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Abstract. I investigate the decision problem which arises in a game of incomplete
information under two different types of uncertainty - uncertainty about other players’
type distributions and about other players’ strategies. I propose a new solution concept
which works in two steps. First, I assume common knowledge of rationality and eliminate
all strategies which are not best replies. Second, I apply the maximin expected utility
criterion. Using this solution concept, one can derive predictions about outcomes and
recommendations for players facing uncertainty. A bidder following this solution concept
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given their valuation. As a consequence, the bidder never expects to win against an equal
or higher type and resorts to win against lower types with certainty.
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1. Introduction

1.1. Motivation. In many economic settings agents face uncertainty. For example, a

seller may be uncertain about the distribution of a buyer’s willingness to pay, i.e. face

distributional uncertainty. Bidders participating in a first-price auction may be uncertain

about each other’s bidding strategies, i.e. face strategic uncertainty. Formally, a player

faces uncertainty if the smallest set of distributions and strategies such that the player

knows that the other players’ true type distribution and strategy is an element of this set,

is not a singleton. In the presence of uncertainty I propose a new solution concept which

works in two steps: First, I assume common knowledge of rationality and eliminate all

actions which are not rationalizable. Afterwards, I apply the maximin expected utility

criterion. Using this solution concept, I can derive recommendations for a player facing

distributional, strategic or both, distributional and strategic uncertainty. Furthermore, I

analyze outcomes under the assumption that every player in the game uses this concept.

The first step is based on the idea that even if an equilibrium exists, in many economic

settings a player may be uncertain whether her opponents employ equilibrium strategies,

and consequently face strategic uncertainty. As stated by Pearce (1984), “some Nash

equilibria are intuitively unreasonable and not all reasonable strategy profiles are Nash

equilibria”. He argues that if players cannot communicate, then a player will best reply to

equilibrium strategies only if she is able to deduce these equilibrium strategies. However, a

player may consider more than one strategy of the other players’ as possible. For example,

this can occur under the existence of multiple equilibria without one equilibrium being

focal or salient (Bernheim (1984)). Thus, a Nash equilibrium may not be a suitable

solution concept if a player does not observe or does not deduce a unique conjecture about

the other players’ strategies. Similarly, Renou and Schlag (2010) argue that “common

knowledge of conjectures, mutual knowledge of rationality and payoffs, and existence of a

common prior” are required in order to justify a Nash equilibrium as a solution concept.

Thus, Bernheim and Pearce (and Battigalli and Siniscalchi (2003b) for games of incomplete

information) propose to consider strategies which a player can deduce only from common

knowledge of rationality.

A player is rational if her action is a best reply given her type and an assumption about

the other players’ type distribution and strategies. A strategy which a player assumes
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to be played by another rational player has to be rational as well, i.e. to be a best reply

given an assumption about type distributions and strategies. This reasoning continues ad

infinitum. Battigalli and Siniscalchi (2003b) show that common knowledge of rationality is

equivalent to bidders playing belief-free rationalizable strategies. These are strategies which

survive the iterated elimination of actions which are not best replies to some distribution

of types and to some strategy which consists of actions which have not been eliminated in

previous elimination rounds.

In the second step I apply the maximin expected utility criterion due to Gilboa and

Schmeidler (1989). A player applying this criterion chooses the action which maximizes

her minimum expected utility given her type. The maximin expected utility criterion

can be modeled as a simultaneous zero-sum game against an adverse nature. Given the

strategy of the adverse nature, the player applying the maximin criterion chooses the

action which maximizes her expected utility. The adverse nature’s utility is the player’s

expected utility multiplied by -1. The action space of the adverse nature consists of all

distributions and all belief-free rationalizable strategies of the other players which the

player considers to be possible. The model as a simultaneous zero-sum game against an

adverse nature has the advantage that in equilibrium a player does not only choose an

action which maximizes her minimum expected utility but also chooses an optimal action

given the adverse nature’s strategy. This can be interpreted as maximizing expected utility

given some subjective belief, in the following called subjective maximin belief, which is

determined by the distribution and strategy chosen by nature.

The following two examples illustrate how the proposed solution concept applies

under strategic uncertainty and why following a Nash equilibrium might not be a useful

recommendation. Afterwards, I will summarize the results for first-price auctions under

distributional, strategic and both, distributional and strategic uncertainty.

For the first example consider a sender who has to deposit a package either in places A,

B or C. A receiver has to decide to which places she sends one or two drivers in order to

pick up the package. If the package is picked up, sender and receiver earn each a payoff of

P and zero otherwise. In addition, the receiver faces a cost of c if a driver travels to place

A or B and a cost of c̃ if a driver travels to place C. Due to cost savings in administration,



4 HELENE MASS ZEW MANNHEIM

the cost of sending two drivers is equal to 2c− α where it holds that −2c+ α < −c. The

game is summarized in the following payoff table:

A B C AB AC

A P ;P − c 0;−c 0;−c̃ P ;P − 2c+ α P ;P − c− c̃+ α

B 0;−c −c̃+ α P ;P − c 0;−c̃−c̃+ α P ;P − 2c+ α 0;−c− c̃+ α

C 0;−c 0;−c−c̃+ α P ;P − c̃ 0;−2c+ α 0;P − c− c̃+ α

Assume it is common knowledge that it holds P − c̃ < −c and P − 2c+ α > −c. The

Nash equilibria in this game are (A;A), (B;B) and both players mixing between A and B

with probability 1
2
. Although Nash equilibria exist, the players may be uncertain about

each other’s strategy since there does not exist a particularly salient one. The application

of the maximin criterion (as well es the maximin expected utility criterion) leaves both

players indifferent between actions A and B. The maximin criterion does not yield to

action AB for the receiver since by choosing AB she would face the risk that the sender

deposits the package in C, leaving the receiver with the costs of two drivers −2c + α.

However, the result of the maximin criterion changes after restricting the strategy space

to belief-free rationalizable strategies. Excluding actions which are not best replies leads

to the elimination of strategies C and AC of the receiver, leading to the elimination of

action C for the sender:

A B AB

A P ;P − c 0;−c P ;P − 2c+ α

B 0;−c −c̃+ α P ;P − c −c̃+ α P ;P − 2c+ α

Now the maximin criterion leads to action AB for the receiver. In other words, if the

receiver anticipates that the sender anticipates that she will never send a driver to C, the

application of the maximin criterion leads to the action AB. In this case, the receiver

earns a payoff of P − 2c + α with certainty. If she would follow a Nash equilibrium or

apply the maximin criterion directly, she would face the risk of getting a payoff of −c.
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As a second example consider the following payoff table. It illustrates the decision

problem of a player who is certain about her opponent’s rationality but uncertain about

her preferences:

X Y Z

A ∗10;10∗ ∗0;9∗ ∗0,0∗

B ∗15;1∗ ∗5;9∗ ∗0,0∗

C ∗14;1∗ ∗4; 9∗ ∗4;0∗

D ∗11;10∗ .∗6;9∗ ∗0;0∗

The unique Nash equilibrium in pure strategies, (A,X), is focal in the sense that it is

the social optimum and leads to the highest possible payoff for both players. However,

the row player may think that her opponent is rational but may have preferences which

cause her to choose action Y instead of X. For example, the application of the maximin

or the minimax regret criterion would lead to action Y . In other words, the column player

may prefer to get a payoff of 9 with certainty instead of aiming for the payoff of 10 and

risking to get a payoff of 1. Given this uncertainty about the column player’s strategy, the

row player may resort to the application of the maximin criterion. This leads to action C

which ensures a payoff of 4 for the row player. However, the row player can anticipate that

action Z is strictly dominated for the column player. After the elimination of this action,

C becomes strictly dominated for the row player which leads to the following payoff table:

X Y

A ∗10;10∗ ∗0;9∗

B ∗15;1∗ ∗5;9∗

D ∗11;10∗ .∗6;9∗

Now the application of the maximin criterion leads to action B for the row player. That

is, after anticipating that the column player will never play Z, the row player can ensure a

payoff of 5 instead a payoff of 4.
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These examples show how the proposed solution concept provides recommendations

under strategic uncertainty. Moreover, they show why players may not expect their

opponents to play Nash equilibria and why the application of the maximin utility criterion

alone may cause forgone profits. Another example for the failure of the maximin criterion

are first-price auctions. If a player faces strategic uncertainty and applies the maximin

expected utility criterion, the adverse nature would choose strategies of the other bidders

such that they bid arbitrarily high. First, this assumption seems unrealistic. Second, in

this case the maximin expected utility criterion does not lead to any recommendation since

the bidder would be indifferent between any bid between zero and her valuation. Therefore,

it is crucial for a bidder to determine the highest possible bids of her competitors. A

first simple restriction of the strategy space would be that bidders never bid above their

valuation. However, if a bidder with valuation θ knows that there is positive probability

weight on types equal or lower than θ′ < θ and every bidder bids at most her valuation,

she can expect a positive payoff from bidding θ′. Consequently, bidding too close to the

own valuation in this case is not rational. Thus, eliminating only bids above valuation

still allows for actions which are not rational. The highest belief-free rationalizable bid

provides for a bidder exactly the answer to the question which bid of her competitors is

the highest possible.

In sections 4-7 I apply my proposed solution concept to first-price auctions. I

provide recommendations and analyze outcomes under distributional uncertainty, strategic

uncertainty and both, distributional and strategic uncertainty. For the analysis of

distributional uncertainty I assume common knowledge of an exogenously given mean µ of

bidders’ valuations. The latter assumption reflects that in reality bidders often are not able

to learn their competitors’ value distribution. Although this information is very valuable

for the bidders and they go at great lengths in order to learn the value distribution, such

learning has its limits and bidders may be able to learn only the range the mean of the

value distribution. 1

Under strategic uncertainty with common knowledge of rationality and common knowledge

of a symmetric value distribution for every type there exists a unique highest belief-free

rationalizable bid. A bidder applying the proposed solution concept assumes that every

other bidder places the highest belief-free rationalizable bid given her type. As a

1See Montiero (2009)
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consequence, the bidder never expects to win against a bidder with an equal or higher

type and therefore bids the highest belief-free rationalizable bid of a lower type in order to

win against the lower type with certainty. If every bidder applies this solution concept,

then every bidder has the same beliefs about distributions and strategies. Every bidder

calculates which highest rationalizable bid of a lower type maximizes her expected payoff.

It turns out that due to the symmetry of beliefs about distributions strategies, the higher

the type of the bidder, the higher is type whose highest belief-free rationalizable bid

maximizes her expected payoff. Therefore, the outcome is efficient.

Under strategic uncertainty with common knowledge of rationality and distributional

uncertainty with common knowledge of an exogenously given mean as before, for every

type there exists a unique highest belief-free rationalizable bid. A bidder applying the

proposed solution concept assumes that every other bidder places the highest belief-free

rationalizable bid given her type. Let θµ be the lowest valuation which is higher than the

mean. The highest belief-free rationalizable bid of a bidder with a valuation lower than

θµ is her valuation. The subjective maximin belief of a bidder with a valuation θ < θµ

about the other bidders’ value distributions is that the probability weight is distributed

between the valuations θ and θµ. As a consequence, a bidder with a valuation lower than θµ

expects a utility of zero and is indifferent between any bid between zero and her valuation.

Every bidder with a valuation θ such that θ ≥ θµ never expects to win against a bidder

with the same valuation. Hence, the maximin belief of a bidder about the other bidders’

value distribution maximizes the probability weight on θ and makes the bidder indifferent

between any highest belief-free rationalizable bid of lower types. As a consequence, the

bidder mixes among all highest belief-free rationalizable bids of lower types. Therefore,

the outcome is not efficient.

Under distributional uncertainty (without strategic uncertainty) there does not exist an

outcome under maximin strategies. That is, an equilibrium in the game with I bidders

and an adverse nature where all bidders apply the maximin expected utility criterion,

does not exist. In order to gain some intuition, consider the example with two bidders

and three valuations given by 0, θ and 1 where θ < µ. For a bidder with valuation

θ the adverse nature will distribute the probability weight in the other bidder’s value

distribution between types θ and 1. If there exists an equilibrium, then both θ-types
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bid θ. If the equilibrium is efficient, then both 1-types have to play a mixed strategy on

some interval with θ as the lower endpoint. Since the mean µ has to be preserved, the

adverse nature minimizes the winning probability (and hence the expected utility) of a

bidder with valuation 1 by distributing the probability weight in the other bidder’s value

distribution between 0 and 1. A best reply to such a distribution would be to bid zero

(or an infinitesimally small amount). Hence, an efficient equilibrium does not exist. An

inefficient equilibrium can be excluded with similar arguments.

The remainder of the paper is organized as follows. I conclude the introduction with

an overview over the related literature. The second section contains the formal model.

The third section collects all results for the general model, in particular, it provides

sufficient conditions for strategies to be belief-free rationalizable. The fourth section

specifies the model for first-price auctions. The fifth, sixth and seventh section characterize

the outcomes under the maximin expected utility criterion under distributional, strategic

and both, distributional and strategic uncertainty. The appendix contains the proofs not

provided in previous sections.

1.2. Related Literature. This paper relates to two strand of literature - on the one hand

the literature on decision criteria under uncertainty and robustness, on the other hand the

literature on rationalizability. Two widely used decision criteria under uncertainty are the

maximin utility and the minimax regret criterion. The axiomatization of the maximin

expected utility criterion is provided in Gilboa and Schmeidler (1989), the axiomatization of

the minimax regret criterion is provided in Stoye (2011). In Bergemann and Schlag (2008)

both criteria are applied to a monopoly pricing problem where a seller faces uncertainty

about the buyer’s value distribution. Since the seller knows that the buyer will obtain the

good if the price is equal or lower than her valuation, the seller does not face strategic

uncertainty.

The maximin expected utility criterion has particularly been applied to first-price

auctions under distributional uncertainty. Lo (1998) derives equilibrium bidding strategies

in a first-price auction under the maximin expected utility criterion where it is common

knowledge that the true value distribution is an element of a given set of distributions.

Salo and Weber (1995) assume that only the range of values is common knowledge and

that ambiguity averse bidders use a convex transformation of the uniform distribution as a
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prior. They find, that the more ambiguity averse a bidder is, the higher is the bid. Chen,

Katuščák, and Ozdenoren (2007) analyze first and second-price auction where bidders face

one of two possible distributions which can be ordered with respect to FOD. Thus, an

ambiguity-averse bidder would assume the stochastically dominating distribution. In their

experimental findings they reject the hypothesis that bidders are ambiguity-averse. These

three papers use Nash equilibria as a solution concept, that is, agents do not face strategic

uncertainty since strategies are observable.

Bose, Ozdenoren, and Pape (2006) derive the optimal auction in a setting where seller

and bidders may face different degrees of ambiguity, that is, they may face different sets

of possible value distributions. Carrasco, Luz, Kos, Messner, Monteiro, and Moreira

(2017) consider a seller facing a single buyer. The set of distributions the seller considers

to be possible is determined by a given range and mean. In these two papers strategic

uncertainty is not an issue since the seller chooses an incentive compatible mechanism.

Renou and Schlag (2010) analyze strategic uncertainty using the minimax regret criterion.

Besides Kasberger and Schlag (2017), I am the only one addressing distributional and

strategic uncertainty. They use the minimax regret criterion and allow for the possibility

that a bidder can impose bounds on the other bidders’ bids or value distributions. For

example, they consider the case where a bidder can impose a lower bound on the highest

bid.

In their literature on robust mechanism design Dirk Bergemann and Stephen Morris

consider the problem of a social planner facing uncertainty about the players’ actions.

In Bergemann and Morris (2005) a social planner can circumvent uncertainty about the

players’ strategies by choosing ex-post implementable mechanisms. Bergemann and Morris

(2013) provides predictions in games independent of the specification of the information

structure. In order to do so, they characterize the set of set of Bayes correlated equilibria.

An application of this concept to first-price auctions is carried out in Bergemann, Brooks,

and Morris (2015). In Carroll (2016) two agents accept or reject a proposed deal where the

value for each agent depends on an unknown state. The results provide an upper bound

of welfare loss among all information structures.

The concept of belief-free rationalizable strategies has been first introduced by Bernheim

(1984) and Pearce (1984) for games with complete information. Battigalli and Siniscalchi
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(2003b) extend belief-free rationalizability to games of incomplete information. An

application to first-price auctions has been carried out by Dekel and Wolinsky (2001).

They apply belief-free rationalizable strategies to a first-price auction with discrete private

values and discrete bids. They present a condition on the distribution of types under

which the only belief-free rationalizable action is to bid the highest bid below valuation.

Battigalli and Siniscalchi (2003a) assume that value distributions in a first-price auction

are common knowledge but not the strategies of the bidders. They characterize the set of

belief-free rationalizable actions under the assumption of strategic sophistication, which

implies common knowledge of rationality and of the fact that bidders with positive bids

win with positive probability. 2 They find that for a bidder with a given valuation θ

all bids in an interval (0, bmax(θ)) are belief-free rationalizable where bmax(θ) is higher

than the equilibrium bid. Using this result, one can immediately tell that under common

knowledge of rationality a bidder applying the maximin expected utility criterion has the

subjective maximin belief that every other bidder with valuation θ bids bmax(θ). I replicate

this result in section 6 for first-price auctions with discrete values.

To the best of my knowledge I am the first one applying the maximin expected utility

criterion to strategic uncertainty and the first one combining rationalizable strategies with

a decision criterion under uncertainty.

2. Model

Underlying game of incomplete information. The starting point of the model is a

game of incomplete information. Let {1, . . . , I} be the set of players, for every i ∈ {1, . . . , I}

let Ai ⊆ R be the set of possible actions and Θi ⊆ R be the set of possible privately known

types for player i. Let Θ0 denote the set of utility-relevant sates of the world such that

the true state of the world θ0 ∈ Θ0 is not known to any of the players. A pure strategy for

player i is a mapping

βi : Θi → Ai

θi 7→ ai

2The assumption that it is common knowledge that bidders with positive bids win with positive probability,
excludes all weakly dominated bids, including bidding above valuation.
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for θi ∈ Θi. The set Si is the set of all pure strategies of player i. A mixed strategy is a

mapping

βi : Θi → ∆Ai

θi 7→ ai

where ∆Ai is the set of all probability distributions on A−i. Let

ui : A×Θ→ R

(a1, . . . , aI , θ) 7→ ui(a1, . . . , aI , θ)

denote the utility function for player i where

(a1, . . . , aI) ∈ A = A1 × . . .× AI

θ = (θ0, θ1, . . . , θI) ∈ Θ = Θ0 ×Θ1 × · · · ×ΘI .

In the application to first-price auctions in sections 4-7 values are private, i.e. the utility

function of player i depends an the actions of all players but only on her own type.

Possible distributions ans strategies. In order to formalize the maximin expected

utility criterion, a new player, denoted by n, is introduced, representing the adverse nature

a player i applying the maximin expected utility criterion faces. Players i and n play

a simultaneous zero-sum game where utilities are induced by the underlying game of

incomplete information. The first step of a formal description of this game is the definition

of the adverse nature’s action space. It accounts for the residual uncertainty of player i,

that is, the adverse nature’s action space is the set of all distributions and strategies player

i considers to be possible. The following definition formalizes the set of the distributions

and strategies a player considers to be possible.

Definition 1. Let ∆Θ−i be the set of all probability distributions on Θ−i and let ∆S−i

be the set of all probability distributions on S−i. The set ∆Θ−i is the smallest subset of

∆Θ−i such that player i knows that the true type distribution is an element in ∆Θ−i. The

set ∆S−i is the smallest subset of ∆S−i such that player i knows that the strategies of the

other I − 1 players are an element in ∆S−i.

The following examples illustrate this definition.
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Example 1. Consider a setting where every player i knows the other players’ type

distribution, denoted by F−i and observes the other players’ strategies, denoted by β−i.

Then for every player i the set of possible distributions and strategies is equal to

{F−i} × {β−i} .

Thus, if the other players’ type distribution and strategies are known to a player, then

the set of the distributions and strategies which this player considers to be possible, is a

singleton and so is the adverse nature’s action space. In other words, in this setting none

of the players faces uncertainty. If the given strategies form a Bayes-Nash equilibrium,

this equilibrium coincides with the unique outcome under maximin strategies.

Example 2. Consider a game of incomplete information with two players i and j where

player i does not have any knowledge about player j’s strategy but knows that player j can

have two different types θL, θH with θL < θH and θL can occur either with probability 1
3

or

1
2
. Then the set of the distributions and strategies which player i considers to be possible is

given by

∆Sj × {F1, F2}

where F1 and F2 are elements in ∆Θj = {θL, θH} defined by F1(θL) = 1
3
, F1(θH) = 1 and

F2(θL) = 1
2
, F2(θH) = 1.

This example shows that the more knowledge a player applying the maximin expected

utility criterion has about the other players’ type distributions and strategies, the smaller

is the set distributions and strategies the player considers to be possible, and so is the

adverse nature’s action space.

The following remarks clarify some aspects of Definition 1. First, as mentioned above,

throughout the paper I use the axiomatization of the knowledge operator where the

statement that a player knows something implies that it is true. Therefore, for every i

the true type distribution is indeed an element in ∆Θ−i and the strategies adopted by the

other players are an element in ∆S−i .

Second, the assumption that a player knows that the true type distribution (or the

true strategy) is an element of some set is w.l.o.g. since it covers any possible knowledge

structure. For example, if a bidder i knows only the type spaces of the other bidders

but nothing else about the type distribution, then ∆Θ−i is equal to ∆Θ−i, the set of all
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type distributions on Θ−i. In contrast, if a bidder i faces no distributional uncertainty

and knows that the distribution of the other bidders’ types is given by a function F−i,

then the set ∆Θ−i is equal to {F−i}. In many real-world settings players do not know the

exact type distribution of the other players’ but invest effort in order to obtain additional

knowledge. As a result, players know that the other players’ value distribution is an

element of some set of value distributions. For example, Carrasco, Luz, Kos, Messner,

Monteiro, and Moreira (2017) consider a first-price auction where the seller does not know

the bidders’ value distributions but knows their mean.

Third, I consider the sets

∆Θ−i and ∆S−i

and not the sets

∆Θ0 × · · · ×∆Θi−1 ×∆Θi+1 × · · · ×∆ΘI and ∆S1 × · · · ×∆Si−1 ×∆Si+1 × · · · ×∆SI ,

that is, I allow for correlated types and correlated strategies. 3

Belief-free rationalizable strategies. As argued in the introduction, in many economic

settings players may face uncertainty about the other players’ strategies. Even if an

equilibrium exists, a player may expect more strategies of the other players to be possible.

For example, if there exist multiple equilibria or the equilibrium strategy is not aligned

with preferences the other players may have, e.g. maximin or minimax regret preferences.

In order to determine the set of strategies a player can expect from rational opponents,

I assume common knowledge of rationality. The set of strategies which are compatible

with the assumption of common knowledge of rationality are belief-free rationalizable

strategies as introduced by Battigalli and Siniscalchi (2003b). They consider belief-free

rationalizability where players know only type spaces and action spaces. In addition, they

introduced the concept of ∆-rationalizability which allows for the fact that players have

additional knowledge about possible types and strategies as described in Definition 1.

3Nevertheless, Definition 1 is not as general as possible. The most general version would allow for a
correlation between strategies and distributions. Since I do not consider the possibility of correlation in
the application sections, I do not allow for this type of correlation in the general model for the sake of
notation simplicity. For a detailed discussion see Appendix F.
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In Battigalli and Siniscalchi (2003b) the following two assumptions hold:

(A1) For every player i the type space Θi, the action space Ai, the set of the other

players’ possible type distributions ∆Θ−i and the set of the other players’ possible

strategies ∆S−i are common knowledge.

(A2) It is common knowledge that every player is rational, i.e. it is common knowledge

that every player i maximizes her expected utility given her type and an assumption

about the other players’ types in ∆Θ−i and an assumption about the other players’

strategies in ∆S−i .

These two assumptions lead to the following reasoning. Every player i maximizes her

expected utility given her type, an assumption about the other players’ type distribution

in ∆Θ−i and an assumption about the other players’ strategies in ∆S−i . The strategy

which player i assumes is played by some player j 6= i has also to by compatible with

assumptions (A1) and (A2). Therefore, for every possible type of player j, the action

prescribed by the strategy assumed by player i maximizes j’s expected utility given her

type and some assumption about type distributions and strategies which are elements in

∆Θ−i and ∆S−i . Again, the strategies assumed by player j have to be compatible with

assumptions (A1) and (A2) and therefore for every type of some player k 6= j, the action

which is prescribed by player j’s assumption about player k’s strategy has to be a best

reply given some assumption about the other players’ type distribution and strategies

which are elements in ∆Θ−i and ∆S−i . This reasoning continues ad infinitum.

Given the type of a player, an action which is compatible with assumptions (A1) and

(A2) is called a belief-free rationalizable. Battigalli, Di Tillio, Grillo, and Penta (2011)

have shown that it is equivalent to define a belief-free rationalizable action as follows.

Definition 2. ggggg

(i) Let i ∈ {1, . . . , I} be some player and θi ∈ Θi be some type of player i. The

set of belief-free rationalizable actions for player i is defined as follows. Set

BFR1
i (θi) := Ai. Assume that for k ∈ N the set BFRk

i (θi) is already defined. Then

the set BFRk+1
i (θi) is defined as the set of all elements ai in Ai for which there
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exists a type distribution F−i ∈ ∆Θ−i and a strategy profile of the other players

β−i ∈ ∆S−i such that it holds 4

(i) βj(θj)(aj) > 0 ⇒ aj ∈ BFRk
j (θj) for all j 6= i

(ii) ai ∈ argmax
a′i∈Ai

Ui(θi, a
′
i, β−i, F−i)

and BFRi(θi) is given by

BFRi(θi) =
⋂
k≥1

BFRk
i (θi).

(ii) A strategy βi of a player i is belief-free rationalizable if for every θi ∈ Θi every

action ai with βi(θi)(ai) > 0 is belief-free rationalizable, i.e. an element of

BFRi(θi).

(iii) For a player i let BFR−i be the set of belief-free rationalizable strategies of the

other I − 1 players.

The intuition behind this definition is that an action for a player which is consistent

with assumptions (A1) and (A2), i.e. a belief-free rationalizable action, is an action which

survives the iterated elimination of actions which are not best replies. An action is a best

reply if it maximizes the player’s expected utility given her type, an assumption about

the other players’ type distribution in ∆Θ−i and an assumption about the other players’

strategies in ∆S−i which have not been eliminated yet.

The definition of the possible distributions and strategies and of belief-free rationalizable

strategies allows for a formal definition of the adverse nature’s action space.

Definition 3. Let ∆BFR
−i be defined by

∆SBFR−i = ∆S−i ∩BFR−i,

that is, the set of all strategies of the other I − 1 players which player i considers to be

possible and which are compatible with common knowledge of rationality. Then the action

space of the adverse nature faced by a player i is given by

∆Θ−i ×∆SBFR−i .

4If βi(θi) is a mixed strategy, then for ai ∈ Ai, βi(θi)(ai) denotes the probability with which action ai is
played.
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Simultaneous game against adverse nature. Now the formal description of the

simultaneous game against the adverse nature can be provided. The game consists

of two players: player i who applies the maximin expected utility criterion and the player

n representing the adverse nature. Given her type, player i chooses a (possibly mixed)

strategy

βi : Θi → ∆Ai

θi 7→ βi(θi).

The strategy of the adverse nature βni assigns to every possible type of player i a type

distribution and a strategy of the other players:

βni : Θi → ∆Θ−i ×∆SBFR−i

θi 7→ βn,i(θi) = (F ni,θi
−i , βni,θi−i ).

Here the superscript ni, θi indicates that the other players’ type distribution F ni,θi
−i and

strategies βni,θi−i are chosen by the adverse nature faced by player i and depend on her type

θi.

It should be stressed that the simultaneous game between player i and the adverse

nature is a game of complete information, that is, player i’s type is common knowledge

among player i and the adverse nature.

The utility of player i is determined by the type of player i, the action of player i, the

distribution of the other players’ types and the other players’ strategies chosen by nature.

Formally, the utility of player i is given by

(1) Ui

(
θi, βi(θi), β

ni,θi
−i , F ni,θi

)
=

∫
θ−i

∫
a−i

ui(a1, . . . , ai, . . . , aI , θ)
I∏
j=1

βni,θij (θj)(aj)dθ−jdF
ni,θi
−i (θ−i)dθ−i

where the function ui stems from the underlying game of incomplete information. The

utility of nature is given by

−Ui
(
θi, βi(θi), β

ni,θi
−i , F ni,θi

−i

)
.
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If in addition to player i, another player j applies the maximin expected utility criterion,

then she also faces an adverse nature represented by the player n. Then n’s strategy is

given by

(βni , βnj) : Θi ×Θj → (∆Θ−i ×∆SBFR−i )×
(
∆Θ−j ×∆SBFR−j

)
(θi, θj) 7→ (βni(θi), β

nj(θj)) =
((
F ni,θi
−i , βni,θi−i

)
,
(
F
nj ,θj
−j , β

nj ,θj
−j

))
.

Since the state of the world the adverse nature chooses for player i is not observed by

player j, for every player applying the expected maximin utility criterion the adverse

nature faces an independent minimization problem. 5

The following definition summarizes all components describing a game under uncertainty.

Definition 4. A game under uncertainty consists of players 1, . . . , I, a subset of players

{i1, . . . ik} ⊆ {1, . . . , I} applying the maximin expected utility criterion, and a player n.

For every i ∈ {1, . . . , I} a strategy is a mapping from a type space Θi to an action space

Ai:

βi : Θi → Ai.

A strategy of n is a mapping which for every player i ∈ {i1, . . . ik} and for every possible

type of player i assigns a distribution of the other players’ values in ∆Θ−i and a strategy

of the other players in ∆SBFR−i , that is, a state of the world which player i considers to be

possible:

(βni1 , . . . , βnik ) : Θi1 × . . .×Θik → (∆Θ−i1
×∆SBFR−i1 )× · · · ×

(
∆Θ−ik

×∆SBFR−ik

)
.

The utility of player i is given by

Ui

(
θi, βi(θi), β

ni,θi
−i , F ni,θi

)
which is defined as in (1) and depends on the utility function of player i in the underlying

game of incomplete information, denoted by ui:

ui : Θ× A→ R.

(a1, . . . , aI , θ) 7→ ui(a1, . . . , aI , θ)

5Equivalently, one could introduce an additional adverse nature for every player applying the minimax
expected utility criterion.
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The utility of player nature is given by

−
k∑
j=1

Ui

(
θi, βi(θi), β

ni,θi
−i , F ni,θi

)
.

Throughout the remainder of the paper it will be assumed that a game of uncertainty is

given without explicitly stating all its ingredients.

The term uncertainty can include distributional uncertainty or strategic uncertainty or

both. If only one type of uncertainty is present, I will refer to this case as pure distributional

or pure distributional uncertainty.

Now it is possible to define a maximin strategy in a game under distributional and

strategic uncertainty.

Definition 5. In a game under uncertainty for a player i a strategy

βi : Θi → ∆Ai

is a maximin strategy if there exists an equilibrium in the simultaneous game between

nature and player i such that βi is player i’s equilibrium strategy.

As described above, such a maximin strategy has two properties. First, if a player would

not choose an action according to a maximin strategy given her type, then there would

exist a state of the world (i.e. a distribution of the other players’ types and a strategy

of the other players) which the player considers to be possible under which the player’s

expected utility is lower than under the action prescribed by a maximin strategy. Second,

the distribution and the strategy chosen by nature can be interpreted as the player’s

subjective belief about the state of the world against which she maximizes her expected

utility given her type. The second property is formalized in the following definition.

Definition 6. In a game under uncertainty let βni be the adverse nature’s equilibrium

strategy projected on the i′th component. A subjective maximin belief of player i with

valuation θi is defined as

βni(θi) =
(
F ni,θi
−i , βni,θini

)
,

that is, the adverse nature’s equilibrium strategy evaluated at θi.
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Note that the subjective maximin belief of player is not necessarily unique. However,

every best reply of a player i to any subjective maximin belief induces the same expected

utility for player i.

3. Outcomes under distributional and strategic

uncertainty

So far, I have characterized the set of strategies of a player which are obtained if

this particular player applies the maximin expected utility criterion. In addition to the

derivation of maximin strategies for particular players, one can analyze what happens if

all players adopt maximin strategies. Since under strategic uncertainty players do not

observe each other’s strategies, I do not use the term equilibrium, but the term outcome.

Definition 7. In a game under uncertainty an outcome under maximin strategies is a

strategy profile (β1, . . . , βI) such that every player’s strategy is a maximin strategy.

Note that every strategy which is played in an outcome under maximin strategies

can nevertheless be seen as an equilibrium strategy since it is a strategy played in an

equilibrium in the simultaneous game against the adverse nature.

One commonly known example for outcomes under maximin strategies are Bayes-Nash

equilibria which are formally defined in the following definition.

Definition 8. In a game of incomplete information a strategy profile (β1, . . . βI) together

with a profile of type distributions (F1, . . . , FI) is a Bayes-Nash equilibrium with a common

prior if for every i ∈ {1, . . . , I} it holds that

ai ∈ argmax
a′i∈Ai

Ui(θi, a
′
i, β−i, F−i).

That is, every player maximizes her expected utility given the other players’ strategies and

the other players’ commonly known type distributions.

Example 3. Consider a game under uncertainty with a commonly known strategy profile

(β1, . . . , βI) and a commonly known profile of beliefs (F1, . . . , FI), i.e. for every i ∈ {1, . . . I}

the sets ∆Θ−i and ∆SBFR−i are given by

∆Θ−i = {F−i} and ∆SBFR−i = {β−i}.
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Then the set of Bayes-Nash equilibria with a common prior equals to the set of outcomes

under maximin strategies.

The remainder of this section collects results concerning outcomes under maximin

strategies. The first Proposition follows directly from the definition of belief-free rationalizable

strategies and of an outcome under maximin strategies.

Proposition 1. In a game under uncertainty let (β1, . . . , βI) be an outcome under maximin

strategies. Then for every i ∈ {1, . . . , I} it holds that βi is a belief-free rationalizable strategy

for player i.

Proof. Every player maximizes her expected utility given a distribution of the other

players’ types and a belief-free rationalizable strategy of the other players chosen by nature.

Formally, it is to show that for every player i and for every type θi an action ai which is

played with positive probability is an element of BFRk
i (θi) for every k ≥ 1. Let (β1, . . . , βI)

be the outcome under maximin strategies. The proof works by induction. It is true that

for every i ∈ {1, . . . , I} any action ai ∈ Ai is an element in BFR1
i (θi) since it holds by

definition that BFR1
i (θi) = Ai. Assume it is already shown for every i ∈ {1, . . . , I} that

ai with βi(ai) > 0 is an element of BFRk
i (θi). Since n can choose only among belief-free

rationalizable strategies, it holds for every j 6= i that F ni,θi
−i and βni,θij fulfill the following

two properties:

(i) βni,θij (θj)(aj) > 0⇒ aj ∈ BFRj
k(θj) for all j 6= i

(ii) βi(θi)(ai) > 0⇒ ai ∈ argmax
a′i∈Ai

Ui

(
θi, a

′
i, β

ni,θi
−i , F ni,θi

−i

)
.

Hence, it holds that ai is an element in BFRk+1
i (θi) and it follows by induction that ai is

an element in BFRk
i (θi) for every k ≥ 1. �

The following conclusions can be derived from this proposition. First, this proposition

shows that the maximin expected utility criterion is consistent with common knowledge

of rationality. That is, every action resulting from the application of the maximin utility

criterion is belief-free rationalizable. Second, it provides a sufficient condition for a strategy

to be belief-free rationalizable. Third, the proof also shows that an action which is a best

reply to a belief-free rationalizable strategy is again belief-free rationalizable. The last

statement is formalized in the following corollary.
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Corollary 1. In a game under uncertainty let i ∈ {1, . . . , I} be a player with valuation θi

and for j ∈ {1, . . . , I}\{i} let βj be a belief-free rationalizable strategy for player j. Let

ai ∈ Ai be a best reply to β−i and F−i ∈ ∆Θ−i, i.e. it holds that

ai ∈ argmax
a′i∈Ai

Ui(θi, a
′
i, β−i, F−i),

then ai ∈ BFRi(θi), that is, ai is a belief-free rationalizable action for player i with

valuation θi..

I will now provide another simple condition which is sufficient for an action to be

belief-free rationalizable and therefore facilitates to derive maximin strategies. In order to

do so, the following definition is needed.

Definition 9. For a game under uncertainty a profile of strategies

(β1, . . . , βn) ∈ ∆S1 × · · · ×∆I together with a profile of subjective beliefs about the other

players’ type distributions (F 1
−1, . . . , F

I
−I) ∈ ∆Θ−1 × · · · ×∆Θ−I is called subjective-belief

equilibrium with given strategies if every player acts optimally given her belief and the

other players’ strategies, i.e. for every i ∈ {1, . . . , n} it holds that

βi(θi)(ai) > 0 ⇒ ai ∈ argmax
a′i∈Ai

Ui(θi, a
′
i, β−i, F

i
−i).

That is, in a subjective-belief equilibrium players observe each other’s strategies but do

not know each other’s type distributions. Every player forms a subjective belief about

the other players’ type distributions and acts optimally given this subjective belief and

the other players’ strategies which are observable. An example for a subjective-belief

equilibrium is a Bayes-Nash equilibrium with a common prior.

Example 4. Let the strategy profile (β1, . . . βI) together with the profile of beliefs

(F−1, . . . , F−I) be a Bayes-Nash equilibrium with a common prior. Then (β1, . . . βI) together

with (F−1, . . . , F−I) constitutes a subjective-belief equilibrium.

The following proposition states that a strategy which is played in a subjective-belief

equilibrium is belief-free rationalizable.

Proposition 2. In a game under uncertainty an action ai ∈ Ai is belief-free rationalizable

for a player i with valuation θi if there exists a subjective-belief equilibrium with strategies

(β1, . . . , βn) such that βi(θi)(ai) > 0.
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Proof. I show by induction that for every j ∈ {1, . . . , I}, for every k ≥ 1 and for all θj ∈ Θj

it holds that

βj(θj)(aj) > 0⇒ aj ∈ BFRk
j (θj).

Then it follows that aj ∈ BFRj(θj) and one can conclude ai ∈ BFRi(θi) because

βi(θi)(ai) > 0. It holds for all j ∈ {1, . . . , I} that

βj(θj)(aj) > 0⇒ aj ∈ BFR1
j (θj) for all θj ∈ Θj

since BFR1
j (θj) = Aj by definition. Assume it is already shown for k ∈ N that for all

j ∈ {1, . . . , I} it holds that

βj(θj)(ai) > 0⇒ aj ∈ BFRk
θj

for all θj ∈ Θj.

Let j be some player with type θj and subjective belief F j
−j = (F j

1 , . . . , F
j
j−1, F

j
j+1, . . . , F

j
I ).

Then F j
−j and β−j fulfill the properties

(i) βl(θl)(al) > 0⇒ al ∈ BFRl
k(θl) for all l 6= j

(ii) βj(θj)(aj) > 0⇒ aj ∈ argmax
a′j∈Aj

Uj(θj, a
′
j, β−j, F

j
−j).

The first property follows from the induction hypothesis and the second property follows

form the definition of a subjective-belief equilibrium with given strategies. By definition

of a belief-free rationalizable action, it follows that βj(θj) ∈ BFRk+1
j . Hence, it is shown

that βj(θj)(aj) > 0⇒ aj ∈ BFRj(θj). �

As will be seen in the applications, for the derivation of maximin strategies it is

mostly sufficient to consider the class of belief-free rationalizable strategies which occur in

subjective-belief equilibria, in particular Bayes-Nash equilibria. Therefore, the following

corollary will be useful in the proofs concerning the applications. It states that every

strategy played in a Nash equilibrium is belief-free rationalizable and that best replies to

Bayes-Nash equilibria are belief-free rationalizable,

Corollary 2. Let (β1, . . . , βI) together with the common prior (F1, . . . , FI) constitute a

Bayes-Nash equilibrium of a game of incomplete information. Then the following holds

true:

(i) For every i ∈ {1, . . . , I} the strategy βi is belief-free rationalizable.
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(ii) Let i ∈ {1, . . . I} be a player with valuation θi and let ai ∈ Ai be a best reply to β−i

and some distribution of the other players’ types F ′−i ∈ ∆Θ−i, i.e. it holds that

ai ∈ argmax
a′i∈Ai

Ui(θi, a
′
i, β−i, F

′
−i),

then ai ∈ BFRi(θi), that is, ai is a belief-free rationalizable action for player i with

valuation θi.

Proof. As stated in Example 4, every Bayes-Nash equilibrium is a subjective-belief

equilibrium. It follows from Proposition 2 that every strategy played in a Bayes-Nash

equilibrium is belief-free rationalizable. Hence, every strategy played in a Bayes-Nash

equilibrium is belief-free rationalizable which proves the first part. Corollary 1 states that

best replies to belief-free rationalizable strategies are belief-free rationalizable. Therefore,

a best reply to a strategy which is played in a Bayes-Nash equilibrium is belief-free

rationalizable which shows the second part. �

4. Applications To First-Price Auctions: Setup

The following sections investigate maximin strategies and outcomes under maximin

strategies in first-price auctions under distributional and strategic uncertainty. This section

specifies the general model in the setting of first-price auctions and provides an overview

over the results in subsection 4.2.

4.1. Model.

Underlying game of incomplete information. As in the general model, the model

description starts with the specification of the underlying game of incomplete information.

There are I risk-neutral bidders competing in a first-price sealed-bid auction for one

indivisible good. Before the auction starts, each bidder i privately observes her valuation

(type) θi ∈ Θ = {0 = θ1, θ2, . . . , θm−1, 1 = θm} with i ∈ {1, ..., I}. A (mixed) strategy βi of

a bidder i maps the valuation (type) of a bidder to a distribution of bids:

βi : Θ→ ∆B

θi 7→ βi(θi)
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where B is a finite (arbitrarily fine) grid of bids on [0, 1] with Θ ⊆ B and ∆B is the set

of all probability distributions over B. 6 For every 0 < b < 1 there exists a predecessor in

B denoted by

b− = max
b′∈B

b′ < b

and a successor in B denoted by

b+ = min
b′∈B

b′ > b.

I assume that the bid grid is sufficiently fine, that is, if a bidder i believes that some

bidder j with valuation θk ∈ Θ bids b with strictly positive probability and there is strictly

positive probability weight on type θk of bidder j, then b+ induces a higher expected

utility for bidder i than bid b. 7

A pure strategy for bidder i with valuation θi is a probability distribution which puts

probability weight 1 on one bid. In the auction the bidders submit bids, the bidder with the

highest bid wins the object and pays her bid. In addition, it holds an efficient tie-breaking

rule. 8 Thus, the utility of bidder i with valuation θi and bid bi given that the other bids

are b−i is denoted by

ui(θi, bi, b−i) =



θi − bi if bi > max
j 6=i

bj

θi − bi if bi = max
j 6=i

bi and θi > max
j 6=i
{θj | bj = bi}

1
k
(θi − bi) if bi = max

j 6=i
bj and θi = θj1 = · · · = θjk−1

= max
j 6=i

θj

0 if bi < max
j 6=i

bj

where θj denotes the valuation of bidder j with bid bj for j ∈ {1, ..., n} and k :=

#{max{θj | βj(θj) = max
l 6=j

βl(θl)}}.

6A finite grid is used for the set of all possible bids instead of the interval [0, 1] because of the following
reason. Consider two bidders 1 and 2 with the same valuation θ. If bidder 1 bids some amount b < θ, one
has to identify the smallest bid which is strictly higher than b since this would be the unique best reply of
bidder 2. This allows a more formal analysis than using expressions like ”bidding an arbitrarily small
amount more than b”. The grid is assumed to be finite in order to ensure that any subset of the bid grid
is compact. Since the grid can be arbitrarily fine, I assume for simplicity that Θ ⊆ B.
7One can always find a sufficiently fine bid grid. Assume it is required that b+ < b+ ε for an ε > 0. Then
there exists an n ∈ N such that 1

n < n. A suitable bid grid is given by { kn : k ∈ {1, . . . , n}}.
8The core statements in the results do not depend on the choice of the tie-breaking rule.
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It is assumed that all components of the underlying game of incomplete information are

common knowledge among all bidders.

Possible distributions and strategies. As in the general model, the action space of

player n depends on the possible distributions and strategies the players applying the

maximin expected utility criterion consider to be possible. For the possible distributions I

will consider the following two assumptions:

(D1) The bidders’ value distributions are common knowledge, i.e. for every i ∈ {1, . . . , I}

it holds that ∆Θ−i is a singleton.

(D2) It is common knowledge that every bidder’s value distribution has range [0, 1] and

an exogenously given mean µ. Formally, let

F n−1
µ =

{
F1 × · · · × Fn−1 ∈ ∆n−1(Θ) |

m∑
i=1

θiPr(θ
i) = µ

}
,

the set of all distributions of independently drawn values for n− 1 bidders with

mean µ. Then it holds for every i ∈ {1, . . . , I} that

∆Θ−i = F n−1
µ .

The first assumption is a standard assumption in auction literature, the second assumption

evolves from recent auction literature. Since Wilson (1987) the assumption that in

an auction bidders know each other’s value distribution has been dropped in recent

economic literature. However, it is possible that bidders exert effort in order to obtain

information about the other bidders’ values and in the end learn the range and the mean

of the other bidders’ value distribution, as assumed for example in Carrasco, Luz, Kos,

Messner, Monteiro, and Moreira (2017). Moreover, without any restriction of the possible

distributions, the adverse nature would always choose the distribution which puts all the

probability weight on the highest possible type 1. Hence, the maximin expected utility

criterion would not be a useful decision criterion since every bidder with a type lower than

1 would never expect to win the auction.

I will consider two possible sets of possible strategies which are defined by the following

two assumptions:
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(S1) The bidders’ strategies are common knowledge, i.e. for every i ∈ {1, . . . , I} it holds

that ∆S−i is a singleton.

(S2) It is common knowledge that all bidders are rational, that is, they play belief-free

rationalizable strategies. Formally, it holds for every i ∈ {1, . . . , I} that

∆SBFR−i = BFR−i.

Again, the first assumption is a standard assumption while the second assumption

reflects the case where bidders have no knowledge about each other’s strategies besides

the fact that they are rational.

The rest of this section analyzes the outcomes in a first-price auction under the

different combination of the assumptions (D1), (D2), (S1) and (S2). The outcomes

under assumptions (D1) and (S1) coincide with the set of Bayes-Nash equilibria and

therefore do not require any further analysis. Before the formal analysis I provide a rather

informal preview of the results.

4.2. Preview of results.

Pure distributional uncertainty. Under pure distributional uncertainty there does not

exist an outcome under maximin strategies. That is, an equilibrium in the game with

I bidders and an adverse nature where all bidders apply the maximin expected utility

criterion, does not exist.

Pure strategic uncertainty.

(i) Under strategic uncertainty with common knowledge of rationality and common

knowledge of valuations, the bidder with the highest valuation bids the second-highest

valuation and every other bidder is indifferent between any bid between zero and

her valuation. If at least two bidders have the highest valuation, then every bidder

is indifferent between zero and her valuation.

(ii) Under strategic uncertainty with common knowledge of rationality and common

knowledge of a symmetric value distribution, an outcome under maximin strategies

always exists. The bidders’ strategies are equal in every outcome and every outcome

is efficient.
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For every type there exists a unique highest belief-free rationalizable bid. For

every bidder and every type the adverse nature chooses as the strategy of the other

bidders that every bidder places the highest belief-free rationalizable bid given her

type. As a consequence, a bidder never expects to win against a bidder with an

equal or higher type and therefore bids the highest belief-free rationalizable bid of

a lower type.

Distributional and strategic uncertainty. Under strategic uncertainty with common

knowledge of rationality and distributional uncertainty with common knowledge of an

exogenously given mean of the value distributions, an outcome under maximin strategies

always exists. If there exists types θk, θk
′
, θk

′′ ∈ Θ such that 0 < θk ≤ µ < θk
′
< θk

′′
, then

every outcome is inefficient.

For every type there exists a unique highest belief-free rationalizable bid. For every

bidder and every type the adverse nature chooses as the strategy of the other bidders that

every bidder places the highest belief-free rationalizable bid given her type.

Let θµ be the lowest valuation which is higher than the mean. The highest belief-free

rationalizable bid of a bidder with a valuation lower than θµ is her valuation. The subjective

maximin belief of a bidder with valuation lower than θµ about the other bidders’ value

distributions is that the probability weight is distributed between the valuations θµ−1 and

θµ. As a consequence a bidder with a valuation lower than µ expects a utility of zero and

is indifferent between any bid between zero and her valuation.

Every bidder with a valuation θk such that θk ≥ θµ never expects to win against a bidder

with the same valuation. Hence, the maximin belief of a bidder about the other bidders’

value distribution maximizes the probability weight on θk and makes the bidder indifferent

between any highest belief-free rationalizable bid of lower types. As a consequence, the

bidder mixes among all highest belief-free rationalizable bids of lower types. Therefore, if

types θk, θk
′
, θk

′′ ∈ Θ such that 0 < θk ≤ µ < θk
′
< θk

′′
exist, then with positive probability

type θk
′′

bids zero and type θk
′

bids the highest belief-free rationalizable bid of type θk

which is θk. Conclusively, the outcome is not efficient.

4.3. Notation and definitions. For the formal analysis it is useful to have an overview

over the notation and definitions which will be used in the remainder of this section.
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• For θk ∈ Θ let b
θk

be the highest belief-free rationalizable bid for a bidder with

valuation θk.

• For θk, θl ∈ Θ let xθ
k

θl
denote the probability that a bidder with type θl occurs in in

the subjective maximin belief of a bidder with valuation θk.

• Let Gθj

i denote the bid distribution of bidder i with valuation θj.

Definition 10. An auction mechanism is a double (x, p) of an allocation function x and

a payment function p. The allocation function

x : b→ (x1, . . . , xn) with xi ∈ [0, 1],
∑

xi ≤ 1

determines for each participant the probability of receiving the item and the payment

function

p : b→ (p1, . . . , pn) with pi ∈ R+

determines each participant’s payment.

Definition 11. A bidder i with valuation θi overbids a bidder j with valuation θj if for

every b, b′ such that βi(θi)(b) > 0 and βj(θj)(b
′) > 0 it holds that b ≥ b′ if θi > θj and

b > b′ if θi ≤ θj.

Note that due to the efficient tie-breaking rule, a bidder who overbids every other bidder

wins in any auction mechanism where the highest bid wins.

In order to evaluate outcomes in terms of social surplus and revenue, I introduce the

following definitions.

Definition 12. Let (β1, . . . , βI) be an outcome under maximin strategies of an auction

mechanism. Let (b1, . . . , bI) be a vector of bids which is played with positive probability

in this outcome, that is, for all bj ∈ {b1, . . . , bI} there exists a valuation θj ∈ Θ such that

βj(θj)(bj) > 0. The outcome (β1, . . . , βI) is efficient if for all such bid vectors (b1, . . . , bI)

which are played with positive probability in this outcome it holds that

xi(b1, . . . , bI) > 0 ⇔ θi = max
j 6=i

θj.

That is, the good is allocated with probability one to a group of bidders who have the highest

valuation.



STRATEGIES UNDER DISTRIBUTIONAL AND STRATEGIC UNCERTAINTY 29

Definition 13. Let (x1, p1) and (x2, p2) be two auction mechanisms. Let bidders’ valuations

be distributed on an interval [0, v] according to distribution functions F1, . . . , FI . The

auction mechanism (x1, p1) dominates the auction mechanism (x2, p2) in terms of expected

revenue if for every Bayes-Nash equilibrium (β1
1 , . . . , β

1
I ) of (x1, p1) and every Bayes-Nash

equilibrium (β2
1 , . . . , β

2
I ) of (x2, p2) it holds that

I∑
i=1

∫
θ∈[0,v]I

∫
b=(b1,...,bI)

p1
i (b1, . . . , bI)

I∏
j=1

β1
j (θj)(bj)db dF1(θ1) · · · dFI(θI)dθ

>
I∑
i=1

∫
θ∈[0,v]I

∫
b=(b1,...,bI)

p2
i (b1, . . . , bI)

I∏
j=1

β2
j (θj)(bj)db dF1(θ1) · · · dFI(θI)dθ

i.e. the expected revenue from auction (x1, p1) exceeds the expected revenue from auction

(x2, p2).

5. Outcomes under pure distributional uncertainty

I begin with the setting under pure distributional uncertainty, i.e. assumptions (D2)

and (S1) hold. In this case an outcome under maximin strategies, i.e. an equilibrium

in the game with I bidders and an adverse nature where all bidders apply the maximin

expected utility criterion, does not exist if there are at least three different valuations with

at least one valuation above the mean.

Proposition 3. Consider a first-price auction under uncertainty where assumptions (D2)

and (S1) hold. Moreover, it holds that m ≥ 3 and there exists at least one valuation θ > µ.

Then there does not exist an outcome under maximin strategies.

Proof. The formal proof is relegated to the appendix. �

If there are only two valuations, then the constraints, that probabilities have to add up

to one and the mean has to be preserved, already determine the value distribution. Hence,

the adverse nature has only one possible action and an equilibrium exists. To give an

intuition why an equilibrium does not exist if there are at least three different valuations

with at least one valuation θ > µ, consider the case with two bidders 1 and 2 and three

possible valuations 0, θ and 1 with mean µ > θ.



30 HELENE MASS ZEW MANNHEIM

θ µ0 1

In this case an outcome does not exist independent of the particular choice of θ and

µ. Since the existence of inefficient or asymmetric equilibria can be ruled out similarly

to the existence of symmetric efficient equilibria, assume that if an equilibrium exists, it

has to be symmetric and efficient. Then for every possible type θk ∈ {0, θ, 1} there exists

a bidding interval [bθk , bθk ]. Since a bidder with valuation 0 always bids zero, it holds

that b0 = b0 = 0. The value distribution which minimizes the expected utility of a bidder

with valuation θ puts zero probability weight on the 0-type. Then the unique equilibrium

equilibrium strategy for the θ-types of both bidders is to bid θ. As a consequence, a bidder

with valuation θ earns an expected utility of zero and therefore indeed the distribution

which puts zero probability weight on the 0-type, is player n’s strategy for the θ-types.

Hence, it holds that bθ = bθ = θ. Since gaps between the bidding intervals are not possible,

it holds for the lower endpoint of the 1-type’s bidding interval that b1 = bθ = θ.

θ = β(θ) = b1
µ b1

0 1

Given the strategy of the 1-type, the value distribution which the adverse nature chooses

for the 1-type minimizes the sum of the probability weights of the 0- and the θ-type. Since

the mean µ has to be preserved, this results in a distribution which puts zero probability

weight on the θ-type. But then both 1-types have an incentive to deviate to bidding zero.

Hence, a symmetric efficient equilibrium does not exist. 9

6. Outcomes under pure strategic uncertainty

Now I consider the setting under pure strategic uncertainty, i.e. assumptions (D1) and

(S2) hold. I start with the special case where the value distributions put all probability

weight on one type, or in other words, the bidders now each other’s valuations.

9From the non-existence of an equilibrium in the game against the adverse nature it follows that equilibrium
existence criteria as in Reny (1999) do not apply. It may help to gain some intuition to understand why
the game is not better-reply secure. The reason is that there exists a discontinuity in the utility function
of the adverse nature. Consider the case where both θ-types believe that there is no θ-type and bid zero.
If one θ-type bids an arbitrarily small positive amount, she wins against the zero- and the θ-type which
reduces the adverse nature’s utility by as strictly positive amount.
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6.1. Common knowledge of valuations and strategic uncertainty.

Proposition 4. Consider a first-price auction under uncertainty where every bidder’s

valuation is common knowledge and (S2) holds. Then the following holds true for an

outcome under maximin strategies:

(i) If θk > max
j 6=i

θj, i.e. there exists a unique bidder k with the highest valuation, then

bidder k bids θk′ = max
θj∈Θ

θj < θk, i.e. the bidder with the highest valuation bids

the second-highest valuation and every bidder i 6= k is indifferent between any bid

between zero and her valuation.

(ii) If it holds that θk = θl = max
j∈{1,...,I}

θj, i.e. there exist at least two bidders k and l

with the highest valuation, then every bidder is indifferent between any bid between

zero and her valuation.

Proof. The formal proof is relegated to the appendix. �

The intuition behind part (i) is that one can show that the second-highest valuation θk′

is the highest belief-free rationalizable bid for bidder k with the highest valuation θk. If

the adverse nature chooses for all other bidders the subjective maximin belief that bidder

k bids θk′ , this induces a payoff of zero for any other bidder. Hence, any strategy of the

adverse nature has to induce an expected utility of at most zero for all bidders besides

k. That is, the subjective belief of a bidder i 6= k with valuation θi is that at least one

bidder bids an amount which is equal or greater than θi. As a consequence, all bidders are

indifferent between zero and their valuation. The adverse nature chooses the belief for

bidder k such that at least one bidder bids the second-highest valuation θk′ . Hence, it is a

best reply for bidder k to bid θk′ . Similar arguments apply to part (ii).

Note that while the unique Nash equilibrium in this setting is belief-free rationalizable,

there are much more belief-free rationalizable actions than the Nash equilibrium. In

particular, in the case of two bidders who have the same valuation v all actions in the

interval [0, v] are belief-free rationalizable. This leaves room for more outcomes than the

unique Nash-equilibrium which is weakly dominated.

6.2. Known distribution and strategic uncertainty. Now I consider the case where

not the bidders’ valuations but the distribution of the valuations is common knowledge.

In this case for every type there exists a unique highest belief-free rationalizable bid. For
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every bidder and every type it is a weakly dominant strategy for the adverse nature to

choose a strategy of the other bidders such that every other bidder will bid the highest

belief-free rationalizable bid given her type. As a consequence, it is never a best reply for

a bidder to overbid bidders with the same type. Hence, every bidder overbids only lower

types and it depends on the commonly known value distribution which types are overbid.

Since the strategy chosen by the adverse nature is the same for every bidder and every

type, this results in an efficient outcome. This is illustrated by the following example.

Example 5. Consider a first-price auction under strategic uncertainty (i.e. assumption

(S2) holds) with two bidders 1 and 2 and three possible valuations 0, θ and 1 which are

identically and independently distributed according to a commonly known distribution

function F ∈ ∆{0, θ, 1}. For every type θk ∈ {0, θ, 1} there exists a highest belief-free

rationalizable bid b
θk

. For every bidder and every type the adverse nature chooses a strategy

of the other bidder such that every other bidder bids the highest belief-free rationalizable

bid. That is, every bidder with every type has the subjective belief that the 0-type bids zero,

the θ-type bids b
θ

and the 1-type bids b
1
.

b
θ θ0 b

1 1

Hence, bidder 1 with type θ never expects to win against bidder 2 with type θ (and vice

versa) and therefore bids 0. Bidder 1 with type 1 never expects to win against bidder 2

with type 1 and has to decide between bidding 0 and bidding b
θ

(and vice versa). In any

case the outcome is efficient.

The insights from this example are formalized in the following proposition.

Proposition 5. In a first-price auction under uncertainty such that (S2) holds and where

all bidders’ valuations are distributed independently and identically according to a commonly

known distribution function, there exists an outcome under maximin strategies. Every

outcome is efficient.

Proof. The formal proof is relegated to the appendix.

�
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I will show the existence of an efficient outcome by construction for which I proceed

in the steps listed below. Then I will show that every strategy of the adverse nature in

an outcome under maximin strategies induces the same bidding strategies and therefore

every outcome has to be efficient.

(I) Show that for every type θk ∈ Θ there exists a unique highest belief-free rationalizable

bid b
θk

.

(II) Show that for every type zero is a belief-free rationalizable bid.

(III) Show that for every type θk ∈ Θ every bid in the interval [0, b
θk

] is belief-free

rationalizable.

(IV) Calculate for every type θk ∈ Θ the highest belief-free rationalizable bid b
θk

.

The first step follows from the fact that B is compact and well-ordered with respect

to ≤. For a proof sketch of step (II) consider a proof by induction with respect to the

valuations in Θ. Assume it has been shown that for every bidder with a type θj such

that j < k + 1 bidding zero is a belief-free rationalizable action. Assume that a bidder

with valuation θk+1 believes that all lower types bid zero. Due to step (I), for every type

there exists a highest belief-free rationalizable bid. Assume further, that the bidder with

valuation θk+1 believes that all higher types bid their highest belief-free rationalizable bid,

then it is a best reply of this bidder to bid zero. As stated in Corollary 1, a best reply to

a belief-free rationalizable strategy profile is belief-free rationalizable and therefore zero is

a belief-free rationalizable action for a bidder with valuation θk+1.

For an intuition of step (III) consider the bid 0+. Since bidding zero is a belief-free

rationalizable action for every bidder and every type, it is straight-forward that for a

sufficiently fine bid grid bidding 0+ is a belief-free rationalizable action for every bidder

and every type besides zero. Because if a bidder believes that all bidders bid zero, than

she could win the auction with probability 1 by bidding 0+. The same holds for (0+)
+

and

so on. This process reaches some bid b such that for type θ2 it is more profitable to bid

zero and win against the zero-type than to bid b+ even if all other bidders with a type

higher than zero bid b. Then b is the highest belief-free rationalizable bid for type θ2 and

all bids in the interval [0, b] are belief-free rationalizable for a bidder with valuation θ2.

The analogue reasoning applies to every higher type. Since the bids in B are well-ordered
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with respect to ≤, one can show the result by double induction with respect to the types

and the bids.

Given step (III), one can calculate the highest belief-free rationalizable bid for every

type. The highest belief-free rationalizable bid b
θk

for some bidder i with valuation θk is

induced by the belief about the other bidders’ strategies such that

(i) All bidders with a lower type bid their highest belief-free rationalizable bid.

(ii) All bidders with an equal or higher type bid
(
b
θk
)−

.

This is, b
θk

is a best reply to the belief which maximizes the expected utility of bidding

b
θk

. The strategies in (i) are belief-free rationalizable by definition and it follows from step

(III) that the strategies described in (ii) are belief-free rationalizable. Hence, the highest

belief-free rationalizable bid b
θk

for type θk makes this type indifferent between winning

with probability 1 by bidding b
θk

and the most profitable overbidding of a lower type given

that all lower types bid their highest belief-free rationalizable bid. The following example

continues with Example 5 and illustrates the steps above.

Example 6. Consider again the case with two bidders 1 and 2 and three possible valuations

0,θ and 1 which are identically and independently distributed according to a commonly

known distribution function F ∈ ∆{0, θ, 1}.

b
θ θ0 b

1 1

The highest belief-free rationalizable bid for type zero is zero. The highest belief-free

rationalizable bid for type θ is given by the bid b
θ

which makes her indifferent between

winning with probability 1 by bidding b
θ

and just overbidding type zero:

θ − bθ = F (0) (θ − 0)

⇔ b
θ

= θ(1− F (0)) + F (0).

The highest belief-free rationalizable bid for type 1 is given by the bid b
1

which makes

her indifferent between winning with probability 1 by bidding b
1

and the most profitable

overbidding of a lower type. That is, type 1 has to be indifferent between bidding b
1

and
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the maximum utility of bidding either 0 = b
0

or b
θ
:

1− b1
= max

{
F (0) (1− 0) , F (θ)

(
1− bθ

)}
.

For a numerical example consider the parameters θ = 1
2
, F (0) = 1

3
, F (θ) = 2

3
and F (1) = 1.

Then it holds that

b
θ

=
1

2

(
1− 1

3

)
=

1

3

and

max
{
F (0), F (θ)

(
1− bθ

)}
= max

{
1

3
,
2

3

(
1− 1

3

)}
=

4

9

from which follows that

b
1

= 1− 4

9
=

5

9

which is illustrated below:

b
θ

= 1
3

θ0 b
1

= 5
9

1

After computing the highest belief-free rationalizable bids one can compute bidding strategies

in an outcome under maximin strategies. Type zero bid zero. Since type θ of bidder 1

believes that type θ of bidder 2 bids b
θ
, type θ of bidder 1 bids 0 (and analogously for type

θ of bidder 2). Type 1 of bidder 1 does not expect to win against type 1 of bidder 2 and

therefore has to decide whether to overbid type 0 or type θ of bidder 2. In any case the

outcome is efficient. 10 Bidding zero gives an expected utility of

F (0) =
1

3

and bidding b
θ

= 1
3

gives an expected utility of

F (θ)(1− bθ) =
2

3

(
1− 1

3

)
=

4

9
.

Hence, type 1 of bidder 1 will bid b
θ

(and analogously for type θ of bidder 2).

10Due to the efficient tie-breaking rule the outcome is efficient even if different types submit equal bids.
However, efficiency does not depend on thy choice of the tie-breaking rule. If the tie-breaking rule would
be to allocate the good randomly among the bidders with the highest bid, then type 1 would just decide

between the bide 0+ and
(
b
θ
)+

.
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Applying the same procedure, one can compute the highest belief-free rationalizable bids

for every number of types and every choice of parameters and then compute the bids under

maximin strategies. The following two graphs show the highest belief-free rationalizable

bids for m equidistant types with a uniform distribution for m = 10 and m = 20.

Figure 1. Highest belief-free rationalizable bids for m = 10

Figure 2. Highest belief-free rationalizable bids for m = 20

The following two graphs show the bids in an outcome under maximin strategies for m

equidistant types with a uniform distribution for m = 10 and m = 20.

Figure 3. Bids in an outcome under maximin strategies for m = 10
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Figure 4. Bids in an outcome under maximin strategies for m = 20

Figures 3 and 4 show that the outcome under maximin strategies is efficient since the

bidder with the highest valuation wins the auction with probability 1. However, it is

possible that different types submit equal bids. Whenever a bidder is not indifferent

between two bids, her bidding strategy is unique which is the case in figures 3 and 4.

The strategy of the adverse nature is not necessarily unique. Assume that it is a best

reply of a bidder i with valuation θk ∈ Θ to bid b
θl

for l < k. Then in the belief of bidder

i with valuation θk the adverse nature could decrease the bid of some bidder with type

θl
′

for l 6= l′ without changing the best reply of bidder i and hence without changing her

expected utility. Since all possible strategies of the adverse nature induce the same bidding

strategies, the non-uniqueness of the adverse nature’s strategy does not affect efficiency.

The recursive computation of highest belief-free rationalizable bids for all types as

described in step (IV) and the example, is formalized in the following proposition.

Proposition 6. In a first-price auction under uncertainty such that (S2) holds and where

all bidders’ valuations are distributed independently and identically according to a commonly

known distribution function the highest belief-free rationalizable bids are obtained as follows.

The highest belief-free rationalizable bid for type zero is zero. Assume that for every type

θj with j < k the highest belief-free rationalizable bid b
θj

has been already computed. Then

the highest belief-free rationalizable bid is determined by the equality

(2) θk − bθ
k

= max
θj<θk

F I−1
(
θj
) (
θk − bθ

j)
.

Proof. The formal proof is relegated to the appendix. �
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Proposition 6 states that the highest belief-free rationalizable bid of a bidder with

valuation θk makes this bidder indifferent between winning the auction with probability 1

by bidding b
θk

and the most profitable overbidding of some lower type given that all lower

types bid their highest belief-free rationalizable bid.

The following proposition provides the strategies of the adverse nature and the bidders.

Proposition 7. In a first-price auction under uncertainty such that (S2) holds and where

all bidders’ valuations are distributed independently and identically according to a commonly

known distribution function the following holds true:

(i) For every bidder and every type the adverse nature chooses as the other bidders’

strategies that every bidder places the highest belief-free rationalizable bid given her

type.

(ii) A bidder with valuation θk bids

max
θj<θk

F I−1
(
θj
) (
θk − bθ

j)
.

This proposition states that every bidder chooses the most profitable overbidding of a

lower type. Moreover, it shows that a bidder with a given type does not need to know

higher types but only lower types. This stems from the fact that a bidder with a given

type does not expect to win against bidders with the same or a higher type.

Similarly as in the case where bidders’ valuations are known, the concept of belief-free

rationalizable actions allows for more actions than the Bayes-Nash equilibrium as formalized

in the following proposition.

Proposition 8. Consider a first-price auction under uncertainty such that (S2) holds

and where all bidders’ valuations are distributed independently and identically according to

a commonly known distribution function. Let b
θk

∗ be the highest bid which is played with

positive probability by a bidder with type θk in a Bayes-Nash equilibrium. Then for all

k 6= 1 it holds that b
θk

∗ < b
θk

.

Proof. The formal proof is relegated to the appendix. �

Proposition 6 provides the explanation for this result. Since the Bayes-Nash equilibrium

is efficient, the highest bid in the Bayes-Nash equilibrium is induced if a bidder overbids



STRATEGIES UNDER DISTRIBUTIONAL AND STRATEGIC UNCERTAINTY 39

all bidders with an equal or lower type. In contrast, the highest belief-free rationalizable

bid is induced if a bidder overbids all other bidders.

7. Distributional and strategic uncertainty

Finally, I analyze outcomes under distributional and strategic uncertainty. That is,

it is common knowledge that every bidder’s value distribution has range [0, 1] and

an exogenously given mean µ and it is common knowledge that bidders are rational

(assumptions (D2) and (S2)). As in the case of pure distributional uncertainty, the

subjective maximin belief of every bidder is that all other bidders place the highest

belief-free rationalizable bid given their valuation. In addition to the subjective maximin

belief about the other bidders’ strategies, every bidder forms a subjective maximin belief

about the other bidders’ value distributions. The derivation of subjective maximin beliefs

and bidding strategies is illustrated in the following example.

Example 7. Consider a first-price auction under distributional and strategic uncertainty

(i.e. assumptions (D2) and (S2) hold) with two bidders 1 and 2 and three possible valuations

0, θ and 1 which are identically and independently distributed with a commonly known

mean µ. Assume that it holds θ < µ. The first step is to calculate the highest belief-free

rationalizable bid for every valuation.

The highest belief-free rationalizable bid for a bidder with valuation zero is zero. Assume

that bidder 1 and bidder 2 have the subjective belief that the other bidder’s value distribution

distributes the probability weight between types θ and 1, i.e. there is zero probability weight

on type 0. Given that bidder 1 and bidder 2 have this subjective belief, the following

strategies constitute a Bayes-Nash equilibrium:

(i) Type θ of bidder 1 and bidder 2 bids θ

(ii) Type 1 of bidder 1 and bidder 2 plays a mixed strategy on the interval [θ, b1] for

θ < b1 < 1.

Thus, it is part of a subjective-belief equilibrium that a bidder with valuation θ bids θ. It

follows from Proposition 2 that bidding θ is a belief-free rationalizable action for a bidder
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with valuation θ. Since bidding above valuation cannot be belief-free rationalizable, the

highest belief-free rationalizable action for a bidder with valuation θ is to bid θ. 11

b
θ

= θ
µ0 b

1 1

Let b
1

denote the highest belief-free rationalizable bid of a bidder with valuation 1. In

order to compute b
1
, consider the subjective belief of bidder with valuation 1 that the

strategy of the other bidder is such that

(iii) Type zero bids zero,

(iv) Type θ bids θ,

(vi) Type 1 bids
(
b

1
)−

.

It has been already shown that (iv) is belief-free rationalizable and similarly as before,

one can show that (vi) is belief-free rationalizable. It follows from Corollary 1 that a best

reply to the strategy described in (iii)− (vi) is belief-free rationalizable. Thus, this is the

belief-free rationalizable strategy which maximizes the expected utility of bidding b
1

and

therefore induces the highest belief-free rationalizable bid of a bidder with valuation 1, i.e.

bidding b
1

is a best reply to this strategy.

A belief-free rationalizable bid is a best reply to a strategy of the other bidders and to a

distribution of their valuations. Hence, in a addition to the strategy inducing b
1
, one has

to derive the value distribution inducing b
1
. Let (x1

0, x
1
θ, x

1
1) denote the probability weights

in this distribution. It must hold that

1− b1 ≥ x0
1

1− b1 ≥
(
x0

1 + xθ1
)

(1− θ)

which is equivalent to

1− b1 ≥ max
{
x0

1,
(
x0

1 + xθ1
)

(1− θ)
}
.

11It turns out that the subjective belief in (i) and (ii) coincides with the subjective maximin belief a
bidder with valuation θ. However, belief-free rationalizable strategies can be induced by a subjective-belief
equilibrium where the subjective belief does not coincide with the subjective maximin belief.
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Since b
1

is the highest bid for which this condition is fulfilled, it holds that

b
1

= 1−min max
{
x0

1,
(
x0

1 + xθ1
)

(1− θ)
}

which is equivalent to

(3) b
1

= 1− x0
1 = 1−

(
x0

1 + xθ1
)

(1− θ) .

Since probabilities have to add up to zero and the mean has to be preserved, the vector

(x1
0, x

1
θ, x

1
1) is the unique solution to the following system of linear equations

x1
0 + x1

θ + x1
1 = 1

x1
00 + x1

θθ + x1
11 = µ

x0
1 =

(
x0

1 + xθ1
)

(1− θ).

After obtaining the solution

x1
0 =

1− µ
1 + θ

, x1
θ =

θ(1− µ)

1− θ2
, x1

1 =
µ− θ2

1− θ2
,

one can compute b
1

using equation (3), i.e. it holds

b
1

= 1− x0
1 = 1−

(
x0

1 + xθ1
)

(1− θ).

After deriving the highest belief-free rationalizable bids for every type, the second step

is to derive the adverse nature’s strategy. In the setting of strategic and distributional

uncertainty the adverse nature’s strategy determines for every bidder and every type a

strategy and a value distribution of the other bidder. For every bidder and every type the

adverse nature chooses as the strategy of the other bidder to place the highest belief-free

rationalizable bid given her valuation.

The value distribution for a bidder with valuation zero is irrelevant since such a bidder

always earns a utility of zero. For a bidder with valuation θ the adverse nature chooses a

distribution of the other bidder’s values which puts zero probability weight on type zero.

Since type θ bids θ, this induces an expected utility of zero for a bidder with valuation θ. A

bidder with valuation 1 never expects to win against a bidder with valuation 1. Therefore,
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a bidder with valuation 1 has to decide between bidding zero and bidding θ. Hence, the

adverse nature has to choose a value distribution
(
x̃0

1, x̃
θ
1, x̃

1
1

)
such that it holds

min max
{
x̃0

1,
(
x̃0

1 + x̃θ1
)

(1− θ)
}
.

Since probabilities have to add up to one and the mean has to be preserved, the vector(
x̃0

1, x̃
θ
1, x̃

1
1

)
is the unique solution of the same system of linear equations as the vector(

x0
1, x

θ
1, x

1
1

)
. Therefore, it holds that(

x̃0
1, x̃

θ
1, x̃

1
1

)
=
(
x0

1, x
θ
1, x

1
1

)
.

In the final step, for every bidder and every type one has to find the set of best replies

to the adverse nature’s strategy. Moreover, one has to identify the best replies such that

the adverse nature does not have an incentive to deviate from her strategy derived in the

second step. It is a weakly dominant strategy for the adverse nature to choose for every

bidder and every type the strategy of the other bidder which places the highest rationalizable

bids. Hence, it is sufficient to check whether the adverse nature has an incentive to deviate

from the chosen distributions.

A bidder with valuation zero bids zero. A bidder with valuation θ expects a utility of zero

and is indifferent between any bid in the interval [0, θ]. Hence, the adverse nature does not

have an incentive to deviate. A bidder with valuation 1 is indifferent between bidding 0

and θ. In an equilibrium in the game against the adverse nature, a bidder with valuation

1 mixes between 0 and θ in a way such that the adverse nature is indifferent among any

value distribution which fulfills the constraints that probabilities add up to one and the

mean µ is preserved. Therefore, the adverse nature does not have an incentive to deviate.

Note that the distribution of the other bidder’s values which the adverse nature chooses

for a type is the same distribution which induces the highest belief-free rationalizable

bid for this type. That is, a bidder i with a given type assumes that her opponent j

has the same assumption about i’s value distributions as i’s assumption about j’s value

distributions. But bidder i assumes that j has a different belief about i’s strategy than i’s

belief about j’s strategy.

The insight from the example about bidders’ strategies is generalized in the following

Proposition.
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Proposition 9. Consider a first-price auction under distributional and strategic uncertainty

such that assumptions (D2) and (S2) hold. There exists an outcome under maximin

strategies. In every outcome the bidding strategies are characterized as follows:

(i) Every bidder with valuation θk such that θk ≤ µ is indifferent between any bid in

the interval [0, θk].

(ii) Every bidder with valuation θk such that θk ≤ µ mixes among the bids {bθ
j

| j < k},

that is, among the set of all highest belief-free rationalizable bids of lower types.

A direct implication of this proposition is the inefficiency of the outcome.

Corollary 3. Consider a first-price auction under distributional and strategic uncertainty

such that assumptions (D2) and (S2) hold. If there exist types θk, θk
′
, θk

′′ ∈ Θ such that

0 < θk ≤ µ < θk
′
< θk

′′
, then the outcome is not efficient.

The inefficiency stems from the fact that every type above µ mixes between all highest

belief-free rationalizable bids of all lower types. With positive probability type θk
′′

bids

zero and type θk
′

bids the highest belief-free rationalizable bid of type θk which is θk.

Conclusively, the outcome is not efficient.

Similarly as under pure strategic uncertainty, I will show the existence of an outcome

under maximin strategies by construction for which I proceed in the following steps:

(I) Show that for every type θk ∈ Θ there exists a unique highest belief-free rationalizable

bid b
θk

.

(II) Show that for every type zero is a belief-free rationalizable bid.

(III) Show that for every type θk ∈ Θ every bid in the interval [0, b
θk

] is belief-free

rationalizable.

(IV) Calculate for every type θk ∈ Θ the other bidders’ value distribution which induces

the highest belief-free rationalizable bid.

The explanation for steps (I)-(III) works analogously as for steps (I)-(III) in the case of

pure strategic uncertainty. For the calculation of the highest belief-free rationalizable bids,

first, consider valuations equal or below µ. Analogously as in the example, on can show

that the highest belief-free rationalizable bid for a bidder with valuation θk such that

θk ≤ µ is θk. This bid is induced by the subjective belief equilibrium where the probability
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weight is distributed between types θk and θµ and all bidders with valuation θk bid θk,

where θµ is the smallest valuation strictly higher than µ.

The calculation of the highest belief-free rationalizable bids for higher types works by

recursion. Assume that θk ≥ θµ and that for all j < k the highest belief-free rationalizable

bids has been already computed. Then b
θk

is a best reply to the other bidders’ strategies

such that:

(i) Every bidder with valuation θj such that θj < θk bids her highest belief-free

rationalizable bid.

(ii) Every bidder with valuation θk bids
(
b
θk
)−

.

For a bidder i with valuation θk the value distribution of the other bidders which

induces bidder i to bid b
θk

has to minimize the incentive to bid another bid. In addition,

probabilities have to add up to zero and the mean µ has to be preserved. Let
(
xθ

k

θ1 , . . . , x
θk

θm

)
be a vector of probabilities such that according to the value distribution inducing b

θk

, type

θl of some bidder j 6= i occurs with probability xθ
k

θl
.

Hence, the vector
(
xθ

k

θ1 , . . . , x
θk

θm

)
is the solution to the following minimization problem

min max

{(
xθ

k

θ1

)I−1

θk,
(
xθ

k

θ1 + xθ
k

θ2

)I−1 (
θk − bθ

2)
, ...,

(
xθ

k

θ1 + · · ·+ xθ
k

θk−1

)I−1 (
θk − bθ

k−1)}
s.t. xθ

k

θ1 + · · ·+ xθ
k

θm = 1

xθ
k

θ1θ
1 + · · ·+ xθ

k

θmθ
m = µ.

In the solution of this minimization problem all terms of the form(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
for 1 < j < k

have to be equal.

The recursive calculation of the highest belief-free rationalizable bids and the distributions

inducing them, is formalized in the following Proposition.

Proposition 10. Consider a first-price auction under distributional and strategic uncertainty

such that assumptions (D2) and (S2) hold. Let θµ = min{θk ∈ Θ | θk > µ}. For θk < θµ
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the vector of probability weights denoted by xθ
k

= (xθ
k

θ1 , . . . , x
θk

θm), is defined by

xθ
k

θθk
=

θµ − µ
θµ − θk

, xθ
k

θµ =
µ− θk

θµ − θk
and xθ

k

θj = 0 for θj 6= θk, θµ,

i.e. the probability weight is distributed between types θk and θµ such that the mean µ is

preserved. For θk ≤ θµ the highest belief-free rationalizable bid b
θ

is equal to θk.

Assume that for all j < k, the highest belief-free rationalizable bid b
θj

has been already

defined and it holds k > z. Then for the vector xθ
k

= (xθ
k

θ1 , . . . , x
θk

θk
) it holds that xθ

k

θj = 0

for j > k and the vector (xθ
k

θ1 , . . . , x
θk

θk
) is the unique solution of the following system of k

linear equations given by
k∑
i=1

xθ
k

θi = 1

k∑
i=1

xθ
k

θi θ
i = µ

(
xθ

k

θ1

)I−1

θk =

(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
for 1 < j < k.

The highest belief-free rationalizable bid b
θk

is obtained by the equation

b
θk

= θk −
(
xθ

k

θ1

)I−1

θk.

Finally, the following Proposition specifies the adverse nature’s strategy.

Proposition 11. Consider a first-price auction under distributional and strategic uncertainty

such that assumptions (D2) and (S2) hold. It holds that

(i) For bidder i and every type θk the adverse nature chooses as the strategy of the

other bidders that every bidder places the highest belief-free rationalizable bid given

her type.

(ii) For every bidder i and every type θk the adverse nature chooses as the distribution

of the other bidders’ values the value distribution defined by the vector xθ
k

=

(xθ
k

θ1 , . . . , x
θk

θm) as specified in Proposition 10.
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8. Discussion

Choice of decision criterion. The decision criterion under uncertainty used in this

paper is the maximin expected utility criterion. The analogous analysis could be conducted

with other criteria such as the minimax expected regret criterion.

Possible distributions and strategies. In this paper I restricted the set of possible

strategies by assuming common knowledge of rationality and the set of possible distributions

by assuming common knowledge of a mean. This restriction is crucial for the application

of the maximin expected utility criterion. Otherwise there would exist a distribution

or strategy inducing an expected utility of zero for a player independent of her action.

However, there exist other possibilities to restrict the set of possible distributions and

strategies. For instance, one could investigate outcomes under distributional uncertainty

under the assumption that further moment conditions of the type distribution are common

knowledge.

Cognitive complexity. Formally, the derivation of the set of belief-free rationalizable

actions for an agent with a given type requires an infinite intersection of sets. However, the

proofs use a finite number of recursion steps. In the model under strategic uncertainty and

in the model under distributional uncertainty the bid a bidder with type θk is obtained

after at most k recursion steps. One could argue that a sufficiently rational player can

conduct the necessary calculations. But one could also argue that for some players these

calculations may be too difficult. Therefore, similarly as in level-k models, one could

define the concept of k-rationalizability. That is, a player i could know that her opponent

can compute the set BFRk
j for all players j and for k ∈ N, but cannot compute the sets

BFRk′
j for k′ > k. Depending on the parameters, this knowledge could influence player i’s

maximin strategy.

Robustness. In addition to the maximin expected utility criterion, one could introduce

an additional robustness criterion in the following sense: does the maximin strategy of an

agent change if the adverse nature deviates from her strategy to another strategy in an

ε-neighborhood? If there is a change, does the strategy and the resulting expected utility

change continuously?
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As an example, consider a first-price auction under pure strategic uncertainty with

a commonly known distribution function, two bidders and three valuations 0, θ and 1.

Bidder 1 with valuation 1 has the subjective maximin belief that bidder 2 with valuation

1 bids b
1
. Hence, bidder 1 with valuation 1 bids either θ or zero. However, all bids in the

interval [0, b
1
] are belief-free rationalizable for a bidder with valuation 1. Hence, (if the

bid grid is sufficiently small) an ε-neighborhood of b
1

and its intersection with the set of

belief-free rationalizable actions contains bids lower than b
1
. If bidder 1 with valuation 1

has the subjective belief that bidder 2 with valuation 1 bids lower than b
1
, e.g.

(
b

1
)−

,

then b
1

becomes a best reply for bidder 1 with valuation 1. This constitutes a discontinuity

in her best reply.

As a second example, consider a first-price auction under pure strategic uncertainty with

two bidders and a commonly known common value v. To bid v is the highest belief-free

rationalizable action for both bidders. Therefore, bidder 1 has the subjective maximin

belief that bidder 2 bids v. As a consequence, bidder 1 is indifferent between any bid in

[0, v]. Assume that bidder 1 chooses the action v (or v−). As any other bid, this leads to a

utility of zero given the subjective maximin belief that bidder 2 bids v. An ε-neighborhood

of v and its intersection with the set of belief-free rationalizable actions contains only

bids below v, e.g. it contains the bids v,v− and (v−)
−

. The best replies to these bids are

in an ε-neighborhood of v (or v−) and the induced utility are in an ε-neighborhood of

zero. Hence, bidding v (or v−) fulfills the robustness property that an ε-deviation of the

subjective maximin belief induces an ε-deviation of the best replies and expected utility.
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Appendices

Appendix A. Proof of Proposition 3

Proof. The proof works by contradiction. Assume there exists an outcome under maximin

strategies. Let θµ be the smallest type which is strictly greater than µ. I will consider

three different cases of possible strategy profiles of all bidders. For every possible case

and for some arbitrary bidder i I will calculate the distribution of the other bidders’ value

distributions which the adverse nature chooses for bidder i with valuation θµ given the

strategy profile considered in the particular case. Then I will show that given this value

distribution the action of bidder i with valuation θµ which is prescribed by the strategy

profile is not optimal. As a result, the assumption that an outcome under maximin

strategies exists, leads to a contradiction.

In order to show these steps, the following lemmas are needed:

Lemma 1. Every bid which is played with a strictly positive probability by a bidder

with a type strictly lower than θµ is smaller or equal than θz−1, 12 i.e. for every bidder

i ∈ {1, . . . , I} and every type θj with j < z it holds for all b with βi(θ
j)(b) > 0 that

b ≤ θz−1.

Proof. Assume the Lemma is not true. Let bidder i with type θj such that j < z be the

bidder who plays the highest bid with positive probability among the bidders with a type

lower than θµ, i.e. it holds

b
θj

i = max
k∈{1,...I},l<z

{bθ
l

k }.

Since θµ > µ, there must be positive probability weight on at least one type smaller than

θµ. Hence, with positive probability bidder i wins the auction and pays more than her

own valuation which leads to a contradiction. �

Lemma 2. Bidder i with valuation θµ loses the auction with positive probability, i.e. there

exists a bidder k, a valuation θj and a bid b such that bidder k with valuation θj bids b

with positive probability and it holds that b
θµ
i < b.

12Although bidding above the own valuation is a weakly dominated strategy, I still show this claim in order
to state Proposition 3 as general as possible and therefore not to impose assumptions on weak-dominance
rationality
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Proof. Assume the statement in Lemma 2 is not true and for every bidder k 6= i and

every θj ∈ Θ it holds that b
θµ
i ≥ b

θj

k . Then it must hold that b
θµ
i = b

θµ
i and there exists a

bidder k with valuation θj who bids either b
θµ
i or

(
b
θµ
i

)−
with positive probability because

otherwise bidder i with valuation θµ could bid strictly less while preserving her winning

probability. Given these bids, the adverse nature would put strictly positive probability

weight on type θµ of bidder i in the belief of bidder k with valuation θj since this minimizes

her winning probability. It follows that bidder k with valuation θj has an incentive to bid(
b
θµ
i

)+

which leads to a contradiction. �

Let i ∈ {1, . . . I} be some bidder. I consider the following cases.

Case 1: For every bidder k 6= i it holds that bidder i with type θµ overbids only the 0-type

of bidder k.

The winning probability of bidder i is given by
∏

k 6=i x
k,θ1

i,θµ
. Hence, the adverse nature will

choose distributions of the other bidders’ valuations for bidder i with valuation θµ such

that the probability weight on type zero is zero, for example by distributing the probability

weight between types θz−1 and θµ in the value distribution of every bidder k with k 6= i .

Hence, the expected utility of bidder i with type θµ is zero. Since θµ is strictly greater than

µ, in the value distribution of an arbitrary bidder k there must be positive probability

weight on some type θj with j < z. If bidder i with valuation θµ deviates to bidding θj , it

follows from Lemma 1 that she wins against type θj of bidder k with positive probability.

Since there is positive probability weight on type θj of bidder k and θj < θµ, bidder i

would earn a strictly positive expected utility by deviating to θj. Hence, the assumption

that bidder i overbids only the 0-type of every bidder leads to a contradiction.

Case 2: There exist bidders k1, . . . kl such that bidder i with valuation θµ overbids at least

two types of those bidders and bidder i with valuation θµ bids zero. Consider a bidder

k ∈ {k1, . . . kl} and the two following subcases.

Case 2.1: For every j ∈ {1, . . . z − 1} it holds that bidder i with valuation θµ overbids

bidder k with valuation θj.

Since bidder i with valuation θµ bids zero, it holds for all j ∈ {1, . . . z − 1} that bidder k
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with valuation θj bids zero. For every j ∈ {1, . . . z−1} it holds that bidder i with valuation

θj believes that there is positive probability weight on some type θj
′

of bidder k with

1 ≤ j′ < z. Therefore, bidder i with valuation θj will bid 0+. Since this holds for every

θj with 1 ≤ h < z, it follows that type θz−1 of bidder k will be overbid by bidder i with

probability 1. Since bidder k with valuation θµ does not expect to earn a positive utility

and there has to be positive probability weight on one type θj of bidder i with 1 ≤ j < z,

it holds that bidder k with valuation θz−1 never expects to win against a type θj of bidder

i with valuation 1 ≤ j < z. Due to Lemma 1, it holds that type θz−1 of bidder i bids θz−1.

Hence, type θz−1 of bidder i does not expect to earn a positive utility. By bidding zero

bidder i with valuation θz−1 could win with positive probability against all types θj of bidder

k. Hence, the given strategy profile cannot constitute an outcome under maximin strategies.

Case 2.2: There exists a j ∈ {1, . . . z − 1} such that that bidder i with valuation θµ

does not overbid bidder k with valuation θj.

This case works similarly to case 2 since the adverse nature will distribute the probability

weight on type θj and some other type θl with l ≥ z which is not overbid by bidder i with

valuation θµ. Since bidder i with valuation θµ bids zero, such a bidder and type exist.

The lowest possible bid for type θm = 1 is zero and due to the efficient tie-breaking rule,

bidder i with valuation θµ always loses against type θm = 1 unless z < m. If z = m, then

in the belief of every bidder there has to be positive probability on type θµ. Since bidder i

with type θµ bids zero, all other bidders have an incentive to bid 0+. Conclusively, the

adverse nature can choose value distributions of bidder k such that bidder i with valuation

θµ expects a utility of zero. Bidding θz−1 is deviation where she earns a strictly positive

expected utility and therefore the considered strategy profile cannot constitute an outcome

under maximin strategies.

Case 3: There exist bidders k1, . . . kl such that bidder i with valuation θµ overbids at least

two types of those bidders and bidder i with valuation θµ bids a strictly positive amount.

Let k be an element in {k1, . . . kl} and let θj1 ≤ · · · ≤, θjh be the types of bidder k which

are overbid by bidder i with valuation θµ. It follows from Lemma 2 that there exists a

valuation θj with j > jh such that bidder k with valuation θj is not overbid by bidder i
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with valuation θµ. Then the adverse nature will choose a value distribution of bidder k

such that the probability weight is distributed between the types θ1 and θj. Hence, in the

belief of bidder i with valuation θµ she can win only against the 0-type and therefore bids

0. This a contradiction to the assumption that bidder i with valuation θµ bids a strictly

positive amount.

Since for every possible case the assumption that an outcome under maximin strategies

exists, leads to contradiction, an outcome under maximin strategies under assumptions

(D2) and (S1) does not exist.

�

Appendix B. Proof of Proposition 4

Proof. (i) At first, I consider the case where there exists a unique bidder k and show that

her highest belief-free rationalizable bid is the second-highest valuation, denoted by θ′k. In

order to do so, I will show by induction that for every bidder i 6= k the bids in the interval

(θ′k, 1] are not belief-free rationalizable. Let i be an arbitrary bidder which is not bidder k.

Hence, bidder i’s valuation is strictly lower than 1, The induction steps are descending

and start with 1. Since 1 is the highest possible bid, bidder i wins with strictly positive

probability if she bids 1 which cannot be belief-free rationalizable since she would earn a

negative utility with positive probability. For the induction step assume that it has been

shown that all bids equal or higher than b with b ∈ (θ′k, 1] are not belief-free rationalizable

for all bidders i 6= k. It is to show that for an arbitrary bidder i 6= k the bid b− is not

belief-free rationalizable if b− > θ′k. Since all bids strictly higher than b− are not belief-free

rationalizable for all bidders i 6= k, it is never a best reply for bidder k to bid strictly

higher than b−. Therefore, bidder i wins with strictly positive probability if she bids b−.

Since b− is strictly higher than her valuation, this cannot be optimal. This completes

the induction step from which follows that for all bidders i 6= k the bids in the interval

(θ′k, 1] are not belief-free rationalizable. It follows that for bidder k all bids in the interval

(θ′k, 1] are not belief-free rationalizable. In every Nash equilibrium the highest bidder bids

the second-highest valuation θk′ . Since according to part (i) of Corollary 2 a strategy

played in a Bayes-Nash equilibrium is belief-free rationalizable, the bid θk′ is belief-free
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rationalizable for bidder k. It follows that θk′ is the highest belief-free rationalizable bid

for bidder k.

If the adverse nature chooses for all bidders i 6= k as the action of bidder k to bid

θ′k , i.e. βni,θik (θk) = θk′ , every bidder i 6= k with valuation θi expects a utility of zero

independent of her action. Therefore, any other strategy of the adverse nature which is

played in equilibrium, has to induce an expected utility of zero for every bidder i 6= k

independent of bidder i’s action. As a result, every bidder i 6= k is indifferent between all

bids in the interval [0, θi]. It is left to show that a bidder i 6= k does not bid above her

valuation. Assume there exists a bidder i with valuation θi who bids b > θi. Since for

all bidders j 6= k bidding zero is belief-free rationalizable, it is belief-free rationalizable

for bidder k to bid zero. Given that bidder i bids b, the adverse nature chooses as the

strategy of the other bidders to bid zero, i.e. for every j 6= i it holds that βni,θij (θj) = 0.

As a result, bidder i wins with probability 1 and earns a negative utility which cannot be

part of an equilibrium in the game against the adverse nature. Hence, non of the bidders

places bids strictly higher than her valuation in equilibrium.

In order to minimize the expected utility of bidder k, the adverse nature chooses as the

strategy of the second-highest bidder to bid her valuation i.e. βni,θik (θk) = θk′ . This is the

highest belief-free rationalizable bid which can be placed by a bidder who is not bidder k.

As a consequence, bidder k bids θk′ .

(ii) Finally, I consider the case where at least two bidders have the highest valuation

θk. Analogously as before, one can show by induction that for every bidder the bids

in the interval (θk, 1] are not belief-free rationalizable. In every Nash equilibrium every

highest bidder bids her valuation θk. Therefore, it holds due Corollary 2 that the bid

θk is belief-free rationalizable for every highest bidder. It follows that θk is the highest

belief-free rationalizable bid and therefore is the action which the adverse nature chooses

as the action of a highest bidder k for a bidder i 6= k, i.e. βni,θik (θk) = θk. This implies that

every bidder does not expect to earn a positive utility and therefore is indifferent between

any bid between zero and her valuation. Bid strictly higher than the own valuation can

be excluded analogously as above. �
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Appendix C. Proof of Propositions 5 and 6

In order to prove Propositions 5 and 6, I will show the following lemmas which formalize

steps (I) -(III).

Lemma 3. For every bidder i and every valuation θk ∈ Θ there exists a unique highest

rationalizable bid b
θi
i .

Proof. For every bidder i and every valuation θi the set of belief-free rationalizable actions

BFRi(θi) is a finite set in a metric space and therefore compact. Since every compact set

contains its supremum, there exists a maximum element of the set BFRi(θi). Since this

is a subset of B and by definition, B is well-ordered with respect to the relation ≤, the

maximum element of BFRi(θi) has to be unique. �

Lemma 4. For every type zero is a belief-free rationalizable bid.

Proof. The proof works by induction with respect to the types in Θ. The induction starts

with θ1 = 0. Montiero (2009) shows that with a given commonly known distribution there

exists a Bayes-Nash equilibrium in the first-price auction with discrete values where type

zero bids zero. It follows from part (i) of Corollary 2 that zero is a belief-free rationalizable

action for type zero.

For the induction step assume that it has been already shown for all types θj with

j ≤ k that zero is a belief-free rationalizable action for type θj. Consider a bidder i with

valuation θk+1 who believes that all other bidders with type θj such that j < k+ 1 bid zero

which is belief-free rationalizable by assumption. According to Lemma 3 for every bidder

and every type there exists a highest belief-free rationalizable bid. Let the belief of bidder

i with valuation θk+1 be such that every other bidder with type θj such that j ≥ k+ 1 bids

her highest belief-free rationalizable bid. Then it is a best reply of bidder i with valuation

θk+1 to bid zero. As stated in Corollary 1, a best reply to a belief-free rationalizable

strategy profile is belief-free rationalizable and therefore zero is a belief-free rationalizable

action for bidder i with type θk+1. This completes the induction step and hence one can

conclude that for every bidder and every type zero is a belief-free rationalizable action. �

Lemma 5. For every type θk ∈ Θ it holds that every bid in [0, b
θk

] is belief-free rationalizable.
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Proof. The proof works by showing a slightly stronger statement by induction with respect

to the types in Θ. The statement is that for every type θk ∈ Θ it holds that every bid in

the interval [0, b
θk

] is belief-free rationalizable for every type θj such that j ≥ k.

The induction starts with θ1 = 0. The highest belief-free rationalizable bid for type θ1

is zero and it follows from Lemma 4 that zero is a belief-free rationalizable bid for every

type.

For the induction step assume that it has been already shown that for all l ≤ k it holds

that every bid in the interval [0, b
θl

] is belief-free rationalizable for every type θj such that

j ≥ l. By using induction with respect to the bids, I will show that the same statement

holds for type θk+1. The induction starts with the bid zero. It follows from Lemma 4

that zero is belief-free rationalizable for every type. For the induction step assume that

it has been already shown that every bid in the interval [0, b] with b < b
θk+1

is belief-free

rationalizable for every type θj with j ≥ k + 1. In order to show that b+ is belief-free

rationalizable for every type θj with j ≥ k + 1 consider a bidder i with valuation θk+1 and

strategies of the other bidders such that

(i) Every type θl with l < k + 1 bids her highest belief-free rationalizable bid

(ii) Every type θj with j ≥ k + 1 bids b

The strategies in (i) are belief-free rationalizable by definition and the strategies in (ii) are

belief-free rationalizable by the assumption in the induction step. Given this belief about

the other bidders’ strategies it is optimal for bidder i with valuation θk+1 to bid b+. If it

is not optimal, then it would hold that b is the highest belief-free rationalizable bid for

θk+1 because any other belief about strategies than in (i) and (ii) makes bidding b+ less

profitable. Any change in part (i) would imply that a type θl with l < k + 1 bids some

bid bθ
l
< b

θl

instead of b
θl

which makes overbidding this type more profitable. Formally,

instead of the inequality

θk+1 − b+ ≥ F
(
θl+1

) (
θk+1 − bθ

l)
the inequality

θk+1 − b+ ≥ F
(
θl+1

) (
θk+1 − bθl

)
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has to hold. 13 Any deviation from (ii) implies that a type θj with j ≥ k + 1 either bids

higher or lower. If some type θj bids lower, then the same reasoning as above applies. If a

type θj deviates to a higher bid, then by bidding b+ bidder i with valuation θk+1 does not

overbid type θj anymore. Hence, for every l < k + 1 instead of

θk+1 − b+ ≥ F
(
θl+1

) (
θk+1 − bθ

l)
the inequality(

1−
(
F
(
θj
)
− F

(
θj−1

))) (
θk+1 − b+

)
≥ F

(
θl+1

) (
θk+1 − bθ

l)
has to hold.

Conclusively, any deviation form the strategies in (i) and (ii) makes bidding b+ less

profitable. Therefore, if bidding b+ is not a best reply to the beliefs in (i) and (ii), then b

is the highest belief-free rationalizable bid for type θk+1. This shows that any bid in the

interval [0, b
θk+1

] is belief-free rationalizable for type θk+1. Analogously one can show that

any bid in the interval [0, b
θk+1

] is belief-free rationalizable for type θj with j ≥ k+ 1. This

completes the induction step of the first induction. Therefore, it has been shown that for

every type θk ∈ Θ it holds that every bid in the interval [0, b
θk

] is belief-free rationalizable

for every type θj such that j ≥ k. �

Proof of Proposition 6

Proof. As shown in the proof of Lemma 5, for every type the belief as described in (i)

and (ii) induces the highest belief-free rationalizable bid for this type, that is the highest

belief-free rationalizable bid is a best reply to this belief. Given this belief, the expected

utility of a bidder i with some type θk ∈ Θ who bids b
θk

is given by

θk − bθ
k

.

This utility has to be higher than the utility induced by any other bid. A bid can be a

best reply only if with this bid bidder i just overbids some other bidder. Formally, a bid b

can be best reply only if there exists a bidder j 6= i and a valuation θl such that bidder j

with valuation θl bids b−. Hence, the only potential candidates for best replies besides b
θk

13For a simpler notation I write down the inequalities for the 2-bidder case.
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are bids b
θj

with j < k. Hence, equation 2 ensures that bidding b
θk

induces at least the

same expected utility than ony other bid which can be a best reply.

�

Proof of Proposition 5

Proof. I show the existence of an equilibrium by construction. According to Lemma 3

for every type there exist a unique highest belief-free rationalizable bid. For every type

and every player the adverse nature chooses the other bidders’ strategies such that every

bidder places her highest belief-free rationalizable bid, i.e. for every bidder i ∈ {1, . . . , I}

it holds that βni,θik (θk) = b
θk

for all k 6= i. Independent of the bidders’ strategies there does

not exist another strategy of the adverse nature which induces a lower expected utility for

any of the bidders. Thus, the adverse nature does not have an incentive to deviate from

this strategy. Every bidder plays a best reply given her type and the adverse nature’s

strategy. Due to the compactness of B, such a best reply always exist and is unique. I

will show that the outcome defined by these best replies is efficient.

For a bidder with type θk ∈ Θ the best reply is given by the most profitable overbidding

of a lower type, that is, by

argmax
b
θj
,j<k

F (θj)
(
θk − bθ

j)
.

Let b
θl

be a best reply of a bidder with valuation θk. Then it holds for all j ∈ {1, . . . , l−1}

that

(4) F (θl)
(
θk − bθ

l)
≥ F (θj)

(
θk − bθ

j)

(5) ⇔ θk
(
F (θl)− F (θj)

)
− F (θl)b

θl

+ F (θj)b
θj ≥ 0.

Since F (θl)− F (θj) > 0, it follows from (5) that for all θk
′

such that θk
′
> θk and for

all l ∈ {1, . . . l − 1} it holds that

θk
′ (
F (θl)− F (θj)

)
− F (θl)b

θl

+ F (θj)b
θj ≥ 0

(6) ⇔ F (θl)
(
θk
′ − bθ

l)
≥ F (θj)

(
θk
′ − bθ

j)
.
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First, consider the case where for every j ∈ {1, . . . , l−1} the inequality in 4 is strict. Then

for a bidder with valuation θk there exists a unique best reply, denoted by b
θl

. Hence,

in order to show efficiency, it is sufficient to show that every best reply of a bidder with

valuation θk
′

with θk
′
> θk is equal or greater than b

θl

.

It holds that for every j ∈ {1, . . . , l − 1} that the inequality in (6) is strict. It follows

that none of the bids b
θj

for j ∈ {1, . . . , l − 1} can be a best reply for a bidder with

valuation θk
′
. Thus, a best reply of a bidder with valuation θk

′
with θk

′
> θk is equal or

greater than b
θl

.

Second, consider the case where for at least one j ∈ {1, . . . ,m} the expression in 4

holds with equality. Let j1, . . . jh be all indices for which it holds that the expression

in 4 holds with equality. Then for all j ∈ {j1, . . . , jh} it must hold that F (θl) > F (θj).

Thus, for all j ∈ {j1, . . . , jh} expression in 6 holds with strict inequality. For all j ∈

{1, . . . , I}\{j1, . . . , jh} the expression in 4 holds with strict inequality and therefore also

the expression in 6. Therefore, it holds for all j ∈ {1, . . . , jh} that the inequality in 6

is strict. Analogously to the first case, this implies that the best reply of a bidder with

valuation θk
′

with θk
′
> θk is equal or higher than the highest best reply of a bidder with

valuation θk. Therefore, the outcome is efficient.

So far, I have shown by construction that an outcome under maximin expected utilities

exists and that this outcome is efficient. It remains to show that every outcome is efficient.

Let βn denote the strategy of the adverse nature which chooses for every bidder i and every

type the strategy of the other bidders’ such that every bidder places her highest belief-free

rationalizable bid, i.e. for every bidder i ∈ {1, . . . , I} it holds that βni,θik (θk) = b
θk

for all

k 6= i. As shown above, there exists a unique best reply of the bidders to this strategy

and the outcome defined by these best replies is efficient. A different outcome is possible

only if the adverse nature plays another strategy, denoted by βn
′
. Assume the outcome

defined by the best replies to βn
′

is not efficient. Then the best replies to βn
′

have to

differ from the best replies to βn and there exists a bidder i with valuation θi such that

Bn′\Bn is non-empty, where Bn is the set of best replies of bidder i with valuation θi

to βn and Bn′ is the set of best replies to βn
′
. Let b be an element in Bn and b′ be an

element in Bn′\Bn. Since βn is a weakly dominant strategy for the adverse nature, the

expected utilitys of bidder i of bidding b given βn and of bidding b′ given βn
′

must be
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equal, let Π denote this expected utility. Since βn
′

is not an element of Bn, it must hold

that there exists a bidder k with valuation θl such that the subjective maximin belief of

bidder i about bidder k’s strategy evaluated at θl is not equal to b
θl

but is either b′ or

(b′)− (depending on whether θi > θl or θi ≤ θl), i.e. βni,θik (θl) ∈ {b′, (b′)−}. Since b
θl

is the

highest belief-free rationalizable bid, it must hold that the subjective maximin belief of

bidder i with valuation θi about bidder k’s strategy at θl is strictly lower than b
θl

, i.e.

βni,θik (θl) < b
θl

. Given that bidder i with valuation θi plays b′ with positive probability, the

adverse nature has an incentive to deviate and to change the subjective maximin belief of

bidder i with valuation θi about bidder k’s strategy at θl to b
θl

. This deviation induces a

strictly lower utility than Π because otherwise b′ would be an element in Bn. �

Appendix D. Proof of Propositions 8

Proof. The proof works by induction with respect to the type. Since b
θ1

= b
θ1

∗ , the

induction starts with θ2. The highest belief-free rationalizable bid for type θ2 is obtained

by the equation

θ2 − bθ
2

= F I−1(0)θ2

⇔ b
θ2

= θ2
(
1− F I−1(0)

)
.

The highest bid which is played with positive probability by a bidder with valuation θ2 in

a Bayes-Nash equilibrium is obtained by the equation

F I−1
(
θ2
) (
θ2 − bθ

2

∗

)
= F I−1(0)θ2

⇔ b
θ2

∗ =
θ2
(
F I−1 (θ2)− F I−1(0)

)
F I−1 (θ2)

.

Since F I−1 (θ2) < 1 it holds that

F I−1
(
θ2
)
F I−1(0) < F I−1(0)

⇔ F I−1
(
θ2
)
− F I−1

(
θ2
)
F I−1(0) > F I−1

(
θ2
)
− F I−1(0)

1− F I−1(0) >
F I−1 (θ2)− F I−1(0)

F I−1 (θ2)

b
θ2

> b
θ2

∗ .



59

For the induction step assume that it has been already shown that b
θj

> b
θj

∗ for all j ≤ k.

It has to be shown that

b
θk+1

> b
θk+1

∗ .

As stated in Proposition 6, it holds that

θk+1 − bθ
k+1

= max
θj<θk+1

F I−1
(
θj
) (
θk+1 − bθ

j)
.

Let

F I−1
(
θl
) (
θk+1 − bθ

l)
= max

θj<θk+1
F I−1

(
θj
) (
θk+1 − bθ

j)
.

Since b
θk+1

∗ is a best reply, it must induce an expected utility which is greater or equal

than the expected utility induced by any other bid. Hence, it holds that

F
(
θk+1

) (
θk+1 − bθ

k+1

∗

)
≥ F

(
θl
) (
θk+1 − bθ

l

∗

)
.

Due to the induction assumption it holds that b
θl

∗ < b
θl

from which follows that

θk+1 − bθ
k+1

= F I−1
(
θl
) (
θk+1 − bθ

l)
< F

(
θl
) (
θk+1 − bθ

l

∗

)
≤ F

(
θk+1

) (
θk+1 − bθ

k+1

∗

)
and therefore it holds that

θk+1 − bθ
k+1

< F
(
θk+1

) (
θk+1 − bθ

k+1

∗

)
.

(7) ⇔ b
θk+1

∗ <
b
θk+1

− θk+1
(
1− F

(
θk+1

))
F (θk+1)

.

It holds that

θk+1 − bθ
k+1

≥ 0

⇔ θk+1
(
1− F

(
θk+1

))
− bθ

k+1 (
1− F

(
θk+1

))
≥ 0

⇔ b
θk+1

− θk+1
(
1− F

(
θk+1

))
≤ F

(
θk+1

)
b
θk+1

⇔
b
θk+1

− θk+1
(
1− F

(
θk+1

))
F (θk+1)

≤ b
θk+1

.

Due to equation (7), it follows that

b
θk+1

> b
θk+1

∗ .
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This completes the induction step and the proof.

�

Appendix E. Proof of Propositions 9,10 and 11

First, I prove Proposition 10 which formalizes the recursive calculation of the highest

belief-free rationalizable bids for every type. This calculation is crucial for the proofs of

Propositions 9 and 11. In order to prove Proposition 10, I state the following three lemmas

which formalize steps (I)-(III) in section 7. The proofs work analogously as for lemmas 3,

4 and 5 in section 6.

Lemma 6. For every bidder i and every valuation θk ∈ Θ there exists a unique highest

rationalizable bid b
θi
i .

Lemma 7. For every type zero is a belief-free rationalizable bid.

Lemma 8. For every type θk ∈ Θ it holds that every bid in [0, b
θk

] is belief-free rationalizable.

Proof of Proposition 10

Proof. First, I examine the highest belief-free rationalizable bids of a bidder with valuation

θk such that θk is lower or equal than µ. Consider a subjective belief equilibrium where

every bidder has the subjective belief that the other bidders’ value distribution distributes

the probability weight between types θk and θµ. Formally, the distribution of the other

bidders’ valuation is defined by the vector xθ
k

= (xθ
k

θ1 , . . . , x
θk

θm) where for all j ∈ {1, . . . , }

it holds that xθ
k

θj denotes the probability with which type θj occurs. This vector is defined

by

xθ
k

θθk
=

θµ − µ
θµ − θk

, xθ
k

θµ =
µ− θk

θµ − θk
and xθ

k

θj = 0 for θj 6= θk, θµ.

Given this subjective belief, in every subjective-belief equilibrium every bidder with

valuation θk bids θk. It follows from Proposition 2 that bidding θk is a belief-free

rationalizable action for a bidder with valuation θk. Since it is not belief-free rationalizable

to bid above valuation, θk is the highest belief-free rationalizable bid for a bidder with

valuation θk.

Now I examine the highest belief-free rationalizable bids of a bidder with valuation

θk such that θk is strictly greater than µ. Analogously as in the proof Proposition 6,
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the highest belief-free rationalizable bid of a bidder with valuation θk is induced by the

strategy of the other bidders’ such that

(i) All bidders with a lower type bid their highest belief-free rationalizable bid.

(ii) All bidders with an equal or higher type bid
(
b
θk
)−

.

The strategies in (i) are belief-free rationalizable by definition and the strategies in (ii) are

belief-free rationalizable due to Lemma 8. It follows from Corollary 1 that a best reply to

these strategies is belief-free rationalizable. The highest belief-free rationalizable bid for a

bidder with valuation is a best reply to the strategies in (i) and (ii) and to distribution of

the other bidders’ values. Let the vector xθ
k

= (xθ
k

θ1 , . . . , x
θk

θm) define this distribution, i.e.

for all j ∈ {1, . . . , } it holds that xθ
k

θj denotes the probability with which type θj occurs.

For all j ∈ {1, . . . ,m} it must hold that

θk − bθ
k

≥

(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
.

Hence, the vector
(
xθ

k

θ1 , . . . , x
θk

θm

)
is the solution to the following minimization problem

min max
l<k


(

l∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

l)
s.t. xθ

k

θ1 + · · ·+ xθ
k

θm = 1

xθ
k

θ1θ
1 + · · ·+ xθ

k

θmθ
m = µ,

which I denote by M θk since the solution of this minimization problem is the belief which

induces the highest belief-free rationalizable bid of a bidder with valuation θk. It is to

show that for the solution of this minimization problem it holds that(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
=

(
j′∑
i=1

xθ
k

θi

)I−1(
θk − bθ

j′
)

for all j, j′ < k.

Assume there exist j, j′ < k such that(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
>

(
j′∑
i=1

xθ
k

θi

)I−1(
θk − bθ

j′
)
.
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Then it also holds that

max
l<k


(

l∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

l) >

(
j′∑
i=1

xθ
k

θi

)I−1(
θk − bθ

j′
)
.

Thus one can assume w.l.o.g. that(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
= max

l<k


(

l∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

l) .

If

I will consider two cases: j < j′ and j > J ′. In both cases I will construct a vector

x̃θ
k

=
(
x̃θ

k

θ1 , . . . , x̃
θk

θm

)
which fulfills all constraints of the minimization problem but leads

to a lower value of the objective function. Hence, the vector xθ
k

=
(
xθ

k

θ1 , . . . , x
θk

θm

)
cannot

be the solution of minimization problem M θk .

Case 1: j < j′.

Let δ > 0 be defined by(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
=

(
j′∑
i=1

xθ
k

θi

)I−1(
θk − bθ

j′
)

+ δ.

(8)

(
j∑
i=1

xθ
k

θi

)
I−1

√(
θk − bθ

j
)

=

(
j′∑
i=1

xθ
k

θi

)
I−1

√(
θk − bθ

j′)
+ δ.

Let the vector x̃θ
k

=
(
x̃θ

k

θ1 , . . . , x̃
θk

θm

)
be defined by(

x̃θ
k

θ1 , . . . , x̃
θk

θj+1 , . . . , x̃θ
k

θm

)
=
(
xθ

k

θ1 + ε1, . . . , x
θk

θj+1 + εj+1, . . . , x
θk

θm + εm

)
where ε1, εj+1 and εm fulfill the conditions

ε1, εj+1, εm > 0

(9) − ε1 + εj+1 − εm

(10) εj+1θ
j+1 − εm = 0
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(11) εj+1 <
δ

(1− θj+1) I−1

√(
θk − bθ

j
)

+ θj+1 I−1

√(
θk − bθ

j′) .
Equation (10) is equivalent to

εm = εj+1θ
j+1

from which follows that if εj+1 > 0, then also εm. Plugging this into equation (9) gives

−ε1 + εj+1 − εj+1θ
j+1 = 0

⇔ ε1 = εj+1

(
1− θj+1

)
which shows that if εj+1 > 0, then also ε1. Conclusively, ε1, εj+1, εm fulfilling the conditions

above indeed exist if εj+1 is chosen sufficiently small.

Inequality (11) is equivalent to

δ > εj+1

((
1− θj+1

)
I−1

√(
θk − bθ

j
)

+ θj+1 I−1

√(
θk − bθ

j′))

⇔ δ − εj+1

(
1− θj+1

)
I−1

√(
θk − bθ

j
)
>
(
−εj+1

(
1− θj+1

)
+ εj+1

)
I−1

√(
θk − bθ

j′)
δ − ε1 I−1

√(
θk − bθ

j
)
> (−ε1 + εj+1) I−1

√(
θk − bθ

j′)
Adding equation (8) gives

δ +
(
xθ

k

θ1 − ε1, . . . , xθ
k

θj

)
I−1

√(
θk − bθ

j
)
>(

xθ
k

θ1 − ε1, . . . , xθ
k

θj , x
θk

θj+1 + εj+1, . . . , x
θk

θj
′

)
I−1

√(
θk − bθ

j
)

+ δ

⇔

(
j∑
i=1

x̃θ
k

θi

)I−1 (
θk − bθ

j)
>

(
j′∑
i=1

x̃θ
k

θi

)I−1(
θk − bθ

j′
)
.

Thus, it holds that(
j∑
i=1

x̃θ
k

θi

)I−1 (
θk − bθ

j)
= max

l<k


(

l∑
i=1

x̃θ
k

θi

)I−1 (
θk − bθ

l)
and (

j∑
i=1

x̃θ
k

θi

)I−1 (
θk − bθ

j)
<

(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
.
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Hence, the vector x̃θ
k

=
(
x̃θ

k

θ1 , . . . , x̃
θk

θm

)
fulfills all constraints of the minimization problem

but leads to a lower value of the objective function which leads to a contradiction.

Case 2: j > j′.

Let δ > 0 be defined by(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
=

(
j′∑
i=1

xθ
k

θi

)I−1(
θk − bθ

j′
)

+ δ.

(12)

(
j∑
i=1

xθ
k

θi

)
I−1

√(
θk − bθ

j
)

=

(
j′∑
i=1

xθ
k

θi

)
I−1

√(
θk − bθ

j′)
+ δ.

Let the vector x̃θ
k

=
(
x̃θ

k

θ1 , . . . , x̃
θk

θm

)
be defined by(

x̃θ
k

θ1 , . . . , x̃
θk

θj , . . . , x̃
θk

θm

)
=
(
xθ

k

θ1 + ε1, . . . , x
θk

θj − εj, . . . , xθ
k

θm + εm

)
where ε1, εj and εm fulfill the conditions

ε1, εj, εm > 0

(13) ε1 − εj + εm = 0

(14) − εjθj + εm = 0

(15) εj <
δ

θj I−1

√(
θk − bθ

j
)

+ (1− θj) I−1

√(
θk − bθ

j′) .
Equation (14) is equivalent to

εm = εjθ
j

from which follows that if εj > 0, then also εm. Plugging this into equation (13) gives

ε1 − εj + εjθ
j = 0

(16) ⇔ ε1 = εj
(
1− θj

)
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which shows that if εj > 0, then also ε1. Conclusively, ε1, εj, εm fulfilling the conditions

above indeed exist if εj is chosen sufficiently small.

Inequality (15) is equivalent to

δ > εj

(
θj I−1

√(
θk − bθ

j
)

+
(
1− θj

)
I−1

√(
θk − bθ

j′))

⇔ δ − εjθj I−1

√(
θk − bθ

j
)
> εj

(
1− θj

)
I−1

√(
θk − bθ

j′)
⇔ δ +

(
εj(1− θj)− εj

)
I−1

√(
θk − bθ

j
)
> εj

(
1− θj

)
I−1

√(
θk − bθ

j′)
⇔ δ + (ε1 − εj) I−1

√(
θk − bθ

j
)
> ε1

I−1

√(
θk − bθ

j′)
.

Thus, it holds that(
j∑
i=1

x̃θ
k

θi

)I−1 (
θk − bθ

j)
= max

l<k


(

l∑
i=1

x̃θ
k

θi

)I−1 (
θk − bθ

l) .

It follows from equation (16) that εj > ε1 and therefore it holds that(
j∑
i=1

x̃θ
k

θi

)I−1 (
θk − bθ

j)
<

(
j∑
i=1

xθ
k

θi

)I−1 (
θk − bθ

j)
.

Hence, the vector x̃θ
k

=
(
x̃θ

k

θ1 , . . . , x̃
θk

θm

)
fulfills all constraints of the minimization problem

but leads to a lower value of the objective function which leads to a contradiction.

�

Appendix F. Additional explanation to Definition 1

The most general version of Definition 1 can be formalized such that a player i knows

that the possible distributions of types and actions are described by some subset ∆Θj ,Aj of

the set of all distributions on Θ−i × A−i denoted by ∆(Θ−i × A−i). Definition 1 does not

account for the type of correlation where distributions and strategies could be correlated.

As an example, consider the case with two players i and j. The type space of bidder j is

given by Θj = {θ1, θ2} and the action space by Aj = {a1, a2} and there is no unknown

utility type θ0. If a strategy can depend on the distribution, then it is possible that if player
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j has the value distribution (1
2
, 1

2
), she chooses action a1 given valuation θ1 and action

a2 given valuation θ2, but if player j has the value distribution (1
4
, 3

4
), she chooses action

a2 given any of the valuations. Hence, it is possible that the set ∆Θ−i,A−i ⊆ ∆(Θj × Aj)

consists only of the two elements(
1

2
(θ1, a1),

1

2
(θ2, a2)

)
and

(
1

4
(θ1, a2),

3

4
(θ2, a2)

)
.

In contrast, if these distributions are elements of the set ∆Θj ×∆Sj, then also(
1

2
(θ1, a2),

1

2
(θ2, a2)

)
and

(
1

4
(θ1, a1),

3

4
(θ2, a2)

)
have to be elements. Formally, the set ∆Θj × ∆Sj is not a subset of ∆(Θj × Aj).

However, there exists an injective function i : ∆Θj ×∆Sj ↪−→ ∆(Θj × Aj) and therefore

∆Θj×∆Sj can be viewed as a subset of ∆(Θj×Aj). A tuple of distributions (F
Θj
j , F

Aj
j ) ∈

∆Θj ×∆Sj is mapped to the distribution where the tuple (θj, aj) occurs with probability

F
Θj
j (θj)

∑
βj∈Sj :βj(vj)=aj F

Aj
j (βj). As an example consider the tuple of the value distribution

where θ1 and θ2 occur with probability 1
2

and the distribution of strategies where the strategy

(θ1 7→ a1, θ2 7→ a2) occurs with probability 1
3

and the strategy (θ1 7→ a2, θ2 7→ a2) occurs

with probability 1, denoted by
((

1
2
, 1

2

)
,
(

1
3

(θ1 7→ a1, θ2 7→ a2) , 2
3

(θ1 7→ a2, θ2 7→ a2)
))

. This

element is mapped to
(

1
6
(v1, a1), 1

3
(v1, a2), 1

2
(θ2, a2)

)
. I do not consider this type of

correlation because players know their type and have an ex-interim rather than an

ex-ante perspective. Therefore, given that players know their type, they may not have an

assumption about their own distribution. Moreover, the separation between distributions

and strategies allows for a formalization of distributional and strategic uncertainty such

that that case of pure distributional or pure strategic uncertainty can be nested in the

general model. If there is no distributional uncertainty, then the set ∆Θ−i is a singleton

and if there is no strategic uncertainty, then the set ∆S−i is a singleton. Since I do not

consider the possibility of correlation in the application sections, I do not allow for this

type of correlation in the general model for the sake of notation simplicity.
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