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Abstract

A policy maker faces a sequence of unknown outcomes. At each stage two
(self-proclaimed) experts provide probabilistic forecasts on the outcome in the
next stage. A comparison test is a protocol for the policy maker to (eventually)
decide which of the two experts is better informed. The protocol takes as input
the sequence of pairs of forecasts and actual realizations and (weakly) ranks
the two experts. We propose two natural properties that such a comparison
test must adhere to and show that these essentially uniquely determine the
comparison test. This test is a function of the derivative of the induced pair of
measures at the realization.
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1 Introduction

The literature on expert testing has, by and large, treated the question of whether a self-
proclaimed expert can be identi�ed as such, while also not allowing for charlatans to pass
the test. A striking result due to Sandroni (2003) is that no such test exists without
additional structural assumptions on the problem. The basic premise of this literature is
the validity of the underlying question of whether a forecaster, or rather a probabilistic
model, is correct or false. In a hypothetical world, where only one model exists and the
tester can only entertain the services of a single expert, this may make sense. Even then,
one might wonder what is the tester to do whenever she rejects the expert. Does she turn
to another expert? to her own intuition? In any case she would probably, implicitly, utilize
an alternative (possibly untested) model.

This motivates an alternative approach to the issue of expert testing and that is com-
parison of experts, which is the approach we pursue here. In this approach the tester is
exposed to a few alternative models (forecasters) and a single realization of events. The
tester then compares the two forecasters and decides which is the better informed one.
Facing many (possibly con�icting) experts is commonplace in weather forecasting, �nan-
cial forecasting, medical prognosis and more. Nevertheless, the design of comparison tests
has been almost entirely ignored in the literature on expert testing. Two exceptions are
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Al-Najjar and Weinstein (2008) and Feinberg and Stewart (2008) which we will discuss
later.

The approach we take in this paper is axiomatic. After de�ning exactly what is meant
by a comparison test we will turn to discuss some desirable properties for such tests. We
then construct a test with all the desired properties and show it is essentially unique. The
setting we focus on is that of two experts and a test which (weakly) ranks the two and
hence its domain consists of three outcomes. It may either point at one of the two experts
as being better informed or it may be indecisive. Let us discuss the properties that are
central to our main results.

Anonymity - A test is anonymous if it does not depend on the identity of the agents
but only on their forecasts.

Error-free - Let us assume that one of the experts has the correct model (namely,
he would have passed a standard single expert test which has no type one errors). An
error-free test will surely not point at the second expert as the superior one (albeit, it may
provide a non-conclusive outcome).

Reasonable - Let us consider an event, A, that has positive probability according to
the �rst expert but zero probability according to the second. Conditional on the occurrence
of event A a reasonable test must assign positive probability to the �rst expert being better
than the second.

Tail test - As experts often require some initial data to calibrate their models, we
would like to rule out tests whose decision is based on a pre�x of the realized outcome. A
tail test is one which depends only on forecasts made eventually, after the calibration phase.
Whereas much of the literature emphasizes tests which provide their verdict at some �nite
outcome we take the opposite approach for some of our results and consider comparison
tests that are based on a long-run performance.1

1.1 Results

We construct a speci�c comparison test, based on the derivative of two measures that are
induced by the two forecasts derived from the likelihood ratio of the two forecasts. We
prove that this test is symmetric, error-free, reasonable and is also a tail test.

We then show that the test is unique in the following sense. For any test that di�ers
from the construction and is symmetric and reasonable there exist two forecasters for which
an error will be made (the probability of reversing the order). If, in addition, the test is a
tail test then this error could be made arbitrarily close to one.

Finally, our constructed test perfectly identi�es the correct forecaster whenever the
two measures induced by the forecasters are mutually singular with respect to each other.

1Consider the classical example of an IID process. A forecaster who is aware that indeed the process is

such must calibrate the model to learn its parameter. Initial forecasts may be wrong, yet those made after

a calibration phase become more accurate and long-run predictions are spot-on.
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Requiring the test to identify the correct expert when the measures are not mutually singular
is shown to be impossible.

1.2 Related Literature

Much of the literature on expert testing focuses on the single expert setting. This literature
dates back to the seminal paper of Dawid (1982), who proposes the calibration test as a
scheme to evaluate the validity of weather forecasters. Dawid asserts that a test must not
fail a true expert. Foster and Vohra (1998) show how a charlatan, who has no knowledge
of the weather, can produce forecasts which are always calibrated. The basic ingredient
that allows the charlatan to fool the test is the use of random forecasts. Lehrer (2001)
and Sandroni, Smorodinsky and Vohra (2003) extend this observation to a broader class of
calibration-like tests.

Finally, Sandroni (2003) shows that there exists no error-free test that is immune to
such random charlatans (see also extensions of Sandroni's result in Shmaya (2008) and
Olszewski and Sandroni (2008)).

To circumvent the negative results various authors suggest to limit the set of models for
which the test must be error-free (e.g., Al-Najjar, Sandroni, Smorodinsky and Weinstein
(2010) and Pomatto (2017)), or to limit the computational power associated with the char-
latan (e.g., Fortnow and Vohra (2009)) or to replace measure theoretic implausibility with
topological implausibility by resorting to the notion of category one sets (e.g., Dekel and
Feinberg (2006) ).

As previously mentioned, the comparison of experts has drawn little attention in the
community studying expert testing, with two exceptions we are aware of, which we now
turn to discuss.

Al-Najjar and Weinstein (2008) consider a non-counterfactual likelihood test for com-
paring two experts. They show that if one expert knows the true process whereas the other
is uninformed, then one of the following must occur: either, the test correctly identi�es the
informed expert, or the forecasts made by the uninformed expert are close to those made
by the informed one. Note that the test they propose is anonymous and reasonable but is
not error-free. An asymptotic version of this likelihood ratio, however, will play a crucial
role in our construction.

Another approach was suggested by Feinberg and Stewart (2008), who study an in�nite
horizon model of testing multiple experts, using a cross-calibration test. In their test N
experts are tested simultaneously; each expert is tested according to a calibration restricted
to dates where not only does the expert have a �xed forecast but the other experts also
have a �xed forecast, possibly with di�erent values. That is to say, where the calibration
test checks the empirical frequency of observed outcomes conditional on each forecast, the
cross-calibration test checks the empirical frequency of observed outcomes conditional on
each pro�le of forecasts.

They showed that if an expert predicts according to the data-generating process, the
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expert is guaranteed to pass the cross-calibration test with probability 1, no matter what
strategies the other experts use. In addition, they prove that in the presence of an in-
formed expert, the subset of data-generating processes under which an ignorant expert (a
charlatan) will pass the Cross-Calibration test with positive probability, is topologically
�small�. However, this test, like the test of Al-Najjar and Weinstein (2008), is anonymous
but is not reasonable (a concise example is provided in Section 4) and is error-free (proof
is straightforward and omitted).

1.3 Finite or In�nite Test?

A long-standing debate in the literature on expert testing is whether a test should be �nite.
A test is �nite if its decision is made in some �nite time. In contrast, an in�nite test may
require the in�nite sequence of forecasts and realizations prior to making a verdict. The
argument for considering �nite tests is that in�nite tests are impractical.

Although we sympathize with the argument that in�nite tests are impractical we do
think they have academic merit. The construction of well-behaved in�nite, possibly imprac-
tical, tests would eventually shed light on their �nite counterpart. Thus, if the technical
analysis underlying the understanding of in�nite tests is more tractable than that of �nite
tests then the study of in�nite tests should be the port of embarkation for this research
endeavor. This is what motivates our approach in this paper.

Furthermore, in expert testing we should allow experts to calibrate their model given
the data. Pushing the design of tests towards �nite tests may result in tests that give a
verdict before these models are re�ned and calibrated. In a way the recent success of `deep
learning' based on enormous data sets (paralleling our interest in long-run observations)
testi�es to the importance of patience in model (expert) selection and the bene�t of looking
at many data points.

2 Model

At the beginning of each period t = 1, 2, . . . an outcome ωt, drawn randomly by Nature
from the set Ω = {A,B}, is realized.2 Before ωt is realized two self-proclaimed experts
(sometimes referred to as forecasters) simultaneously announce their forecast, in the form
of a probability distribution over Ω. We assume that both forecasters observe all past
realizations and all previous pairs of forecasts.

An element ω = {ω1, ω2, . . .} ∈ Ω∞ is called a realization of outcomes and we denote
by ωt = {ω1, ω2, . . . , ωt} the partial history of outcomes up to period t (by convention ω0

denotes the empty history). A cylinder Cωt , {ω̂ ∈ Ω∞| ω̂n = ωn, 1 ≤ n ≤ t} is a set of
realizations which share a common partial history of outcomes up to period t. Let gt denote

2For expository reasons we restrict attention to a binary set Ω = {A,B}. The results extend to any

�nite set.
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the σ-algebra on Ω∞ generated by the cylinder sets Cωt and let g∞ , σ(
∞⋃
t=0

gt) denote the

smallest σ-algebra which consists of all cylinders (also known as the Borel σ-algebra).3 In
addition, we endow Ω∞ with the product topology, that is, the topology that is generated
by a basis of cylinders. Let ∆(Ω∞) be the set of all probability measures which are de�ned
over the measure space (Ω∞, g∞).

Let Ht , (Ω×∆(Ω)×∆(Ω))t (with H0 , ∅) be the set of all partial histories of length
t and de�ne the set of all possible histories by H ,

⋃
t≥0
Ht.

A (pure) forecasting strategy f is a function that maps �nite histories to a probability
distribution over Ω. Formally, f : H −→ ∆(Ω).

Note that each forecast provided by one expert may depend, inter alia, on those provided
by the other expert in previous stages. We denote by F the set of all forecasting strategies.

A probability measure P ∈ ∆(Ω∞) naturally induces a (set of) corresponding forecasting
strategy, denoted fP , that satis�es any ω

t ∈ Ωt such that P (Cωt) > 0 and any ωt+1 ∈ Ω

fP ((ωt, ·, ·))[ωt+1] = P (C(ωt,ωt+1)|Cωt).

In other words, the forecasting strategy fP derives its forecasts from the original measure,
P , via the Bayes rule. Note that this does not restrict the forecast of fP over cylinders,
Cωt , for which P (Cωt) = 0.

In the other direction, let ~f , (f0, f1) be a pair of forecasting strategies. Then it induces
a pair of measures over Ω∞, as follows. A realization ω together with ~f induce a unique
play path:

h(ω,f0,f1) , (ωt, f
ω
0,t, f

ω
1,t)
∞
t=0

starting at the Null history, where ωt, f
ω
i,t denote the outcome at time t, and the probabilistic

prediction of expert i for that period, respectively. Additionally, �xing time n ≥ 0, the
pre�x (of length n) and the su�x (starting an n) of h(ω,f0,f1) are denoted by h(ωn,f0,f1) and
h(n,ω,f0,f1), respectively.

Now consider a cylinder Cωt and let ω̃ ∈ Cωt , since any measure in ∆(Ω∞) is determined
by its cylinders, it follows that the pair ~f uniquely induces a pair of measures, which are

correspondingly denoted by (P
~f
0 , P

~f
1 ), via

P
~f
i (Cωt) =

t−1∏
n=0

fi(h(ω̃n,f0,f1))[ω̃n+1], i ∈ {0, 1}. (1)

2.1 Comparison Test

De�nition 1. A comparison test is a measurable function which inputs a pair of two
forecasting strategies and a realization in Ω∞ and which outputs a rank (weak order) over

3g0 , {∅,Ω∞}.
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the two experts. Formally,

T : Ω∞ × F × F −→ {0, 1

2
, 1}

where T = i 6= 1
2 implies that expert i is claimed as better informed, while T = 1

2 implies
the test is inconclusive (this cannot be avoided, for example, when both experts agree on
their forecasts).

De�nition 2. A comparison test is called symmetric whenever

T (ω, f0, f1) = 1− T (ω, f1, f0), ∀ω ∈ Ω∞, f0, f1 ∈ F.

In other words, the expert chosen by T does not depend on the expert's identity (0 or 1).
Note, if f0 = f1 then any symmetric test T must output 0.5 for all ω ∈ Ω∞. Our de�nition
of a comparison test T suggests that the outcome of the test may depend on predictions
made over realizations that did not materialize. In this paper we study a restricted class of
tests�those that do not depend on forecasts made over unobserved realizations. Formally,
Let

h : Ω∞ × F × F −→ (Ω ×∆(Ω)×∆(Ω))∞

be a function that maps a triplet (ω, f0, f1) to its uniquely induced play path, h(ω,f0,f1). A
test T is called prequential if there exists a function

T̂ : (Ω ×∆(Ω)×∆(Ω))∞ −→ {0, 1

2
, 1}

such that T = T̂ ◦ h.

For any test, T , and a pair of forecasting strategies, ~f , (f0, f1) ∈ F ×F , we denote by
A
~f
T,k , {ω| T (ω, f0, f1) = k} the set of realizations for which the test outputs k.

De�nition 3. A test T is error-free with respect to A ⊆ F if ∀~f , (f0,f1) ∈ A×A

P
~f
0 (A

~f
T,1) = 0.
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A test T is called error-free if it is error-free with respect to the set of all forecasting
strategies, F . In other words, if one of the forecasters uses P , then with P probability
zero the other forecaster is identi�ed as the better informed one. Obviously a test which
constantly outputs 1

2 is both anonymous, prequential and is also error-free.
Obviously this test has no value. Inspired by this we ask whether there are meaningful

error-free tests. It turns out that error-free tests are very restrictive in how well they can
distinguish between two forecasters. In fact, whenever the measures induced by the two
forecasters are mutually absolutely continuous, then an error-free test cannot guarantee to
identify the better informed expert. Formally,

Proposition 1. Let ~f , (f0, f1) ∈ F ×F be such that P
~f
1 ( 6= P

~f
0 )� P

~f
0 . If T is error-free

then

P
~f
0 (A

~f
T,0) < 1.

On a set of realizations that has probability one according to forecaster 0 it is not
necessarily the case that the test will identify him as better informed.

Proof. Assume that

P
~f
0 (A

~f
T,0) = 1. (2)

Since P
~f
1 � P

~f
0 it follows from (2) that

P
~f
0 ((A

~f
T,0)

c) = 0 =⇒ P
~f
1 ((A

~f
T,0)

c) = 0.

Therefore
P
~f
1 (A

~f
T,0) = 1,

which by the symmetry of T contradicts the assumption that T is error-free.

The next property of a comparison test asserts that for any set of realizations assigned
zero probability by one forecaster and positive probability by the other forecaster, there
must be some subset of realizations for which the other forecaster is deemed superior.

De�nition 4. We say that a test T is reasonable if ∀~f , (f0, f1) ∈ F × F , for any
measurable set A, and for any i ∈ {0, 1}

P
~f
i (A) > 0 and P

~f
1−i(A) = 0 =⇒ P

~f
i (A ∩A~f

T,i) > 0. (3)

It should be emphasized that reasonableness and error-free are not related notions. To
see why error-free does not imply reasonableness just consider the constant error-free test
T ≡ 1

2 . An example for which reasonableness does not imply error-free is left to the end of
Subsection 3.3.
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We now turn to our construction of a prequential, symmetric, error-free and reasonable
comparison test.

3 An Error-Free and Reasonable Test

The following test is derived from the likelihood ratio of the two measures induced by the
two forecasters. For ~f , (f0, f1) ∈ F × F, ω ∈ Ω∞, t > 0, let

Dt
f0f1(ω) ,

t−1∏
n=0

f1(h(ωn,f0,f1))[ωn+1]

f0(h(ωn,f0,f1))[ωn+1]
(4)

and de�ne

Df0f1(ω) ,

 limsup
t→∞

Dt
f0
f1(ω)

+∞

if f0(h(ωn,f0,f1))[ωn+1] > 0, ∀n ≥ 0

if f0(h(ωn,f0,f1))[ωn+1] = 0, for some n

Df0f1(ω) ,

 liminf
t→∞

Dt
f0
f1(ω)

+∞

if f0(h(ωn,f0,f1))[ωn+1] > 0, ∀n ≥ 0

if f0(h(ωn,f0,f1))[ωn+1] = 0, for some n.

Note, given P
~f
0 , P

~f
1 , t > 0, the functions ω −→ P

~f
0 (Cωt), ω −→ P

~f
1 (Cωt) are gt−measurable

as well as

zt(ω) ,


P

~f
1 (Cωt )

P
~f
0 (Cωt )

,

+∞,

P
~f
0 (Cωt) > 0

P
~f
0 (Cωt) = 0.

Consequently, the functions, Df0f1(ω), Df0f1(ω) are measurable as lim inf, lim sup of zt,
respectively.

De�nition 5. If Df0f1(ω) = Df0f1(ω) < ∞, we say that the forecasting strategy f1 is
di�erentiable with respect to the forecasting strategy f0 at ω and write

Df0f1(ω) = Df0f1(ω) = Df0f1(ω).

Df0f1 is the derivative of f1 with respect to f0. Consider the following non-counterfactual
symmetric test

TD(ω, f0, f1) =


1,

0.5,

0,

Df1f0(ω) = 0

other

Df0f1(ω) = 0.

(5)
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TD will be called a derivative test. Expert i is pointed as the true forecaster at ω whenever
the derivative of fi with respect to f(1−i) exists and equals 0. Our next goal is to prove
that TD is error-free and a reasonable test. Let us �rst show that Df0f1 exists and is �nite

P
~f
0 - a.e.

Lemma 1. Let B , {Bi}i∈N be an arbitrary sequence of cylinders and set B ,
⋃
i∈N

Bi. Then,

there exists an index set J ⊆ N such that {Bj}j∈J are pairwise disjoint, and B =
⋃
j∈J

Bj.

Proof. A cylinder is called maximal in B if it is not a subset of any other cylinders in
B. Any cylinder in B is contained in some maximal cylinder in B. Let J ⊆ N be such
that {Bj}j∈J is the set of all distinct maximal cylinders. Since any two distinct maximal
cylinders are disjoint it follows that B =

⋃
j∈J

Bj .

Lemma 2. Fix 0 < α <∞ and let A ⊂ Ω∞ be a measurable set. Then

a) A ⊂ {ω| Df0f1(ω) ≤ α} =⇒ P
~f
1 (A) ≤ αP ~f

0 (A).

b) A ⊂ {ω| Df0f1(ω) ≥ α} =⇒ P
~f
1 (A) ≥ αP ~f

0 (A).

Proof. (a) Let A be a measurable set which satis�es the left side of (a) and let U ⊂ Ω∞ be
any open set such that A ⊂ U. Fix ε > 0, then ∀a ∈ A, ∀N > 0 ∃t = t(a,N,ε) > N such that

Dt
f0f1(a) =

t−1∏
n=0

f1(h(an,f0,f1))[an+1]

t−1∏
n=0

f0(h(an,f0,f1))[an+1]

=
P
~f
1 (Cat)

P
~f
0 (Cat)

≤ (α+ ε). (6)

Consider the following set of cylinders

FA , {Cat ⊂ U | a ∈ A, t > 0, P
~f
1 (Cat) ≤ (α+ ε)P

~f
0 (Cat)}.

Note, it follows from (6) that FA is not empty where sup{t| Cat ∈ FA} =∞. By Lemma 1
we are provided with an index set J and a collection of pairwise disjoint sets {Bj ∈ FA}j∈J
such that

BFA ,
⋃

B∈FA

B =
⋃
j∈J

Bj . (7)

Hence

P
~f
1 (A) ≤

A⊆BFA

P
~f
1 (BFA) =

(7)
P
~f
1 (

⋃
j∈J

Bj) ≤
∑
j∈J

P
~f
1 (Bj)

≤
Bj∈FA

∑
j∈J

(α+ ε)P
~f
0 (Bj) = (α+ ε)

∑
j∈J

P
~f
0 (Bj) ≤

U⊃B′js are disjoint
(α+ ε)P

~f
0 (U).
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Since the above inequalities hold for any open set U which contains A and

P
~f
0 (A) = inf

A⊂U−open
{P ~f

0 (U)},

it follows that ∀ε > 0

P
~f
1 (A) ≤ (α+ ε)P

~f
0 (A)

which completes the proof of Case (a). The proof of Case (b) is analogous and hence
omitted.

We now turn to show that the derivative of one measure with respect to another exists and
is �nite almost surely.

Lemma 3. Let f0, f1 ∈ F, then Df0f1 exists and is �nite P
~f
0 - a.e.

Proof. Let S , {ω| Df0f1(ω) = +∞}. Therefore ∀α > 0
S ⊂ {ω| Df0f1(ω) ≥ α},

and it follows from Lemma 2 that P
~f
0 (S) ≤ 1

αP
~f
1 (S). Now let α→∞ to obtain

P
~f
0 (S) = 0, (8)

and consequently Df0f1 is �nite P
~f
0 − a.e. For the second part let

R(a, b) , {ω| Df0f1(ω) < a < b < Df0f1(ω) <∞}.

Note that
R(a, b) ⊂ {ω| Df0f1(ω) ≤ a}

R(a, b) ⊂ {ω| Df0f1(ω) ≥ b}

where applying Lemma 2 gives: bP
~f
0 (R(a, b)) ≤ P ~f

1 (R(a, b)) ≤ aP ~f
0 (R(a, b)). Hence,

P
~f
0 (R(a, b)) = 0, ∀0 < a < b (9)

where from (8), (9) we obtain

P
~f
0 ({ω| Df0f1(ω) < Df0f1(ω) <∞})

= P
~f
0 (

⋃
0<a<b
a,b∈Q

R(a, b)) ≤
∑

0<a<b
a,b∈Q

P
~f
0 (R(a, b)) = 0.

Therefore, Df1f0 exists P
~f
0 - a.e.
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3.1 The Properties of TD

Now that we have established the existence and the �niteness of the test TD, let us prove
it is a reasonable and error-free test. We do this in two separate claims:

Claim 1. TD is a reasonable test.

Proof. Let A be a measurable set such that

P
~f
0 (A) > 0 and P

~f
1 (A) = 0. (10)

For a > 0 let
Ra , A ∩ {ω| 0 < a ≤ Df0f1(ω) <∞}, a > 0.

Note that if P
~f
0 (Ra) > 0 then applying Lemma 2 for the set Ra yields,

0 = P
~f
1 (Ra) ≥ aP

~f
0 (Ra) > 0

which contradicts (10). Therefore

P
~f
0 (A ∩ {ω| 0 < Df0f1(ω) <∞}) = P

~f
0 (

⋃
0<a
a∈Q

Ra) ≤
∑
0<a
a∈Q

P
~f
0 (Ra) = 0.

Since by Lemma 3 Df0f1 exists and �nite P
~f
0 − a.e., we conclude that

P
~f
0 (A ∩ {ω| Df0f1(ω) = 0}c) = 0.

Hence

0 < P
~f
0 (A) = P

~f
0 (A ∩ {ω| Df0f1(ω) = 0}) =

(5)
P
~f
0 (A ∩A~f

TD,0
),

and the test is reasonable.

Claim 2. TD is error-free.

Proof. Note that

A
~f
TD,1

=
(5)
{ω| Df1f0(ω) = 0}

= {ω| lim
t→∞

Dt
f1
f0(ω) = 0 and ∀n > 0, f1(h(ωn,f0,f1))[ωn+1] > 0}

⊂ {ω| lim
t→∞

Dt
f0
f1(ω) =∞} ∪ {ω| ∃n > 0 s.t f0(h(ωn,f0,f1))[ωn+1] = 0}

⊂ {ω| Df0f1(ω) = Df0f1(ω) =∞}.

By Lemma 3, Df0f1 is �nite P
~f
0 − a.e. Thus
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P
~f
0 (A

~f
TD,1

) ≤ P ~f
0 ({ω| Df0f1(ω) = Df0f1(ω) =∞}) = 0

and TD is error-free.

3.2 The Uniqueness of TD

The next theorem asserts that there exists a unique reasonable and error-free test. That
is, any error-free test T � TD which is reasonable, admits an error. Let us �rst establish
what we mean by T � TD:

De�nition 6. Let ~f , (f0, f1) ∈ F × F. We say that T ∼~f T̂ if ∀i ∈ {0, 1}

P
~f
i ({ω| T (ω, f0, f1) 6= T̂ (ω, f0, f1)}) = 0.

We say that T ∼ T̂ if and only if T ∼~f T̂ , ∀~f ∈ F × F.

Claim 3. ∼ is an equivalence relation on > = {T | T − comparison test}.

Proof. Let T, T1, T2 ∈ >, ~f ∈ F × F, and i ∈ {0, 1}.
Re�exivity:

P
~f
i ({ω| T (ω, f0, f1) 6= T (ω, f0, f1)}) = 0 =⇒ T ∼ T.

Symmetry:

P
~f
i ({ω| T1(ω, f0, f1) 6= T2(ω, f0, f1)}) = 0 ⇐⇒ P

~f
i ({ω| T2(ω, f0, f1) 6= T1(ω, f0, f1)}) = 0,

hence, T1 ∼ T2 ⇐⇒ T2 ∼ T1.
Transitivity: Assume that T1 ∼ T, and T ∼ T2, hence

T1 ∼~f T =⇒ P
~f
i ({ω| T1(ω, f0, f1) 6= T (ω, f0, f1)}c) = 1,

T ∼~f T2 =⇒ P
~f
i ({ω| T (ω, f0, f1) 6= T2(ω, f0, f1)}c) = 1,

and so

1 = P
~f
i ({ω| T1(ω, f0, f1) 6= T (ω, f0, f1)}c ∩ {ω| T (ω, f0, f1) 6= T2(ω, f0, f1)}c) =

P
~f
i ({ω| T1(ω, f0, f1) 6= T2(ω, f0, f1)}c),

yielding P
~f
i ({ω| T1(ω, f0, f1) 6= T2(ω, f0, f1)}) = 0, and therefore T1 ∼~f T2.

12



We now turn to show that at all pairs (f0, f1) where T �~f
TD, T must admit an error,

and on top of that, if T is a tail test, then there exists a pair (f̃0, f̃1) such that the probability
of the error term is arbitrarily large.

Theorem 1. Let T be a reasonable test. If T � TD then T is not error-free.

Proof. Assume by contradiction that T is error-free. Let ~f , (f0, f1) be such that T �~f
TD

at ~f , then (w.l.o.g. for i = 0) ∃k, l( 6= k) ∈ {0, 12 , 1} such that

P
~f
0 (A

~f
T,l ∩A

~f
TD,k

) > 0.

In addition, by Claim 2, TD is error-free, therefore

P
~f
0 (A

~f
T,1) = P

~f
0 (A

~f
TD,1

) = 0,

and consequently,

P
~f
0 (Â1 , (A

~f
T,0 ∩A

~f

TD,
1
2

)) > 0 or P
~f
0 (Â2 , (A

~f

T, 1
2

∩A~f
TD,0

)) > 0.

Case 1: P
~f
0 (Â1) > 0. By Claim 1, TD is reasonable; thus

P
~f
1 (Â1) = 0 =⇒ P

~f
0 (Â1 ∩A

~f
TD,0

) > 0,

which leads to a contradiction since A
~f
TD,0

, A
~f

TD,
1
2

are disjoint. Thus

P
~f
1 (A

~f
T,0) > 0,

which contradicts the assumption that T is error-free.

Case 2: P
~f
0 (Â2) > 0. By the assumption T is a reasonable test where, by Claim 2, TD

is error-free; therefore the contradiction

P
~f
1 (A

~f
TD,0

) > 0

follows analogously from Case 1.

Remark 1. The key properties can be usefully viewed as an implication of Lebesgue decom-
position (Billingsley 1995, Section 31). Here it is applied in a symmetric way with some
�exibility on how measure-zero sets are handled.
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3.3 Tail Test

We now turn to introduce the notion of a tail test. We will argue that the test TD is a tail
test. In fact, our next theorem asserts that any other tail test that is reasonable will not
only admit an error but will admit an arbitrarily large error.

De�nition 7. T is a tail test if ∀(ω, f0, f1), (ω′, f ′0, f ′1) ∈ Ω∞ × F × F :
If ∃n > 1 such that

h(n,ω,f0,f1) = h(n,ω′,f ′0,f ′1) and fωi,t, f
′ω′
i,t > 0, ∀1 ≤ t ≤ n− 1, i ∈ {0, 1}, (11)

then T ((ω, f0, f1)) = T ((ω′, f ′0, f
′
1)).

In other words, a tail test must yield the same output for any given two pairs of fore-
casting strategies whose play paths eventually coincide after some time n > 1, and whose
conditionals are strictly positive up to time n.

Claim 4. TD is a tail test.

Proof. Let (ω, f0, f1), (ω
′, f ′0, f

′
1) ∈ Ω∞ × F × F and n > 1 for which (11) holds. Let

(ω′′, f ′′0 , f
′′
1 ) ∈ Ω∞ × F × F which satis�es

∀t > 0 : (ω
′′
t , f

ω′′
0,t , f

ω′′
1,t ) = (ωt+n, f

ω
0,t+n, f

ω
1,t+n). (12)

Since Dt
f0
f1(ω) > 0 by the left part of (11) it follows that4

0 = TD((ω′′, f ′′0 , f
′′
1 )) ⇐⇒

(5)
0 = Dt

f0f1(ω)·Df ′′0
f ′′1 (ω′′) =

(12)
Df0f1(ω) ⇐⇒ TD((ω, f0, f1)) = 0.

Additionally, by the same consideration we have

1 = TD((ω′′, f ′′0 , f
′′
1 )) ⇐⇒ 0 = Df ′′1

f ′′0 (ω′′) ⇐⇒ TD((ω, f0, f1)) = 1,

and therefore

TD((ω′′, f ′′0 , f
′′
1 )) = TD((ω, f0, f1)).

Similarly, we show that TD((ω′′, f ′′0 , f
′′
1 )) = TD((ω′, f ′0, f

′
1)) by replacing (ω

′′
t , f

ω′′
0,t , f

ω′′
1,t ) with

(ω
′
t, f

ω′
0,t, f

ω′
1,t) in (12) and the Claim is concluded.

Before we address the main theorem let us prove the following claim.

Claim 5. If T is reasonable then for any measurable set A

P
~f
i (A ∩A~f

T,k) > 0 =⇒ P
~f
1−i(A ∩A

~f
T,k) > 0, i ∈ {0, 1}, k 6= i.

4Note that Df ′′
0
f ′′1 (ω′′) = 0 if and only if Df0f1(ω′′) exists and equals 0.
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Proof. Let A be a measurable set and (w.l.o.g) assume by contradiction that

P
~f
1 (A ∩A~f

T,k) > 0 ∧ P
~f
0 (A ∩A~f

T,k) = 0, k ∈ {0, 1

2
}.

T is reasonable thus (3) yields P
~f
1 (A ∩ A~f

T,k ∩ A
~f
T,1) > 0, which contradicts the fact that

A
~f
T,k, A

~f
T,1 are disjoint sets.

Theorem 2. Let T be a reasonable tail test. If T � TD then ∀0 < ε < 1 ∃ ~̂f , (f̂0, f̂1) such

that

P
~̂
f
0 (A

~̂
f
T,1) > 1− ε or P

~̂
f
1 (A

~̂
f
T,0) > 1− ε.

Proof. By Theorem 1 (w.l.o.g.) there exists a pair ~f = (f0, f1) such that P
~f
1 (A

~f
T,0) > 0. In

addition, since A
~f
T,0 is g∞−measurable we can apply the Levy upwards theorem (Williams

1991, Theorem 14.2.) to obtain

lim
t→∞

P
~f
1 (A

~f
T,0| gt) =

lim
t−→∞

EP
~f
1 [1

A
~f
T,0

| gt] = EP
~f
1 [1

A
~f
T,0

| g∞] = 1
A

~f
T,0

, P
~f
1 − a.s..

Therefore, ∃B ~f ⊂ A~f
T,0 with P

~f
1 (B

~f ) = P
~f
1 (A

~f
T,0) such that ∀ω ∈ B ~f we have

lim
t→∞

P
~f
1 (A

~f
T,0| Cωt) = 1 and fω1,t > 0, ∀1 ≤ t ≤ n− 1. (13)

Let 0 < ε < 1. Fix ω̃ ∈ B ~f and observe that from (13) ∃n = n(ε,ω) > 0 such that ∀t ≥ n

P
~f
1 (A

~f
T,0 ∩ Cω̃n) = P

~f
1 (A

~f
T,0| Cω̃n)P

~f
1 (Cω̃n) > (1− ε).

Thus, applying Claim 5 with the set Cω̃n yields P
~f
0 (A

~f
T,0 ∩ Cω̃n) > 0 and consequently

f ω̃0,t > 0, ∀1 ≤ t ≤ n− 1 is inferred from (1). Now, modify ~f to be the forecasting strategy
~̂
f whose one step ahead conditionals satisfy

f̂i(ω
t)[ωt+1] =


1

fi(ω
t)[ωt+1]

0

,

ωt = ω̃t, t < n

ωn = ω̃n, t ≥ n
other.

.
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5 Note, by construction, ∀ω ∈ A~f
T,0 ∩ Cω̃n , i ∈ {0, 1}, 1 ≤ t ≤ n− 1 we have

h(n,ω,f0,f1) = h(n,ω,f̂0,f̂1) and fωi,t = f ω̃i,t > 0, f̂ωi,t = f̂ ω̃i,t > 0,

and since T is a tail test it follows from (11) that T (ω, f̂0, f̂1) = T (ω, f0, f1) = 0. As a

result, ω ∈ A
~̂
f
T,0 ∩ Cω̃n yielding

P
~̂
f
1 (A

~̂
f
T,0) ≥ P

~̂
f
1 (A

~̂
f
T,0 ∩ Cω̃n) ≥ P

~̂
f
1 (A

~f
T,0 ∩ Cω̃n) > 1− ε,

and therefore completes the proof.

The next example shows that the result in Theorem 2 cannot be obtained if we relax
the requirement that T is a tail test; it furthermore illustrates that reasonableness does not
imply error-free.

Example 1. Let −→
h , (A, h0,t, h1,t)

∞
t=1,

←−
h , (A, h1,t, h0,t)

∞
t=1

be play paths which satisfy

h0,t(A) ≡ 1, h1,1(A) =
1

2
, h1,t(A) = 1, t ≥ 2

and consider the following test

T ((ω, f0, f1)) =


TD((ω, f0, f1)),

0,

1,

other

h(ω,f0,f1) =
−→
h

h(ω,f0,f1) =
←−
h .

Note, for every triplet (ω, f0, f1), whose induced play path coincides with
−→
h or

←−
h , there

exists i ∈ {0, 1} such that

P
~f
i (A

~f
T,−i) = P

~f
i ({(A)∞t=1}) =

1

2
< 1 (14)

where the left equality holds since TD is error-free. Moreover, since P
~f
i ({(A)∞t=1}) > 0 for

i ∈ {0, 1} and TD is a reasonable test, it follows that T is reasonable even as it admits a
bounded error by (14).

5Note that the corresponding forecasting strategy f̂i determines the one step ahead forecasts along

ω, only through the history of outcomes and does not depend on the full histories, i.e f̂i(ω)[ωt+1] =

P
~̂
f
i (ωt+1|Cωt), ∀0 ≤ t ≤ n− 1, i ∈ {0, 1}.
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4 Ideal Tests

Recall that an error-free test eliminates the necessity of pointing out the less informed
expert. A stronger and more appealing property is to point out the better informed expert.
We consider tests that exhibit such a property as Ideal:

De�nition 8. A symmetric test T is Ideal with respect to A ⊆ F if for all f , (f0,f1 6=
f0) ∈ A×A.

P
~f
0 (A

~f
T,0) = 1.

It is called Ideal if it is Ideal with respect to F.

In other words, whenever expert i knows the actual data generating process and expert
1− i does not, an Ideal test will surely identify the informed expert.

Trivially, any Ideal test with respect to a subset of forecasts A is also error-free with
respect to the same set. The following is a straightforward corollary of Theorem 1.

Corollary 1. There exists no Ideal test with respect to a set of forecasts A whenever it

contains two forecasts which induce measures, one of which is absolutely continuous with

respect to the other.

This immediately entails:

Corollary 2. There exists no Ideal test.

However, whenever A contains no such pair of forecasts, then an Ideal test does exist.
To prove this we must �rst accurately de�ne the notion of mutually singular forecasts.

De�nition 9. Two forecasting strategies, f0, f1( 6= f0) ∈ F, are said to be mutually singular
with respect to each other, if there exist two disjoint sets

C
~f
0 , C

~f
1 ⊂ (Ω×∆(Ω)×∆(Ω))∞

such that6

P
~f
0 ({ω| h(ω,f0,f1) ∈ C

~f
0 }) = P

~f
1 ({ω| h(ω,f0,f1) ∈ C

~f
1 }) = 1.

A set A ⊆ F is pairwise mutually singular if ∀f0, f1( 6= f0) ∈ A, f0, f1 are mutually
singular with respect to each other.

The next lemma asserts that a reasonable test is able to perfectly distinguish between
far measures which are induced from forecasting strategies which are mutually singular with
respect to each other.

6Recall that ~f induces a unique play path h(ω,f0,f1).
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Lemma 4. Let f0, f1 6= f0 ∈ F which are mutually singular with respect to each other. If

T is reasonable then

P
~f
i (A

~f
T,i) = 1, i ∈ {0, 1}.

Proof. W.l.o.g. let B be such that: P
~f
0 (B) = 1, P

~f
1 (B) = 0. T is reasonable, therefore

P
~f
0 (B ∩A~f

T,0) > 0 from (3). Let k ∈ {12 , 1} and assume that

P
~f
0 (B ∩A~f

T,k) > 0.

Applying Claim (5) with the set B yields

P
~f
1 (B ∩A~f

T,k) > 0

which contradicts the assumption that P
~f
1 (B) = 0. Hence, P

~f
0 (B ∩A~f

T,k) = 0. As a result,

1 = P
~f
0 (B) = P

~f
0 (B ∩A~f

T,0) + P
~f
0 (B ∩A~f

T, 1
2

)

+P
~f
0 (B ∩A~f

T,1) = P
~f
0 (B ∩A~f

T,0)

and therefore P
~f
0 (A

~f
T,0) = 1.

Note that Lemma 4 holds even for T which is not error-free.
We now demonstrate (in a concise way) that the Cross-Calibration test which was

introduced by Feinberg and Stewart (2008) is error-free and nevertheless is not reasonable.7

Example 2. Consider the Cross-Calibration test

Tcross : Ω∞ × (∆(Ω))∞ × (∆(Ω))∞ −→ {0, 1}2,

and let g : {0, 1}2 −→ {0, 12 , 1} be de�ned by: g(1, 1) = g(0, 0) = 1
2 , g(1, 0) = 0, g(0, 1) =

1.8 9 We de�ne the induced Cross-Calibration comparison test by

T = g ◦ Tcross. (15)

Let P
~f
0 , P

~f
1 (~f , (f0, f1)) be the Dirac measures on

0
ω , (0, A,A, , , A, , , ),

1
ω , (A,A,A, , , A, , , ),

respectively. Since both P
~f
0 and P

~f
1 pass the Cross-Calibration test on

0
ω it follows from

(15) that

7As mentioned in the Introdction, the Cross-Calibration test checks the empirical frequencies of the

realization conditional on each pro�le of forecasts that occurs in�nitely often.
8For simplicity, we limit our attention to the two-forecasters model.
9The case for which Tcross(ω, , ) = (i, i), i ∈ {0, 1} may be interpreted as both experts either pass(i = 1)

or fail(i = 0) the test on ω.

18



Tcross(ω
0, P

~f
0 , P

~f
1 ) = (1, 1) ⇐⇒ (g ◦ Tcross)(ω0, P

~f
0 , P

~f
1 ) = T (ω0, P

~f
0 , P

~f
1 ) =

1

2
,

which implies that

P
~f
0 (A

~f

T, 1
2

) = 1. (16)

However, note that P
~f
0 , P

~f
1 are mutually singular with respect to each other; so if T was a

reasonable test then, by Lemma 4, it would satisfy

P
~f
0 ({ω0} ∩A~f

T,0) > 0

which contradicts (16) and therefore T is not reasonable. The fact that T is error-free
follows immediately from Dawid (1982) and hence omitted.

The next theorem provides a necessary and su�cient condition for the existence of an
Ideal test over sets.

Theorem 3. ∃ non-counterfactual Ideal test with respect to A if and only if A is pairwise
mutually singular.

Proof. ⇐= Directly follows from Lemma 4 and Claim 1.
=⇒Let T be a non-counterfactual Ideal symmetric test with respect to a set A with

h, T̂ as in De�nition 2. Let ~f , (f0, f1 6= f0) ∈ F × F and denote

CTi , {h(ω,f0,f1)| ω ∈ A
~f
T,i}, i ∈ {0, 1}.

Since h is 1:1 and A
~f
T,0, A

~f
T,1 are disjoint, it follows that C

T
0 , C

T
1 are disjoint where T Ideal

yields

1 = P
~f
i (A

~f
T,i) = P

~f
i ({ω| h(ω,f0,f1) ∈ C

T
i }), i ∈ {0, 1}.

We conclude the paper with an example of a test over a domain of mutually singular
forecasts:

Example 3. Let

AIID×AIID , {f , (f0, f1) ∈ F×F | ∀i ∈ {0, 1} ∃afi ∈ [0, 1] s.t , f(ht)[A] ≡ afi , ∀h
t ∈ Ht}.

For ω ∈ Ω∞ denote the average realization by
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aω , lim
n→∞


n∑
t=1

1{ωt=A}

n


and consider the following comparable test

T (ω, f0, f1) =


1,

0.5,

0,

f1(h
0)[A] = aω 6= f0(h

0)[A]

other

f0(h
0)[A] = aω 6= f1(h

0)[A].

Obviously, T is a well-de�ned symmetric and non-counterfactual. Showing that T is Ideal
with respect to AIID is a mere application of the law of large numbers.

5 Finite Case

In the model considered thus far the tester's verdict is determined at the end of all times.
This seems impractical and so we turn to model a tester determines in �nite time which
expert is better. In fact, in the model below, at each stage, t, the tester makes up his mind.
In theory, a test can swing back and forth between the two experts. The analysis below
focuses on the cases where this does not happen and the tester essentially settles on one
expert or the other.

Apart from moving from a verdict that is determined at the end of all times to verdicts
made in �nite time we make two additional distinctions. First, we allow the tester to
randomize his decision at any time t. Second, we do not allow the tester to be indecisive.
A test must point to one of the two experts.

A tester makes decisions in �nite times and a test is a sequence of such decisions.
Nevertheless, the properties of such tests, which we are interested in, are determined on
the in�nite sequence.
Let I = {0, 1}, be the decision set of a tester. The tester decides 0 or 1 whenever he prefers
expert 0 or 1, respectively. At each time t > 0, the tester uses a mixed strategy before
announcing which expert he prefers by �ipping a coin with a parameter which is determine
at time t. The tester ends up with a sequence of decisions which is denoted by I∞.

5.1 A Finite Comparison Test

A test is, therefore, a function that maps any �nite history of realizations and pairs of
forecasts into a (random) decision of which of the two experts is preferred. Formally,
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De�nition 10. A �nite comparison test is a sequence
−→
T := (Tt)t>0, where

Tt : (Ω×∆(Ω)×∆(Ω)× I)∞ −→ ∆(I),

is gt−measurable.

Note that
−→
T together with a pair (ω,

−→
f ) induce a unique measure on the set I∞, which we

denote by P
(ω,
−→
f )

−→
T

, meaning P
(ω,
−→
f )

−→
T

∈ ∆(I∞). In addition, we denote an element in I∞ by

~i , (it)t>0 ∈ I∞, and for a given i ∈ I we de�ne by

dense(~i)[i] := liminf
t→∞

t∑
i=1

1{it=i}(
~i)

t
,

to be the density of a decision i along the sequence of decisions . Note that dense(~i)[i] =
1 ⇐⇒ dense(~i)[1− i] = 0.

De�nition 11.
−→
T is decisive on i ∈ I at (ω,

−→
f ) if

P
(ω,
−→
f )

−→
T

({~i ∈ I∞ : dense(~i)[i] = 1}) = 1,

−→
T is indecisive at (ω,

−→
f ) if

−→
T is not decisive on i, ∀i ∈ I. 1011

De�nition 12.
−→
T is error-free if ∀~f ∈ F × F, 12

P
~f
0 × P

(ω,
−→
f )

−→
T

({(ω,~i) ∈ Ω∞ × I∞ : dense(~i)[1] = 1}) = 0.

De�nition 13.
−→
T is reasonable if ∀~f ∈ F × F, and ∀C −measurable 13

P
~f
0 (C) > 0 and P

~f
1 (C) = 0 =⇒ P

~f
0 ×P

(ω,
−→
f )

−→
T

({(ω,~i) ∈ Ω∞×I∞ : ω ∈ C ∧ dense(~i)[0] = 1}) > 0.

10That is, P
(ω,
−→
f )

−→
T

({~i ∈ I∞ : dense(~i)[0] > 0 ∧ dense(~i)[1] > 0}) > 0.
11Note that any symmetric test is indecisive in case where f0 = f1 yielding the tester's coin to eventually

distributed half.
12That is, P

~f
0 ({ω :

−→
T is decisive on 1 at (ω, ~f)}) = 0, ∀~f ∈ F × F.

13That is, P
~f
0 ({ω :

−→
T is decisive on A at (ω, ~f)} ∩ C) > 0, ∀~f ∈ F × F.
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5.2 The Test
−→
TD

Consider the following �nite comparison test
−→
TD,

TD,t+1(ω, f0, f1)[0] =
1

1 +Dt
f0
f1(ω)

, t > 0 (17)

where Dt
f0
f1(ω) is de�ned in (4) and TD,t+1(ω, f0, f1)[0] denotes the tester's coin parameter

corresponding to expert 0. That is, at each time t > 0, the tester uses a coin before
announcing which expert he prefers, where the two parameters of the coin are chosen so
that their ratio equal the likelihood ratio at time t. Note that each triplet (ω, f0, f1) induces

a unique measure on I∞ which we denote by P
(ω,
−→
f )

−→
TD

, that is P
(ω,
−→
f )

−→
TD

∈ ∆(I∞).

The next observation state that in fact the tester uses a very 'smart' coin, it asserts
that in the long run, the tester has no tendency to make mistakes. We exploit the fact that
a realization ω together with f0, f1 induce a unique playpath, and recall that by de�nition
TD,t, ∀t > 1 does not depends on any t−1−history of decisions belonging to It−1, therefore
we are able to consider the tester's one step head distribution (17) as the random variable
TD,t : Ωt −→ [0, 1].

5.3 The properties of
−→
TD

Claim 6. If P
~f
1 � P

~f
0 then (TD,t)t>0 is a sub-martingale with respect to P

~f
0 .

Proof. LetXt = Dt
f0
f1(ω), ∀t > 0. We �rst prove that (Xt)t>0 is a martingale with respect

to P
~f
0 , we need to show that

E[Xt| gt−1] = Xt−1, ∀t > 0, P
~f
0 − a.s.

Let P
~f
0,t, P

~f
1,t, t > 0, be the restricted measures of P

~f
0 , P

~f
1 to sigma algebra gt, respectively,

and observe that Xt is gt − adaptive. Thus,∫
C

XtdP
~f
A =

∫
C

XtdP
~f
0,t, ∀C ∈ gt.

In addition, since P
~f
1 � P

~f
0 by the assumption we have P

~f
0,t � P

~f
1,t, ∀t > 0, which yields

that
∫
dP

~f
1,t =

∫
(
dP

~f
1,t

dP
~f
0,t

)dP
~f
0,t and therefore,

P
~f
1 (C) = P

~f
1,t(C) =

∫
C

dP
~f
1,t =

∫
C

(
dP

~f
1,t

dP
~f
0,t

)dP
~f
0,t =

∫
C

(Dt
f0f1)dP

~f
0,t =

∫
C

XtdP
~f
0,t, ∀C ∈ gt, t > 0.

(18)
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Now let C ∈ gt−1, t > 0, and note the �ltration (gt)t>0 yields that C ∈ gt−1 ⊂ gt, which
from (18) we obtain∫

C

Xt−1dP
~f
0,t−1 = P

~f
1,t−1(C) =

C∈gt−1

P
~f
1 (C) =

C∈gt
P
~f
1,t(C) =

∫
C

XtdP
~f
0,t.

Hence ∀C ∈ gt, t > 0 we have
∫
C

Xt−1dP
~f
0,t−1 =

∫
C

XtdP
~f
0,t, and as a result

E[Xt| gt−1] = Xt−1, ∀t > 0, P
~f
0 − a.s. (19)

Now, let ϕ(t) = 1
1+t , t > 0, and note that ϕ(Xt) = TD,t. Then, since from Lemma 3

lim
t→∞

Xt = lim
t→∞

Dt
f0f1(ω) = D0f1(ω) <∞, P ~f

0 − a.s,

it follows that E[Xt], E[ϕ(Xt)] <∞, and hence by Jensen's inequality and (19) we obtain

E[ϕ(Xt+1)| gt] ≥ ϕ(E[Xt+1| gt]) = ϕ(Xt), ∀t > 0, P
~f
0 − a.s.

and therefore completes the proof.

Lemma 5. Let P
~f
0 , P

~f
1 then (TD,t)t>0 is a sub-martingale P

~f
0 − a.s.

Proof. By the Lebesgue decomposition theorem (Billingsley 1995, Section 31) , there exists

a unique pair of , P
~f
1r
, P

~f
1S

such that , P
~f
1 = P

~f
1r

+ P
~f
1s

where P
~f
1r
� P

~f
0 and P

~f
1s
⊥ P

~f
0 .

Note that ifP
~f
0 , P

~f
1 are mutually singular with respect to each other then lim

t→∞
Dt
f0
f1(ω) =

Df0f1(ω) = 0, P
~f
0 − a.s., which yields that lim

t→∞
TD,t(ω, f0, f1)[0] = 1, P

~f
0 − .a.s.. Hence,

toghether with Claim 6, (TD,t)t>0 is a sub-martingale P
~f
0 − .a.s. for both parts of the

decomposition and therefore the result follows.

In fact, a stronger result holds. Not only does the expected probability of making the

correct decisions grow it is necessarily the case that the test
−→
TD will essentially settle on

the correct expert. This is what we referred to as 'error-free':

Claim 7.
−→
TD is error-free.

Proof. Let ~f ∈ F ×F, and observe that for any �xed (ω, ~f), and t− 1 > 0, the tester's one
step ahead distribution TD,t does not depend on any past history belonging to It−1 and
depends solely on the unique induced playpath (ω, f0,f1) up to time t.

As a result, denoting At,1 = {~i ∈ I∞| it = 1}, the in�nite product measure P
(ω,
−→
f )

−→
TD

induces a unique sequence of ID-random variables (1
(ω,
−→
f )

At,1
)t>0, where
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1
(ω,
−→
f )

At,1
∼ Bern(TD,t(ω, f0, f1)[1] = P

(ω,
−→
f )

−→
TD

(At,1) =
Dt
f0
f1(ω)

1 +Dt
f0
f1(ω)

), ∀t > 0, (20)

and hence

E[(1
(ω,
−→
f )

At,1
)2] = E[1

(ω,
−→
f )

At,1
] = 1− 1

1+Dt
f0
f1(ω)

<∞, lim
t→∞

t∑
i=1

V ar(1
(ω,
−→
f )

At,1
)

t2
=

t∑
i=1

Dt
f0

f1(ω)

1+Dt
f0

f1(ω)
· 1

1+Dt
f0

f1(ω)

t2
<

∞, ∀t > 0, P
~f
0 − ω − a.s.. Therefore, applying the kolmogorov's strong law, (Jiming 2010,

Chapter 6, Theorem 6.7) for the sequence (1
(ω,
−→
f )

At,1
)t>0 we obtain

dense(~i)[1] =

lim
t→∞

t∑
i=1

1
(ω,
−→
f )

Ai,1
(~i)

t = lim
t→∞

t∑
i=1

E[1
(ω,
−→
f )

Ai,1
]

t = lim
t→∞

t∑
i=1

1− 1

1+Di
f0

f1(ω)

t , P
(ω,
−→
f )

−→
TD

−~i− a.s..
(21)

Now note that from Claim 2 TD is error-free, thus, P
~f
0 ({ω| lim

t→∞
Dt
f0
f1(ω) = Df0f1(ω) =

∞}) = 0, which by Kronecker's lemma implies that

P
~f
0 × P

(ω,
−→
f )

−→
TD

({(ω,~i) ∈ (Ω∞, I∞) : dense(~i)[1] = 1}) = 0.

Claim 8.
−→
TD is reasonable.

Proof. Let ~f ∈ F × F, C −measurale, and suppose that

P
~f
0 (C) > 0 and P

~f
1 (C) = 0.

Denote At,0 = {−→i ∈ I∞| it = 1}, and observe that for any �xed (ω, ~f), and t− 1 > 0, the
tester's one step ahead distribution TD,t does not depend on any past history belonging to
It−1 and depends solely on the unique induced playpath (ω, f0,f1) up to time t. As a result,

the in�nite product measure P
(ω,
−→
f )

−→
TD

induces a unique sequence (1
(ω,
−→
f )

At,0
)t>0 of ID-random

variables, where

1
(ω,
−→
f )

At,0
∼ Bern(TD,t(ω, f0, f1)[0] = P

(ω,
−→
f )

−→
TD

(At,0) =
1

1 +Dt
f0
f1(ω)

), ∀t > 0, (22)

and hence

E[(1
(ω,
−→
f )

At,0
)2] = E[1

(ω,
−→
f )

At,0
] = 1

1+Dt
f0
f1(ω)

< ∞, lim
t→∞

t∑
i=1

V ar(1
(ω,
−→
f )

At,0
)

t2
=

t∑
i=1

Dt
f0

f1(ω)

1+Dt
f0

f1(ω)
· 1

1+Dt
f0

f1(ω)

t2
<

∞, ∀t > 0, P
~f
0 − ω − a.s..
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Therefore, applying the kolmogorov's strong law (Jiming 2010, Chapter 6, Theorem 6.7),

for the sequence (1
(ω,
−→
f )

At,0
)t>0 we obtain

dense(~i)[0] =

lim
t→∞

t∑
i=1

1
(ω,
−→
f )

Ai,0
(~i)

t = lim
t→∞

t∑
i=1

E[1
(ω,
−→
f )

Ai,0
]

t = lim
t→∞

t∑
i=1

1

1+Di
f0

f1(ω)

t , P
(ω,
−→
f )

−→
TD

−~i− a.s.,

Now let ε > 0 and note that ∀ω̃ ∈ C with lim
t→∞

1
1+Di

f0
f1(ω̃)

= 1, ∃N > 0 such that

N∑
i=1

1
1+Di

f0
f1(ω)

−N(1− ε)

t
+ 1− ε <

t∑
i=1

1
1+Di

f0
f1(ω)

t
≤ 1, ∀t > N,

where, taking t→∞ yields

dense(~i)[0] > 1− ε, P (ω̃,
−→
f )

−→
TD

−~i− a.s.. (23)

In addition, recall that from Claim 1 TD is reasonable, thus, P
~f
0 ({ω ∈ Ω∞ : ω ∈ C ∧

lim
t→∞

Dt
f0
f1(ω) = 0}) = P

~f
0 (C) > 0, and consequently, from (23) we obtain

P
~f
0 × P

(ω,
−→
f )

−→
TD

({(ω,~i) ∈ Ω∞ × I∞ : ω ∈ C and 1− ε < dense(~i)[0] ≤ 1}) > 0,

where taking ε→ 0 the result follows.

5.4 The Uniqueness of
−→
TD

For a given
−→
T ,
−→
f , i ∈ I, we denote by A

−→
f
−→
T , 1

2

, A
−→
f
−→
T ,i

to be the sets of realizations for which

−→
T is either indecisive or decisive on i at (ω,

−→
f ), respectively.14

De�nition 14. Let ~f , (f0, f1) ∈ F ×F ω ∈ Ω∞.We say that
−→
T and

−→
T̂ decide di�erently

at (ω,
−→
f ) if ∃i, j(6= i) ∈ {0, 1, 12} such that ω ∈ A

−→
f
−→
T ,i
∩A

−→
f
−→
T̂ ,j
.15

14For example, A
−→
f
−→
T ,1

= {ω :
−→
T is decisive on 1 at (ω, ~f)} =

{ω| P (ω,
−→
f )

−→
T

({~i ∈ I∞ : dense(~i)[1] = 1}) = 1}.
15For example: ω ∈ A

−→
f
−→
T ,0
∩A

−→
f
−→
T̂ ,1
⇐⇒

P
(ω,
−→
f )

−→
T

({~i ∈ I∞ : dense(~i)[0] = 1}) = 1 and P
(ω,
−→
f )

−→
T̂

({~i ∈ I∞ : dense(~i)[1] = 1}) = 1.
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De�nition 15. Let ~f , (f0, f1) ∈ F × F. We say that
−→
T ∼~f

−→
T̂ if ∀i ∈ {0, 1}

P
~f
i ({ω :

−→
T and

−→
T̂ decide differently at (ω,

−→
f )}) = 0.

We say that
−→
T ∼

−→
T̂ if and only if

−→
T ∼~f

−→
T̂ , ∀~f ∈ F × F.

Claim 9. ∼ is an equivalence relation on
−→
> = {

−→
T :

−→
T − random comparison test}.

Proof. The proof is analogously to proof of Claim 3 with minor modi�cations concerning
density arithmetic consideration and hence omitted.

The next theorem asserts that, up to an equivalence class representative, there exists

a unique reasonable and error-free test. That is, any error-free test
−→
T �

−→
T D which is

reasonable, admits an error.

Theorem 4. Let
−→
T be a reasonable test. If

−→
T �

−→
TD then

−→
T is not error-free.

Proof. Assume by contradiction that
−→
T is error-free. Let ~f , (f0, f1) be such that

−→
T �~f

−→
TD

at ~f , then ∃i, j(6= i) ∈ {0, 1, 12} such that (w.l.o.g)

P
~f
0 (A

~f
−→
T ,i
∩A~f

−→
TD,j

) > 0.

In addition, by Claim 7
−→
TD is error-free, therefore

P
~f
0 (A

~f
−→
T ,1

) = P
~f
0 (A

~f
−→
TD,1

) = 0,

and consequently,

P
~f
0 (Ĉ1 , (A

~f
−→
T ,0
∩A~f

−→
TD,

1
2

)) > 0 or P
~f
0 (Ĉ2 , (A

~f
−→
T , 1

2

∩A~f
−→
TD,0

)) > 0.

Case 1: P
~f
0 (Ĉ1) > 0. By Claim 8,

−→
TD is reasonable; thus

P
~f
1 (Ĉ1) = 0 =⇒ P

~f
0 ({ω|

−→
TD is decisive on 0 at (ω, ~f)} ∩ Ĉ1) = P

~f
0 (A

~f
−→
TD,0
∩ Ĉ1) > 0,

which leads to a contradiction since ∀ω ∈ A~f
−→
TD,0
∩ Ĉ1

P
(ω,
−→
f )

−→
TD

({~i ∈ I∞ : dense(~i)[0] = 1}) = 1 =⇒ P
(ω,
−→
f )

−→
TD

({~i ∈ I∞ : dense(~i)[1] > 0}) = 0,

which implies that A
~f
−→
TD,0

, A
~f
−→
TD,

1
2

are disjoint. Thus

P
~f
1 (A

~f
−→
T ,0

) > 0,
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which contradicts the assumption that
−→
T is error-free.

Case 2: P
~f
0 (Ĉ2) > 0. By the assumption

−→
T is a reasonable test where, by Claim 2,

−→
TD

is error-free; therefore the contradiction

P
~f
1 (A

~f
−→
TD,0

) > 0

follows analogously from Case 1.

6 Discussion

Consider a scenario where we require some expert advice on the evolution of some unknown
system (e.g., the economy or a �nancial market). We typically entertain a few experts and
would like to make sure we take the advice from the better informed one. This suggests
that expert testing should be framed in comparative terms. Instead of asking whether or
not a single forecaster is indeed an expert or a charlatan, as is done in the lion's share of
the literature on expert testing, we advocate a di�erent approach in which we compare a
few experts; the test is designed to spot the better informed one.

We provide some natural properties for comparison tests and show that these properties
uniquely characterize test that are based on the expert's likelihood ratio. We do so for
in�nite tests - namely tests which verdict is cast at the end of all times - and also for �nite
tests.
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