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Abstract

I introduce a polling stage to Feddersen and Pesendorfer’s (1996) two-candidate

election model in which some voters are uncertain about the state of the world.

While Feddersen and Pesendorfer find that less informed, indifferent voters strictly

prefer abstention, which they refer to as the swing voter’s curse, I show that there

exists an equilibrium in which everyone truthfully reveals his/her preference in

the poll and participates in voting. Moreover, I find that even in the truth-telling

equilibrium, the candidate who wins the poll may be defeated in the election.

However, in a large election polls are still welfare improving.

1 Introduction

The most important function of polls, however, is not in telling us who is

going to win, but in revealing what is on the voters’ minds (Barone 2015).

Polls are often to blame for wrong predictions. Donald Trump’s victory in the 2016

US presidential election is a good example, as nearly all the pollsters predicted that

Hillary Clinton would win. A day after Election Day, in The New York Daily News,

Silverstein (2016) wrote, “The results are in: Predictive polls are a major loser of

the 2016 race,” and USA Today ’s Bomey (2016) added, “Pollsters flubbed the 2016

presidential election in seismic fashion.” Another example of a recent miss of the polls

is the Brexit referendum in June 2016. Leading up to voting day, the vast majority
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of Brexit polls predicted that Remain would win. However, the Leave side won the

referendum by 52 percent to 48 percent and the polling industries had to take the

blame.

What went so wrong? The media and pollsters largely suggest three possible reasons.

First, people may have lied about their true preferences (e.g., Bomey 2016; Whiteley

2016); they might have felt embarrassed to tell the pollsters their true opinion, especially

with such controversial issues. Second, the response rate often fell below 10 percent

which is too low to be representative of the population because those who are willing

to answer polls might be quite different from the silent majority (e.g., Riddell 2016;

Silverstein 2016; Whiteley 2016). Third, the weight schemes used to determine likely

voters were inaccurate (e.g., Bomey 2016; Riddell 2016; Whiteley 2016). For example, in

an interview with USA Today, Arie Kapteyn, the director of the University of Southern

California’s Dornsife Center for Economic and Social Research, suggested that many

pollsters may have eliminated too many Trump supporters by assuming that those who

did not vote in 2012 would not vote in 2016 either.

In this paper, I present a simple two-candidate election model and show that polls

can be wrong (i.e., the candidate who led in the poll can be defeated in the election)

even if no one lies (thus, no shy supporters), no one refuses to talk (thus, no sampling

error or selection bias), and the probability of each citizen voting is known to everyone

(thus, no weight problem). Specifically, I introduce a polling stage to Feddersen and

Pesendorfer’s (1996) model. Their model assumes that voters are either partisans or

independents. The partisan voters prefer a particular candidate regardless of the state

of the world. In contrast, the independent voters’ preference depends on the state of

the world and these voters can learn the state of the world only with some probability.

I add a polling state to their model so that voters have an opportunity to answer the

poll question about who they support and to learn about the poll results before voting.

I characterize the most informative equilibrium in which every player truthfully

answers the poll question. Several important implications flow from the equilibrium.

First, in the truth-telling equilibrium, the uninformed independent voters participate

in voting. This is an important result because, without a polling stage, the uninformed

voters may abstain to allow the informed voters to pick the winner, which Fedderson

and Pesendorfer (1996) refer to as the “swing voter’s curse.” The swing voter’s curse

indicates that the uninformed voters are sometimes strictly better off abstaining even

though voting is not costly. Once a polling stage is introduced, however, the curse may

disappear, and the uninformed voters have strong incentives to participate in voting.

Second, even if no one lies, the poll outcome can still be different from the election
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outcome even in large elections. As the uninformed independent voters decide whom

to vote for after they learn about the poll result, a big lead in a poll may not be large

enough to win the election. Third, although polls may not forecast the election outcome

correctly, and even the loser in the polls may win the election, large elections successfully

aggregate information in the sense that they can identify the correct candidate who

would win if everyone were informed about the state of the world. The uninformed

voters almost surely learn about the state of the world and make a correct decision for

themselves.

Furthermore, I examine whether an election aggregates information more success-

fully with informative polls than without them. A naive answer to this question is that

it should do so because agents have more information when deciding for whom to vote.

I demonstrate this intuition is not always correct: When the size of the electorate is

not large enough, polls may not be helpful because the uninformed voters may sway

the election depending on few answers from the poll, which might be truthful but in-

sufficient to reveal the state of the world. When the size of the electorate increases,

the uninformed voters learn the state more often from the poll. But Fedderson and

Pesendorfer (1996) show that a large election can successfully aggregate information

without polls as well. Thus, I need to compare the probabilities of an election aggre-

gating information with and without informative polls, which converge to 1 in both

cases. By taking the large deviation approach, I show that the former converges more

rapidly to 1, which implies that in a large election, informative polls help information

aggregation.

Together, the results suggest that pre-election polls can be welfare improving, though

they may sometimes seem dead wrong when interpreted naively. Polls may encourage

the uninformed independent voters to participate in voting, and help them decide whom

to vote for so that the election outcome can fully reflect what voters have in their mind.

In what follows, I first briefly discuss related literature. Then, I lay out the model,

discuss the results and conclude. Finally, the appendix contains all the proofs.

2 Related Literature

This paper is related to several strands of literature, the first of which is the literature

on elections and information aggregation. When do large elections identify the correct

candidate who would win under no uncertainty? The classic Condorcet jury model

suggests that they do so almost surely even if each voter is partially informed about

the state of the world. Furthermore, Feddersen and Pesendorfer (1996, 1999) find that
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elections still fully aggregate information even if a substantial number of voters do

not acquire any signals about the state of the world and remain uninformed (see also

McMurray(2013) for an extension of the model). Experimental studies find support for

this result (Battaglini et al. 2008, 2010).On the other hand, Kim and Fey (2007) and

Bhattacharya (2013) show that this result may not be the case if voters’ preferences

are heterogeneous. In a similar vein, Feddersen and Pesendorfer (1997) and Mandler

(2012) show that elections fail to aggregate information if voters are uncertain about

the distribution from which their preferences or private signals are drawn. The model

in my paper matches Feddersen and Pesendorfer (1996)’s except that there is now a

pre-election polling stage. And I show that polls can help large elections aggregate

information even more successfully.

Second, this paper is related to the broad literature on communication in commit-

tees. A large proportion of the literature pertains to the variants of the classic Condorcet

jury model with various forms of a pre-voting communication stage. Studies’ main focus

tends to be on the relative performance of various voting rules in small committees with

and without communication (e.g., Austen-Smith and Feddersen 2006; Coughlan 2000;

Gerardi and Yariv 2007; Goeree and Yariv 2011; Jackson and Tan 2013, for a review of

the literature, see Austen-Smith and Feddersen 2009) whereas my paper considers how

a pre-election opinion poll changes voters’ incentives to vote and whether such changes

are desirable in large elections. Importantly, studies find that for the committee mem-

bers to fully share private information in the communication stage, either they share

identical preferences, or they are uncertain about one another’s preferences (Coughlan

2000; Austen-Smith and Feddersen 2006). However, when everyone is uncertain about

one another’s preferences, it is not always possible to share information in the com-

munication stage or to reach the correct collective decision. Moreover, a voting rule

that extracts more information in the communication stage does not necessarily lead

to a more efficient voting outcome (Jackson and Tan 2013). Thordal-Le Quement and

Yokeeswaran (2015) find that it is more efficient to restrict communication to subgroups

that share identical preferences rather than to have public plenary communication. The

environment for communication is more hostile in my model than in these jury mod-

els because I have partisan voters who always prefer a particular candidate no matter

what the state of the world is. These partisan voters may have a strong incentive to

misrepresent their preferences if it helps their favorite candidate get elected. I show

that even with these conflicting preferences and incentives, the players can manage to

transmit information via public polling and to vote more efficiently with the acquired

information.
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Third, this paper is related to research on public information and costly voting.

Taylor and Yildirim (2010) show that when public information about the distribution

of voters’ preferences is available, the candidate the majority prefer is less likely to win

the election than when no such information is available. Similarly, Goeree and Grosser

(2007) find that when a public signal on voters’ preferences is available, the candidate

the minority group prefers has a higher chance of winning. Both studies assume that

voting is costly, and therefore the decision to vote depends on how pivotal each voter

will be. Thus, in both articles, public information on other voters’ preferences mobilizes

the minority group to participate and results in a less desirable outcome with higher

chances. By contrast, I assume that the information about other voters’ preferences is

not exogenously given, but rather endogenously generated through pre-election polling,

and that voting is costless.

Finally, the paper is related to research on public opinion polls. Many studies

mainly examine the strategic behavior of respondents in polls to influence policy makers’

decision or the voting behavior of others. For example, Meirowitz (2005) shows that

respondents may misrepresent their preferences if candidates take their policy positions

after observing polling data. Morgan and Stocken (2008) also find similar results and

argue that strategic behavior should be taken into account when interpreting polling

statistics. Burke and Taylor (2008) show that in the absence of independent voters,

truth-telling is not an equilibrium if the electorate is large or voting costs are not

negligible. In these studies, polls may be wrong because respondents lie. By contrast,

I analyze an equilibrium in which no one lies, but polls may still be wrong.1

3 The Model

In this section, I present a model of elections in which uninformed independent voters

may learn about the state of the world by observing an opinion poll result. As I base the

model on Feddersen and Pesendorfer (1996), I closely follow their notations whenever

possible.

There are two states, Z = {0, 1} ; two candidates X = {0, 1} ; and N + 1 agents.

The agents consist of partisan voters, independent voters, and non-voters. The parti-

san voters prefer either candidate 0 or candidate 1 regardless of the state, while the

independent voters prefer candidate 0 in state 0 and candidate 1 in state 1. Among the

1When there are more than two candidates, this can happen because people may vote strategically.

For example, see Andonie and Kuzmics (2012).
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independent voters, some learn the state of the world but the others do not. In case

one is ignorant of the state, he/she only knows the prior α, that is, the probability of

nature choosing state 0. Finally, the non-voters do not vote. Formally, the set of types

of agents is given by T = {φ, 0, 1, u, i} where type-φ agents are non-voters, type-0 and

type-1 agents are partisan voters who prefer 0 and 1 respectively, type-u agents are

uninformed independents, and type-i agents are informed independents who know the

state. For (x, z) ∈ X × Z, the utility of an independent voter (i.e., type-u or type-i

agent) is

U (x, z) =

{
−1 if x 6= z,

0 if x = z.

The game starts with nature choosing a state, z ∈ Z. State 0 is chosen with proba-

bility α and state 1 with probability 1−α. Nature then takes N+1 times of independent

random draws to determine the type of each agent. The total number of voters and the

number of voters of each type are not known to the players. In each draw, an individual

is chosen as a voter with probability 1−pφ. Among the voters, an individual is of type-1

with probability p1/ (1− pφ), and type-0 with probability p0/ (1− pφ). Finally, a voter

is an independent with probability ps/ (1− pφ) , and each of the independent voters

learns the state of the world with probability q. Thus, a voter is an informed indepen-

dent (i.e., type-i) with probability qps/ (1− pφ) and an uninformed independent (i.e.,

type-u) with probability (1 − q)ps/ (1− pφ). The probabilities α, p = (ps, p0, p1, pφ) ,

and q are common knowledge, whereas the type of each voter is private information.

Before an election is held, a public opinion poll asks whom the potential voters intend

to vote for between candidates 0 and 1. I assume that every agent participates in the

poll. Each agent may answer that he/she supports 0 or 1, or has not yet made up his/her

mind: A = {0, 1, (ND)} (see footnote 2 for an alternative set of responses). The vector

of poll responses is denoted a = (a1, ..., aN+1) ∈ AN+1. The poll result is summarized

as m (a) = (m0,m1,mND)∈M ≡
{
m ∈ {0, 1, ..., N + 1}3 :

∑
rmr = N + 1

}
, where mr

denotes the number of respondents whose answer was r ∈ A, and then publicly released.

Finally, an election is held. In the election, each voter chooses an action v ∈ {0, 1, φ} ,
where 0 or 1 denotes his/her vote for candidate 0 or 1 respectively, and φ indicates

his/her abstention. The candidate who gains more votes wins the election. If there is

a tie, each candidate wins with equal probability.

The solution concept is perfect Bayesian equilibrium. I restrict attention to sym-

metric equilibria in which agents of the same type choose the same voting and poll

response strategies. I also assume that no agent plays a weakly dominated strategy

in answering the poll question or in voting. Thus, every agent behaves as if he/she is
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pivotal. A poll response strategy is a function r : T ×Z → A, which assigns an answer

to each of the types in each state, where only the informed voters’ poll strategy can

depend on the state z ∈ Z. Note that only the uninformed independent agents (UIAs)

are affected by the poll result when deciding what to do in the voting stage, because

type-φ voters will not participate in voting and the partisan voters will support their

preferred candidate in both states. Therefore, I can simply concentrate on the UIAs’

voting strategy given their beliefs about z based on the summary statistic m (a). A

type-u’s mixed voting strategy is a measurable function τ : M → [0, 1]3, which maps

every poll result into probabilities to choose an action v ∈ {0, 1, φ}, where τx(m), for

x ∈ X, denotes the probability of voting for x and τφ(m) , the probability of abstaining.

4 Analysis

As is typical in private information games, this game has multiple equilibria. Among

these multiple equilibria, I consider an uninformative and the most informative ones,

depending on how much information can be delivered through the opinion poll. Specifi-

cally, I consider two poll response strategies which I subsequently show can be supported

in equilibrium.

Definition 4.1. (Uninformative poll) Poll response strategy 1:

r1(t|z) = ND for all t ∈ T and all z ∈ Z.

Definition 4.2. (Informative poll) Poll response strategy 2:

r2(t|z) =


z if t = i

t if t ∈ {0, 1}
ND if t ∈ {φ, u}

for all z ∈ Z.

Note that if players use the uninformative poll response strategy, r1 (·), the game is

essentially identical to Feddersen and Pesendorfer’s (1996). In poll response strategy 1,

agents’ choices of answers do not depend on their types. Thus, the poll result delivers

no information to the UIAs, and as a result, they will behave as in Feddersen and

Pesendorfer’s model.

By contrast, given the set of responses A, poll response strategy 2 forms the most
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informative equilibrium.2 Agents sincerely answer which candidate they support if they

surely prefer one candidate to the other. If they do not have such preferences or are

not sure about who the right candidate is for them, they indicate they have not decided

yet. This is a natural and plausible poll response strategy that one would expect to see

in reality.

The UIAs update their beliefs about the state based on the poll result. Specifically,

if players use poll response strategy r1 (·), the belief that the state is 0 remains the

same as the prior belief, that is, µ (z = 0|m, r1) = α for all m = (m0,m1,mND). On the

other hand, if players use poll response strategy r2 (·), an UIA indexed by j can update

his/her belief on z = 0 from the poll result m−j = m (a−j) = (m0,m1,mND − 1) ,

a−j = (a1, ..., aj−1, aj+1, ..., aN+1) using Bayes’ rule,

µj (z = 0|m−j, r2) =
αPr (m−j|z = 0, r2)

αPr (m−j|z = 0, r2) + (1− α) Pr (m−j|z = 1, r2)
(4.1)

=
α (p0 + psq)

m0 pm1
1

α (p0 + psq)
m0 pm1

1 + (1− α) pm0
0 (p1 + psq)

m1
.

As respondents answer truthfully, the UIAs can infer whose side the informed in-

dependents are on between the two candidates. It is easy to see that as m0 increases,

the UIAs believe that candidate 0 is more likely to match the state. Likewise, as m1

increases, the UIAs believe that candidate 1 is more likely to be the right one. Since

belief µ is the same for any UIA, I omit the index j hereinafter.

To decide UIAs’ voting strategy given µ, I need to consider the probabilities of an

UIA being pivotal because only in those cases will his/her decision make a difference

in his/her expected utility. There are three possible cases: a tie, candidate 0 losing

by exactly 1 vote, and candidate 1 losing by exactly 1 vote. In what follows, I specify

2A fully revealing equilibrium in which each type can choose a distinctive response to the poll

question does not exist even if I enlarge the set of responses A so that #A ≥ #T . This is because the

partisan voters have an incentive to choose the same response as the informed independents. Since the

UIAs will decide whom to vote for according to the informed independents’ responses in the end, the

partisan voters will mimic the informed independents to raise their candidate’s chance.

As a small variation of poll response strategy 2, one can imagine an alternative poll response strategy

with an enlarged A in which the non-voters respond differently from the UIAs or other types of voters.

However, this strategy delivers essentially the same information as poll response strategy 2. That

is, the additional information from this new poll response strategy does not affect the UIAs’ voting

behavior. Moreover, empirical studies show that people do not want to reveal their intention to abstain

and that many respondents (25-50%) lie about their voting participation when asked (Silver et al.,

1986; Harbaugh 1996; Belli et al., 1999; DellaVigna et al., 2016). Thus, I use poll response strategy 2

with set A rather than this alternative situation.
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the probabilities of each of these events for an agent, given state z, N other agents,

strategy profile τ , poll result m, and poll response strategy r. I denote the probability

of a tie by πe (z, τ |m−j, r) and the probability of candidate x receiving one less vote

than candidate y by πx (z, τ |m−j, r). In addition, for a given profile τ and poll response

strategy r, I define σv,z,a (τ |r) as the probability that a random selection among whose

poll response was a ∈ A, results in a choice of voting behavior v ∈ {0, 1, φ} in state z.

In the following two lemmas, I compute these probabilities under the two poll response

strategies.

Lemma 4.1. (Feddersen and Pesendorfer 1996, p. 412-413) If players use poll response

strategy r1 (·), then

πe (z, τ |m−j, r1) =

bN/2c∑
j=0

N !

j!j! (N − 2j)!

× σφ,z,ND (τ |r1)N−2j (σ0,z,ND (τ |r1)σ1,z,ND (τ |r1))j

and

πx (z, τ |m−j, r1) =

b(N−1)/2c∑
j=0

N !

(j + 1)!j! (N − 2j − 1)!

× σφ,z,ND (τ |r1)N−2j−1 σy,z,ND (τ |r1) (σx,z,ND (τ |r1)σy,z,ND (τ |r1))j ,

where x, y ∈ {0, 1} , x 6= y, and

σv,z,ND (τ |r1) =


pφ + ps (1− q) τφ if v = φ

pv + ps (1− q) τv + psq if z = v, v ∈ {0, 1}
pv + ps (1− q) τv if z 6= v, v ∈ {0, 1}

.

Lemma 4.1 shows that the probabilities that an UIA is pivotal vary depending on the

state under the uninformative poll response strategy r1. This is because the probability

of a random voter voting for either candidate depends on the state. By contrast, the

next lemma shows that this is not the case if players use the informative poll response

strategy, r2.

Lemma 4.2. When players use poll response strategy r2 (·), for any m and τ ,

πe (0, τ |m−j, r2) = πe (1, τ |m−j, r2) and

πx (0, τ |m−j, r2) = πx (1, τ |m−j, r2) for all x ∈ {0, 1} .
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Lemma A.1 in the appendix specifies the probabilities πe (z, τ |m−j, r2) and πx (z, τ |m−j, r2)

for z ∈ {0, 1} . Lemma 4.2 establishes that the expected number of votes for each can-

didate does not depend on state z when the poll is informative. Since the partisan

and informed independent voters will vote as they did in the poll, the poll result m

reveals how many votes each candidate will receive from these types of voters. Thus,

the uncertainty remains only in the UIAs’ decisions, and the UIAs cannot condition

their decision on the state because they do not know in what state they are.

Lemmas 4.1 and 4.2 imply that an opinion poll helps the UIAs learn more about

not only for whom they should vote but also how much their votes matter. Lemma 4.1

shows that under r1, the pivotality of UIAs’ vote in state 0 is in general different from

that in state 1 because the informed voters vote differently depending on the state. In

contrast, Lemma 4.2 shows that their vote matters equally in either state under r2.

The poll result reveals how many decided voters there are for each candidate, and the

pivotality of an UIA’s vote is also determined accordingly.

Now, I am ready to prove that the swing voter’s curse — that abstention is strictly

better when indifferent between the two candidates — disappears when the poll is infor-

mative. Let Eu (v, τ |m−j, r) be the expected payoff to an UIA of taking action v when

the other UIAs use a strategy profile τ given poll results m and a poll response strategy

r. Proposition 4.1 shows that when agents answer the poll question truthfully (i.e., use

poll response strategy r2), announcing the poll result may encourage people to vote.

Proposition 4.1. Suppose pφ > 0, q > 0, and N ≥ 2 . For any symmetric strategy

profile τ in which no agent plays a strictly dominated strategy,

1) (Feddersen and Pesendorfer 1996, p. 413) if Eu (1, τ |m−j, r1) = Eu (0, τ |m−j, r1),

then

Eu (1, τ |m−j, r1) < Eu (φ, τ |m−j, r1) .

In contrast,

2) Eu (φ, τ |m−j, r2) ≤ max {Eu (1, τ |m−j, r2) , Eu (0, τ |m−j, r2)}.

Before discussing the intuition on why informative polls make the swing voter’s

curse disappear, I turn to the uninformative poll case first. Proposition 4.1 Part 1) is

from Feddersen and Pesendorfer (1996) and shows that with uninformative polls (or no

polls), the UIAs sometimes have a strong incentive to abstain even though voting is not

costly. Why not vote for one of the candidates if they are indifferent between them when

doing so is not costly? To see this, consider a case in which µ (z = 0|m−j, r1) = α > 1
2
.
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Since

Eu (1, τ |m−j, r1)− Eu (0, τ |m−j, r1)

= (1− µ (0|m−j, r1))

(
πe (1, τ |m−j, r1) +

1

2
π1 (1, τ |m−j, r1) +

1

2
π0 (1, τ |m−j, r1)

)
− µ (0|m−j, r1)

(
πe (0, τ |m−j, r1) +

1

2
π1 (0, τ |m−j, r1) +

1

2
π0 (0, τ |m−j, r1)

)
,

the condition Eu (1, τ |m−j, r1) = Eu (0, τ |m−j, r1) implies that

πe (1, τ |m−j, r1) +
1

2
π1 (1, τ |m−j, r1) +

1

2
π0 (1, τ |m−j, r1)

>πe (0, τ |m−j, r1) +
1

2
π1 (0, τ |m−j, r1) +

1

2
π0 (0, τ |m−j, r1) .

Roughly speaking, this means that the probability of being pivotal is higher when z = 1

than when z = 0. For example, consider p0 > p1 with psq ≈ p0−p1. As an UIA believes

that candidate 0 is more likely to match the state (i.e., µ (z = 0|m−j, r1) > 1
2
), it might

seem that he/she should vote for 0 and not abstain. However, this is not the case,

because an UIA’s voting for 0 has a different effect on the election outcome depending

on the state. Specifically, when z = 0, candidate 0 is highly likely to win because all

the type-0 and the informed voters vote for 0, and thus an UIA’s vote might not affect

the election outcome. If z = 1, however, candidate 1’s chance is relatively lower, and

an UIA is now more likely to be pivotal because p0 ≈ p1 + psq, which means that the

number of the informed voters might not be large enough to fill the gap between the

partisan supports. Thus, if an UIA votes for candidate 0, he/she marginally increases

the chance of the right candidate winning in state 0 but, at the same time, greatly

increases the chance of the wrong person winning in state 1. As he/she loses more than

he/she gains on average by voting for 0, he/she would rather abstain.

If agents truthfully answer the poll, however, abstention can never be the single

best option. As the poll result clears up the uncertainty about the probabilities of an

UIA’s vote being pivotal, voting for someone who is more likely to match the state is

always (weakly) better than abstaining. For example, compare the expected utilities

from voting for 0 and abstaining. Because

Eu (0, τ |m−j, r2)− Eu (φ, τ |m−j, r2)

=
1

2

[
− (1− µ (0|m−j, r2)) [πe (1, τ |m−j, r2) + π0 (1, τ |m−j, r2)]

+µ (0|m−j, r2) [πe (0, τ |m−j, r2) + π0 (0, τ |m−j, r2)]

]
=− 1

2
(1− 2µ (0|m−j, r2)) [πe (1, τ |m−j, r2) + π0 (1, τ |m−j, r2)]

11



by Lemma 4.2, it is easy to see that voting for 0 is strictly better than abstaining if

µ (0|m−j, r2) > 1
2
. It can be similarly shown that voting for 1 is strictly better than

abstaining if µ (1|m−j, r2) > 1
2
.

The following proposition shows that there is an equilibrium in which every agent

answers the poll truthfully and the UIAs vote according to their beliefs.

Proposition 4.2. Suppose pφ > 0, q > 0, and N ≥ 2. There is a perfect Bayesian

equilibrium in which players use poll response strategy 2, r2, and all UIAs vote for

candidate 0 if µ (z = 0|m−j, r2) ≥ 1
2

and candidate 1 if µ (z = 0|m−j, r2) < 1
2
.

In the equilibrium specified in Proposition 4.2, all players but the UIAs vote as they

did in the poll. The UIAs cannot indicate in the poll whom they are going to vote for

because they are not sure about the state. After learning the poll outcome, however,

they do vote for the candidate they believe is more likely to be the right one for them.

Because the UIAs decide whom to vote for after the poll result is disseminated, I

get the following corollary stating that polls might be wrong in case there are enough

UIAs and the leading candidate does not do well enough in the poll.

Corollary 4.1. In the equilibrium specified in Proposition 4.2,

1) there exists a threshold, d∗, such that if d ≡ mx − my < d∗for x, y ∈ {0, 1} with

x 6= y, then µ (z = x|m−j, r2) < 1
2
.

2) there exists a parameter value such that d∗ > 0.

3) if 0 < d < d∗ and mND > d, then candidate y wins the election with probability w∗,

where

w∗ =

(
1

pφ + ps (1− q)

)mND mND−d∑
j=1

mND!

(d+ j)! (mND − d− j)!
(pφ)mND−d−j (ps (1− q))d+j .

Corollary 4.1 shows that the candidate who leads in the poll might not win the

election, even though everyone answers the poll question truthfully. Here, the threshold

d∗ shows how much more support a candidate needs to receive in the poll relative to the

other candidate for the UIAs to believe that he/she is more likely to match the state.

In particular, part 2) implies that the threshold to gain the UIAs’ support might be

strictly positive, and thus performing relatively better in the poll is not enough to win

the election under some parameter values. If the leading candidate does not pass this

threshold in the poll, all the UIAs will vote for the other candidate in election, which

makes the poll result wrong.

Specifically, even if mx > my (i.e., d > 0), the belief µ (z = x|m−j, r2) might be

smaller than 1
2

when px is far higher than py. For example, Figure 4.1 shows the
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Figure 4.1: µ and d when N + 1 = 100, mND = 40, α = 0.5 , ps = 0.4, and q = 0.2

relationship between d = m0 − m1 and the posterior belief µ (z = 0|m−j, r2) when

N = 99, mND = 40, α = 0.5, ps = 0.4, and q = 0.2. In the panel on the left, because

p0 = p1and α = 1
2
, the posterior belief µ is larger than 1

2
as long as m0>m1. Thus, in

this case, the candidate who wins the poll will also win the election. This is not the case

when p0 is much larger than p1, however. The panel on the right shows the case when

p0 = 0.35 > p1 = 0.15. In this case, µ (z = 0|m−j, r2) is smaller than 1
2

if d ≤ 20. Since

p0 > p1, the difference in m0 and m1 needs to be large enough—larger than 20—to infer

that the informed independent agents support candidate 0. If candidate 0 does not lead

by more than 20 points in the poll, all UIAs vote for candidate 1 according to their

posterior belief. The probability that an agent whose answer was ND in the poll votes

for candidate 1 is ps(1−q)
pφ+ps(1−q) ≈ 0.76, and thus the probability of candidate 1 getting 20

or more votes from the forty agents is almost 1 (w∗ ≈ 1), which means candidate 1 is

highly likely to win the election if candidate 0 leads the poll by less than 20 points.

Two important implications flow from the examples in Figure 4.1. First, polls can be

wrong even if N is very large. Under the parameter settings on the right-hand side, no

matter how large N is, candidate 0 leading candidate 1 by 20 percentage points in the

poll is not enough to guarantee a victory on Election Day. The UIAs do not randomly

choose for whom to vote. Rather, they learn from the poll outcome and choose the

candidate who they think matches the state. Second, depending on parameter values,

13



a seemingly close election might end up with a landslide, whereas a seemingly lopsided

one might end up with an unexpected winner. When p0 = p1 with psq = 0.08, the gap

between the two candidates will be relatively small in the pre-election poll. However,

whoever (barely) wins the poll will gain far greater support on election day because

all the UIAs will vote for this candidate. By contrast, when p0 is much larger than

p1, the poll results are likely to be lopsided, favorable to candidate 0. However, if

the lead is not big enough3, candidate 1 is highly likely to be the winner on Election

Day with a relatively small margin of victory. The victory of candidate 1 will be even

more surprising because everyone knows that candidate 1 does not have enough loyal

supporters relative to candidate 0.

In contrast with existing models of polls (e.g., Meirowitz 2005; Morgan and Stocken

2008), my model shows that polls might be wrong not because of strategic misrep-

resentation but because of learning. Here, no one intends to misrepresent his or her

preference in the poll. Rather, refusing to choose between 0 and 1 in a poll is the best

the UIAs can do because otherwise the poll is less informative. If they answer either 0

or 1 in the poll, it is more difficult to learn about the state. Because they decide whom

to vote for after the poll result is known, the poll outcome will always differ from the

election outcome. Sometimes, the difference might be large enough to surprise everyone

if the learning process is not taken into account.

The next result establishes that in a large election, information is successfully ag-

gregated with informative polls, in the sense that the winner of the election is the same

as the winner if all agents were fully informed about the state of the world. Consider

z = 0 without loss of generality, and let nt denote the number of agents whose type

is t ∈ T . If |(n0 + ni)− n1| > nu, the election fully aggregates information no matter

what the UIAs do. If |(n0 + ni)− n1| ≤ nu, then the election fully aggregates informa-

tion only if the UIAs vote for the candidate who matches the state. Since the UIAs

vote according to the belief µ in the informative equilibrium, it suffices to show that as

the size of the electorate grows large, belief µ on the true state converges to 1 almost

surely. Proposition 4.3 states this formally.

Proposition 4.3. Suppose q > 0. For each z = 0, 1, µ (z = z|m−j, r2) converges to 1

almost surely conditional on z = z. That is, Pr (limN→∞ µ (z = z|m−j, r2) = 1|z = z) =

3Specifically, to have µ (z = 0|m−j , r2) > 1
2 , the following should hold:

m0 >
1

log ((p0 + psq) /p0)

(
m1 log

(
p1 + psq

p1

)
+ log

1− α
α

)
.

14



1.

Proposition 4.3 implies that in a large election, the UIAs can learn the state almost

surely, and thus, will vote correctly. Feddersen and Pesendorfer (1996, p. 415) show

that information is fully aggregated with no polls (or uninformative polls) because the

UIAs optimally abstain and thereby compensate the gap in partisan supports so that

the informed independents get to choose the winner. My result verifies that informative

polls encourage the UIAs to participate in voting and still achieve the efficient outcome.

Then, does an election with informative polls aggregate information more success-

fully than without them? A naive answer is that it does so because agents have more

information to consider when making their voting decisions. However, depending on the

realization of z and nt’s, the informative equilibrium performs better or worse than the

uninformative equilibrium. For example, assume the same parameter values as in the

right-hand panel of Figure 4.1 (α = 0.5 , ps = 0.4, p0 = 0.35, p1 = 0.15, and q = 0.2) and

consider the case in which the random draws of each agent’s type and the state result

in n0 = 30, n1 = 20, ni = 10, nu = 30, nφ = 10, and z = 0. Then, in the informative

equilibrium, I have m0 −m1 = (n0 + ni) − n1 = 20. Thus, as discussed previously, all

the UIAs vote for candidate 1 because µ (z = 0| (m0,m1,mND) = (40, 20, 39) , r2) < 1
2
.

As a result, candidate 1 wins the election for sure. On the other hand, in the unin-

formative equilibrium, candidate 0 has a chance to win the election, because the UIAs

abstain with a strictly positive probability.4 Since candidate 0 is the winner if the state

of the world is publicly known (i.e., n0 + ni + nu > n1), the equilibrium with unin-

formative polls performs better in this case. However, if just one agent switches from

type-1 to type-0, so that n0 = 31 and n1 = 19, all else being equal, candidate 0 wins

for sure in the informative equilibrium because every UIA votes for candidate 0 by the

fact µ (z = 0| (m0,m1,mND) = (41, 19, 39) , r2) > 1
2
. In the uninformative equilibrium,

candidate 0 may lose because the UIAs vote for 1 with a strictly positive probability.5

Thus, the informative equilibrium works better in this case.

These examples imply that one equilibrium does not dominate the other for every

(ex post) realization of z and nt’s. Thus I need to compute and compare the ex ante

probabilities that an election aggregates information for the two equilibria. Let W

denote the event of n = (n0, n1, ni, nu, nφ) in which the winner of the election is different

from the winner of the election if all agents were fully informed (i.e., the election fails

to aggregate information). The event W happens if the number of agents who prefer

4When N + 1 = 100, p0 = 0.35, p1 = 0.15, ps = 0.4, q = 0.2, and α = 0.5, the probability of an

UIA voting for 0 in the uninformative equilibrium is give by τφ ≈ 0.39.
5τ1 = 1− τφ ≈ 0.61.
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candidate x exceeds the number of agents who prefer candidate y, but candidate y wins

the election where x, y∈ {0, 1}, x 6= y. In the uninformative equilibrium, this happens

with probability 1 if z = x, ny < nx + ni + nu, and ny + nuy > nx + ni + nux, and with

probability 1
2

if z = x, ny < nx + ni + nu, and ny + nuy = nx + ni + nux, where nuy

and nux denote the number of the UIAs who vote for candidate x and y, respectively.

Therefore,

Pr (W |r1, z = x, N)

=
∑
n∈Γ1

(N + 1)!

n1!n0!ni!nu!nφ!

(∏
t∈T

pntt

)
× Ξ,

where

Γ1 =

{ {
n ∈ R5

+|
∑

t∈T nt = N + 1, nx + ni − nu ≤ ny < nx + ni + nu
}

if τx = 0{
n ∈ R5

+|
∑

t∈T nt = N + 1, nx + ni ≤ ny < nx + ni + nu
}

if τy = 0
,

and

Ξ =


1
2

nu!
h!(nu−h)!

τhy τ
(nu − h)
φ +

(∑nu
nuy = h+ 1

nu!
nuy !(nu − nuy)!

τ
nuy
y τ

(nu − nuy)
φ

)
if τx = 0 and h ≥ 0

1 if τx = 0 and h < 0(∑h′ − 1
nux = 0

nu!
nuy !(nu − nuy)!

τnuxx τ
nuφ
φ

)
+1

2
nu!

h′!(nu−h′)!τ
h′
x τ

nu−h′
φ if τy = 0

with

h = nx + ni − ny and h′ = ny − nx − ni.

Note that it is enough to consider two cases, τx = 0 and τy = 0, because the UIAs never

mix between 0 and 1 by Proposition 4.1. The term Ξ is the probability of candidate y

winning given nt’s, z, and τ .

Similarly, in the informative equilibrium, the event W happens with probability 1

if z = x, ny < nx + ni + nu, ny + nu > nx + ni, and µ (z = x|m−j, r2) < 1
2
, and with

probability 1
2

if z = x, ny < nx +ni +nu, ny +nu = nx +ni, and µ (z = x|m−j, r2) < 1
2
.

Thus,

Pr (W |r2, z = x, N)

=
∑
n∈Γ2

(
(N + 1)!

n1!n0!ni!nu!nφ!

∏
t∈T

pntt

)
+

1

2

∑
n∈Γ′

2

(
(N + 1)!

n1!n0!ni!nu!nφ!

∏
t∈T

pntt

)
,

where

Γ2 = {n ∈ R5
+|
∑
t∈T

nt = N + 1, nx + ni − nu < ny < nx + ni + nu, and µ (z = x|m−j, r2) <
1

2
},
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Figure 4.2: Probabilities Pr(W |r2, N) and Pr(W |r1, N) when α = 0.5, pφ = 0.1,

ps = 0.4 and q = 0.2

Γ′2 = {n ∈ R5
+|
∑
t∈T

nt = N + 1, ny + nu = nx + ni, and µ (z = x|m−j, r2) <
1

2
},

and

m−j = (mx,my,mND) = (nx, ny, N − (nx + ny)) .

Instead of comparing Pr(W |r2, z = x, N) and Pr(W |r1, z = x, N) directly for fi-

nite N , I consider large elections. Since the election fully aggregates information in

a large election under both poll response strategies, the probability of W converges

to zero regardless of the poll response strategy being used. By taking the large de-

viation approach, I compare the converging speed of these probabilities to show that

limN→∞
1

N+1
log Pr (W |r2, z = x, N) < limN→∞

1
N+1

log Pr (W |r1, z = x, N) for all x,

which in turn implies that Pr(W |r2, z = x, N) < Pr(W |r1, z = x, N) for sufficiently

large N . Proposition 4.4 proves it formally.

Proposition 4.4. Suppose p0 > 0, p1 > 0, pφ > 0, and q > 0. If p1 6= p0 and

ps (1− q) > |p1 − p0|, then, for sufficiently large N , Pr (W |r2, z = x,N) < Pr (W |r1, z = x,N)

for each x ∈ {0, 1}.

Proposition 4.4 shows that polls can be welfare improving in a large election if

the expected fractions of partisans, p0 and p1, are not exactly the same and the ex-
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pected fraction of UIAs is larger than the difference between the fractions of partisans.6

Figure 4.2 shows numerical examples of Pr (W |r,N) in which Pr (W |r2, z = x,N) <

Pr (W |r1, z = x,N) does not hold for small N but it does eventually. Parameters are

set to α = 0.5, pφ = 0.1, ps = 0.4, and q = 0.2. Note that even when everyone tells the

truth, polls are not always helpful when the size of electorate is not large enough. For

example, for N = 5, the expected number of the informed independent agents is far less

than 1. Since most of the times there are too few informed independent agents, if any,

to signal the state, and all the UIAs are voting anyway in the informative equilibrium,

the wrong candidate might be elected quite often. On the contrary, in the uninforma-

tive equilibrium, the UIAs just try to fill the partisan gap and optimally abstain.7 This

means that the UIAs might make a wrong decision, but not all of them do so. Thus,

the chance of electing the wrong candidate is relatively lower. However, as N increases,

Pr(W |r2, N) converges to zero more rapidly than Pr(W |r1, N) does, as illustrated in

the figure.

5 Discussion and Conclusion

My analysis implies that in large elections, such as presidential or congressional elec-

tions, it is better to take public pre-election opinion polls regardless of whether these

polls can clearly predict the winner. I show that there is an equilibrium in which ev-

eryone truthfully answers the poll question and that in such an equilibrium, the swing

voters’ curse disappears and everyone votes as if they had no uncertainty about the

state of the world.

What if there are multiple rounds of polling, as is typical in real elections? Theo-

retically, all kinds of things can happen in this case. For example, in equilibrium, it is

possible that players use the informative poll response strategy in the first few rounds

and thereafter answer the poll as they would vote on election day based on their poste-

rior belief. It is also possible that everyone keeps playing the informative poll response

strategy throughout the campaign periods and then votes on election day according to

the posterior belief. In either case, the equilibrium being played with multiple pollings

is essentially the same as described in the game with one-round polling regarding in-

formation transmission, but the gap between the poll results and the election outcome

6When p0 = p1, the converging speeds coincide. The other assumption ps (1− q) > |p1 − p0| means

that the expected fraction of UIAs is large enough to overturn the election outcome.
7For N = 5, p0 = 0.3 and p1 = 0.2, an UIA abstains with probability τφ = 1 and for p0 = 0.35 and

p1 = 0.15 with probability τφ ≈ 0.71.
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will vary depending on which strategies are played.

It would be useful for future research to test the theoretical results using experi-

ments. In particular, because there are multiple equilibria in the game, it should be

empirically examined how agents answer the poll question and how they interpret the

poll results. Existing experimental studies show considerable support for the swing

voter’s curse (Battaglini et al. 2008, 2010). Will the curse disappear when agents

answer a public opinion poll? Will the uninformed voters be willing to participate in

voting and do so in the right way? Answers to these questions would lead to further

understanding of democratic institutions.

A Appendix

Lemma A.1 proves Lemma 4.2. I omit proof of Lemma A.1 as it is straightforward.

Lemma A.1. For x, y ∈ X with x 6= y, assume mx ≥ my. Let δ = mx − my and

m′ND = mND − 1. When players use poll response strategy r2 (·), for all z ∈ {0, 1} ,
1) if δ = m′ND = 0, then πe (z, τ |m−j, r2) = 1 and πx (z, τ |m−j, r2) = πy (z, τ |m−j, r2) =

0,

2) if δ = 1 and m′ND = 0, then πe (z, τ |m−j, r2) = πx (z, τ |m−j, r2) = 0, and πy (z, τ |m−j, r2) =

1,

3) if δ −m′ND = 1 and m′ND > 0, then πe (z, τ |m−j, r2) = πx (z, τ |m−j, r2) = 0, and

πy (z, τ |m−j, r2) =
N !

m0!m1!m′ND!
(σy,z,ND (τ |r2))m

′
ND ,

4) if δ −m′ND > 1, then πe (z, τ |m−j, r2) = πx (z, τ |m−j, r2) = πy (z, τ |m−j, r2) = 0,

5) if δ = m′ND > 0, then

πe (z, τ |m−j, r2) =
N !

m0!m1!m′ND!
(σy,z,ND (τ |r2))m

′
ND ,

πx (z, τ |m−j, r2) = 0, and

πy (z, τ |m−j, r2) =
N !

m0!m1!m′ND!
m′NDσφ,z,ND (τ |r2) (σy,z,ND (τ |r2))m

′
ND−1 ,

19



5) if 0 ≤ δ < m′ND, then

πe (z, τ |m−j, r2)

=
N !

m0!m1!m′ND!

b(m′
ND−δ)/2c∑
j=0

m′ND!

j! (δ + j)! (m′ND − (δ + 2j))!

× σφ,z,ND (τ |r2)m
′
ND−(δ+2j) σx,z,ND (τ |r2)δ+j σy,z,ND (τ |r2)j ,

πx (z, τ |m−j, r2)

=
N !

m0!m1!m′ND!

b(m′
ND−(δ+1))/2c∑

j=0

m′ND!

j! (δ + j + 1)! (m′ND − (δ + 2j + 1))!

× σφ,z,ND (τ |r2)m
′
ND−(δ+2j+1) σx,z,ND (τ |r2)j σy,z,ND (τ |r2)δ+j+1 ,

and

πy (z, τ |m−j, r2)

=
N !

m0!m1!m′ND!

b(m′
ND−(δ−1))/2c∑

j=0

m′ND!

j! (δ + j − 1)! (m′ND − (δ + 2j − 1))!

× σφ,z,ND (τ |r2)m
′
ND−(δ+2j−1) σx,z,ND (τ |r2)j σy,z,ND (τ |r2)δ+j−1 ,

where

σv,z,ND (τ |r2) =

{
pφ+ps(1−q)τφ
pφ+ps(1−q) if v = φ
ps(1−q)τv
pφ+ps(1−q) if v ∈ {0, 1}

.

[Proof of Proposition 4.1] The proof of part 1) can be found in Fey and Kim

(2002). To prove part 2), I need to make a pair-wise comparison between voting

actions as follows. Since πe (1, τ |m−j, r2) = πe (0, τ |m−j, r2) , π1 (1, τ |m−j, r2) =

π1 (0, τ |m−j, r2), and π0 (1, τ |m−j, r2) = π0 (1, τ |m−j, r2) by Lemma 4.2, I have

Eu (1, τ |m−j, r2)− Eu (φ, τ |m−j, r2) (A.1)

=
1

2

[
(1− µ (0|m−j, r2)) [πe (1, τ |m−j, r2) + π1 (1, τ |m−j, r2)]

−µ (0|m−j, r2) [πe (0, τ |m−j, r2) + π1 (0, τ |m−j, r2)]

]
=

1

2
(1− 2µ (0|m−j, r2)) [πe (1, τ |m−j, r2) + π1 (1, τ |m−j, r2)] ,
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and

Eu (0, τ |m−j, r2)− Eu (φ, τ |m−j, r2) (A.2)

=
1

2

[
− (1− µ (0|m−j, r2)) [πe (1, τ |m−j, r2) + π0 (1, τ |m−j, r2)]

+µ (0|m−j, r2) [πe (0, τ |m−j, r2) + π0 (0, τ |m−j, r2)]

]
= −1

2
(1− 2µ (0|m−j, r2)) [πe (1, τ |m−j, r2) + π0 (1, τ |m−j, r2)] .

Thus, if µ (0|m−j, r2) ≥ 1
2
, I have Eu (0, τ |m−j, r2) ≥ Eu (φ, τ |m−j, r2). If µ (0|m−j, r2) <

1
2
, then Eu (1, τ |m−j, r2) ≥ Eu (φ, τ |m−j, r2), as needed. �

[Proof of Proposition 4.2] I first show that no player has an incentive to deviate

from the specified voting strategy given the beliefs. Then, I show that given the voting

strategy, no one has an incentive to deviate from the specified poll response strategy.

Voting strategy:

By Proposition 4.1, it suffices to compare Eu (1, τ |m−j, r2) and Eu (0, τ |m−j, r2).

Since

Eu (1, τ |m−j, r2)− Eu (0, τ |m−j, r2)

= (1− µ (0|m−j, r2))

(
πe (1, τ |m−j, r2) +

1

2
π1 (1, τ |m−j, r2) +

1

2
π0 (1, τ |m−j, r2)

)
− µ (0|m−j, r2)

(
πe (0, τ |m−j, r2) +

1

2
π1 (0, τ |m−j, r2) +

1

2
π0 (0, τ |m−j, r2)

)
= (1− 2µ (0|m−j, r2)) (2πt (1, τ |m−j, r2) + π1 (1, τ |m−j, r2) + π0 (1, τ |m−j, r2))

by Lemma 4.2, I have Eu (0, τ |m−j, r2) ≥ Eu (1, τ |m−j, r2) if µ (0|m−j, r2) ≥ 1
2

and

Eu (1, τ |m−j, r2) > Eu (0, τ |m−j, r2) if µ (0|m−j, r2) < 1
2
.

Poll response strategy:

Note that the probability of candidate 0 winning weakly increases with µ (z = 0|m−j, r2).

Since ∂µ
∂m1
≤ 0 and ∂µ

∂m0
≥ 0, a type-0 or type-1 voter does not have an incentive to

deviate from r2. For the same reason, an informed independent agent truthfully an-

swers the poll question to signal the state. Now, to check an UIA’s incentive, consider

her/his deviation to 0 while the other players play r2. The only case in which an

UIA’s deviation to 0 makes a difference is when µ (z = 0|(m0,m1,mND − 1), r2) < 1
2

and µ (z = 0| (m0 + 1,m1,mND − 2) , r2) ≥ 1
2
. In this case, if an UIA deviates to 0, the

other UIAs switch their votes to candidate 0, which gives an equal or worse expected

utility to the UIA since z = 1 is more likely. Deviation to 1 can be checked similarly.

�
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[Proof of Proposition 4.3] Suppose z = 0. The case in which the state is 1 can

be proved similarly.

Note that

µ (z = 0|m−j, r2) =
α (p0 + psq)

m0 pm1
1

α (p0 + psq)
m0 pm1

1 + (1− α) pm0
0 (p1 + psq)

m1

=
1

1 +
(

1−α
α

) [(
p0

p0+psq

)m0/(N+1) (
p1+psq
p1

)m1/(N+1)
]N+1

.

By the Strong Law of Large Numbers, m0/ (N + 1) converges to p0 + psq a.s., and

m1/ (N + 1) converges to p1 a.s. as N →∞. Thus, it suffices to show that(
p0

p0 + psq

)p0+psq (p1 + psq

p1

)p1
< 1.

Note that

log

[(
p0

p0 + psq

)p0+psq (p1 + psq

p1

)p1]

= (p0 + psq) log

(
1− psq

p0 + psq

)
+ p1 log

(
1 +

psq

p1

)
< (p0 + psq)

(
− psq

p0 + psq

)
+ p1

(
psq

p1

)
= 0.

The inequality follows from the fact that log (1 + a) < a for all a ∈ (−1, 0) ∪ (0,∞),

which can be verified by observing that log (1 + a)−a is strictly concave and maximized

at a = 0.

�

[Proof of Proposition 4.4]

Without loss of generality, assume p1 > p0. Before proceeding with the proof, define

new notations. Let
{
τN
}∞
N=0

be a sequence of equilibrium voting strategy for type-u in

which agents use uninformative poll response strategy. Let pi ≡ psq, pu ≡ ps (1− q),
pNu0 ≡ ps (1− q) τN0 , pNu1 ≡ ps (1− q) τN1 and pNuφ ≡ ps (1− q) τNφ . Note that since I

assume pu > p1 − p0, pNu0 → pu0 ≡ p1 − p0 and pNuφ → puφ ≡ pu − (p1 − p0) (Feddersen

and Pesendorfer 1996, Proposition 3). Further, let nu0 denote the number of agents

whose type is u and chooses to vote for 0, nu1 the number of agents whose type is u

and chooses to vote for 1, and nuφ the number of agents whose type is u and chooses

to abstain. Clearly, nu = nu0 + nu1 + nuφ. I will abuse the notation and denote

n = (n0, n1, ni, nu, nφ) or (n0, n1, ni, nu0, nuφ, nφ), depending on the context.
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For a positive integer K, let ∆K =
{
f ∈ RK

+ :
∑

k fk = 1
}

. I may omit N when it

is clear from the context.

I need the following lemmas. I will use the large deviation principle (for example,

see DasGupta (2008, Theorem 23.2)) in the proofs below.

Lemma A.2. Suppose p1 > p0 > 0, pu > p1 − p0, pφ > 0 and q > 0. Then,

lim
N→∞

1

N + 1
log Pr (W |r1, z = 0) = −min

g∈G0

∑
k=0,1,i,u0,uφ,φ

gk log (gk/pk) ,

where G0 = {g = (g1, g0, gi, gu0, guφ, gφ) ∈ ∆6 : g1 ≤ g0 + gi + gu0 + guφ, g1 ≥ g0 + gi + gu0}.

Proof: I ignore the event of ties and let W ′ be the event in which n1 ≤ n0 + ni + nu

(more agents prefer candidate 0) and n1 + nu1 ≥ n0 + ni + nu0 (more agents vote for

candidate 1). Since the probability of a tie (the event that n1 + nu1 = n0 + ni + nu0)

vanishes in the limit, I compute the probability of W ′ instead. Note that since p1 > p0,

nu0 ≥ nu1 = 0 by Proposition 4.1. Then,

Pr (W ′|r1, z = 0)

= Pr (n1 ≤ n0 + ni + nu and n1 ≥ n0 + ni + nu0|r1, z = 0)

= Pr (n1 ≤ n0 + ni + nu0 + nuφ and n1 ≥ n0 + ni + nu0|r1, z = 0)

= Pr

(
n

N + 1
∈ G0|r1, z = 0

)
,

Here, G0 is defined in the statement of the lemma.

By the large deviation principle, I have

lim
N→∞

1

N + 1
log Pr

(
n

N + 1
∈ G0|r1, z = 0

)
=− inf

g∈G0

sup
d∈R6

(
gTd− φ (d)

)
,

where T is the transformation operator and φ (d) = limN→∞
1

N+1
logE

[
exp

(
dTn

)]
is

the limit of the cumulant generating function of n. Since the voter types are independent

and identically distributed, I can consider the type distribution of the first agent only

and hence φ (d) = log
(∑

k=0,1,i,u0,uφ,φ pk exp (dk)
)

.

Simple algebra shows supd (g′d− φ (d)) =
∑

k gk log (gk/pk). This implies

lim
N→∞

1

N + 1
log Pr (W ′|r1, z = 0) = − inf

g∈G0

∑
k

gk log (gk/pk) .

Since the objective function is continuous and G0 is compact, the minimum is achieved

and the lemma is proved. �
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Lemma A.3. Suppose p1 > p0 > 0, pu > p1 − p0, pφ > 0 and q > 0. Then,

(i) limN→∞
1

N+1
log Pr (W |r1, z = 0) = −ming∈G′

0

∑
k=0,1,i,u0,uφ,φ gk log (gk/pk), where

G′0 = {g = (g1, g0, gi, gu0, guφ, gφ) ∈ ∆6 : g1 ≥ g0 + gi + gu0} and g1 ≥ g0 + gi + gu0 is

binding at the minimizer, and

(ii) limN→∞
1

N+1
log Pr (W |r1, z = 0) = limN→∞

1
N+1

log Pr (W |r1, z = 1).

Proof: I solve the constrained optimization problem in Lemma A.2 to compute

lim
N→∞

1

N + 1
log Pr (W |r1, z = 0) .

The Kuhn-Tucker conditions give the following solution at which only one inequality

constraint g1 ≥ g0 + gi + gu0 is binding:

g0 =
p0

p0 + pi + pu0

√
p1 (p0 + pi + pu0)

2
(√

p1 (p0 + pi + pu0)
)

+ (puφ + pφ)
,

g1 =

√
p1 (p0 + pi + pu0)

2
(√

p1 (p0 + pi + pu0)
)

+ (puφ + pφ)
,

gi =
pi

p0 + pi + pu0

√
p1 (p0 + pi + pu0)

2
(√

p1 (p0 + pi + pu0)
)

+ (puφ + pφ)
,

gu0 =
pu0

p0 + pi + pu0

√
p1 (p0 + pi + pu0)

2
(√

p1 (p0 + pi + pu0)
)

+ (puφ + pφ)
,

guφ =
puφ

2
(√

p1 (p0 + pi + pu0)
)

+ (puφ + pφ)
, and

gφ =
pφ

2
(√

p1 (p0 + pi + pu0)
)

+ (puφ + pφ)
.

Plugging these into −
∑

k gk log (gk/pk) gives

lim
N→∞

1

N + 1
log Pr (W |r1, z = 0) = log

(
2
√
p1 (p1 + pi) + (pu − (p1 − p0) + pφ)

)
.

(A.3)

Because the inequality g1 ≤ g0 + gi + gu0 + guφ is not binding, the minimization

problem under G′0 has the same solution and thus 1) holds.

Turn to z = 1. Recall that the probability of a tie vanishes in the limit. Ignoring

the probability of a tie, I consider the event denoted by W ′ again in which n0 ≤
n1 + ni + nu0 + nuφ (more agents prefer candidate 1) and n0 + nu0 ≥ n1 + ni (more
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agents vote for candidate 0). Applying the large deviation principle again (see the proof

of Lemma A.2 for detail), I obtain

lim
N→∞

1

N + 1
log Pr (W ′|r1, z = 1) = − inf

g∈G1

∑
k

gk log (gk/pk)

whereG1 = {g = (g0, g1, gi, gu0, guφ, gφ) ∈ ∆6 : g0 ≤ g1 + gi + gu0 + guφ, g0 + gu0 ≥ g1 + gi}.
Then, the Kuhn-Tucker conditions give the following solution at which only one inequal-

ity constraint g0 + gu0 ≥ g1 + gi is binding:

g0 =
p0

(p0 + pu0)

( √
(p0 + pu0) (p1 + pi)

2
√

(p0 + pu0) (p1 + pi) + (puφ + pφ)

)
,

g1 =
p1

(p1 + pi)

( √
(p0 + pu0) (p1 + pi)

2
√

(p0 + pu0) (p1 + pi) + (puφ + pφ)

)
,

gi =
pi

(p1 + pi)

( √
(p0 + pu0) (p1 + pi)

2
√

(p0 + pu0) (p1 + pi) + (puφ + pφ)

)
,

gu0 =
pu0

(p0 + pu0)

( √
(p0 + pu0) (p1 + pi)

2
√

(p0 + pu0) (p1 + pi) + (puφ + pφ)

)
,

guφ =

(
puφ

2
√

(p0 + pu0) (p1 + pi) + (puφ + pφ)

)
, and

gφ =
pφ

2
√

(p0 + pu0) (p1 + pi) + (puφ + pφ)
.

The statement of the lemma is verified by plugging these into the objective function

and comparing with (A.3). �

Lemma A.4. Suppose p1 > p0 > 0, pu > p1 − p0, pφ > 0 and q > 0. Then,

lim
N→∞

1

N + 1
log Pr (W |r2, z = 0) = −

∑
k=0,1,i,u,φ

fk log (fk/pk) ,
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where

f0 =
p0

p0 + pi

(
1− η
1 + C

)
,

f1 =
η

1 + C
,

fi =
pi

p0 + pi

(
1− η
1 + C

)
,

fu =
pu

pu + pφ

(
C

1 + C

)
, and

fφ =
pφ

pu + pφ

(
C

1 + C

)
,

with η = log((p0+pi)/p0)
log((p0+pi)/p0)+log((p1+pi)/p1)

and C = (pu + pφ)
(
η
p1

)η (
1−η
p0+pi

)(1−η)

.

Proof: As in Lemma A.2, the probability of a tie vanishes in the limit. Thus, instead

of W , I can consider the event denoted by W ′ in which n1 < n0 + ni + nu (more agents

prefer candidate 0), n1 + nu > n0 + ni (more agents vote for candidate 1 if the UIAs

vote for 1) and µ (z = 0|m−j, r2) < 1
2

(the UIAs vote for candidate 1). Observe

Pr (W ′|r2, z = 0)

= Pr

(
n1 < n0 + ni + nu, n1 + nu > n0 + ni, µ (z = 0|m−j, r2) <

1

2
|r2, z = 0

)
= Pr(n0 + ni − nu < n1 < n0 + ni + nu,

(n0 + ni) log
p0

p0 + pi
− n1 log

p1

p1 + pi
> log

α

1− α
|r2, z = 0)

= Pr

(
n

N + 1
∈ F0

(
1

N + 1
log

α

1− α

)
|r1, z = 0

)
,

where

F0 (b) = {f = (f0, f1, fi, fu, fφ) ∈ ∆5 : f0 + fi − fu ≤ f1 ≤ f0 + fi + fu and

(f0 + fi) log
p0

p0 + pi
− f1 log

p1

p1 + pi
≥ b}.

Claim: limN→∞
1

N+1
log Pr (W ′|r2, z = 0) = − inff∈F0(0)

∑
k fk log (fk/pk).

To show this, note that 1
N+1

log α
1−α converges to 0. Thus, for any ε > 0, there is

N > 0 such that N > N implies

−ε < 1

N + 1
log

α

1− α
< ε
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and also

Pr

(
n

N + 1
∈ F0 (ε) |r1, z = 0

)
< Pr (W ′|r2, z = 0) < Pr

(
n

N + 1
∈ F0 (−ε) |r1, z = 0

)
.

Therefore, for any ε > 0,

lim
N→∞

1

N + 1
log Pr

(
n

N + 1
∈ F0 (ε) |r1, z = 0

)
≤ lim

N→∞

1

N + 1
log Pr (W ′|r2, z = 0)

(A.4)

≤ lim
N→∞

1

N + 1
log Pr

(
n

N + 1
∈ F0 (−ε) |r1, z = 0

)
.

(A.5)

Now, apply the large deviation principle to obtain

lim
N→∞

1

N + 1
log Pr

(
n

N + 1
∈ F0 (ε′) |r1, z = 0

)
= − inf

f∈F0(ε′)

∑
k

fk log (fk/pk)

for each ε′ ∈ R. (See the proof of Lemma A.2 for detail.) Because F0 (ε′) is compact-

valued and continuous in ε′, the Maximum Theorem implies that

lim
N→∞

1

N + 1
log Pr

(
n

N + 1
∈ F0 (ε′) |r1, z = 0

)
is continuous at ε′ = 0. Therefore, by taking ε ↓ 0 in (A.4) and (A.5) I have shown the

claim.

Compute

− inf
f∈F0(0)

∑
k

fk log (fk/pk) .

The Kuhn-Tucker conditions give the solution in the lemma at which only one inequality

constraint (f0 + fi) log
(

p0
p0+pi

)
− f1 log

(
p1

p1+pi

)
≥ 0 is binding. �

Lemma A.5. Suppose p1 > p0 > 0, pu > p1 − p0, pφ > 0 and q > 0. Then,

lim
N→∞

1

N + 1
log Pr (W |r2, z = 0) = lim

N→∞

1

N + 1
log Pr (W |r2, z = 1) .

Proof: In Lemma A.4, limN→∞
1
N

log Pr (W |r2, z = 0) is computed. The converging

speed for z = 1 is computed similarly as follows.

Assume z = 1. Ignoring a tie, I consider the event denoted by W ′ in which n0 <

n1 + ni + nu (more agents prefer candidate 1), n0 + nu > n1 + ni (more agents vote
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for candidate 0 if the UIAs vote for 0) and µ (z = 1|m−j, r2) < 1
2

(the UIAs vote for

candidate 0). By the large deviation principle, it suffices to solve

− inf
f∈F1(0)

∑
k

fk log (fk/pk)

where

F1 (b) = {f = (f0, f1, fi, fu, fφ) ∈ ∆5 : f1 + fi − fu ≤ f0 ≤ f1 + fi + fu,

f0 log

(
p0 + pi
p0

)
− (f1 + fi) log

(
p1 + pi
p1

)
≥ b}.

The Kuhn-Tucker conditions give the following solution at which only one inequality

constraint f0 log
(
p0+pi
p0

)
− (f1 + fi) log

(
p1+pi
p1

)
≥ 0 is binding:

f0 =
1− η
1 + C

, (A.6)

f1 =
p1

p1 + pi

(
η

1 + C

)
, (A.7)

fi =
pi

p1 + pi

(
η

1 + C

)
, (A.8)

fu =
pu

pu + pφ

(
C

1 + C

)
, and (A.9)

fφ =
pφ

pu + pφ

(
C

1 + C

)
. (A.10)

Note that η and C are defined in Lemma A.4.

Note that, for each z = 0, 1, the converging speed is expressed as

−
∑
k

fk log (fk/pk)

where the minimizer f is given in Lemma A.4 for z = 0 and (A.6)-(A.10) for z = 1.

I will plug the two solutions into the objective function and verify the two are the

same. Because (fu, fφ) coincides between z = 0 and z = 1, I need to show

p0

p0 + pi

(
1− η
1 + C

)
log

(
p0

p0 + pi

(
1− η
1 + C

)
/p0

)
+

η

1 + C
log

(
η

1 + C
/p1

)
+

pi
p0 + pi

(
1− η
1 + C

)
log

(
pi

p0 + pi

(
1− η
1 + C

)
/pi

)
=

1− η
1 + C

log

(
1− η
1 + C

/p0

)
+

p1

p1 + pi

(
η

1 + C

)
log

(
p1

p1 + pi

(
η

1 + C

)
/p1

)
+

pi
p1 + pi

(
η

1 + C

)
log

(
pi

p1 + pi

(
η

1 + C

)
/pi

)
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The left-hand side is

(LHS) =

(
1− η
1 + C

)
log

(
1

p0 + pi

(
1− η
1 + C

))
+

η

1 + C
log

(
η

1 + C
/p1

)
,

and the right-hand side is

(RHS) =
1− η
1 + C

log

(
1− η
1 + C

/p0

)
+

(
η

1 + C

)
log

(
1

p1 + pi

(
η

1 + C

))
.

Thus,

(LHS)− (RHS) =
1

1 + C

(
(1− η) log

(
p0

p0 + pi

)
− η log

(
p1

p1 + pi

))

=
1

1 + C

 log
(

p1
p1+pi

)
log
(

p0
p0+pi

)
+ log

(
p1

p1+pi

) log

(
p0

p0 + pi

)
−

log
(

p0
p0+pi

)
log
(

p0
p0+pi

)
+ log

(
p1

p1+pi

) log

(
p1

p1 + pi

) = 0.

�

Lemma A.6. Suppose p1 > p0 > 0, pu > p1 − p0, pφ > 0 and q > 0. Then,

lim
N→∞

1

N + 1
log Pr (W |r2, z = 0) = −

∑
k=0,1,i,u0,uφ,φ

g′k log (g′k/pk) ,

where g′ =
(
g′0, g

′
1, g
′
i, g
′
u0, g

′
uφ, g

′
φ

)
, g′k = fk for k = 0, 1, i, φ, g′u0 = pu0

pu
fu, g′uφ =

puφ
pu
fu

and (f0, f1, fi, fu, fφ) is defined in Lemma A.4.

Proof: The lemma holds because of Lemma A.4 and the fact

fu log (fu/pu) =
pu0

pu
fu log

(
pu0

pu
fu/pu0

)
+
puφ
pu
fu log

(
puφ
pu
fu/puφ

)
.

�

Define a0 = log (1 + r0) and a1 = log (1 + r1) for positive r0 and r1. In addition, let

Φ = a0 log
(a0 − a1) r0 (1 + r1)

(r0 − r1) a0

+ a1 log
(a0 − a1) r1

(r0 − r1) a1

.

Lemmas A.7 through A.9 are needed for Lemma A.10 that shows Φ > 0 for r0 > r1 > 0.

Then, (A.11), the key step to prove Proposition 4.4, relies on Lemma A.10.
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Lemma A.7. If r0 > r1 > 0,

1

(1 + r0) (1 + r1) (a0 − a1)2 −
1

(r0 − r1)2 > 0.

Proof: Let Ψ ≡ a0 − a1 − r0−r1√
1+r0

√
1+r1

and it suffices to show Ψ < 0. If r0 = r1,

Ψ = 0. I need to show that d
dr0

Ψ < 0. Compute

d

dr0

Ψ =
1

1 + r0

(
1− 1

2

1√
1 + r0

√
1 + r1

(2 + r0 + r1)

)
< 0.

The inequality follows because

2 + r0 + r1 − 2
√

(1 + r1) (1 + r0) =
(√

1 + r0 −
√

1 + r1

)2
> 0.

�

Lemma A.8. If r0 > r1 > 0, d
dr0

Φ > 0.

Proof: Compute

d

dr0

Φ =
1

1 + r0

log
(a0 − a1) r0 (1 + r1)

(r0 − r1) a0

+
a0 + a1

a0 − a1

1

1 + r0

− a0 + a1

r0 − r1

+
a0

r0

− 1

1 + r0

.

Then,

lim
r1↓0

d

dr0

Φ = 0.

Therefore, I only need to show d2

dr1dr0
Φ > 0. Observe

d2

dr1dr0

Φ = (a0 + a1)

(
1

(1 + r0) (1 + r1) (a0 − a1)2 −
1

(r0 − r1)2

)
> 0

by Lemma A.7. �

Lemma A.9. For r1 > 0, 2 log r1
a1
− a1 > 0.

Proof: By L’Hôpital’s rule,

lim
r1↓0

r1

a1

= lim
r1↓0

1

1/ (1 + r1)
= 1.

Thus, limr1↓0 2 log r1
a1
− a1 = 0. Moreover,

d

dr1

(
2 log

r1

a1

− a1

)
= 2

1

r1

− 2
1

a1

1

1 + r1

− 1

1 + r1

=
2 + r1

r1 (1 + r1)
− 2

1

a1

1

1 + r1

=
2 + r1

r1 (1 + r1) a1

(
a1 −

2r1

2 + r1

)
> 0,

where the last inequality is implied by the inequality log (1 + r) > 2r
2+r

for r > 0. �
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Lemma A.10. If r0 > r1 > 0, Φ > 0.

Proof: First, L’Hôpital’s rule implies

lim
r0↓r1

a0 − a1

r0 − r1

= lim
r0↓r1

1/ (1 + r0)

1
=

1

1 + r1

,

and thus

lim
r0↓r1

Φ = a1 log
r1

a1

+ a1 log
r1

(1 + r1) a1

= a1 log
r1

a1

+ a1 log
r1

a1

− a1 log (1 + r1)

= 2a1 log
r1

a1

− a2
1 = a1

(
2 log

r1

a1

− a1

)
> 0

by Lemma A.9. In addition, I have shown d
dr0

Φ > 0 in Lemma A.8. Therefore, Φ > 0.

�

Lemma A.11. Suppose p1 > p0 > 0 and pi > 0. For g′ and G′0 defined Lemmas A.3

and A.6, g′ lies in the interior of G′0.

Proof: Set r0 = pi
p0

and r1 = pi
p1

. Then, r0 > r1 > 0 and Lemma A.10 implies

a0 log
(a0 − a1) r0 (1 + r1)

(r0 − r1) a0

+ a1 log
(a0 − a1) r1

(r0 − r1) a1

> 0.

Recalling that η = a0
a0+a1

, I can rewrite this inequality as

(a0 − a1) pη1 (p0 + pi)
1−η > (p1 − p0) aη0a

1−η
1 .

Then,

−g′1 + g′0 + g′i + g′u0 = − η

1 + C
+

1− η
1 + C

+
(p1 − p0)

(pu + pφ)

C

1 + C

=
1

1 + C

(
1− 2η +

(p1 − p0)

(pu + pφ)
C

)
=

1

1 + C

(
1− 2η + (p1 − p0)

(
η

p1

)η (
1− η
p0 + pi

)(1−η)
)

=
1

1 + C

(
a1 − a0

a0 + a1

+ (p1 − p0)

(
η

p1

)η (
1− η
p0 + pi

)(1−η)
)

=
1

1 + C

(
− (a0 − a1) pη1 (p0 + pi)

1−η + (p1 − p0) aη0a
1−η
1

pη1 (p0 + pi)
1−η (a0 + a1)

)
< 0,
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which implies g′ lies in the interior of G′0. �

Now I prove Proposition 4.4. I need to prove that

lim
N→∞

1

N + 1
log Pr (W |r2, z = x) < lim

N→∞

1

N + 1
log Pr (W |r1, z = x) (A.11)

for each x = 0, 1. Lemmas A.3(ii) and A.5 imply that it is enough to prove (A.11) for

z = 0 only. Note that

lim
N→∞

1

N + 1
log Pr (W |r1, z = 0)

=− min
g∈G′

0

∑
k

gk log (gk/pk) (A.12)

>−
∑

k=0,1,i,u0,uφ,φ

g′k log (g′k/pk)

= lim
N→∞

1

N + 1
log Pr (W |r2, z = 0)

where Lemmas A.3(i) and A.6 define G′0 and g′, respectively, and prove the two equal-

ities. Lemma A.11 shows g′ does not satisfy g1 = g0 + gi + gu0 (the constraint in G′0).

Thus, g′ cannot be a minimizer of (A.12) by Lemma A.3(i). This implies the strict

inequality. �

32



References

[1] Andonie, Costel, and Christoph Kuzmics. 2012. “Pre-election polls as strategic

coordination devices.” Journal of Economic Behavior & Organization 84(2): 681-

700.

[2] Austen-Smith, David, and Timothy J. Feddersen. 2006. “Deliberation, preference

uncertainty, and voting rules.” American Political Science Review 100(2): 209-217.

[3] Austen-Smith, David, and Timothy J. Feddersen. 2009. “Information aggregation

and communication in committees.” Philosophical Transactions of the Royal Soci-

ety of London B: Biological Sciences 364(1518): 763-769.

[4] Barone, Michael. 2015. “Why political polls are so often wrong.” Wall

Street Journal (Nov. 11). (https://www.wsj.com/articles/why-political-polls-are-

so-often-wrong-1447285797)

[5] Battaglini, Marco, Rebecca B. Morton, and Thomas R. Palfrey. 2008. “Informa-

tion aggregation and strategic abstention in large laboratory elections.” American

Economic Review 98(2): 194-200.

[6] Battaglini, Marco, Rebecca B. Morton, and Thomas R. Palfrey. 2010. “The swing

voter’s curse in the laboratory.” Review of Economic Studies 77(1): 61-89.

[7] Belli, Robert F., Michael W. Traugott, Margaret Young, and Katherine A. McGo-

nagle. 1999. “Reducing vote overreporting in surveys: Social desirability, memory

failure, and source monitoring.” Public Opinion Quarterly 63(1): 90-108.

[8] Bhattacharya, Sourav. 2013. “Preference monotonicity and information aggrega-

tion in elections.” Econometrica 81(3): 1229-1247.

[9] Bomey, Nathan. 2016. “How did pollsters get Trump,

Clinton election so wrong?” USA Today (Nov. 9).

(https://www.usatoday.com/story/news/politics/elections/2016/2016/11/09/pollsters-

donald-trump-hillary-clinton-2016-presidential-election/93523012/)

[10] Burke, Jeremy, and Curtis R. Taylor. 2008. “What’s in a poll? Incentives for

truthful reporting in pre-election opinion surveys.” Public Choice 137(1-2): 221-

244.

33



[11] Coughlan, Peter J. 2000. “In defense of unanimous jury verdicts: Mistrials, commu-

nication, and strategic voting.” American Political Science Review 94(2): 375-393.

[12] DasGupta, Anirban. 2008. Asymptotic theory of statistics and probability. Springer

Science & Business Media.

[13] DellaVigna, Stefano, John A. List, Ulrike Malmendier, and Gautam Rao. 2017.

“Voting to tell others.” Review of Economic Studies 84(1): 143-181.

[14] Feddersen, Timothy J., and Wolfgang Pesendorfer. 1996. “The swing voter’s curse.”

American Economic Review 86(3): 408-424.

[15] Feddersen, Timothy, and Wolfgang Pesendorfer. 1997. “Voting behavior and in-

formation aggregation in elections with private information.” Econometrica 65(5):

1029-1058.

[16] Feddersen, Timothy J., and Wolfgang Pesendorfer. 1999. “Abstention in elections

with asymmetric information and diverse preferences.” American Political Science

Review 93(2): 381-398.

[17] Fey, Mark, and Jaehoon Kim. 2002. “The swing voter’s curse: comment.” American

Economic Review 92(4): 1264-1268.

[18] Gerardi, Dino, and Leeat Yariv. 2007. “Deliberative voting.” Journal of Economic

Theory 134(1): 317-338.

[19] Goeree, Jacob K., and Jens Grosser. 2007. “Welfare reducing polls.” Economic

Theory 31(1): 51-68.

[20] Goeree, Jacob K., and Leeat Yariv. 2011. “An experimental study of collective

deliberation.” Econometrica 79(3): 893-921.

[21] Harbaugh, William T. 1996 “If people vote because they like to, then why do so

many of them lie?.” Public Choice 89(1-2): 63-76.

[22] Jackson, Matthew O., and Xu Tan. 2013. “Deliberation, disclosure of information,

and voting.” Journal of Economic Theory 148(1): 2-30.

[23] Kim, Jaehoon, and Mark Fey. 2007 “The swing voter’s curse with adversarial

preferences.” Journal of Economic Theory 135(1): 236-252.

34



[24] Mandler, Michael. 2012. “The fragility of information aggregation in large elec-

tions.” Games and Economic Behavior 74(1): 257-268.

[25] McMurray, Joseph C. 2013. “Aggregating information by voting: The wisdom of

the experts versus the wisdom of the masses.” Review of Economic Studies 80:

277-312.

[26] Meirowitz, Adam. 2005. “Polling games and information revelation in the Down-

sian framework.” Games and Economic Behavior 51(2): 464-489.

[27] Morgan, John, and Phillip C. Stocken. 2008. “Information aggregation in polls.”

American Economic Review 98(3): 864-896.

[28] Riddell, Kelly. 2016. “The art of polling and 5 recent examples where the pollsters

were wrong.” Washington Post (Oct. 26)

[29] Silver, Brian D., Barbara A. Anderson, and Paul R. Abramson. 1986. “Who over-

reports voting?.” American Political Science Review 80(2): 613-624.

[30] Silverstein, Jason. 2016. “Predictive polls were absolutely

wrong about Donald Trump.” New York Daily News (Nov. 9).

(http://www.nydailynews.com/news/politics/predictive-polls-absolutely-wrong-

donald-trump-article-1.2865546)

[31] Taylor, Curtis R., and Huseyin Yildirim. 2010. “Public information and electoral

bias.” Games and Economic Behavior 68(1): 353-375.

[32] Thordal-Le Quement, Mark, and Venuga Yokeeswaran. 2015. “Subgroup delibera-

tion and voting.” Social Choice and Welfare 45(1): 155-186.

[33] Whiteley, Paul. 2016. “4 possible reasons why most of the election polls were

wrong.” Business Insider (Nov. 11).

35


