.

The interpretation of this formalism is that a random variable x drawn uniformly from [0, 1]

determines the signal realization conditional on the state. Let p(s|ω) = λ ({x| (ω, x) ∈ s}) and

p (s) =
∑

ω∈Ω p (s|ω)µ0 (ω), where λ (·) denotes the Lebesgue measure. That is, p (s|ω) is the

conditional probability of s given ω and p (s) is the unconditional probability of s. We denote the

set of all signals by Π.

A distribution of beliefs, denoted by τ , is an element of ∆∆Ω that has finite support and satisfies

Eτ [µ] = µ0. We partially order distributions of beliefs by informativeness in the sense of Blackwell

(1951) and write τ % τ ′ if τ is a mean-preserving spread of τ ′. We let τ denote the maximally

informative distribution of beliefs (whose support contains only degenerate beliefs) and τ denote

the minimally informative distribution of beliefs (that puts probability one on the prior).

Observing a signal realization s s.t. p (s) > 0 generates a unique posterior belief µs, where the

probability of ω given s is7

µs (ω) =
p (s|ω)µ0 (ω)

p (s)
.

Each signal π induces a distribution of posteriors denoted by 〈π〉, according to

〈π〉 (µ) =
∑

{s∈π|µs=µ}

p (s) .

We denote the refinement order on Π by D, i.e., given π, π′ ∈ Π, we write π D π′ if every element

of π is a subset of some element of π′. The pair (Π,D) is a lattice and we let ∨ denote the join,

i.e., π ∨ π′ is the coarsest refinement of both π and π′. For any set P , we denote the join of all its

6Throughout we assume |Ω| ≥ 2.
7For those s with p (s) = 0, set µs to be an arbitrary belief.
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elements by
∨
P .

Given signal π, let µ̃π denote the belief-valued random variable that reflects the posterior induced

by the observation of the signal realization from π. We define a belief-martingale relation on Π,

denoted π B π′ if E [µ̃π|µ̃π′ ] = µ̃π′ .
8 (We use the word relation rather than order because this

relation is not transitive.)9

Note that the refinement order implies the belief-martingale relation, which in turn implies the

Blackwell order on the induced distributions of posteriors; i.e.,

π D π′ ⇒ π B π′ ⇒ 〈π〉 % 〈π′〉.

We say a binary relation R on Π is proper if π D π′ ⇒ π R π′ ⇒ π B π′. We provide some

examples of proper relations in Section 3.3.

2.2 Information hierarchies

An information hierarchy H is a finite partially ordered set (N,≥) with the corresponding strict

order >. Since we will heavily rely on graph-theoretic representations of (N,≥), we refer to elements

of N as nodes. Nodes n and n′ are comparable if n ≥ n′ or n′ ≥ n. Given n, n′ ∈ N , n covers n′ if

n > n′ and there does not exist n′′ ∈ N with n > n′′ > n′.

The directed graph of H, denoted G (H), is the pair (N,E), where N is the set of nodes,

E ⊆ N ×N is the set of directed edges, and (n, n′) ∈ E if n covers n′. A directed path from n to n′

in G (H) is an alternating sequence of vertices and directed edges (n0, e0, ..., nL−1, eL−1, nL), where

L > 0, n0 = n, nL = n′, nl ∈ N for all l ∈ {0, ..., L}, el = (nl, nl+1) ∈ E for all l ∈ {0, ..., L− 1},

and l 6= l′ ⇒ el 6= el′ . The undirected graph of H, denoted G̃ (H), is the pair
(
N, Ẽ

)
, where N is

the set of nodes, Ẽ ⊆ {ẽ ⊆ N ′| |ẽ| = 2} is the set of undirected edges, and {n, n′} ∈ Ẽ if n covers

n′ or n′ covers n. An undirected path from n to n′ in
(
N, Ẽ

)
is an alternating sequence of vertices

and undirected edges (n0, ẽ0, ..., nL−1, ẽL−1, nL), where L > 0, n0 = n, nL = n′, nl ∈ N for all

l ∈ {0, ..., L}, ẽl = {nl, nl+1} ∈ Ẽ for all l ∈ {0, ..., L− 1}, and l 6= l′ ⇒ ẽl 6= ẽl′ . A cycle in G̃ (H)

is an undirected path from n to n. We say H is cyclic if G̃ (H) contains a cycle. The graph depicts

8Throughout the paper, when we say two random variables are equal, we mean almost surely.
9See Brooks et al. (2020).
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what is often termed the transitive reduction of H: if n > n′, there is a path from n to n′, but

there is an edge from n to n′ only if there is no node between them.

A subset of nodes N ′ ⊆ N induces the information hierarchy H ′ = (N ′,≥), which we refer to

as a subhierarchy of H, with the partial order being the restriction of ≥ on N ′. Note that if H ′ is

a subhierarchy of H, G (H ′) = (N ′, E′) need not be a subgraph of G (H) = (N,E); specifically, E′

may contain edges that are not in E.

An undirected graph is a tree if there is exactly one undirected path between any two nodes.

An undirected graph is a forest if there is at most one undirected path between any two nodes, i.e.,

there are no cycles. Thus, a forest is a union of disjoint trees.

2.3 Beliefs and signals in hierarchies

A belief allocation on H given (Ω, µ0) is a map that assigns a distribution of beliefs to every node

in N . A belief allocation β is monotone (with respect to H) if n ≥ n′ ⇒ β (n) % β (n′), i.e., if

higher nodes are Blackwell more informed than lower nodes.

A signal allocation on H given Ω is a map that assigns a signal to every node in N . Given a

binary relation R on the set of signals Π, we say that a signal allocation σ is R-monotone (with

respect to H) if n ≥ n′ ⇒ σ (n) R σ (n′). For instance, a signal allocation is D-monotone if higher

nodes have signals that refine lower nodes’ signals. Given Ω and µ0, a signal allocation σ induces

a belief allocation β if for all n, β (n) = 〈σ (n)〉.

2.4 Universal constructibility

Given (Ω, µ0) and a proper relation R, we say that a monotone belief allocation β on H is con-

structible under R if β is induced by someR-monotone signal allocation on H.10 The main question

we explore in this paper is whether, given a proper R, every monotone β on H is constructible

under R. As we will see, the answer will not depend on the choice of R. However, the answer

can depend on the cardinality of Ω. Accordingly, given Ω, say that the information hierarchy H

is Ω-universally constructible under R if for any µ0 ∈ ∆Ω, every monotone belief allocation on H

is constructible under R. A hierarchy is said to be universally constructible under R if it is Ω-

10It is immediate that only a monotone β is R-constructible for any proper R (because π R π′ ⇒ π B π′ ⇒ 〈π〉 %
〈π′〉).
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universally constructible under R for any Ω. Note that under any R, if a hierarchy is Ω-universally

constructible, then it is Ω′-universally constructible if |Ω′| ≤ |Ω|.

While the definition of universal constructibility requires a condition to hold across all priors,

our characterization of universally constructible hierarchies would remain unchanged if we fixed

any particular interior prior.11

3 Examples

In this section, we present several examples of information hierarchies and discuss which of them are

universally constructible. Along the way, we establish some Lemmas and intuitions that will play

a central role in the proof of our main result. We also present some examples of proper relations.

Whenever we show that a hierarchy is universally constructible under the refinement order, this

will immediately imply that it is universally constructible under any proper relation. Conversely,

when we show a hierarchy is not universally constructible under the belief-martingale relation,

this will immediately imply that it is not universally constructible under any proper relation.

Consequently, we focus on establishing that certain hierarchies are universally constructible under

the refinement order and some other hierarchies are not universally constructible under the belief-

martingale relation.

3.1 Examples of information hierarchies

Example 1 (Chain). There are four individuals—A, B, C, and D—ranked in alphabetical order.

The set of nodes is N = {A,B,C,D}, and ≥ reflects the ranking relation, A ≥ B ≥ C ≥ D. Figure

1a depicts the directed graph of the information hierarchy (N,≥).

Example 2 (Tree). There is a small organization that consists of a president (P ) who has two

deputies (D1 and D2), each of whom has two assistants (A1 and A2; A3 and A4). The partial

order reflects the organizational hierarchy, with P ≥ D1, D2; D1 ≥ A1, A2; and D2 ≥ A3, A4.

Figure 1b depicts the directed graph.

11Formally, fix any H, Ω, R, and an interior µ∗0 ∈ ∆Ω. If every monotone belief allocation on H given (Ω, µ∗0) is
constructible under R, then for all µ0 ∈ ∆Ω, every monotone belief allocation on H given (Ω, µ0) is constructible
under R.
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Figure 1: Example Hierarchies
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Example 3 (Diamond). Returning to the example from the introduction, there is an organization

whose president (A) has two deputies (B and C) that share an assistant (D). We refer to this

hierarchy—with A ≥ B,C and B,C ≥ D—as the diamond, depicted in Figure 1c.

Example 4 (Set-inclusion). Elements of an information hierarchy need not represent individuals.

Suppose there are three sources of information: X, Y , and Z. A decision maker has access to

some of these sources. The nodes in this set-inclusion hierarchy are the possible collections of the

information sources, i.e., N = {X,Y, Z,XY,XZ, Y Z,XY Z}, and ≥ denotes the inclusion order:

XY Z ≥ XY,XZ, Y Z; XY ≥ X,Y ; XZ ≥ X,Z; Y Z ≥ Y, Z. Figure 1d depicts the directed graph

of the hierarchy.

Example 5 (Crown). There are two parents, F and M , who have two children, S and D. We refer

to this information hierarchy, with ≥ reflecting the parenting relation (F ≥ S,D; M ≥ S,D), as

the crown, depicted in Figure 1e.12

Example 6 (Cross). The parents from the crown in Example 5 have hired a governess G, who

manages the children and reports to the parents. The new partial order is F,M ≥ G; G ≥ S,D.

The resulting cross hierarchy is depicted in Figure 1f. Note that the subhierarchy of the cross

induced by the subset {F,M, S,D} is a crown. However, the subgraph obtained by dropping the

node G is not the graph of the crown. As we will see, this observation will play an important role

when we consider universal constructibility of the crown versus the cross.

3.2 Universal constructibility of the example hierarchies

A chain is universally constructible under the refinement order

Every information hierarchy that is a chain (i.e., that is totally ordered) is universally constructible

under the refinement order. To see why, it is helpful to note the following result.13

Lemma 1 (Lemma 4 from Gentzkow and Kamenica, 2017). For any π′ and τ with τ % 〈π′〉, ∃π s.t.

(i) 〈π〉 = τ and (ii) π D π′.

12More specifically, this hierarchy is a 4-crown, where an n-crown is defined as a partially ordered set in which half
of the nodes are maximal and half are minimal, and there is a single cycle that contains all of the nodes. Since this
is the only crown we consider in this paper, we refer to it as the crown. Note that “crown” also has distinct meanings
in graph theory.

13This result first appears as Theorem 1 in Green and Stokey (1978). The proof in Gentzkow and Kamenica (2017)
uses the same notation as this paper.
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In other words, take any signal, which induces some distribution of beliefs. There is a refinement

of this signal that induces any more-informative distribution of beliefs.

Now, consider the chain hierarchy H from Example 1. Consider some monotone belief allocation

β on H. Given β (D), let σ (D) be any signal that induces β (D). Since β (C) % β (D), by Lemma

1, there exists some signal πC D σ (D) that induces β (C); let σ (C) = πC . Similarly, since

β (B) % β (C), there is a signal πB D σ (C) that induces β (B); let σ (B) = πB. Finally, there is a

πA D σ (B) that induces β (A); let σ (A) = πA.

A tree is universally constructible under the refinement order

Establishing that a tree is universally constructible under refinement is somewhat more compli-

cated than for a chain. The proof relies on the following result, which might be of independent

information-theoretic interest. We say that π′ is statistically redundant given π̂ if 〈π̂ ∨ π′〉 = 〈π̂〉,

i.e., observing π̂ and π′ yields the same beliefs as observing π̂ only.

Lemma 2. For any π, π, and τ ′ with π D π and 〈π〉 % τ ′, ∃π′ s.t. (i) 〈π′〉 = τ ′, and (ii) ∀π̂ s.t.

π D π̂ D π, π′ is statistically redundant given π̂.

In words, given a signal π and a distribution of beliefs τ ′ that is less informative than 〈π〉, there

is a signal π′ that induces τ ′ but is statistically redundant given π (or given any signal that refines

π up to an upper bound π).14 We sketch the proof of Lemma 2 in Section 4.2.

To better understand the content of Lemma 2, it is helpful to note that the following, stronger,

conjecture does not hold. One might think that, analogously to Lemma 1, for any π and τ ′ with

〈π〉 % τ ′, ∃π′ s.t. (i) 〈π′〉 = τ ′ and (ii) π D π′. This is not the case.15 Lemma 2 implies, however,

that we can nonetheless find a π′ s.t. 〈π′〉 = τ ′ and π′ is statistically redundant given π, even

though we cannot guarantee that π D π′. Moreover, the Lemma further implies we can find a π′

so that π′ is statistically redundant given any π̂ such that π E π̂ E π.

With Lemma 2 in hand, we can now establish the universal constructibility of trees. Consider

the tree hierarchy H from Example 2. Take some monotone β on H. We construct a D-monotone

14The upper bound is a technical condition related to the fact that signals are finite partitions. Given that π′ is
finite, it cannot be statistically redundant given all refinements of π.

15For example, suppose that 〈π〉 % τ ′ but the support of τ ′ has more elements than the number of signal realizations
in π. Then, no π′ that induces τ ′ could be a coarsening of π.
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σ that induces β as follows. Given β (A1), let σ (A1) be any signal that induces β (A1). We follow

the same procedure as in the case of the chain to (tentatively) assign suitable σ (D1) and σ (P ).

Now, consider assigning a signal to A2. The complication is that there may not exist a signal π̃

such that 〈π̃〉 = β (A2) and yet σ (D1) D π̃. This is where Lemma 2 comes into play. By Lemma

2, we know there is a signal π′ such that 〈π′〉 = β (A2), 〈σ (D1) ∨ π′〉 = 〈σ (D1)〉 = β (D1), and

〈σ (P ) ∨ π′〉 = 〈σ (P )〉 = β (P ). Thus, we can replace the initial assignment of signals to D1 and

P with σ (D1) ∨ π′ and σ (P ) ∨ π′, respectively. A similar procedure (with repeated reassignment

of the previously assigned signals) can then be used to sequentially assign signals to D2, A3, and

A4. The details of this procedure, applied to any hierarchy whose graph is a forest, are the heart

of the proof of Proposition 1 below.

The diamond is not universally constructible under the belief-martingale relation

Consider the diamond hierarchy from Example 3. We will show this hierarchy is not Ω-universally

constructible for any Ω.

Suppose Ω = {0, 1} with an equiprobable prior. Since the state space is binary, we associate

each belief with Pr (ω = 1); a belief is depicted as a number in the unit interval.

Consider the belief allocation β that respectively assigns to nodes A, B, C, and D the distribu-

tions of beliefs τ⊗, τ�, τ � , and τ#, as indicated in Figure 2. (We will refer these four distributions of

beliefs again below, so it is helpful to give them names.) In the figure, we depict each distribution

of beliefs as a collection of circles with matching markings. Each circle represents a belief in the

support of the distribution, where the area of a circle is proportional to the probability mass on

that belief. Denote a distribution that puts probability pi on belief µi by (p1, µ1; p2, µ2; ..., ; pn, µn);

we have τ⊗ =
(

3
8 , 0; 1

4 ,
1
2 ; 3

8 , 1
)
, τ� =

(
1
2 ,

1
6 ; 1

8 ,
1
3 ; 3

8 , 1
)
, τ � =

(
3
8 , 0; 1

8 ,
2
3 ; 1

2 ,
5
6

)
, and τ# =

(
1
2 ,

1
6 ; 1

2 ,
5
6

)
.

It is easy to see that β is monotone.16 We will now argue that β is not constructible under the

belief-martingale relation B.

Suppose σ is a B-monotone signal allocation that induces β. Consider the joint distribution of

16To see that β (B) = τ� is a mean-preserving spread of β (D) = τ#, note that we can obtain τ� from τ# by
spreading the realization µ = 5

6
in τ# to

{
1
3
, 1
}

in τ� and leaving the realization µ = 1
6

in τ# unchanged. To see
that β (A) = τ⊗ is a mean-preserving spread of β (B) = τ�, note that we can obtain τ⊗ from τ� by spreading the
realizations µ = 1

6
and µ = 1

3
in τ� to

{
0, 1

2

}
in τ⊗ and leaving the realization µ = 1 in τ� unchanged. The argument

for why β (A) % β (C) % β(D) is symmetric.
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Figure 2: Distributions over Ω = {0, 1} showing the diamond hierarchy is not universally con-
structible under B

1/30 1/2 2/31/6 5/6 1

τ#:

τ�:

τ � :

τ⊗:

beliefs on {A,B,C,D} induced by σ. Specifically, consider the conditional probability of µ̃σ(A) = 1

given µ̃σ(D) = 1
6 . Since σ (B) B σ (D), we must have that µ̃σ(B) = 1

6 whenever µ̃σ(D) = 1
6 .17

Similarly, since σ (A) B σ (B), we must have µ̃σ(A) = 1 whenever µ̃σ(B) = 1. Finally, since

Pr
(
µ̃σ(A) = 1

)
= Pr

(
µ̃σ(B) = 1

)
, we must have that Pr

(
µ̃σ(A) = 1|µ̃σ(B) 6= 1

)
= 0. Combining

these observations, we obtain Pr
(
µ̃σ(A) = 1|µ̃σ(D) = 1

6

)
= 0.

However, applying a similar logic to the assumption that σ (A) B σ (C) and σ(C) B σ (D) tells

us that Pr
(
µ̃σ(C) = 2

3 |µ̃σ(D) = 1
6

)
> 0 and Pr

(
µ̃σ(A) = 1|µ̃σ(C) = 2

3 & µ̃σ(D) = 1
6

)
> 0. Combining

these two inequalities yields Pr
(
µ̃σ(A) = 1|µ̃σ(D) = 1

6

)
> 0, which contradicts the conclusion we

derived from the fact that σ (A) B σ (B) and σ(B) B σ (D). Therefore, no B-monotone signal

allocation can induce β.

In addition to the formal argument above, here is a simple intuition for why the diamond is not

universally constructible. The belief allocation we constructed is such that along each edge of the

diamond, there is a unique way to spread the less-informative belief distribution to produce the

more-informative belief distribution. In particular, there is a unique conditional distribution over

beliefs at B given the realized belief at D, a unique conditional distribution over beliefs at A given

17Because the support of β (B) is
{

1
6
, 1
3
, 1
}

, the only way to have E
[
µ̃σ(B)|µ̃σ(D) = 1

6

]
= 1

6
is to have µ̃σ(B) = 1

6

whenever µ̃σ(D) = 1
6
.
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a realized belief at B, etc. Thus, given a belief realization at D, we can derive a distribution of

belief realizations at A by integrating over beliefs at B or by integrating over beliefs at C. If there

were a B-monotone signal allocation that induced these beliefs, then the conditional distribution of

the belief at A given the realized belief at D must be “independent of path” up the diamond. As

we showed above, this cannot be the case.

Since we established that the diamond is not constructible for Ω = {0, 1}, it is not constructible

for any Ω.18

A set-inclusion hierarchy is not universally constructible under the belief-martingale relation

Consider the environment, described in Example 4, where a decision maker has access to three

unknown sources of information. This environment induced the set-inclusion hierarchy depicted in

Figure 1d. Note that the graph of the diamond hierarchy can be seen as a subgraph of the graph

in Figure 1d, if we associate A with XY Z, B with XY , C with Y Z, and D with Y . Consequently,

under the belief-martingale relation, the set-inclusion hierarchy is not universally constructible for

the same reason that the diamond hierarchy is not universally constructible. In particular, any belief

allocation β on the set-inclusion hierarchy that assigns β (XY Z) = τ⊗, β (XY ) = τ�, β (Y Z) = τ � ,

and β (Y ) = τ# is not constructible under B.19

It is worthwhile to note that the mere fact that A, B, C, and D in the diamond are ordered

the same way as XY Z, XY , Y Z, and Z in the set-inclusion hierarchy does not by itself mean

that non-constructibility of the diamond implies non-constructibility of the set-inclusion hierarchy.

More broadly, it may be that a hierarchy H is universally constructible under some R, but H ′ is a

subhierarchy of H and H ′ is universally constructible under R. The next two examples illustrate

this possibility. Section 4.3.1 discusses the issue in detail.

The crown is not universally constructible under the belief-martingale relation

Consider the crown hierarchy from Example 5. We will show that this hierarchy is not Ω-universally

constructible under B if |Ω| ≥ 3. (As we discuss below, it is Ω-universally constructible if |Ω| = 2.)

18Recall that if a hierarchy is universally constructible for some state space, it is universally constructible for any
state space of lower cardinality.

19Moreover, it is easy to see that there is a monotone belief allocation on the set-inclusion hierarchy that assigns
these distributions of beliefs to these nodes. For example, we could set β (X) = β (Z) = β (XZ) = τ .
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Figure 3: Distributions over Ω = {0, 1, 2} showing the crown is not universally constructible under
B

1/40 11/2

1/4

0

1/2

1

M D

F

F M S

F S D

M S

M D

F

F

Suppose Ω = {0, 1, 2} with a prior µ0 (ω = 0) = 1
2 , µ0 (ω = 1) = 1

4 , and µ0 (ω = 2) = 1
4 . We

represent each belief as a pair (x, y) in the unit square with x+ y ≤ 1, where Pr (ω = 1) = x and

Pr (ω = 2) = y. Consider the belief allocation β that assigns to F , M , S, and D the distributions

of belief indicated in Figure 3. As before, we depict each distribution of beliefs as a collection of

circles. If a letter n ∈ {F,M,S,D} appears inside a circle, then the belief indicated by this circle is

in the support of β (n). If a belief is in the support of both β (n) and β (n′), both n and n′ appear

inside that circle; moreover, these two distributions put the same probability mass on that belief

(with the mass indicated by the area of the circle).20

It is easy to see from Figure 3 that β is monotone.21 We will now argue that β is not constructible

20Formally, the belief allocation is given by β (F ) =
(
1
8
,
(
0, 1

2

)
; 1
8
,
(
1
2
, 1
2

)
; 1
8
,
(
1
2
, 0
)

; 1
8
, (0, 0) ; 1

2
,
(
1
4
, 1
4

))
,

β (M) =
(
1
4
,
(
0, 1

4

)
; 1
4
,
(
1
2
, 1
4

)
; 1
4
,
(
1
4
, 0
)

; 1
4
,
(
1
4
, 1
2

))
, β (S) =

(
1
4
,
(
1
4
, 0
)

; 1
2
,
(
1
4
, 1
4

)
; 1
4
,
(
1
4
, 1
2

))
, and β (D) =(

1
4
,
(
0, 1

4

)
; 1
2
,
(
1
4
, 1
4

)
; 1
4
,
(
1
2
, 1
4

))
.

21To see that β (F ) is a mean-preserving spread of β (S), note that we can obtain β (F ) from β (S) by (i) spreading
the realization

(
1
4
, 0
)

in β (S) to
{

(0, 0) ,
(
1
2
, 0
)}

in β(F ), (ii) leaving the realization
(
1
4
, 1
4

)
in β(S) unchanged, and

(iii) spreading the realization
(
1
4
, 1
2

)
in β (S) to

{(
0, 1

2

)
,
(
1
2
, 1
2

)}
. To see that β (M) is a mean-preserving spread of

β (S), note that we can obtain β (M) from β (S) by (i) leaving the realization
(
1
4
, 0
)

in β (S) unchanged, (ii) spreading
the realization

(
1
4
, 1
4

)
in β (S) to

{(
0, 1

4

)
,
(
1
2
, 1
4

)}
in β(M), and (iii) leaving the realization β (S) =

(
1
4
, 1
2

)
unchanged.

The argument for why β (F ) and β (M) are mean-preserving spreads of β (D) is symmetric.
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under B. As before, consider the joint distribution of beliefs on {F,M, S,D} induced by any B-

monotone signal allocation σ. Specifically, consider the conditional probability of µ̃σ(S) = µ0 given

µ̃σ(D) = µ0. Since σ (M) B σ (S), we have that µ̃σ(S) = µ0 ⇔ µ̃σ(M) ∈
{(

0, 1
4

)
,
(

1
2 ,

1
4

)}
. Since

σ (M) B σ (D), we have that µ̃σ(D) = µ0 ⇔ µ̃σ(M) ∈
{(

1
4 , 0
)
,
(

1
4 ,

1
2

)}
. Hence, the joint probability

of µ̃σ(S) = µ0 and µ̃σ(D) = µ0 must be zero, i.e., Pr
(
µ̃σ(S) = µ0|µ̃σ(D) = µ0

)
= 0. But, σ (F ) B σ (S)

implies µ̃σ(S) = µ0 ⇔ µ̃σ(F ) = µ0, and σ (F ) B σ (D) implies µ̃σ(D) = µ0 ⇔ µ̃σ(F ) = µ0. Hence,

Pr
(
µ̃σ(S) = µ0|µ̃σ(D) = µ0

)
= 1. We have reached a contradiction: no B-monotone σ can induce

the belief allocation β.

For future reference, we summarize this discussion with the following formal result:

Lemma 3. A crown is not Ω-universally constructible under B if |Ω| ≥ 3.

The cross is universally constructible under the refinement order

The cross hierarchy from Example 6 is universally constructible under D. The argument is anal-

ogous to the argument for why the tree hierarchy from Example 2 is universally constructible.

The procedure we discussed in that example for how to construct a D-monotone σ to induce any

monotone β applies to the cross as well.

Note that the subhierarchy ({F,M, S,D} ,≥) is a crown, which is not universally constructible

under D, even though the cross is. This might seem puzzling at first. One might think that the

impossibility of constructing a D-monotone σ that induces the belief allocation β on {F,M, S,D}

in the previous example means that the cross is also not universally constructible under D. But,

even though that β is monotone with respect to the crown, there is no way of extending that

belief allocation to the cross (by assigning some β (G) to node G) in a way that would preserve

monotonicity.

That the cross is universally constructible under D does, however, imply that the crown is Ω-

universally constructible under D if |Ω| = 2. This follows from the fact that the set of distributions

of beliefs under the Blackwell order is a lattice when the state space is binary (Kertz and Rösler,

2000; Müller and Scarsini, 2006). Take an arbitrary monotone belief allocation β on {F,M,S,D}.

If the state space is binary, the lattice property implies there exists a unique distribution of beliefs

β (S)∨β (D) such that β (S)∨β (D) % β (S) , β (D) and τ % β (S)∨β (D) for any τ % β (S) , β (D).
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Now, let β̂ be the belief allocation on the cross that sets β̂ (n) = β (n) for n ∈ {F,M, S,D} and

β̂ (G) = β (S) ∨ β (D). It is immediate that β̂ is monotone. By the universal constructibility of

the cross under refinement, there is a D-monotone σ̂ that induces β̂. Restricting σ̂ to {F,M, S,D}

yields a D-monotone signal allocation on the crown that induces β.

3.3 Examples of proper relations

As we mentioned at the outset, there are various things one might mean by “Anne is more informed

than Bob.” One is that Anne’s signal is Blackwell more informative than Bob’s, i.e., 〈πA〉 % 〈πB〉.

Another is that Anne has observed all of Bob’s information, i.e., πA D πB. These, however, are not

the only economically relevant comparisons of signals. For instance, it might be that Anne knows

Bob’s belief about the state. Or, it might be that if Anne were to observe Bob’s information, she

would not change her belief about the state of the world, i.e., that πB is statistically redundant

given πA. In a companion paper (Brooks et al. 2020), we explore these and other relations on

signals in more detail.

It is easy to see that πA D πB implies that Anne knows Bob’s belief about the state, which

in turn implies the belief-martingale relation, πA B πB. Similarly, it is easy to see that πA D πB

implies that πB is statistically redundant given πA, which in turn implies πA B πB. Hence, Anne

knowing Bob’s belief about the state is a proper relation. Similarly, statistical redundancy is a

proper relation.

Thus, the fact we have established that trees are universally constructible under refinement, a

fortiori establishes they are universally constructible under these other relations: given any mono-

tone belief allocation β on a tree, we can construct a signal allocation σ that induces β and has the

property that for every n > n′, observing σ (n) suffices to know the beliefs at σ (n′). Likewise, we

can construct a signal allocation σ that induces β such that for every n > n′, σ (n′) is statistically

redundant given σ (n).

In the other direction, since a diamond and the crown are not universally constructible under

B, we know there are monotone belief allocations β on those hierarchies such that it is impossible

to construct a signal allocation σ that induces β and has the property that for all n > n′, observing

σ (n) suffices to know the beliefs at σ (n′). Moreover, there are monotone belief allocations β such
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that it is impossible to construct a signal allocation σ that induces β and has the property that for

all n > n′, σ (n′) is statistically redundant given σ (n).

4 Universal constructibility

4.1 Main result

We now present our main result, a characterization of universally constructible hierarchies under

any proper relation.

Theorem 1. Fix any proper relation R on signals. An information hierarchy is universally con-

structible under R if and only if its undirected graph is a forest.

The proof of Theorem 1 is broken up into two propositions, which separately establish sufficiency

and necessity of the forest condition.

Proposition 1. An information hierarchy is universally constructible under the refinement order if

its undirected graph is a forest.

Proposition 2. Suppose |Ω| ≥ 3. An information hierarchy is Ω-universally constructible under the

belief-martingale relation only if its undirected graph is a forest.

Rigorous proofs are in the Appendix. The next two subsections provide outlines of these proofs.

4.2 Outline of the proof of Proposition 1

Since a forest is a union of disjoint trees, Proposition 1 is a straightforward consequence of the

fact that trees are universally constructible under the refinement order. As we discuss in Section

3, universal constructibility of trees follows from Lemma 2. Here we provide the intuition behind

Lemma 2.

Consider the example in Figure 4. The state is either L or R. Each of the four rows represents

a signal, i.e., a partition of {L,R} × [0, 1]. The two rectangles in each row represent the unit

interval crossed with the two states. For every signal, each signal realization, i.e., each element of

the partition, is indicated by its shading. Note that π D π, and while 〈π〉 % 〈π̃〉, it is not the case

that π D π̃ nor that 〈π ∨ π̃〉 = 〈π〉.
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Figure 4: Illustration of Lemma 2

ω = L ω = R

π̄

π

π̃

π′

To establish the claim in Lemma 2, we need to construct a signal π′ that induces the same beliefs

as π̃, but is statistically redundant given π, and given any refinement of π up to π. The bottom

row illustrates such a construction. Each signal realization of π′ corresponds to a signal realization

of π̃, with the same likelihood in each state. However, the “location” of the signal realizations in π′

are re-arranged so that the conditional probability of each signal realization of π′ in state ω given

π is (i) the same for ω = L and ω = R, and (ii) the same for any elements of π that refine the

same element of π. The first property ensures that π′ is statistically redundant given π, while the

addition of the second property ensures that it is also redundant given any π̂ s.t. π D π̂ D π. The

proof in the Appendix provides an algorithm for constructions that satisfy these two properties in

general.

4.3 Outline of the proof of Proposition 2

Recall that in Section 3, we gave two examples of hierarchies which are not universally constructible

under B, the diamond and the crown. For each of these hierarchies, we presented monotone belief

allocations that are not constructible. These two belief allocations turn out to be “canonical” in the

sense that for any hierarchy that is not universally constructible under B, we can generalize one of

those belief allocations to establish non-universal constructibility.
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4.3.1 Constructibility and closed subhierarchies

Sometimes, we can establish that a hierarchy is not universally constructible by noting that it has

a subhierarchy that is not universally constructible. As a simple example, suppose we take the

diamond in Figure 1c, and form a new hierarchy H ′ by adding nodes that are above A or below

D. Then, we can extend any monotone belief allocation β on the diamond to H ′ by assigning

full information to the nodes above A and no information to the nodes below B. The resulting

belief allocation β′ will be monotone on H ′, and it is constructible under B if and only if β was

constructible under B on the diamond. Thus, any hierarchy which “embeds” the diamond in this

sense is not Ω-constructible under B for any Ω.

A natural conjecture might therefore be that a hierarchy is not universally constructible under

B if it contains a subhierarchy that is not universally constructible under B. Without further con-

ditions, this conjecture is false. This was previously demonstrated by the crown and the cross: the

cross is universally constructible under B, but if we drop its center node, the resulting subhierarchy

is a crown, which is not universally constructible under B.

The conjecture is true, however, if we add an additional hypothesis on the subhierarchy. Given

H = (N,≥), a subhierarchy H ′ = (N ′,≥) is closed (in H) if for every n′, n′′ ∈ N ′ and n ∈ N ,

n′ ≥ n ≥ n′′ implies n ∈ N ′. In other words, N ′ contains all the nodes from N that are between

the nodes of N ′. Lemma 4 in the Appendix establishes that a hierarchy is universally constructible

under B only if its closed subhierarchies are universally constructible under B. (This observation

holds for any proper relation, but for the purposes of proving Proposition 2, it suffices to establish

it for B.)

The basic idea behind the proof is as follows. Consider some hierarchy H that is universally

constructible under B. Let H ′ be a closed subhierarchy and let β′ be a monotone belief allocation

on H ′. We extend β′ to a monotone belief allocation β on H as follows. Since H ′ is closed, any node

in H that is not in H ′ falls into one of three mutually exclusive categories: (i) it is above some node

in H ′, (ii) it is below some node in H ′, or (iii) it is not comparable with any node in H ′. In case (i),

we allocate full information to the node, and in cases (ii) and (iii), we allocate no information to the

node. The resulting β is monotone. Moreover, since H is universally constructible under B, there

is a B-monotone signal allocation σ that induces β. The restriction of σ to H ′ is also B-monotone
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and induces β′. Since β′ was arbitrary, we conclude that H ′ is universally constructible under B.

Thus, to prove Proposition 2, it suffices to show that if H is not a forest, it contains a closed

subhierarchy that is not universally constructible under B.

4.3.2 Unions of non-comparable paths

The next step in the argument utilizes an important class of hierarchies, termed unions of non-

comparable paths (UNPs). We adapt the belief construction for the diamond to establish that

UNPs are not universally constructible under B. UNPs do not necessarily contain a diamond as a

closed subhierarchy, so establishing non-constructibility of UNPs does not directly follow from the

observations in Section 3.2.

An information hierarchy is a UNP if its graph is a union of at least two undirected paths

between the pair of nodes A′ and D′ satisfying three properties: (i) node A′ is maximal; (ii) node

D′ is minimal; and (iii) a pair of nodes are comparable only if they are in the same undirected

path. Such a graph is depicted in Figure 5. Note that we have not assumed that all the nodes in

the same path are comparable.

Lemma 8 in the Appendix formally establishes that UNPs are not Ω-universally constructible

under B for any Ω. Here, we provide a sketch of that proof.

We first establish that if a belief allocation on a UNP allocates the same belief distribution on

any pair of nodes n and n′ that are in the same path (neither node being A′ or D′), then any

B-monotone signal allocation that induces it yields beliefs at n and n′ that are perfectly correlated.

Now, consider some belief allocation β on a UNP H based on the belief allocation on the

diamond from Section 3. In particular, set β (A′) = τ⊗; β (D′) = τ#; for nodes n in one of the

paths of H, say the path including B′ in Figure 5 (excluding A′ and D′), set β (n) = τ�; and

for all remaining nodes n (namely the nodes in the paths including C ′ and C ′′ in Figure 5) set

β (n) = τ � . We show that β is not constructible under B. Roughly speaking, the nodes in the path

with B′ (whose belief realizations are perfectly correlated) collectively serve the role of node B in

the diamond, and the other paths serve the role of node C from the diamond.22

22Note, however, that this argument relies on details of this particular belief allocation. The argument does not
go through if we replace τ with an arbitrary non-constructible belief allocation on the diamond. There exist belief
allocations on the diamond that are non-constructible but whose “extension” to a UNP is constructible. The reason
why this is possible is that in the diamond A ≥ D, but the UNP does not require that A′ ≥ D′; thus signal allocations
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Figure 5: An example of a UNP. Here, the curves depict undirected paths between A′ and D′, and
slopes of the curve denote “local” comparisons between nodes. For example, the path through B′

is decreasing, indicating that it is a directed path with B′ below A′ and above D′. In contrast,
the paths through C ′ and C ′′ are not directed; while C ′ is above D′, it is non-comparable with A′.
This a UNP because it satisfies three properties: (i) node A′ is maximal; (ii) node D′ is minimal;
and (iii) a pair of nodes are comparable only if they are in the same undirected path.

A′

D′

B′

C ′

C ′′

4.3.3 Minimal cyclic closed (MCC) subhierarchies

Given the observations from the previous two subsections, the proof of Proposition 2 is completed

by showing that if a hierarchy is not a forest, then it contains a closed subhierarchy that is either

a UNP or a crown. Below are the main steps in the argument.

Suppose that H is not a forest, so that it contains a cycle. Since any hierarchy is a closed

subhierarchy of itself, H also contains a subhierarchy that is cyclic and closed. Given that N is

finite, it follows that H contains a minimal cyclic closed subhierarchy (MCC), i.e., a subhierarchy

H ′ = (N ′,≥) such that: (i) H ′ is cyclic and closed, and (ii) there does not exist a subhierarchy

H ′′ = (N ′′,≥) with N ′′ ( N ′ such that H ′′ is cyclic and closed.

We show that any MCC must be either a UNP or a crown. This result takes considerable effort

to prove formally, but the basic idea is as follows. An MCC H ′ contains maximal nodes, which

are not covered by any other node, and minimal nodes, which do not cover any other nodes. We

distinguish two cases on these maximal and minimal nodes.

σ̂ on the diamond and σ on H with σ̂ (A) = σ(A′) and σ̂ (D) = σ (D′) might be B-monotone on H but not on the
diamond.
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Figure 6: A between set which is not an MCC. Since the nodes A and B are comparable, there is
a smaller closed cyclic subhierarchy, namely the nodes that are between A and n.

n

n

A

B

In the first case, every maximal node in H ′ covers every minimal node. Then, the fact that H ′

is minimal, together with the existence of a cycle, implies that H ′ contains exactly four nodes and

is in fact a crown.

Alternatively, there is a maximal node n that does not cover a minimal node n. Then, we show

that H ′ is a UNP. To see this, note the following two subcases. First, it may be that H ′ is simply the

set of nodes that are between n and n, i.e., a between set. Then, H ′ consists of a series of directed

paths between n and n. Now, if nodes in distinct paths were comparable, then it would be possible

to find a smaller cyclic closed subhierarchy, as illustrated in Figure 6, violating the fact that H ′ is

minimal. Thus, nodes must not be comparable across paths and H ′ is a UNP. The second subcase

is that H ′ is not a between set. Lemma 6 in the Appendix shows that then every cycle in H ′ must

contain every node in N ′. Any such spanning cycle can be decomposed into two undirected paths

between a maximal node and a minimal node. If any nodes in these two paths were comparable, we

could find a smaller cycle that does not contain every node in N ′, which would contradict Lemma

6. As a result, H ′ is a UNP. This completes the outline of the proof of Proposition 2.
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5 Applications

5.1 Rationalizing reaction to unknown sources of information

Consider an agent who obtains information from multiple sources. If we do not know the information-

generating process, what restrictions does the agent’s rationality impose on her potential reactions

to this information? Concretely, suppose Anne is a decision maker with access to a set of Blackwell

experiments {x1, x2, ..., xM}. Suppose further that we see the distribution of Anne’s beliefs that

arises after she observes any subset of these experiments; our dataset D = {τS}S⊆{x1,...,xM} tells

us the distribution of Anne’s beliefs for every non-empty subset of experiments that she observes.

When can we rationalize a given dataset D in the sense that we can associate each experiment xi

with some signal (i.e., an element of Π) and conclude that Anne’s belief formation is consistent

with Bayes’ rule?

To be rationalized, belief distributions in D have to satisfy two obvious properties. First, there is

Bayes plausibility : the average belief cannot differ across sets of experiments, i.e., EτS [µ] = EτS′ [µ]

for any two subsets S and S′. Second, there is Blackwell monotonicity : observing a larger set of

experiments necessarily induces a more dispersed distribution of beliefs, i.e., τS is a mean-preserving

spread of τS′ if S′ ⊆ S. A natural question is whether these are the only properties imposed by

Bayesian updating.

Theorem 1 tells us that the answer is No. When there are three or more experiments,23 Bayesian

updating requires more than just Bayes plausibility and Blackwell monotonicity. To see why,

consider the set-inclusion information hierarchy H where each non-empty collection of experiments

S ⊆ {x1, ..., xM} is associated with a node nS and the partial order is the superset order: nS ≥ nS′

if S′ ⊆ S. As illustrated in Figure 1d, the undirected graph of this information hierarchy H

contains a cycle. By Theorem 1, this means that there is some monotone belief allocation on H,

call it β, that cannot be induced by any refinement-monotone signal allocation on H. Now, we

can associate with this β a dataset D = {τS}S⊆{x1,...,xM} by setting τS = β (nS). Note that D

necessarily satisfies Bayes plausibility and Blackwell monotonicity (since β is monotone). If we

23When there are only two experiments, M = 2, it is easy to show that the answer is indeed affirmative. Any reaction
to two unknown sources of information that satisfies Bayes plausibility and Blackwell monotonicity is consistent with
Bayesian updating.
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could rationalize D by associating each xi with some signal π (xi) ∈ Π, then the signal allocation

σ (ns) =
∨
xi∈S π (xi) would induce β and yet be refinement-monotone (since S′ ⊆ S implies∨

xi∈S π (xi) D
∨
xi∈S′ π (xi)). This would contradict Theorem 1. Thus, we know that there are

datasets that satisfy Bayes plausibility and Blackwell monotonicity, yet cannot be rationalized.

A potentially fruitful direction for future research would be to fully characterize which reactions

to unknown sources of information are rationalizable.

5.2 Information design

Consider a Sender who provides information to a set of agents. Moreover, suppose the designer

faces certain types of monotonicity constraints such as some agents must know the beliefs of some

other agents or some agents must have access to others’ information. Then, we can think of agents

as elements of an information hierarchy, and the information design problem consists of selecting

a (suitably monotone) signal allocation on this hierarchy. Our results shed light on how such

monotonicity constraints affect the information design problem.

For example, consider organizations. A long literature in organization economics emphasizes

the importance of the hierarchical structure of managerial relationships (Williamson, 1967). One

important aspect of organizational design is deciding how much information to provide – about

individuals’ prospects for promotion, about the overall performance of the organization, etc. – to

each member of the organization. It is often suboptimal to provide full transparency and share full

information with everyone (Fuchs, 2007; Jehiel, 2015; Smolin, 2017). A natural constraint that an

information designer might face is that anyone in the organization ought to have access to the infor-

mation that is available to her subordinates, i.e., that a superior’s signal refines every subordinate’s

signal. This constraint interacts with the organization structure. Proposition 1 implies that, if an

organization has the feature that every subordinate has at most one superior, the aforementioned

constraint can always be satisfied as long as individuals who are higher up in the organization are

more informed in the Blackwell sense. With richer managerial relationships,24 however, Propo-

sition 2 tells us there could be desirable allocations of information which are incompatible with

the constraint, even though they provide (Blackwell) more information to those higher up in the

24For instance, suppose that the CEO oversees two middle managers who share the oversight of an employee.
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organization.

6 Conclusion

We study the relationship between various notions of informativeness in a general model of dis-

tributed information. Take some information hierarchy, i.e., a specification of which elements should

be more informed than others. We analyze whether every belief allocation on this hierarchy that

is monotone in the Blackwell order (higher elements know more about the state of the world) is

compatible with a signal allocation that is monotone in a stronger sense, e.g., higher elements know

everything lower elements know. Our main result is that the answer is affirmative if and only if the

undirected graph of the information hierarchy is a forest.

Importantly, our analysis has focused on whether every monotone belief allocation is con-

structible. Another natural goal would be to characterize, given an arbitrary information hierarchy

and a proper relation, the set of monotone belief allocations that are constructible.25

25An additional, narrower, question is: which information hierarchies are universally constructible when the state
space is binary? The answer must be non-trivial, since the crown is universally constructible in the binary state case,
while the diamond is not.
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A Proofs

A.1 Proof of Lemma 2

Proof of Lemma 2. Let π̃ be a signal s.t. 〈π̃〉 = τ ′. Since 〈π〉 % τ ’, there exists a garbling g : π×π̃ →

[0, 1] such that
∑

s̃∈π̃ g (s, s̃) = 1 ∀s ∈ π, and p (s̃|ω) =
∑

s∈π g (s, s̃) p (s|ω). For every s ∈ π, let

s (s) denote the element of π s.t. s ⊆ s (s). (This element exists since π D π.) Now, ∀s ∈ π, let{
Xs
s̃

}
s̃∈Ms be a partition of s s.t. ∀ω, λ

({
x| (x, ω) ∈ Xs

s̃

})
= λ ({x| (x, ω) ∈ s}) g (s (s) , s̃), where

M s = {s̃ ∈ π̃|g (s (s) , s̃) > 0}. Such a partition exists because
∑

s̃∈π̃ g (s (s) , s̃) = 1 for all s (s) ∈ π.

Let π′ =
{
Z s̃
}
s̃∈π̃ with Z s̃ = ∪

s∈π s.t.s̃∈Ms
Xs
s̃ . We now show that π′ satisfies (i) and (ii). To show

(i), it suffices to show that p
(
Z s̃|ω

)
= p (s̃|ω) for every s̃ and ω. We have

p
(
Z s̃|ω

)
= λ

({
x| (ω, x) ∈ ∪

s∈π s.t.s̃∈Ms
Xs
s̃

})
=

∑
s∈π s.t.s̃∈Ms

λ
({
x| (x, ω) ∈ Xs

s̃

})
=

∑
s∈π s.t.s̃∈Ms

λ ({x| (x, ω) ∈ s}) g (s (s) , s̃)

=
∑
s∈π

λ ({x| (x, ω) ∈ s}) g (s (s) , s̃)

=
∑
s∈πL

∑
s s.t. s(s)=s

λ ({x| (x, ω) ∈ s}) g (s (s) , ŝ)

=
∑
s∈πL

g (s, ŝ)
∑

s s.t. s(s)=s

λ ({x| (x, ω) ∈ s})

=
∑
s∈π

g (s, s̃)λ ({x| (x, ω) ∈ s})

=
∑
s∈π

g (s, s̃) p (s|ω)

= p (s̃|ω) .

To show (ii), consider some π̂ s.t. π D π̂ D π and some ŝ ∈ π̂. Since π̂ ∨ π′ D π̂, there is a partition

of ŝ, say {s∨i }i∈I s.t. s∨i ∈ π̂ ∨ π′ for all i. It will suffice to show that for every ω, ω′, and s∨i , we

have

p (s∨i |ω)

p (s∨i |ω′)
=
p (ŝ|ω)

p (ŝ|ω′)
.
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Consider some s∨i . Note that there exists s ∈ π with ŝ ⊆ s since π̂ D π. Let Q =
{
s ∈ πH |s ⊆ ŝ

}
.

Since π D π̂, for every ω, λ (x| (x, ω) ∈ ŝ) =
∑

s∈Q λ (x| (x, ω) ∈ s). Note that s ⊆ s for all s ∈ Q.

Now, we know that s∨i = s′∩ŝ for some s′ ∈ π′. By definition of π′, we know that s′ = ∪
s∈π s.t.s̃∈Ms

Xs
s̃

for some s̃ ∈ π̃. Hence,

s∨i =

(
∪

s∈π s.t.s̃∈Ms
Xs
s̃

)
∩ ŝ

= ∪
s∈π s.t.s̃∈Ms

(
Xs
s̃ ∩ ŝ

)
= ∪

s∈Q s.t.s̃∈Ms
Xs
s̃ ,

where the last equality follows from the fact that Xs
s̃ ⊆ s, and hence Xs

s̃ ∩ ŝ = Xs
s̃ if s ∈ Q and

Xs
s̃ ∩ ŝ is empty if s /∈ Q. Hence,

p
(
s∨i |ω

)
= λ

({
x| (x, ω) ∈ s∨i

})
= λ

({
x| (x, ω) ∈ ∪

s∈Q s.t.s̃∈Ms
Xs
s̃

})
=

∑
s∈Q s.t.s̃∈Ms

λ
({
x| (x, ω) ∈ Xs

s̃

})
=

∑
s∈Q s.t.s̃∈Ms

λ ({x| (x, ω) ∈ s}) g (s, s̃)

=
∑
s∈Q

λ ({x| (x, ω) ∈ s}) g (s, s̃)

= g (s, s̃)
∑
s∈Q

λ ({x| (x, ω) ∈ s})

= g (s, s̃)λ ({x| (x, ω) ∈ ŝ})

= g (s, s̃) p (ŝ|ω) .

Hence,

p (s∨i |ω)

p (s∨i |ω′)
=
g (s, s̃) p (ŝ|ω)

g (s, s̃) p (ŝ|ω′)
=
p (ŝ|ω)

p (ŝ|ω′)
,

which completes the proof of Lemma 2.
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A.2 Proof of Proposition 1

Proof of Proposition 1. Let H be an information hierarchy and suppose G̃(H) is a forest. Let β be

a monotone belief allocation on H. We will construct a D-monotone signal allocation that induces

β. To do so, we construct a sequence of subhierarchies of H, adding nodes of H one by one, until we

reach the full hierarchy H. At each step, we assign a signal to the newly added node and potentially

reassign the signals allocated to the previously added nodes.

We begin with some notation and terminology. A construction procedure f is a bijection from

{1, ..., |N |} to N that specifies the order in which the nodes are added. Let Nf
l = {f (1) , ..., f (l)}. If

f (l) = n, we say that n was added at time l, and we refer to Nf
l−1 as the previously added nodes. For

any subset N ′ ⊆ N , let CoveredBy (N ′) = {n ∈ N \N ′|∃n′ ∈ N ′ that covers n}, Covering (N ′) =

{n ∈ N \N ′|∃n′ ∈ N ′ that is covered by n}, and

Disconnected
(
N ′
)

=
{
n ∈ N \N ′|@n′ ∈ N ′ s.t. there is a path from n to n′ in G̃(H)

}
.

Now, consider a construction procedure f of the following form. Let f (1) be any node in N .

For l ∈ {2, 3, ..., |N |}, let f (l) be an arbitrary element of CoveredBy
(
Nf
l−1

)
∪Covering

(
Nf
l−1

)
∪

Disconnected
(
Nf
l−1

)
. Note that for anyN ′ ( N , CoveredBy (N ′)∪Covering (N ′)∪Disconnected (N ′)

is not empty.

Claim 1. For each l ≥ 2, there is at most one edge in G̃(H) between f (l) and nodes in Nf
l−1.

Proof of Claim 1. Suppose toward contradiction that f (l) has an edge in G̃(H) with distinct n,n′ ∈

Nf
l−1. Since n and n′ both have an edge with f (l), they must belong to the same tree in G̃(H).

Moreover, there must be a path between n and n′ in G̃
((
Nf
l−1,≥

))
. To see this, let n be the

node that was added earliest to Nf
l−1 among the nodes in the tree to which n and n′ belong.

For every other node f (l′) ∈ Nf
l−1 from this tree, we must have f (l′) ∈ CoveredBy

(
Nf
l′−1

)
∪

Covering
(
Nf
l′−1

)
, which in turn means that there is a path from f (l′) to n in G̃

((
Nf
l′−1,≥

))
and

thus in G̃
((
Nf
l−1,≥

))
. Hence, there is a path from both n and n′ to n and thus a path between

n and n′ in G̃
((
Nf
l−1,≥

))
. So, there must be a path between n and n′ in G̃(H) that does not go

through f (l). But, because f (l) has an edge with both n and n′, there is another path from n to

n′ that goes through f (l). However, G̃(H) is a forest, so there cannot be multiple paths between
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two nodes; we have reached a contradiction. ♦

Now, given this construction procedure f , we assign signals to nodes as follows. At step l, we

expand Nf
l−1 to Nf

l = Nf
l−1 ∪ f (l) and assign signals according to σl : Nf

l → Π. We proceed

by induction and show that, as long as the signals previously allocated to nodes in Nf
l−1 induce

appropriate beliefs (i.e., for all m ∈ Nf
l−1, 〈σ

l−1 (m)〉 = β (m)) and are D-monotone (i.e., for

any m,m′ ∈ Nf
l−1 such that m ≥ m′, we have σl−1 (m) D σl−1 (m′)), the σl we specify induces

appropriate beliefs and is D-monotone on Nf
l .

First, to node f (1), we assign an arbitrary signal σ1 (f (1)) such that 〈σ1 (f (1))〉 = β (f (1)).

Note we are vacuously satisfying the base case of the induction argument: the signal allocation to

the single node in Nf
1 induces appropriate beliefs and is D-monotone. For l ≥ 2, there are three

cases: f (l) ∈ CoveredBy
(
Nf
l−1

)
, f (l) ∈ Covering

(
Nf
l−1

)
, and f (l) ∈ Disconnected

(
Nf
l−1

)
.

We first consider the case f (l) ∈ Covering
(
Nf
l−1

)
. Note that, by Claim 1, f (l) covers exactly

one node in Nf
l−1 (call this node m̄) and is not covered by any nodes in Nf

l−1. Since β(f (l)) % β (m̄),

there exists some π D σl−1 (m̄) such that 〈π〉 = β (f (l)) (cf: Lemma 1). We set σl (f (l)) = π and

we keep the signal allocation to nodes in Nf
l−1 unchanged, i.e., σl (m) = σl−1 (m) for all m ∈ Nf

l−1.

It is clear that σl induces appropriate beliefs (by the inductive hypothesis for m ∈ Nf
l−1 and by

construction for f (l)). We also need to show that this signal allocation on Nf
l is D-monotone.

Consider any m,m′ ∈ Nf
l such that m > m′. Since f (l) ∈ Covering

(
Nf
l−1

)
, either m,m′ ∈ Nf

l−1

or f (l) = m. In the former case, we know σl (m) = σl−1 (m) D σl−1 (m′) = σl (m′) by the

inductive hypothesis. If f (l) = m, we know f (l) > m̄ ≥ m′. By the inductive hypothesis,

σl (m̄) = σl−1 D σl−1 (m′) = σl (m′) and thus σl (f (l)) D σl (m̄) D σl (m′). That completes the

proof for this case.

Now consider the case where f (l) ∈ CoveredBy
(
Nf
l−1

)
. Let m be the node in Nf

l−1 that covers

f (l). Denote τ ′ = β (f (l)), π = σl−1 (m), and π =
∨
m∈Nf

l−1
σl−1 (m). By Lemma 2, we know ∃π′

such that (i) 〈π′〉 = τ ′, and (ii) ∀π̂ s.t. π D π̂ D π, 〈π̂ ∨ π′〉 = 〈π̂〉. We set σl (f (l)) = π′. For

m ∈ Nf
l−1, if m ≥ f (l), we set σl (m) = σl−1 (m)∨π′; otherwise, we set σl (m) = σl−1 (m). We need

to show that σl induces appropriate beliefs and is D-monotone. We have that 〈σl (f (l))〉 = 〈π′〉 =

τ ′ = β (f (l)). For m ∈ Nf
l−1, first consider cases where m ≥ f (l), so 〈σl (m)〉 = 〈σl−1 (m) ∨ π′〉.

Since m ≥ m (recall that m covers f (l)), by the inductive hypothesis, σl−1 (m) D σl−1 (m) = π;
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moreover, π =
∨
m′∈Nf

l−1
σl−1 (m′) D σl−1 (m); hence, 〈σl (m)〉 = 〈σl−1 (m) ∨ π′〉 = 〈σl−1 (m)〉. For

m ∈ Nf
l−1 s.t. m � f (l), 〈σl (m)〉 = 〈σl−1 (m)〉. Since by the inductive hypothesis, 〈σl−1 (m)〉 =

β (m), we have established that 〈σl (m)〉 = β (m) for all m ∈ Nf
l−1. We now need to show that σl

is D-monotone. Consider any m,m′ ∈ Nf
l−1 s.t. m ≥ m′. There are three cases. First, suppose

m ≥ m′ ≥ f (l). In that case, we know that σl (m) = σl−1 (m)∨π′ and σl (m′) = σl−1 (m′)∨π′. Since

(by the inductive hypothesis) σl−1 (m) D σl−1 (m′), we know that σl−1 (m) ∨ π′ D σl−1 (m′) ∨ π′,

and hence σl (m) D σl (m′). The second case is where m ≥ f (l) and m′ � f (l). Then, σl (m) =

σl−1 (m) ∨ π′ and σl (m′) = σl−1 (m′). Since (by the inductive hypothesis) σl−1 (m) D σl−1 (m′),

we have that σl (m) = σl−1 (m) ∨ π′ D σl−1 (m) D σl−1 (m′) = σl (m′). Finally, suppose that

m � f (l) and m′ � f (l). Then, σl (m) = σl−1 (m) and σl (m′) = σl−1 (m′). Since (by the

inductive hypothesis) σl−1 (m) D σl−1 (m′), we have that σl (m) D σl (m′) .

Finally, suppose f (l) ∈ Disconnected
(
Nf
l−1

)
. We assign an arbitrary signal σl (f (l)) to f (l)

such that 〈σl (f (l))〉 = β (f (l)), and we keep the signal allocation to nodes in Nf
l−1 unchanged, i.e.,

σl (m) = σl−1 (m) for all m ∈ Nf
l−1. It is clear that σl induces appropriate beliefs (by the inductive

hypothesis for m ∈ Nf
l−1 and by construction for f (l)). Since f (l) is not comparable to any node

in Nf
l−1, the fact that the signal allocation on Nf

l−1 is D-monotone implies that the signal allocation

on Nf
l is also D-monotone. This completes the proof.

A.3 Proof of Proposition 2

Lemma 4. If an information hierarchy H is Ω-universally constructible under B and H ′ is a closed

subhierarchy of H, then H ′ is Ω-universally constructible under B.

Proof of Lemma 4. Fix Ω. Suppose H is an information hierarchy that is Ω-universally con-

structible under B. Consider some µ0. Suppose H ′ = (N ′,≥) is a closed subhierarchy of H.

Let β′ be a monotone belief allocation on H ′. We need to construct a B-monotone signal allocation

on H ′ that induces β′. Let β be a belief allocation on H defined as follows: (i) if n ∈ N ′, let

β (n) = β′ (n); (ii) if n /∈ N ′ and ∃n′ ∈ N ′ such that n > n′, let β (n) = τ ; and (iii) if n /∈ N ′ and

6 ∃n′ ∈ N ′ such that n > n′, let β (n) = τ .

Claim 2. β is monotone on H.
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Proof of Claim 2. Consider n, n′ ∈ N with n ≥ n′. We show that β (n) % β (n′) by considering

four exhaustive cases:

If n and n′ are both in N ′, this follows from the fact that β′ is monotone on H ′.

If n and n′ are both not N ′, consider two subcases. If ∃n′′ ∈ N ′ such that n > n′′, then

β (n) = τ % β (n′) . Otherwise, since n ≥ n′ and 6 ∃n′′ ∈ N ′ such that n > n′′, it must be that

6 ∃n′′ ∈ N ′ such that n′ > n′′, so β (n) % β (n′) = τ .

If n /∈ N ′ and n′ ∈ N ′, β (n) = τ % β (n′).

Finally, if n ∈ N ′ and n′ /∈ N ′, then there cannot exist an n′′ ∈ N ′ with n′ > n′′. If such an

n′′ did exist, then since H ′ is closed and n, n′′ ∈ N ′, we would have that n′ ∈ N ′, a contradiction.

Thus, β (n) % β (n′) = τ . ♦

Since β is monotone on H, and H is Ω-universally constructible under B, there exists a B-

monotone signal allocation σ on H that induces β. Clearly, the restriction of σ to N ′ induces β′

and is B-monotone on H ′.

The next result shows that if H ′ is a closed subhierarchy of H, then G (H ′) is the subgraph of

G (H) obtained by dropping edges with nodes that are not in H ′.

Lemma 5. Fix a hierarchy H = (N,≥) and a closed subhierarchy H ′ = (N ′,≥). Let E be the set of

edges in G (H). Then G (H ′) = (N ′, E′), where E′ = {(n, n′) ∈ E|n, n′ ∈ N ′}.

Proof of Lemma 5. Fix n, n′ ∈ N ′. We need to show that (n, n′) ∈ E′ if and only if (n, n′) ∈ E. If

(n, n′) ∈ E, then n covers n′ in H, i.e., n > n′ and there is no n′′ ∈ N with n > n′′ > n′. A fortiori,

there is no n′′ ∈ N ′ ⊂ N with n > n′′ > n′; hence, n covers n′ in H ′, so (n, n′) ∈ E′. If (n, n′) ∈ E′

, then n covers n′ in H ′. As a result, n > n′. If there exists n′′ ∈ N such that n > n′′ > n′, then,

since H ′ is closed, n′′ ∈ N ′, so n must not cover n′ in H ′, a contradiction. As a result, n covers n′

in H as well, so (n, n′) ∈ E.

The between set of (n, n′) in H = (N,≥) is defined as

Btw
(
n, n′, H

)
=
{
n̂ ∈ N |n ≥ n̂ ≥ n′

}
.
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Clearly, the subhierarchy induced by the between set of any pair of nodes is closed. Moreover, a

subhierarchy H ′ = (N ′,≥) is closed if and only if N ′ contains Btw (n, n′, H) for all n, n′ ∈ N ′. We

say that Btw (n, n′, H) is simple if every node in Btw (n, n′, H) \ {n, n′} belongs to exactly one

directed path in G(H) from n to n′. H ′ is a minimal cyclic closed subhierarchy (MCC ) of H if it

is cyclic, closed, and there is no cyclic and closed subhierarchy H ′′ = (N ′′,≥) of H with N ′′ ( N ′.

We say that a cycle in G̃(H ′) is a spanning cycle if every node in N ′ is in the cycle.

Lemma 6. Fix a hierarchy H = (N,≥) and a subhierarchy H ′ = (N ′,≥). Suppose H ′ is an MCC

of H. Then, either (i) N ′ is a simple between set in H, or (ii) every cycle in G̃ (H ′) is a spanning

cycle.

Proof of Lemma 6. For this proof, all between sets are defined relative to H, and we simply write

Btw (n, n′) for Btw (n, n′, H). Similarly, by closed we mean closed in H. Note that by Lemma 5,

G (H ′) is the subgraph of G (H) obtained by dropping edges with nodes that are not in H ′. In

particular, H ′ is cyclic if and only if H contains a cycle whose nodes are in H ′. This fact is used

freely below.

We consider two cases. First, suppose there are two nodes n, n′ ∈ N ′ such that n ≥ n′ and there

are two distinct paths from n to n′ in the directed graph G(H). Note that Btw (n, n′) is closed,

so that these paths are in G ((Btw (n, n′) ,≥)) as well, so that (Btw (n, n′) ,≥) is cyclic. Moreover,

since H ′ is closed, we have that Btw (n, n′) ⊆ N ′. Hence, since H ′ is an MCC, we must have that

N ′ = Btw (n, n′). It remains to show that the between set N ′ is simple. Suppose to the contrary

there is some node n̂ ∈ N ′ \ {n, n′} such that n̂ belongs to two distinct paths from n to n′ in G(H).

Then, there are either two distinct directed paths from n to n̂ or two distinct directed paths from n̂

to n′; thus, either Btw (n, n̂) or Btw (n̂, n′) must be cyclic. Since both Btw (n, n̂) and Btw (n̂, n′)

are closed and strict subsets of N ′, H ′ must not be an MCC, so we have reached a contradiction.

Thus, we have established that N ′ must be a simple between set.

Now consider the second case where for every n, n′ ∈ N ′, there is at most one path from n

to n′ in the directed graph G(H). Given a path P (either directed or undirected), let NP denote

the set of nodes that appear in P . Since H ′ is an MCC, G̃ (H ′) =
(
N ′, Ẽ

)
contains a cycle

C = (n0, ẽ0, ...nL−1, ẽL−1, nL) where L > 1, n0 = nL. We will argue that (NC ,≥) is closed. The

fact that NC = N ′ will then follow directly from the hypothesis that H ′ is an MCC.
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Let us then suppose that (NC ,≥) is not closed, in order to reach a contradiction. Given a di-

rected path (n0, e0, ..., nL−1, eL−1, nL), its undirected analog is the undirected path (n0, ẽ0, ...nL−1, ẽL−1, nL)

where ẽi = {ni, ni+1}. Say that a directed path P in G (H) only contains edges in C if every edge

in the undirected analog of P is in C. A directed path P in G(H) is an external directed connection

(EDC) from n to n′ if (i) P is a directed path from n to n′; (ii) n, n′ ∈ NC ; and (iii) P does not only

contain edges in C. Say that (n, n′) ∈ NC are an externally connected pair (ECP) if there is an

external directed connection from n to n′ or from n′ to n. An ECP (ni, nj) is said to be minimally

close if for every i ≤ l < l ≤ j,
(
nl, nl

)
is an ECP only if l = i and l = j.

Claim 3. Given any two nodes n, n′ ∈ N ′, if P is the unique directed path in G (H) from n to n′,

then NP = Btw (n, n′).

Proof of Claim 3. If there are two non-comparable nodes in Btw (n, n′), there would be two distinct

directed paths from n to n′. Hence, all nodes in Btw (n, n′) are comparable. Therefore, there is a

directed path from n to n′ whose nodes are Btw (n, n′). Since there is a unique directed path from

n to n′, the set of nodes in P is Btw (n, n′). ♦

Claim 4. There exist i, j such that (ni, nj) is a minimally close ECP.

Proof of Claim 4. We know there is a pair of nodes in NC that are an ECP. Otherwise, (NC ,≥)

would be closed. Moreover, since L is finite, there is a pair of nodes in NC that are a minimally

close ECP. ♦

Let (ni, nj) be a minimally close ECP s.t. {ni, ni+1, ..., nj} ( NC . Let n = max {ni, nj} and n =

min {ni, nj}. Let P e denote the external directed connection from n to n. Let P̃ be the undirected

path (ni, ẽi, ..., ẽj−1, nj) in G̃ (H) from ni to nj in C. Let Q̃ denote the undirected path from ni to nj

that“goes in the other direction”from P̃ in C, i.e., Q̃ = (ni, ẽi−1, ni−1, ..., ẽ0, n0, ẽL−1, nL−1, ..., ẽj , nj).

Let S = NP̃ ∪Btw (n, n).

Claim 5. (S,≥) is cyclic.

Proof of Claim 5. It suffices to show there are two distinct undirected paths from ni to nj in

G̃ ((S,≥)). One path is P̃ . The other path is the undirected analog of the external directed

connection P e. Since P e is external, these two undirected paths must be distinct. ♦
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Claim 6. S is closed.

Proof of Claim 6. Let Y = ∪n,n′∈NP̃Btw (n, n′). We will show that Y is closed and that Y = S.

First we show that Y is closed. Consider any n′, n′′ ∈ Y and n ∈ Btw (n′, n′′). By definition of

Y , n′ ∈ Btw (n1, n2) and n′′ ∈ Btw (n3, n4), where nl ∈ NP̃ for l = 1, 2, 3, 4. Hence, n1 ≥ n′ ≥ n ≥

n′′ ≥ n4 and thus n ∈ Btw (n1, n4) ⊆ Y .

It remains to show that S = Y . Given n ∈ NP̃ , n ∈ Btw (n, n) ⊆ Y . Moreover, Btw (n, n) ⊆ Y .

Hence, S ⊆ Y .

Now, consider some n ∈ Y . We need to show that n ∈ S. If n ∈ NP̃ , then we are done.

Otherwise, n /∈ NP̃ . We know n ∈ Btw (n′, n′′) for some n′, n′′ ∈ NP̃ . If (n′, n′′) = (n, n), n ∈

Btw (n, n) ⊆ S. Suppose instead that (n′, n′′) 6= (n, n). We will reach a contradiction. Let P

denote the directed path from n′ to n′′ whose nodes include n. Because (n, n) is a minimally close

ECP, path P must only include edges in C. Since n /∈ NP̃ , the nodes in path P cannot be a subset

of NP̃ . Thus, the nodes in P contain the nodes in Q̃, including n and n. The sequence of nodes and

edges in P between n and n is a directed path between those nodes, and thus is equal to P e (by

uniqueness of the directed path). Since P e contains an edge which is not in C, we have contradicted

the hypothesis that P only contains edges in C. Thus, we have established that Y ⊆ S. ♦

We have established that (S,≥) is cyclic and closed and that S ⊆ N ′. Since H ′ is an MCC,

it must be that S = N ′. But since S = NP̃ ∪ Btw (n, n), it must be that NQ̃ ⊆ Btw (n, n). All

nodes in a between set are comparable, by the hypothesis that directed paths are unique, and so all

nodes in NQ̃ are comparable. Hence, Q̃ must be the undirected analogue of P e. This contradicts

the hypothesis that (n, n) is an ECP.

Lemma 7. If the hierarchy H = (N,≥) is such that every cycle in G̃ (H) is a spanning cycle, then

for any pair of nodes n, n′ ∈ N , there exist two undirected paths from n to n′ such that the union

of the nodes in the two paths is N and the intersection of the nodes in the two paths is {n, n′}.

Proof of Lemma 7. Since there exists a spanning cycle G̃ (H), for any pair of nodes n, n′ ∈ N , there

exist two undirected paths P =
(
n, ẽP0 , n

P
1 ..., n

P
LP−1

, ẽP
LP−1

, n′
)

andQ =
(
n, ẽQ0 , n

Q
1 ..., n

Q
LQ−1

, ẽQ
LQ−1

, n′
)

such that N = NP ∪NQ and ẼP ∩ ẼQ = ∅, where ẼP =
{
ẽP0 , ..., ẽ

P
LP−1

}
and ẼQ =

{
ẽQ0 , ..., ẽ

Q
LQ−1

}
.

We need to show that NP ∩NQ = {n, n′}. Suppose to the contrary that there exists n̂ ∈ NP ∩NQ
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with n̂ 6∈ {n, n′}. We know there exist lP ∈ {1, ..., LP − 1} and lQ ∈ {1, ..., LQ − 1} such that n̂ =

nP
lP

= nQ
lQ

. Now, consider the undirected path
(
n, ẽP0 , n

P
1 , ..., ẽ

P
lP−1

, nP
lP
, ẽQ
lQ−1

, nQ
lQ−1

, ẽQ
lQ−2

, ..., n
)

.

Since Ẽp ∩ Ẽq = ∅, this is a well-defined path. But it is a cycle that is not spanning and thus we

have reached a contradiction.

Suppose a hierarchy H has nodes

N = {n} ∪ {n} ∪Ll=1

{
nlk

}Kl
k=1

,

with L ≥ 2, such that for all l = 1, . . . , L, (i) Kl ≥ 1, (ii) n > nl1, (iii) nlKl > n, (iv) nlk and nlk+1

are comparable for every k = 1, . . . ,Kl − 1, and (v) nlk is not comparable to nl
′
k′ if l 6= l′. In this

case, we say that H is a union of non-comparable paths (UNP).

Lemma 8. If the hierarchy H is a UNP, then H is not Ω-universally constructible under B for any

Ω.

Proof of Lemma 8. To establish the Lemma, it suffices to show that if the hierarchy is a UNP, it is

not Ω-universally constructible under B for Ω = {0, 1}. We will present a monotone belief allocation

β, based on the belief allocation on the diamond in Section 3, and show that β is not constructible

under B. Let β(n) = τ⊗; β(n) = τ#; for k = 1, . . . ,K1, let β(n1
k) = τ � ; and for all l = 2, . . . , L and

k = 1, . . . ,Kl, let β(nlk) = τ�. Recall that τ⊗ has support
{

0, 1
2 , 1
}

, τ# has support
{

1
6 ,

5
6

}
, τ � has

support
{

0, 2
3 ,

5
6

}
, and τ� has support

{
1
6 ,

1
3 , 1
}

. By the argument in footnote 16, β is monotone.

Toward a contradiction, suppose σ is B-monotone signal allocation that induces β. We begin

by establishing that, it must be that case that, along any undirected path from n to n, the realized

beliefs must be equal across the interior nodes on that path.

Claim 7. For all l = 1, . . . , L, we have µ̃σ(nlk)
= µ̃σ(nl1)

for all k = 1, . . . ,Kl.

Proof of Claim 7. It suffices to establish that for any k = 1, ...,Kl − 1, we have µ̃σ(nlk+1)
= µ̃σ(nlk)

.

We know nlk and nlk+1 are comparable. Assume that nlk+1 > nlk; the case where nlk > nlk+1

is analogous and omitted. Since σ is B-monotone, we have E[µ̃σ(nlk+1)|µ̃σ(nlk)] = µ̃σ(nlk)
. Now

suppose toward contradiction that µ̃σ(nlk+1)
6= µ̃σ(nlk)

. We would conclude that µ̃σ(nlk+1)
is a strict
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mean-preserving spread of µ̃σ(nlk)
.26 But that would mean that µ̃σ(nlk+1)

is not equal to µ̃σ(nlk)
in

distribution and thus that 〈σ
(
nlk+1

)
〉 6= 〈σ

(
nlk
)
〉. ♦

We will now reach a contradiction by establishing that Pr
(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
is equal to

zero and is strictly bigger than zero.

Step 1: We show that Pr
(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
= 0. First, note that Pr

(
µ̃σ(n) = 0|µ̃σ(n1

1)
= 0
)

=

1 since E
[
µ̃σ(n)|µ̃σ(n1

1)
= 0
]

= 0 and the support of µ̃σ(n) lies above 0. Moreover, since Pr
(
µ̃σ(n) = 0

)
=

3
8 = Pr

(
µ̃σ(n1

1)
= 0
)

, we must also have Pr
(
µ̃σ(n1

1)
= 0|µ̃σ(n) = 0

)
= 1. A similar argument es-

tablishes that Pr

(
µ̃
σ
(
n1
K1

) = 5
6 |µ̃σ(n) = 5

6

)
= 1 and Pr

(
µ̃σ(n) = 5

6 |µ̃σ
(
n1
K1

) = 5
6

)
= 1. Claim 7

tells us that Pr
(
µ̃σ(n1

1) = 0 & µ̃σ(n1
K1

) = 5
6

)
= 0. Hence, Pr

(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
= 0.

Step 2: We show that Pr
(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
> 0. It suffices to show that (a) Pr

(
µ̃σ(n2

1)
= 1

3 |µ̃σ(n) = 5
6

)
>

0, and (b) Pr
(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3 & µ̃σ(n) = 5
6

)
> 0.

Arguments analogous to the ones in Step 1 yield Pr

(
µ̃
σ
(
n2
K2

) = 1
6 |µ̃σ(n) = 1

6

)
= 1. Be-

cause Supp
(
µ̃σ(n)

)
=
{

1
6 ,

5
6

}
, this in turn implies that Pr

(
µ̃σ(n) = 5

6 |µ̃σ
(
n2
K2

) = 1
3

)
= 1. Thus,

Claim 7 tells us that Pr
(
µ̃σ(n) = 5

6 |µ̃σ(n2
1)

= 1
3

)
= 1. Therefore Pr

(
µ̃σ(n2

1)
= 1

3 |µ̃σ(n) = 5
6

)
=

Pr

(
µ̃
σ(n21)

= 1
3

)
Pr(µ̃σ(n)= 5

6)
> 0, establishing part (a).

Now, note that Pr
(
µ̃σ(n) = 5

6 |µ̃σ(n2
1)

= 1
3

)
= 1 implies Pr

(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3 & µ̃σ(n) = 5
6

)
=

Pr
(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3

)
.Moreover, since Supp

(
µ̃σ(n)

)
=
{

0, 1
2 , 1
}

, we have E
[
µ̃σ(n)|µ̃σ(n2

1)
= 1

3

]
=

1
3 ⇒ Pr

(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3

)
> 0, establishing (b).

Lemma 9. If the hierarchy H = (N,≥) is cyclic and N is a simple between set in H, then H is not

Ω-universally constructible under B for any Ω.

Proof of Lemma 9. Since H = (N,≥) is cyclic and N is a simple between set, H must be a UNP.

Therefore Lemma 8 establishes that H is not Ω-universally constructible under B for any Ω.

Lemma 10. If the hierarchy H is cyclic and not a crown, and every cycle in G̃ (H) is a spanning

cycle, then H is not Ω-universally constructible under B for any Ω.

26For any two random variables X and Y , if E [X|Y ] = Y and X 6= Y , X must be a strict mean-preserving spread
of Y .
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Proof of Lemma 10. Suppose that H = (N,≥) is cyclic and not a crown, and that every cycle in

G̃ (H) is a spanning cycle. We say an element n of N is maximal if there is no n ∈ N such that

n > n. We say an element n of N is minimal if there is no n ∈ N such that n > n.

Claim 8. There exist n and n in N that are maximal and minimal, respectively, such that n does

not cover n.

Proof of Claim 8. Suppose toward contradiction that every maximal element covers every minimal

element. Hence, G̃ (H) is a complete bipartite graph of maximal and minimal elements. If there

were only one maximal element or only one minimal element, there could not be a cycle. So, there

must be at least two of each. Take any N ′ ⊆ N consisting of exactly two maximal and two minimal

elements, and let H ′ = (N ′,≥). H ′ is a crown and therefore is cyclic. Moreover, H ′ is clearly

closed, so that by Lemma 5, the nodes in H ′ are part of a cycle in G̃ (H) as well. Since every cycle

in G̃ (H) is a spanning cycle, we must have N = N ′, and thus H is a crown subhierarchy, and we

have reached a contradiction. ♦

By Claim 8, we can find n and n in N that are maximal and minimal, respectively, such that

n does not cover n. By Lemma 7, there are two distinct undirected paths P and Q in G̃ (H) from

n to n such that the union of the nodes in the two paths is N and the intersection of the nodes

in the two paths is {n, n}. As a result, H is a UNP. Lemma 8 therefore implies that H is not

Ω-universally constructible under B for any Ω.

Proof of Proposition 2. Suppose G̃(H) is not a forest, i.e., it contains a cycle. Since N is finite, H

contains a subhierarchy H ′ = (N ′,≥) that is an MCC of H. By Lemma 6, either (i) N ′ is a simple

between set in H, or (ii) every cycle in G̃ (H ′) is a spanning cycle. Consider case (i). Because H ′

is closed and N ′ is a simple between set in H, N ′ is also a simple between set in H ′. Thus, Lemma

9 implies that H ′ is not Ω-universally constructible under B for any Ω. Now consider case (ii).

If H ′ is not a crown, then Lemma 10 implies that is not Ω-universally constructible under B for

any Ω. If H ′ is a crown, Lemma 3 implies it is not Ω-universally constructible under B if |Ω| ≥ 3.

Hence, if |Ω| ≥ 3, H ′ is not Ω-universally constructible under B. Therefore, by Lemma 4, H is not

Ω-universally constructible under B if |Ω| ≥ 3.
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