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Abstract

A policy maker faces a sequence of unknown outcomes. At each stage two
(self-proclaimed) experts provide probabilistic forecasts on the outcome in the
next stage. A comparison test is a protocol for the policy maker to (eventually)
decide which of the two experts is better informed. The protocol takes as input
the sequence of pairs of forecasts and actual realizations and (weakly) ranks
the two experts. We propose two natural properties that such a comparison
test must adhere to and show that these essentially uniquely determine the
comparison test. This test is a function of the derivative of the induced pair of
measures at the realization.
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1 Introduction

The literature on expert testing has, by and large, treated the question of whether a self-
proclaimed expert can be identified as such, while also not allowing for charlatans to pass
the test. A striking result due to Sandroni (2003) is that no such test exists without
additional structural assumptions on the problem. The basic premise of this literature is
the validity of the underlying question of whether a forecaster, or rather a probabilistic
model, is correct or false. In a hypothetical world, where only one model exists and the
tester can only entertain the services of a single expert, this may make sense. Even then,
one might wonder what is the tester to do whenever she rejects the expert. Does she turn
to another expert? to her own intuition? In any case she would probably, implicitly, utilize
an alternative (possibly untested) model.

This motivates an alternative approach to the issue of expert testing and that is com-
parison of experts, which is the approach we pursue here. In this approach the tester is
exposed to a few alternative models (forecasters) and a single realization of events. The
tester then compares the two forecasters and decides which is the better informed one.
Facing many (possibly conflicting) experts is commonplace in weather forecasting, finan-
cial forecasting, medical prognosis and more. Nevertheless, the design of comparison tests
has been almost entirely ignored in the literature on expert testing. Two exceptions are



Al-Najjar and Weinstein (2008) and Feinberg and Stewart (2008) which we will discuss
later.

The approach we take in this paper is axiomatic. After defining exactly what is meant
by a comparison test we will turn to discuss some desirable properties for such tests. We
then construct a test with all the desired properties and show it is essentially unique. The
setting we focus on is that of two experts and a test which (weakly) ranks the two and
hence its domain consists of three outcomes. It may either point at one of the two experts
as being better informed or it may be indecisive. Let us discuss the properties that are
central to our main results.

Anonymity - A test is anonymous if it does not depend on the identity of the agents
but only on their forecasts.

Error-free - Let us assume that one of the experts has the correct model (namely,
he would have passed a standard single expert test which has no type one errors). An
error-free test will surely not point at the second expert as the superior one (albeit, it may
provide a non-conclusive outcome).

Reasonable - Let us consider an event, A, that has positive probability according to
the first expert but zero probability according to the second. Conditional on the occurrence
of event A a reasonable test must assign positive probability to the first expert being better
than the second.

Tail test - As experts often require some initial data to calibrate their models, we
would like to rule out tests whose decision is based on a prefix of the realized outcome. A
tail test is one which depends only on forecasts made eventually, after the calibration phase.
Whereas much of the literature emphasizes tests which provide their verdict at some finite
outcome we take the opposite approach for some of our results and consider comparison
tests that are based on a long-run performance.!

1.1 Results

We construct a specific comparison test, based on the derivative of two measures that are
induced by the two forecasts derived from the likelihood ratio of the two forecasts. We
prove that this test is symmetric, error-free, reasonable and is also a tail test.

We then show that the test is unique in the following sense. For any test that differs
from the construction and is symmetric and reasonable there exist two forecasters for which
an error will be made (the probability of reversing the order). If, in addition, the test is a
tail test then this error could be made arbitrarily close to one.

Finally, our constructed test perfectly identifies the correct forecaster whenever the
two measures induced by the forecasters are mutually singular with respect to each other.

! Consider the classical example of an IID process. A forecaster who is aware that indeed the process is
such must calibrate the model to learn its parameter. Initial forecasts may be wrong, yet those made after
a calibration phase become more accurate and long-run predictions are spot-on.



Requiring the test to identify the correct expert when the measures are not mutually singular
is shown to be impossible.

1.2 Related Literature

Much of the literature on expert testing focuses on the single expert setting. This literature
dates back to the seminal paper of Dawid (1982), who proposes the calibration test as a
scheme to evaluate the validity of weather forecasters. Dawid asserts that a test must not
fail a true expert. Foster and Vohra (1998) show how a charlatan, who has no knowledge
of the weather, can produce forecasts which are always calibrated. The basic ingredient
that allows the charlatan to fool the test is the use of random forecasts. Lehrer (2001)
and Sandroni, Smorodinsky and Vohra (2003) extend this observation to a broader class of
calibration-like tests.

Finally, Sandroni (2003) shows that there exists no error-free test that is immune to
such random charlatans (see also extensions of Sandroni’s result in Shmaya (2008) and
Olszewski and Sandroni (2008)).

To circumvent the negative results various authors suggest to limit the set of models for
which the test must be error-free (e.g., Al-Najjar, Sandroni, Smorodinsky and Weinstein
(2010) and Pomatto (2017)), or to limit the computational power associated with the char-
latan (e.g., Fortnow and Vohra (2009)) or to replace measure theoretic implausibility with
topological implausibility by resorting to the notion of category one sets (e.g., Dekel and
Feinberg (2006) ).

As previously mentioned, the comparison of experts has drawn little attention in the
community studying expert testing, with two exceptions we are aware of, which we now
turn to discuss.

Al-Najjar and Weinstein (2008) consider a non-counterfactual likelihood test for com-
paring two experts. They show that if one expert knows the true process whereas the other
is uninformed, then one of the following must occur: either, the test correctly identifies the
informed expert, or the forecasts made by the uninformed expert are close to those made
by the informed one. Note that the test they propose is anonymous and reasonable but is
not error-free. An asymptotic version of this likelihood ratio, however, will play a crucial
role in our construction.

Another approach was suggested by Feinberg and Stewart (2008), who study an infinite
horizon model of testing multiple experts, using a cross-calibration test. In their test N
experts are tested simultaneously; each expert is tested according to a calibration restricted
to dates where not only does the expert have a fixed forecast but the other experts also
have a fixed forecast, possibly with different values. That is to say, where the calibration
test checks the empirical frequency of observed outcomes conditional on each forecast, the
cross-calibration test checks the empirical frequency of observed outcomes conditional on
each profile of forecasts.

They showed that if an expert predicts according to the data-generating process, the



expert is guaranteed to pass the cross-calibration test with probability 1, no matter what
strategies the other experts use. In addition, they prove that in the presence of an in-
formed expert, the subset of data-generating processes under which an ignorant expert (a
charlatan) will pass the Cross-Calibration test with positive probability, is topologically
“small”. However, this test, like the test of Al-Najjar and Weinstein (2008), is anonymous
but is not reasonable (a concise example is provided in Section 4) and is error-free (proof
is straightforward and omitted).

1.3 Finite or Infinite Test?

A long-standing debate in the literature on expert testing is whether a test should be finite.
A test is finite if its decision is made in some finite time. In contrast, an infinite test may
require the infinite sequence of forecasts and realizations prior to making a verdict. The
argument for considering finite tests is that infinite tests are impractical.

Although we sympathize with the argument that infinite tests are impractical we do
think they have academic merit. The construction of well-behaved infinite, possibly imprac-
tical, tests would eventually shed light on their finite counterpart. Thus, if the technical
analysis underlying the understanding of infinite tests is more tractable than that of finite
tests then the study of infinite tests should be the port of embarkation for this research
endeavor. This is what motivates our approach in this paper.

Furthermore, in expert testing we should allow experts to calibrate their model given
the data. Pushing the design of tests towards finite tests may result in tests that give a
verdict before these models are refined and calibrated. In a way the recent success of ‘deep
learning’ based on enormous data sets (paralleling our interest in long-run observations)
testifies to the importance of patience in model (expert) selection and the benefit of looking
at many data points.

2 Model

At the beginning of each period ¢ = 1,2,... an outcome w;, drawn randomly by Nature
from the set Q = {A, B}, is realized.? Before w; is realized two self-proclaimed experts
(sometimes referred to as forecasters) simultaneously announce their forecast, in the form
of a probability distribution over 2. We assume that both forecasters observe all past
realizations and all previous pairs of forecasts.

An element w = {w1,wa,...} € Q% is called a realization of outcomes and we denote
by w! = {w1,ws,...,w;} the partial history of outcomes up to period ¢ (by convention w®
denotes the empty history). A cylinder C,; = {& € Q| &, = wy, 1 < n < t}is a set of
realizations which share a common partial history of outcomes up to period t. Let g; denote

*For expository reasons we restrict attention to a binary set Q = {A, B}. The results extend to any
finite set.



the o-algebra on Q> generated by the cylinder sets C,+ and let goo 2 o( U g¢) denote the

smallest o-algebra which consists of all cylinders (also known as the Borel o-algebra).? In
addition, we endow 2°° with the product topology, that is, the topology that is generated
by a basis of cylinders. Let A(2°°) be the set of all probability measures which are defined
over the measure space (2, goo)-

Let H' £ (2 x A() x A(Q))! (with H? £ () be the set of all partial histories of length
t and define the set of all possible histories by H = |J H.

>0

A (pure) forecasting strategy f is a function that maps finite histories to a probability
distribution over Q. Formally, f: H — A(Q).

Note that each forecast provided by one expert may depend, inter alia, on those provided
by the other expert in previous stages. We denote by F' the set of all forecasting strategies.

A probability measure P € A(2*°) naturally induces a (set of) corresponding forecasting
strategy, denoted fp, that satisfies any w' € Q! such that P(C,+) > 0 and any w1 €

fP((th ) '))[thrl] = P(C(wt,wt+1)’0wt)'

In other words, the forecasting strategy fp derives its forecasts from the original measure,
P, via the Bayes rule. Note that this does not restrict the forecast of fp over cylinders,
C,t, for which P(C,¢) = 0.

In the other direction, let f 2 (fo, f1) be a pair of forecasting strategies. Then it induces
a pair of measures over Q°°, as follows. A realization w together with f induce a unique
play path:

h(w,fo,fl) £ (wt> f(‘)‘jt? fft)?io

starting at the Null history, where wy, f;* denote the outcome at time ¢, and the probabilistic
prediction of expert ¢ for that period, respectively. Additionally, fixing time n > 0, the
prefix (of length n) and the suffix (starting an n) of h, 4, 7,) are denoted by h(,n f, r,) and
P, fo, 1) TESPECtively.

Now consider a cylinder C: and let @ € C,, since any measure in A(Q°°) is determined
by its cylinders, it follows that jhe pair f uniquely induces a pair of measures, which are

correspondingly denoted by (Pf , Plf ), via

t—1

PH(C) =TT Filhr go.)nsals i € {0,1}. (1)
n=0

2.1 Comparison Test

Definition 1. A comparison test is a measurable function which inputs a pair of two
forecasting strategies and a realization in 2°° and which outputs a rank (weak order) over

390 £ {®7 Qoo}



the two experts. Formally,
o 1
T: 2 ><F><F—>{O,§,1}
where T =1 # % implies that expert ¢ is claimed as better informed, while T" = % implies

the test is inconclusive (this cannot be avoided, for example, when both experts agree on
their forecasts).

Definition 2. A comparison test is called symmetric whenever

T(w, fo, f1) =1 —=T(w, f1, fo), Yw € Q%, fo, f1 € F.

In other words, the expert chosen by 7" does not depend on the expert’s identity (0 or 1).
Note, if fo = f1 then any symmetric test T" must output 0.5 for all w € Q2°°. Our definition
of a comparison test T' suggests that the outcome of the test may depend on predictions
made over realizations that did not materialize. In this paper we study a restricted class of
tests—those that do not depend on forecasts made over unobserved realizations. Formally,
Let

h: 2 xFxF— (2xA(0)xA(Q)>

be a function that maps a triplet (w, fo, f1) to its uniquely induced play path, h, 7, 7). A

test T is called prequential if there exists a function

T: (2 xA(Q) x A(Q)>® — {0, % 1}

such that T =T o h.

For any test, T', and a pair of forecasting strategies, fé (fo, f1) € F x F, we denote by
Ag:k 2 {w| T(w, fo, f1) = k} the set of realizations for which the test outputs k.

Definition 3. A test T is error-free with respect to A C Fif Vf £ (fofi)e Ax A



A test T is called error-free if it is error-free with respect to the set of all forecasting
strategies, F'. In other words, if one of the forecasters uses P, then with P probability
zero the other forecaster is identified as the better informed one. Obviously a test which
constantly outputs % is both anonymous, prequential and is also error-free.

Obviously this test has no value. Inspired by this we ask whether there are meaningful
error-free tests. It turns out that error-free tests are very restrictive in how well they can
distinguish between two forecasters. In fact, whenever the measures induced by the two
forecasters are mutually absolutely continuous, then an error-free test cannot guarantee to

identify the better informed expert. Formally,

Proposition 1. Let f 2 (fo, f1) € F x F be such thal Plf(;é P({) < Pg. If T is error-free

then L
Pf(Af) < 1.

On a set of realizations that has probability one according to forecaster 0 it is not
necessarily the case that the test will identify him as better informed.

Proof. Assume that
(A7) =1. 2)

Therefore L
Pl (Al =1,

which by the symmetry of T contradicts the assumption that T is error-free. O

The next property of a comparison test asserts that for any set of realizations assigned
zero probability by one forecaster and positive probability by the other forecaster, there
must be some subset of realizations for which the other forecaster is deemed superior.

Definition 4. We say that a test T is reasonable if Vf 2 (fo,f1) € F x F, for any
measurable set A, and for any ¢ € {0,1}

—

PI(A) > 0and PL(4)=0 — Pl(anal,) >0 3)

It should be emphasized that reasonableness and error-free are not related notions. To
see why error-free does not imply reasonableness just consider the constant error-free test
T= % An example for which reasonableness does not imply error-free is left to the end of
Subsection 3.3.



We now turn to our construction of a prequential, symmetric, error-free and reasonable
comparison test.

3  An Error-Free and Reasonable Test

The following test is derived from the likelihood ratio of the two measures induced by the
two forecasters. For f 2 (fo, f1) € F x F, w € Q®, t > 0, let

t—1
A 17 F1n o)) wn1]
Dt £ | | 4
fOfl(w> fO(h(wn7f07f1)>[wn+1] ( )

n=0

and define

. . ,
D fi(w) & limsupDy, fi(w) i Jolhun o)) lwns] > 0, ¥n =0
+00 if fo(h@n fo.51))lwnt1] =0, for somen

P ‘
Qfofl(w) s l’LZ”ZZO’I’OLfoOfl (UJ) Zf fO(h(w",fo,f1)>[wn+l] >0,Vn>0
+00 if fo(hn fo.f1))[wWns1] =0, for some n.

Note, given Pg, Plf, t > 0, the functions w —» Pg(th), w— Plf(C'wt) are g;— measurable
as well as

Pl 7

Zwt) - plo) >0
aw) 2 Bl P[l((c t)) '

+00, 0 \Fwt) =

Consequently, the functions, Dy, fi(w), Dy, f1(w) are measurable as lim inf, lim sup of z,
respectively.

Definition 5. If Dy f1(w) = Dy, fi(w) < oo, we say that the forecasting strategy fi is
differentiable with respect to the forecasting strategy fo at w and write
Dfofl(w) = ﬁfofl((’“)) = Qfofl(w)'

Dy, f1 is the derivative of f1 with respect to fy. Consider the following non-counterfactual
symmetric test

1, Dy fo(w)=0
Tp(w, fo, f1) =< 0.5, other (5)
0, Dfofl (w) =0.



Tp will be called a derivative test. Expert ¢ is pointed as the true forecaster at w whenever
the derivative of f; with respect to f(1_;) exists and equals 0. Our next goal is to prove
that T'p is error-free and a reasonable test. Let us first show that Dy, f1 exists and is finite
Pg - a.e.
Lemma 1. Let B 2 {B;}ien be an arbitrary sequence of cylinders and set B = |J B;. Then,
€N
there exists an index set J C N such that {B;}jc; are pairwise disjoint, and B = |J B;.
JjeJ
Proof. A cylinder is called maximal in B if it is not a subset of any other cylinders in
B. Any cylinder in B is contained in some maximal cylinder in B. Let J C N be such
that {B;};cs is the set of all distinct maximal cylinders. Since any two distinct maximal
cylinders are disjoint it follows that B = |J B;. O
jeJ

Lemma 2. Fiz 0 < a < oo and let A C Q2°° be a_measurable set. Then

a) AC{w| Dy fi(w) < a} = P/ (4) <aR](A).

b) Ac{wl Dpfilw) = a} = P{(4) = aP{(A).
Proof. (a) Let A be a measurable set which satisfies the left side of (a) and let U C Q°° be
any open set such that A C U. Fix € > 0, then Va € A, VN > 0 3t = (4, y) > N such that

H fi(h (a™, fo,f1) )[an+1] f
Dfofl( ) = 3 1 = Plf-»(cat) < (Ot—i-é). (6)
H Ffolhgan go.p)[ant] £ (Cat)

Consider the following set of cylinders

FAR{CucUlacA t>0, Pl(Cu) < (a+e)P(Cu)).

Note, it follows from (6) that F4 is not empty where sup{t| Cy: € F4} = 0co. By Lemma 1
we are provided with an index set J and a collection of pairwise disjoint sets {B; € Fa}jes

such that
U B=UJB; (7)
BeF 4 jeJ

Hence

ACBzr, (7) jeJ jeJ
< S(a+9R{(B) = (a+ T F(B)) < (et 9B/
BjeFa jeJ jeJ UDBis are disjoint



Since the above inequalities hold for any open set U which contains A and

— —

FiA)= inf (FU)},

it follows that Ve > 0

P{(4) < (a +¢)P{(4)

which completes the proof of Case (a). The proof of Case (b) is analogous and hence
omitted. n

We now turn to show that the derivative of one measure with respect to another exists and
is finite almost surely.

Lemma 3. Let fo, f1 € F, then Dy, f1 exists and is finite Pof - a.e.

Proof. Let S £ {w| Dy, fi(w) = +oc}. Therefore Va > 0
S C{wl Dfofl(w) > af,

and it follows from Lemma 2 that Pg(S) < %P{(S) Now let & — 0o to obtain

and consequently Efofl is finite Pg — a.e. For the second part let

R(a,b) = {w| Dy, fi(w) < a <b< Dy, fi(w) < oo},

Note that
R(a,b) C {w| Dy, f1(w) < a}

R(a,b) C {w| D, fr(w) = b}

where applying Lemma 2 gives: ngF(R(a, b)) < Plf(R(a, b)) < an?(R(a, b)). Hence,

—

Pl(R(a,b)) =0, YO < a <b (9)
where from (8), (9) we obtain

P{({w] Dj filw) < Dy fi(w) < oo})

=P{( U R(a,b)< ¥ P{(R(a,b)=0.

0<a<b 0<a<b
a,beQ a,beQ

Therefore, Dy, fo exists Pg - a.e. O

10



3.1 The Properties of Tp

Now that we have established the existence and the finiteness of the test Tp, let us prove
it is a reasonable and error-free test. We do this in two separate claims:

Claim 1. Tp is a reasonable test.

Proof. Let A be a measurable set such that .
Pl (A) >0 and P/(A)=0. (10)

For a > 0 let
R, 2 AN{w|0<a< Dy fi(w) < oo}, a>0.

Note that if P[{(Ra) > 0 then applying Lemma 2 for the set R, yields,
0= P/(R,) > aP{(R.) >0
which contradicts (10). Therefore

P(AN {w] 0 < Dy, falw) < 00}) = B (|JRa) < SR (Ra) = 0.

0<a 0<a
acQ a€cQ

Since by Lemma 3 Dy, f1 exists and finite Pg — a.e., we conclude that

R{(AN {w] Djy filw) = 0}) = 0.

Hence

0 < P{(4) = R{(A0{w| Dppfi(w) =0}) = PI(AN AL, )
and the test is reasonable. O

Claim 2. Tp is error-free.
Proof. Note that
Al 5 @l Difolw) = 0)
= {w| tli)’l’gLo D;ﬁ fo(w) =0 and VYn > 0, f1 (h(wnvfojfl))[wn+1] > 0}

C {w| tlinolo D’}Ofl (w) =00} U{w| In >0 s.t folhwn s, 1)) [wnr1] = 0}

C {w| Dpy fi(w) = Dy, fir(w) = oo}

By Lemma 3, Dy, f1 is finite P/ — a.e. Thus

11



PL(AL ) < Pl ({w] Dy fi(w) = Dy, frlw) = o)) = 0

and Tp is error-free. ]

3.2 The Uniqueness of Tp

The next theorem asserts that there exists a unique reasonable and error-free test. That
is, any error-free test T~ Tp which is reasonable, admits an error. Let us first establish
what we mean by T~ Tp:

Definition 6. Let f 2 (fo, f1) € F x F. We say that T NfT if Vi € {0,1}
P! ({w| T(w, fo, i) # T(w, fo. f1)}) = 0.
We say that T ~ T if and only if T ~; T, Vf € F x F.

Claim 3. ~ is an equivalence relation on T = {T'| T' — comparison test}.

Proof. Let T, Ty, T, € T, f € Fx F, and i € {0,1}.
Reflexivity:

sz({w| T(wa f07 fl) 7é T(W7 fO, fl)}) =0=T~T.
Symmetry:

— -

})Zf({w| Tl(w>f07f1) 7& TQ(wvaafl)}) =0 <~ sz({w‘ TQ((/J,fO,fl) 7é Tl(wvfovfl)}) = 07

hence, T ~Ty, <— TH ~1Tj.
Transitivity: Assume that 77 ~ T, and T ~ T5, hence

)

Ty~ T = P (0] Ty, fo, f1) # T, for f1)}) = 1
Tl = P/ ({w] T(w. fo, f1) # To(w, fo, f1)}) = 1,

and so

—

L= P! ({w| Ti(w, fo, f1) # T(w, fo, f1)} N {w| T(w, fo, f1) # Ta(w, fo, f1)}¢) =
P ({w] Ti(w, fo, f1) # Ta(w, fo. f1)}),

vielding P/ ({w] T1(w, fo, f1) # To(w, fo. f1)}) = 0, and therefore Ty ~ T, O

12



We now turn to show that at all pairs (fo, f1) where T~ P Tp, T must admit an error,

and on top of that, if T"is a tail test, then there exists a pair (fo, f;) such that the probability
of the error term is arbitrarily large.

Theorem 1. Let T be a reasonable test. If T » Tp then T is not error-free.

Proof. Assume by contradiction that T is error-free. Let f £ (fo, f1) be such that T = P Tp
at f, then (w.lo.g. for i = 0) 3k, I(# k) € {0, 1.1} such that
P{(AL, N4 ) >0

In addition, by Claim 2, T is error-free, therefore

and consequently,

PJ(Ay & (A} A;Dé)) >0 or Pl(Ay2 (Agé nAL o) > 0.

Case 1: Pg(/il) > 0. By Claim 1, Tp is reasonable; thus

— —

Pl(A))=0= PJ(Ain A} ;) >0,
which leads to a contradiction since A{FD 0 AEJ;D 1 are disjoint. Thus
b 7§
P4l ) >0,

which contradicts the assumption that T is error-free.

Case 2: POf(Ag) > (. By the assumption T is a reasonable test where, by Claim 2, Tp
is error-free; therefore the contradiction

Pl (47,4 > 0
follows analogously from Case 1. O

Remark 1. The key properties can be usefully viewed as an implication of Lebesgue decom-
position (Billingsley 1995, Section 31). Here it is applied in a symmetric way with some
flexibility on how measure-zero sets are handled.

13



3.3 Tail Test

We now turn to introduce the notion of a tail test. We will argue that the test Tp is a tail
test. In fact, our next theorem asserts that any other tail test that is reasonable will not
only admit an error but will admit an arbitrarily large error.

Definition 7. T is a tail test if V(w, fo, f1), (W', [, f1) € Q° X F x F:
If In > 1 such that

h(’ﬂ,w,fo,fl) = h(n,W’,fé,f{) and f:)t,fz;) > O, V]. S t S n — 1, 1€ {O, 1}, (].1)

then T'((w, fo, f1)) = T((W', fo, 1))

In other words, a tail test must yield the same output for any given two pairs of fore-
casting strategies whose play paths eventually coincide after some time n > 1, and whose
conditionals are strictly positive up to time n.

Claim 4. Tp is a tail test.
Proof. Let (w, fo, f1), (', f§, f1) € Q° x F x F and n > 1 for which (11) holds. Let
(W, fl, 1) € Q° x F x F which satisfies

Vt>0: (w;" f&;l,fﬁ;/> _ (Wt+n>f&t+n’ fft—&-n)‘ (12)
Since D;Ofl (w) > 0 by the left part of (11) it follows that?

0=Tp((w" fy, 1)) ol 0= Dy fi(w) Dy fil(w") = Dpfi(w) <= Tp((w, fo, f1)) = 0.

(12)
Additionally, by the same consideration we have

1=Tp((w", fo, /) <= 0=Dyp fg(") < Tp((w, fo, /1)) =1,

and therefore

Tp((W", fos 1)) = Tp((w, fo, f1))-
Similarly, we show that Tp((w”, fZ, fI')) = Tp((«’, £}, f1)) by replacing (w, , f(‘)‘f;/, ffg) with
(wy, f(‘)’f;, f{";) in (12) and the Claim is concluded. O

Before we address the main theorem let us prove the following claim.

Claim 5. If T is reasonable then for any measurable set A

Plianal)>0 — PlLanal) >0, ic{o,1}, k#i.

*Note that Dy fi'(w”) = 0 if and only if Dy, f1(w”) exists and equals 0.

14



Proof. Let A be a measurable set and (w.l.o.g) assume by contradiction that
7 7 7 7 1
Pl(ANAL,) >0 A P{(ANAL,) =0, ke {0, 5

T is reasonable thus (3) yields Plf(A N Agﬂk N A§”1) > 0, which contradicts the fact that

Aék, A;l are disjoint sets. O

Theorem 2. Let T be a reasonable tail test. If T »~ Tp then V0 < e < 1 Hf = (fo, fl) such
that

PJ(A:J;VI) >1—¢€ or P{(A%O) >1—e.

Proof. By Theorem 1 (w.l.o.g.) there exists a pair f= (fo, f1) such that Plf(AiJ;O) > 0. In

addition, since A%O IS goo —measurable we can apply the Levy upwards theorem (Williams
1991, Theorem 14.2.) to obtain

o pfal _
tlLTopl U}T,O’ 9t) =

. Pf - PJF . f
Jim E 1[1A§’ 9] =E" 1 ¢ [goo] =17, P| —as.

0 fo
Therefore, aBf ¢ A;,o with Plf(Bf) = Pf(A;O) such that Yw € B we have
tzi@OPf(A{;Oy Co)=1 and f&,>0, V1 <t<n-1. (13)
Let 0 < e < 1. Fix @ € B/ and observe that from (13) In = n(cw) > 0 such that Vt > n
Pf (AL 1 Cyn) = P{ (AL | Con) P (Con) > (1 - ).

Thus, applying Claim 5 with the set Cygn yields Pg (A§0 N Cyzn) > 0 and consequently
fgft >0, V1 <t <n—1isinferred from (1). Now, modify f to be the forecasting strategy

f whose one step ahead conditionals satisfy

1 Ww=at t<n
filwir1] = ¢ filw)wir1] , @ =" t>n
0 other.
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5 Note, by construction, Vw € A;O NCgxn, i€ {0,1}, 1 <t <n—1 we have

R, fo,f1) = h(n,w’fo,fl) and fi = qujt >0, fit= qujt >0,
and since T is a tail test it follows from (11) that T(w, fo, f1) = T(w, fo, f1) = 0. As a
result, w € A%O N Cyn yielding

Pl(AL.,) > P{(A}.yn Can) > Pl (A} )N Can) > 1 ¢,
and therefore completes the proof. O

The next example shows that the result in Theorem 2 cannot be obtained if we relax
the requirement that 7" is a tail test; it furthermore illustrates that reasonableness does not
imply error-free.

Example 1. Let R -
h £ (Aa hO,t7 hl,t))?il? h £ (Aa hl,ta hO,t){?il

be play paths which satisfy
1
ho’t(A) =1, hlyl(A) = 5, hlt(A) =1,t>2
and consider the following test

Tp((w, fo, f1)), other
T((w, fo, f1)) = 0, B fooh

%
h
F
L, h(w,fo,fl h.

)=
)=
Note, for every triplet (w, fo, f1), whose induced play path coincides with ﬁ or %, there

exists ¢ € {0,1} such that
il =Pl =5 <1 (14)

where the left equality holds since Tp is error-free. Moreover, since Pif {(A)2,}) > 0 for
i € {0,1} and Tp is a reasonable test, it follows that T is reasonable even as it admits a
bounded error by (14).

®Note that the corresponding forecasting strategy fi determines the one step ahead forecasts along
w, only through the history of outcomes and does not depend on the full histories, i.e f;(w)wit1] =

P (wisa|Ci), YO< t<n—1, i€ {0,1}.
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4 TIdeal Tests

Recall that an error-free test eliminates the necessity of pointing out the less informed
expert. A stronger and more appealing property is to point out the better informed expert.
We consider tests that exhibit such a property as Ideal:

Definition 8. A symmetric test T is Ideal with respect to A C F if for all f £ (fo.fi #
fo) € Ax A

Ff (Afg) = 1.
It is called Ideal if it is Ideal with respect to F.

In other words, whenever expert ¢ knows the actual data generating process and expert
1 — 4 does not, an Ideal test will surely identify the informed expert.

Trivially, any Ideal test with respect to a subset of forecasts A is also error-free with
respect to the same set. The following is a straightforward corollary of Theorem 1.

Corollary 1. There exists no Ideal test with respect to a set of forecasts A whenever it
contains two forecasts which induce measures, one of which is absolutely continuous with
respect to the other.

This immediately entails:
Corollary 2. There exists no Ideal lest.

However, whenever A contains no such pair of forecasts, then an Ideal test does exist.
To prove this we must first accurately define the notion of mutually singular forecasts.

Definition 9. Two forecasting strategies, fo, f1(# fo) € F, are said to be mutually singular
with respect to each other, if there exist two disjoint sets

cf.of c (@ x A@Q) x AQ)™
such that® . . . .
P{({w] T o1y € CIY) = P{({w] ho gy € C 1) = 1.

A set A C F is pairwise mutually singular if Vfy, f1(# fo) € A, fo, f1 are mutually
singular with respect to each other.

The next lemma asserts that a reasonable test is able to perfectly distinguish between
far measures which are induced from forecasting strategies which are mutually singular with
respect to each other.

®Recall that f induces a unique play path Rw, fo,f1)-
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Lemma 4. Let fy, f1 # fo € F which are mutually singular with respect to each other. If
T is reasonable then

- -

Pl(Af) =1, ie{0,1}.

Proof. W.lo.g. let B be such that: PdF(B) =1, Plf(B) = 0. T is reasonable, therefore

—

PJ(B N A%O) > 0 from (3). Let k € {3, 1} and assume that

P{(BNAL,)>0.
Applying Claim (5) with the set B yields
Pl(BnAL,)>0
which contradicts the assumption that Plf(B) = 0. Hence, PJ(B N A;k) = 0. As a result,
L= F(B) = Rl(BNA},) + P{(BN Al )
— - - - 72
+R{ (BN AL = P{(B N A7)
and therefore P({(A{FO) =1. O

Note that Lemma 4 holds even for 7" which is not error-free.
We now demonstrate (in a concise way) that the Cross-Calibration test which was
introduced by Feinberg and Stewart (2008) is error-free and nevertheless is not reasonable.”

Example 2. Consider the Cross-Calibration test
Teross : Q% x (A(Q))Oo X (A(Q))OO — {0, 1}2,

and let g : {0,1}? — {0, 3,1} be defined by: g(1,1) = ¢(0,0) = %, ¢(1,0) =0, ¢(0,1) =

1.8 9 We define the induced Cross-Calibration comparison test by
T = goTeross- (15)

Let P, P{ (f £ (fo, /1)) be the Dirac measures on w 2 (0,4, A,,, A,,,), 0 £ (4,4, A,,, A,..),

respectively. Since both P({ and Plf pass the Cross-Calibration test on & it follows from
(15) that

7As mentioned in the Introdction, the Cross-Calibration test checks the empirical frequencies of the
realization conditional on each profile of forecasts that occurs infinitely often.

8For simplicity, we limit our attention to the two-forecasters model.

9The case for which Teross(w, , ) = (4,4), i € {0, 1} may be interpreted as both experts either pass(i = 1)
or fail(¢ = 0) the test on w.
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FoF For PR 1
Tcross(woap({vplf) = (171) <~ (goTcross)(wovp({aplf) :T(woap({7P1f) = 57
which implies that
PAl )=1. (16)

However, note that Pg , Plf are mutually singular with respect to each other; so if T' was a
reasonable test then, by Lemma 4, it would satisfy

P{({w’y N AL 5) >0

which contradicts (16) and therefore T' is not reasonable. The fact that T is error-free
follows immediately from Dawid (1982) and hence omitted.

The next theorem provides a necessary and sufficient condition for the existence of an
Ideal test over sets.

Theorem 3. 3 non-counterfactual Ideal test with respect to A if and only if A is pairwise
mutually singular.

Proof. <= Directly follows from Lemma 4 and Claim 1.

= Let T be a non-counterfactual Ideal symmetric test with respect to a set A with
h,T as in Definition 2. Let f £ (fo, f1 # fo) € F x F and denote

CT 2 {hy join)| w € A;i}, ie{0,1}.

Since h is 1:1 and A§07 Agﬂ , are disjoint, it follows that cl, of are disjoint where T Ideal
yields

— —

1 =P/ (4},) = P/ ({w] b oz € CF}). i € {0,1}.
]

We conclude the paper with an example of a test over a domain of mutually singular
forecasts:

Example 3. Let
AirpxArp = {f = (f(),f1) S FXF‘ Vi € {0, 1} Elafi S [0, 1] S.t,f(ht)[A] =ay,, Vht € Ht}.

For w € Q% denote the average realization by
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n
> Lw=ay

A . t=1
ay = lim | ——

n—oo n

and consider the following comparable test

L [(AO)[A] = ay # fo(h0)[A]
T(w, fo, f1) =4 0.5, other

0,  fo(h")[A] = ay, # f1(R)[A].

Obviously, T is a well-defined symmetric and non-counterfactual. Showing that T is Ideal
with respect to Arrp is a mere application of the law of large numbers.

5 Finite Case

In the model considered thus far the tester’s verdict is determined at the end of all times.
This seems impractical and so we turn to model a tester determines in finite time which
expert is better. In fact, in the model below, at each stage, ¢, the tester makes up his mind.
In theory, a test can swing back and forth between the two experts. The analysis below
focuses on the cases where this does not happen and the tester essentially settles on one
expert or the other.

Apart from moving from a verdict that is determined at the end of all times to verdicts
made in finite time we make two additional distinctions. First, we allow the tester to
randomize his decision at any time t. Second, we do not allow the tester to be indecisive.
A test must point to one of the two experts.

A tester makes decisions in finite times and a test is a sequence of such decisions.

Nevertheless, the properties of such tests, which we are interested in, are determined on
the infinite sequence.
Let I = {0, 1}, be the decision set of a tester. The tester decides 0 or 1 whenever he prefers
expert 0 or 1, respectively. At each time ¢ > 0, the tester uses a mixed strategy before
announcing which expert he prefers by flipping a coin with a parameter which is determine
at time t. The tester ends up with a sequence of decisions which is denoted by I°°.

5.1 A Finite Comparison Test

A test is, therefore, a function that maps any finite history of realizations and pairs of
forecasts into a (random) decision of which of the two experts is preferred. Formally,
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Definition 10. A finite comparison test is a sequence 7 := (T})¢>0, where
T : (2 xAQ) x A(Q) x I)*® — A(]),
is gr—measurable.

Note that ? together with a pair (w, 7) induce a unique measure on the set 1°°, which we

@, 1)
7

denote by P. , meaning P(%; ) e A(I*°). In addition, we denote an element in I*° by

il (it)r>0 € I°°, and for a given i € I we define by
¢

> 1=y ()
dense(D)[i] == liminf=t——

)
t—o00 t

to be the density of a decision i along the sequence of decisions . Note that dense(i)[i] =
1 < dense(i)[1—i] =0.

Definition 11. T is decisive on i € I at (w, 7) if
P(w’?) ieI®:dense(i)[i] =1}) =1,
T
T is indecisive at (w, 7) if 7 is not decisive on i, Vie [ 101!
Definition 12. ? is error-free if VfE Fx F 12

Pl 7> ) € Q% x I : dense(i)[1] = 1}) = 0.

Definition 13. ? is reasonable if VfE F x F, and YC — measurable '3

Pf(C) > Oande(C) =0= Pfo ?) ) € QOxI® :w e C Adense(i)[0] = 1}) > 0.

0T hat is, P%’ 7))({2 € I : dense(i)[0] > 0 A dense(i)[1] > 0}) > 0.

1Note that any symmetric test is indecisive in case where fo = f1 yielding the tester’s coin to eventually
distributed half

2That is, PJ  ({w: T is decisive on 1 at (W, H}) =0, Vfe FxF.
'3That is, P {w: T is decisive on A at (w, f)}NC) >0, Vfe FxF.
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5.2 The Test ITD>

_>
Consider the following finite comparison test Tp,

oo 0000 = 1 g 0 (17)

where D}O fi(w) is defined in (4) and Tp ¢+1(w, fo, f1)[0] denotes the tester’s coin parameter
corresponding to expert 0. That is, at each time ¢ > 0, the tester uses a coin before
announcing which expert he prefers, where the two parameters of the coin are chosen so
that their ratio equal the likelihood ratio at time t. Note that each triplet (w, fo, f1) induces

a unique measure on /° which we denote by P_>?) that is P, (w ) e A(I%).

The next observation state that in fact the tester uses a very 'smart’ coin, it asserts
that in the long run, the tester has no tendency to make mistakes. We exploit the fact that
a realization w together with fy, f1 induce a unique playpath, and recall that by definition
Tp, Vt > 1 does not depends on any t—1— history of decisions belonging to I*=1 therefore
we are able to consider the tester’s one step head distribution (17) as the random variable
Tpys: QF —0,1].

. —
5.3 The properties of T,
Claim 6. If Plf < P({ then (Tp+)¢>0 is a sub-martingale with respect to P({F.
Proof. Let Xy = D}Ofl (w), Vt > 0. We first prove that (X;)¢~0 is a martingale with respect
to P({, we need to show that
E[Xy| gi-1] = Xy4o1, Yt >0, B} —a.s.

Let P[{t, Pfit, t > 0, be the restricted measures of Pof, Plf to sigma algebra g, respectively,
and observe that X; is ¢ — adaptive. Thus,

/Xthj; = /Xtdp({t, VC € g,.
C

In addition, since Pf < Pf by the assumption we have P({ , K< P 1 +» vVt >0, which yields

that [ dPlfj = ( )d]:’dc . and therefore,

de

. - . dPf,
plic)=plio) = [arf,= [

o o dPOt

)R], = / (Dt f1)dP], = / XudPf, WO € go £ 5 0.
C

(18)
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Now let C' € g;—1, t > 0, and note the filtration (g;)¢>0 yields that C' € g;—1 C g¢, which
from (18) we obtain

/ X;-1dP{, = P, ,(C) e plC) = =, Plf N / XthOt.

Hence VC € g;, t > 0 we have th—ldP({tq = thdPO]it, and as a result
C C

E[Xy] gi—1] = Xi—1, YVt >0, Pg — a.s. (19)

Now, let p(t) = t > 0, and note that ¢(X;) = Tp,. Then, since from Lemma 3

T
tlirgoXt = tlirgoD}ofl(w) = Do fi1(w) < oo, Pg —a.s

it follows that E[X;], Elp(X:)] < oo, and hence by Jensen’s inequality and (19) we obtain

Elp(Xi11)| 9] > o(E[Xin1| gi]) = 9(X,), ¥t >0, P} —a.s.

and therefore completes the proof. O

Lemma 5. Let P(f, Plf then (Tpt)i>0 s a sub-martingale P({F— a.s.

Proof. By the Lebesgue decomposMon theorem (Bllhngsley 1995, Section 31) there exists
a unique pair of P1 ,Pf such that Plf = Pf + Pf where Pf < Pf and Pf il Pf
Note that 1ng,Pf are mutually singular with respect to each other then lzm Df filw) =

Dy, fi(w) =0, Pg — a.s., which yields that tlzmTDJ(w,fo,fl)[ | =1, Pg — .a.s.. Hence,
—00

toghether with Claim 6, (Tp¢)i>0 is a sub-martingale Pg — .a.s. for both parts of the
decomposition and therefore the result follows. O

In fact, a stronger result holds. Not only does the expected probability of making the
correct decisions grow it is necessarily the case that the test Tp will essentially settle on
the correct expert. This is what we referred to as ’error-free’:

H
Claim 7. Tp is error-free.
Proof. Let fe F x F, and observe that for any fixed (w, f), and t —1 > 0, the tester’s one

step ahead distribution Tp; does not depend on any past history belonging to I'™! and
depends solely on the unique induced playpath (w, fo,f1) up to time ¢.
@, 7)

As a result, denoting Ay = {i € I*®°| iy = 1}, the infinite product measure PT_>
D
@.7)

induces a unique sequence of ID-random variables (1 A, )t>0, Where
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Dt
1%1?) ~ Bern(Tp+(w, fo, f1)[1] = P%v?) (Agq) = %), YVt > 0, (20)

and hence .
t t D% f1(w)
. 7) fo 1
Var(1l .
E[(l(w,?))z] _ E[l(w,7)] _ 1_ 1 < 00 lzm ,L; ar( At,l ) o igl 1+th0f1(“’) 1+D§‘Ofl(“’)
At - A 1T 1+D}0f1(w) T oo t2 - 2

oo, Vt > 0, P({ — w — a.s.. Therefore, applying the kolmogorov’s strong law, (Jiming 2010,
Chapter 6, Theorem 6.7) for the sequence (1%’?))»0 we obtain

—

dense(i)[1] =
t t t
- 1
; i;ﬁ:i:l '@ . z‘=1E[15;217)] ; igll_ 1+D}ofl(w) (w 7)) 7 (21
fim S = i S = i S, PR s
D

Now note that from Claim 2 Tp is error-free, thus, Pof({w] tlim D}Ofl(w) = Dy fi(w) =
—00
o0}) = 0, which by Kronecker’s lemma implies that

—

Pl x P%j)({(w,f) € (Q%°,I%°) : dense(P)[1] = 1}) = 0.

Claim 8. Z/T[; is reasonable.

Proof. Let fe F x F, C — measurale, and suppose that

P{(C) > 0 and P{(C) = 0.

—

— .
Denote A;p = { ¢ € I*°| iy = 1}, and observe that for any fixed (w, f), and t —1 > 0, the
tester’s one step ahead distribution Tp; does not depend on any past history belonging to
I*~! and depends solely on the unique induced playpath (w, fo,f1) up to time ¢. As a result,

the infinite product measure P(_w;?) induces a unique sequence (1%’0 ))t>0 of ID-random

Tp
variables, where

@, 1) @, 1) 1
195 & Bern(Tp 4(w, fo, 1)]0] = Aro) = ———— ), VE>0, (22
Aro (Tp.e(w; fo, f)I0] = P> " " (Avo) 1+Dt0f1(w)) (22)
and hence ,
t u?) t Dfofl(w> 1
w w o xverG D) Xt ot @
B0 = B0 = eyt < o i S = SR

oo, Vit >0, Pg—w—a.s..
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Therefore, applying the kolmogorov’s strong law (Jiming 2010, Chapter 6, Theorem 6.7),
(w

for the sequence (1, ))t>0 we obtain

dense(i)[0] =
» 1 D@ > Bpg ”] > T A 7
- 7 — + w —
lim% = limf = lim% P(w ) —i—a.s.,
t—o0 t—o0 t—o0
Now let € > 0 and note that V& € C' with lzmﬁ =1, dN > 0 such that
oo 14D f1(@)
N t )
21 1+ D} f1( ) —N(1-¢) 21 14D} f1(w)
= ; +1—6<%§1,Vt>N,
where, taking t — oo yields
dense()[0] > 1 — e, P(w _ i—a.s.. (23)

In addition, recall that from Claim 1 Tp is reasonable, thus, Pg({w eQ® :welC A
lim D% fi(w) = 0}) = PJ(C’) > 0, and consequently, from (23) we obtain
t—oo /O

P 7})({ )€ QP X I®:weCand1—e< dense(i)[0] <1}) >

where taking e — 0 the result follows. O

. —
5.4 The Uniqueness of T
For a given ? ? i € I, we denote by A; . A; to be the sets of realizations for which
? is either indecisive or decisive on i at (w ?), respectively.!4

- =
Definition 14. Let f 2 (fo, f1) € F x F w € Q. We say that T and T decide differently

at (w,?) if 3i,j(# 1) € {0,1, } such that w € A? N A7 .
’L T’]

A;lz{w:?isdecisiveonlat( ,f)}z
{wl PET ({7 € 17 : dense()[1] = 1) = 1}.

5For example: w € A% nNAL —
,0 7,1

MFor example,

P%w’?)({?e I : dense(i)[0] = 1}) = 1 and P(?w?)({;e I : dense(i)[1] = 1}) = 1.
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Definition 15. Let f 2 (fo, f1) E F x F. We say that T ~F T if vi € {0,1}
Pf ({w: T and T decide dif ferently at (w 7)}) =0.

Wesaythat?wTifandonlyif?NfT,erFxF.

_)
Clatm 9. ~ is an equivalence relation on T = {? . T — random comparison test}.

Proof. The proof is analogously to proof of Claim 3 with minor modifications concerning
density arithmetic consideration and hence omitted. O

The next theorem asserts that, up to an equivalence class representative, there exists

a unique reagsonable and error-free test. That is, any error-free test ~ T p which is
reasonable, admits an error.

_>
Theorem 4. Let ? be a reasonable test. If ? ~ Tp then ? s not error-free.

Proof. Assume by contradiction that ? is error-free. Let fé (fo, f1) be such that ? r>onITD>
at f, then 3i, j(# i) € {0,1, 3} such that (w.lo.g)

PO(Af72 nal, )>o.

) Tp.j
In addition, by Claim 7 Tp is error-free, therefore

P(AL )= P(AL

TD,1) =0,

and consequently,

foen 2 af f Fon 2 al f
PO<Cl—(A?70mAITI)>’%>)>O or PO(C _<A?%QAIT>,O))>O
Case 1: Pg(é’l) > (0. By Claim 8, ITD> is reasonable; thus
- - s ~ . .
PH(C1) = 0= PJ({w| Tp is decisive on 0 at (w, )} NCy) = (A ,NC1) >0,

7

which leads to a contradiction since Yw € Af_> N C’l

P%’?)({Ze I®: dense()[0] =1}) = 1 = P (. 7) ({2 € I : dense(i)[1] > 0}) = 0,

which implies that A Af are disjoint. Thus

1
Tp, Tp,5



which contradicts the assumption that ? is error-free.
R —
Case 2: POf(CQ) > 0. By the assumption ? is a reasonable test where, by Claim 2, Tp

is error-free; therefore the contradiction

P{(A:J;_go) >0

follows analogously from Case 1. U

6 Discussion

Consider a scenario where we require some expert advice on the evolution of some unknown
system (e.g., the economy or a financial market). We typically entertain a few experts and
would like to make sure we take the advice from the better informed one. This suggests
that expert testing should be framed in comparative terms. Instead of asking whether or
not a single forecaster is indeed an expert or a charlatan, as is done in the lion’s share of
the literature on expert testing, we advocate a different approach in which we compare a
few experts; the test is designed to spot the better informed one.

We provide some natural properties for comparison tests and show that these properties
uniquely characterize test that are based on the expert’s likelihood ratio. We do so for
infinite tests - namely tests which verdict is cast at the end of all times - and also for finite
tests.
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