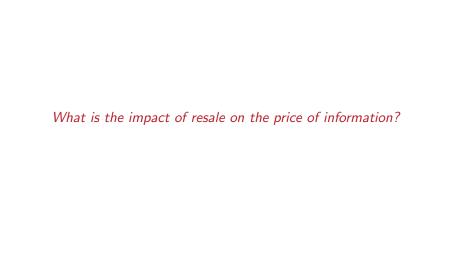
Reselling Information

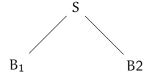
S. Nageeb Ali, Ayal Chen-Zion, & Erik Lillethun

Penn State, Amazon, & Colgate

July 24, 2020



benchmark: vanilla world without resale



Seller has information (e.g., knowledge of ω).

Buyer's value for information = 1; payoff of 0 until then.

Each link meets with probability λdt in period of length dt.

Each player discounts future at rate r > 0.

Frequency of interaction per unit of *effective time* is λ/r .

Each buyer obtains info only from the seller.

Equilibrium = Nash Bargaining + Rational Expectations.

So an equilibrium price p solves

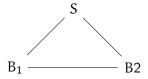
$$\underbrace{p - p \int_0^\infty e^{-rt} e^{-\lambda t} \lambda \, dt}_{\text{Seller's Gain from Selling Today}} = \underbrace{(1 - p) - (1 - p) \int_0^\infty e^{-rt} e^{-\lambda t} \lambda \, dt}_{\text{Buyer's Gain from Buying Today}}.$$

$$\implies p = \frac{1}{2}$$
.

Without resale, buyers and seller split the surplus.

Seller's payoff $\to \frac{1}{2} \times$ social surplus as $\lambda/r \to \infty$

pricing with resale



Once a buyer obtains info, he can sell it to the other buyer at the next trading opportunity.

Key idea: information is replicable \Rightarrow buyer can both consume and sell it.

pricing with resale

Sale of information is publicly observed.

Payoff-relevant state is the set of informed players:

$$s \in \Big\{ \{S\}, \, \{S, B_1\}, \, \{S, B_2\}, \, \{S, B_1, B_2\} \Big\}.$$

Equilibrium \equiv value functions $V_i(s)$ and prices $p_{ij}(s)$ where

- Value functions satisfy rational expectations given prices,
- Prices satisfy symmetric Nash bargaining given value functions:
 - Trade today iff trading today increases bilateral surplus.
 - prices split the gains from trade equally.

Study both *immediate agreement* and *seller's optimal* equilibria.

$$s = (S, B_1)$$

Proceed by backward induction: suppose S and B_1 have information.

 B_2 can buy information from either S or B_1 : 2 trading partners.

Prices $p_{S2}(s) = p_{12}(s)$ and solve

$$\underbrace{p - p \int_0^\infty e^{-rt} e^{-2\lambda t} \lambda \, dt}_{\text{Seller's Gain from Trading Today}} = \underbrace{(1 - p) - (1 - p) \int_0^\infty e^{-rt} e^{-2\lambda t} 2\lambda \, dt}_{\text{Buyer's Gain from Trading Today}}.$$

which converges to 0 in a frictionless market $(\lambda/r \to \infty)$.

key idea

For buyer, gain from trading today is cost of delay \approx 0.

For a seller, gain from trading today >> 0 because she may lose buyer to other seller.

Equating these two gains implies prices must vanish.

Is this intuitive?

- Yes: Bertrand outcome expected if B₂ met S and B₁ simultaneously.
- No: B₂ meets only one at a time, faces costs from delay, and so Diamond Paradox may apply.

Slight bargaining power to the buyer averts the Diamond Paradox.

two uninformed buyers remain

Let $\gamma \equiv \int_0^\infty e^{-rt} e^{-2\lambda t} \lambda \, dt$, which converges to $\frac{1}{2}$ as $\lambda/r \to \infty$.

Suppose S meets a buyer.

Buyer's payoff:

- Trading today: $1 p(1) + \gamma p(2) \rightarrow 1 p(1)$.
- Waiting: $\gamma(1-p(1)+\gamma p(2))+\gamma(2\gamma)(1-p(2)) \rightarrow 1-\frac{p(1)}{2}$.

The payoff from waiting is higher if p(1) > 0.

Therefore, $p(1) \to 0$ as $\lambda/r \to \infty$.

discussion

The seller is a *monopolist* on information.

But neither he nor the first buyer cannot commit to selling information to the second buyer.

⇒ the second buyer gets information for virtually free.

Little incentive for the first buyer to pay a lot for info:

- Resale price is low.
- Waiting to be the second buyer involves minimal delay.

seller-optimal equilibrium

The seller-optimal equilibrium may involve delayed agreements.

Structure of equilibrium:

- Seller never sells info to B₂ before she sells info to B₁.
- Once seller sells info to B₁, then both compete to sell it to B₂.

In this equilibrium, every meeting between S and B_2 has no trade before B_1 is informed.

 \Rightarrow B₁ knows that he is always first buyer and so he pays $\frac{1}{2}$.

not-trading must be credible

Is it credible for S and B_2 to not trade?

$$\underbrace{\frac{\lambda}{r+\lambda}\left(\frac{1}{2}+\gamma p(2)\right)}_{\text{Seller's cont value}} + \underbrace{\frac{\lambda}{r+\lambda}\left(2\gamma(1-p(2))\right)}_{\text{Buyer's cont value}} > \underbrace{1+2\gamma p(2)}_{\text{Joint Surplus with Trade}}$$

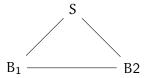
whenever $\lambda/r > 5$.

Seller-optimal equilibrium	features delay.

Seller obtains bilateral bargaining price from at most 1 buyer in any equilibrium.

Clearly, seller can do better if she can prohibit resale. But are there any non-contractual solutions?

what if information weren't replicable?



Suppose the good were non-replicable:

- There is only a single copy of the good, of value 1 to each buyer.
- A buyer who possesses it can consume or re-sell it.

Led Zeppelin, Past, Present and Future

Once a buyer obtains the good, there is no reason to re-trade.

Equilibrium prices solve

$$\underbrace{p(1-2\gamma)}_{\text{Seller's Gain from Trading Today}} = \underbrace{(1-p)\gamma}_{\text{Buyer's Gain from Trading Today}}$$

Recall that
$$\gamma = \int_0^\infty e^{-rt} e^{-2\lambda t} \lambda \, dt \to \frac{1}{2}.$$

 \Rightarrow seller obtains the entire social surplus.

the seed of a solution: a prepay scheme

What if seller could *sell* the right to be the 2nd buyer?

She first sells a single token to either buyer.

If buyer $B_{\rm i}$ buys that token, then the seller always sells info first to the other buyer. Token confers the right to be the 2nd buyer of info, who buys info at $\approx 0.$

- Value of token = $p(1) p(2) \approx 1/2$.
- Fewer tokens than buyers \Rightarrow Seller captures full value of token.
- Seller obtains $\approx 1/2$ for the token and $\approx 1/2$ for info!

Seller obtains value of intellectual property protection without any commitment or IP regulation!

Value from purchasing token is V_t and price of token is p_t .

$$V_{\mathbf{t}} = -p_{\mathbf{t}} + \frac{\lambda}{r + \lambda} (2\gamma)(1 - p(2)) \rightarrow 1 - p_{\mathbf{t}} \text{ as } r \rightarrow 0.$$

Seller's Gain from Selling Token = Buyer's Gain from Buying Token

$$\frac{r}{r+\lambda}\left(p_t + \frac{\lambda}{r+\lambda}p(1) + \gamma p(2)\right) = V_t - \gamma V_t - \frac{\gamma \lambda}{r+\lambda}(1-p(1) + \gamma p(2))$$

Taking limits as $r \rightarrow 0$,

$$0 = \frac{1 - p_t}{2} - \frac{1 - p(1)}{2} \Longrightarrow p_t \to p(1) = 1/2$$

prepay scheme

Tokens play the role of encoding a minimal degree of history dependence:

- Tokens need not be "physical."
- Scheme exploits competitive forces + resale.
- Buyer pays so much for token because he buys info for \approx 0 later.

Could also implement solution by slicing / encrypting information into different bits, and selling each bit separately.

General model allows for a general set of buyers and sellers, all connected by a complete graph.

Bargaining weights need not be symmetric across trading roles, but seller doesn't have full bargaining power.

Paper shows that price of info $\rightarrow 0$ as soon as two players have information.

- ⇒ In a MPE, only way for seller to obtain surplus is if she is a monopolist, and to do so from the first buyer.
- \Rightarrow If seller is a monopolist, she can obtain the full IP value of her information using a token scheme where she sells n-1 tokens before selling information.

wrap up

Clearly relevant for thinking about trading for information, incentives to acquire expertise, etc.

- Information is non-rivalrous in consumption.
- But a market for information can exclude others.

Commitment problems \rightarrow difficulty in appropriating surplus from info.

But commitment problem can be exploited to solve the resale problem.

related literature

Hinting at problem: Arrow (1962).

Verifiability Problem: Anton & Yao (1994); Horner & Skrzypacz (2014).

Resale problem: Polanski (2007, 2019), Manea (2020).

Intermediation / bargaining: Condorelli, Galeotti, & Renou (2016), Manea (2018), Elliot & Talamas (2019).

