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Abstract

I introduce a polling stage to Feddersen and Pesendorfer’s (1996) two-candidate
election model in which some voters are uncertain about the state of the world.
While Feddersen and Pesendorfer find that less informed, indifferent voters strictly
prefer abstention, which they refer to as the swing voter’s curse, I show that there
exists an equilibrium in which everyone truthfully reveals his/her preference in
the poll and participates in voting. Moreover, I find that even in the truth-telling
equilibrium, the candidate who wins the poll may be defeated in the election.

However, in a large election polls are still welfare improving.

1 Introduction

The most important function of polls, however, is not in telling us who is

going to win, but in revealing what is on the voters’ minds (Barone 2015).

Polls are often to blame for wrong predictions. Donald Trump’s victory in the 2016
US presidential election is a good example, as nearly all the pollsters predicted that
Hillary Clinton would win. A day after Election Day, in The New York Daily News,
Silverstein (2016) wrote, “The results are in: Predictive polls are a major loser of
the 2016 race,” and USA Today’s Bomey (2016) added, “Pollsters flubbed the 2016
presidential election in seismic fashion.” Another example of a recent miss of the polls

is the Brexit referendum in June 2016. Leading up to voting day, the vast majority
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of Brexit polls predicted that Remain would win. However, the Leave side won the
referendum by 52 percent to 48 percent and the polling industries had to take the
blame.

What went so wrong? The media and pollsters largely suggest three possible reasons.
First, people may have lied about their true preferences (e.g., Bomey 2016; Whiteley
2016); they might have felt embarrassed to tell the pollsters their true opinion, especially
with such controversial issues. Second, the response rate often fell below 10 percent
which is too low to be representative of the population because those who are willing
to answer polls might be quite different from the silent majority (e.g., Riddell 2016;
Silverstein 2016; Whiteley 2016). Third, the weight schemes used to determine likely
voters were inaccurate (e.g., Bomey 2016; Riddell 2016; Whiteley 2016). For example, in
an interview with USA Today, Arie Kapteyn, the director of the University of Southern
California’s Dornsife Center for Economic and Social Research, suggested that many
pollsters may have eliminated too many Trump supporters by assuming that those who
did not vote in 2012 would not vote in 2016 either.

In this paper, I present a simple two-candidate election model and show that polls
can be wrong (i.e., the candidate who led in the poll can be defeated in the election)
even if no one lies (thus, no shy supporters), no one refuses to talk (thus, no sampling
error or selection bias), and the probability of each citizen voting is known to everyone
(thus, no weight problem). Specifically, I introduce a polling stage to Feddersen and
Pesendorfer’s (1996) model. Their model assumes that voters are either partisans or
independents. The partisan voters prefer a particular candidate regardless of the state
of the world. In contrast, the independent voters’ preference depends on the state of
the world and these voters can learn the state of the world only with some probability.
I add a polling state to their model so that voters have an opportunity to answer the
poll question about who they support and to learn about the poll results before voting.

I characterize the most informative equilibrium in which every player truthfully
answers the poll question. Several important implications flow from the equilibrium.
First, in the truth-telling equilibrium, the uninformed independent voters participate
in voting. This is an important result because, without a polling stage, the uninformed
voters may abstain to allow the informed voters to pick the winner, which Fedderson
and Pesendorfer (1996) refer to as the “swing voter’s curse.” The swing voter’s curse
indicates that the uninformed voters are sometimes strictly better off abstaining even
though voting is not costly. Once a polling stage is introduced, however, the curse may
disappear, and the uninformed voters have strong incentives to participate in voting.

Second, even if no one lies, the poll outcome can still be different from the election



outcome even in large elections. As the uninformed independent voters decide whom
to vote for after they learn about the poll result, a big lead in a poll may not be large
enough to win the election. Third, although polls may not forecast the election outcome
correctly, and even the loser in the polls may win the election, large elections successfully
aggregate information in the sense that they can identify the correct candidate who
would win if everyone were informed about the state of the world. The uninformed
voters almost surely learn about the state of the world and make a correct decision for
themselves.

Furthermore, I examine whether an election aggregates information more success-
fully with informative polls than without them. A naive answer to this question is that
it should do so because agents have more information when deciding for whom to vote.
I demonstrate this intuition is not always correct: When the size of the electorate is
not large enough, polls may not be helpful because the uninformed voters may sway
the election depending on few answers from the poll, which might be truthful but in-
sufficient to reveal the state of the world. When the size of the electorate increases,
the uninformed voters learn the state more often from the poll. But Fedderson and
Pesendorfer (1996) show that a large election can successfully aggregate information
without polls as well. Thus, I need to compare the probabilities of an election aggre-
gating information with and without informative polls, which converge to 1 in both
cases. By taking the large deviation approach, I show that the former converges more
rapidly to 1, which implies that in a large election, informative polls help information
aggregation.

Together, the results suggest that pre-election polls can be welfare improving, though
they may sometimes seem dead wrong when interpreted naively. Polls may encourage
the uninformed independent voters to participate in voting, and help them decide whom
to vote for so that the election outcome can fully reflect what voters have in their mind.

In what follows, I first briefly discuss related literature. Then, I lay out the model,

discuss the results and conclude. Finally, the appendix contains all the proofs.

2 Related Literature

This paper is related to several strands of literature, the first of which is the literature
on elections and information aggregation. When do large elections identify the correct
candidate who would win under no uncertainty? The classic Condorcet jury model
suggests that they do so almost surely even if each voter is partially informed about
the state of the world. Furthermore, Feddersen and Pesendorfer (1996, 1999) find that
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elections still fully aggregate information even if a substantial number of voters do
not acquire any signals about the state of the world and remain uninformed (see also
McMurray(2013) for an extension of the model). Experimental studies find support for
this result (Battaglini et al. 2008, 2010).On the other hand, Kim and Fey (2007) and
Bhattacharya (2013) show that this result may not be the case if voters’ preferences
are heterogeneous. In a similar vein, Feddersen and Pesendorfer (1997) and Mandler
(2012) show that elections fail to aggregate information if voters are uncertain about
the distribution from which their preferences or private signals are drawn. The model
in my paper matches Feddersen and Pesendorfer (1996)’s except that there is now a
pre-election polling stage. And I show that polls can help large elections aggregate
information even more successfully.

Second, this paper is related to the broad literature on communication in commit-
tees. A large proportion of the literature pertains to the variants of the classic Condorcet
jury model with various forms of a pre-voting communication stage. Studies’ main focus
tends to be on the relative performance of various voting rules in small committees with
and without communication (e.g., Austen-Smith and Feddersen 2006; Coughlan 2000;
Gerardi and Yariv 2007; Goeree and Yariv 2011; Jackson and Tan 2013, for a review of
the literature, see Austen-Smith and Feddersen 2009) whereas my paper considers how
a pre-election opinion poll changes voters’ incentives to vote and whether such changes
are desirable in large elections. Importantly, studies find that for the committee mem-
bers to fully share private information in the communication stage, either they share
identical preferences, or they are uncertain about one another’s preferences (Coughlan
2000; Austen-Smith and Feddersen 2006). However, when everyone is uncertain about
one another’s preferences, it is not always possible to share information in the com-
munication stage or to reach the correct collective decision. Moreover, a voting rule
that extracts more information in the communication stage does not necessarily lead
to a more efficient voting outcome (Jackson and Tan 2013). Thordal-Le Quement and
Yokeeswaran (2015) find that it is more efficient to restrict communication to subgroups
that share identical preferences rather than to have public plenary communication. The
environment for communication is more hostile in my model than in these jury mod-
els because I have partisan voters who always prefer a particular candidate no matter
what the state of the world is. These partisan voters may have a strong incentive to
misrepresent their preferences if it helps their favorite candidate get elected. I show
that even with these conflicting preferences and incentives, the players can manage to
transmit information via public polling and to vote more efficiently with the acquired

information.



Third, this paper is related to research on public information and costly voting.
Taylor and Yildirim (2010) show that when public information about the distribution
of voters’ preferences is available, the candidate the majority prefer is less likely to win
the election than when no such information is available. Similarly, Goeree and Grosser
(2007) find that when a public signal on voters’ preferences is available, the candidate
the minority group prefers has a higher chance of winning. Both studies assume that
voting is costly, and therefore the decision to vote depends on how pivotal each voter
will be. Thus, in both articles, public information on other voters’ preferences mobilizes
the minority group to participate and results in a less desirable outcome with higher
chances. By contrast, I assume that the information about other voters’ preferences is
not exogenously given, but rather endogenously generated through pre-election polling,
and that voting is costless.

Finally, the paper is related to research on public opinion polls. Many studies
mainly examine the strategic behavior of respondents in polls to influence policy makers’
decision or the voting behavior of others. For example, Meirowitz (2005) shows that
respondents may misrepresent their preferences if candidates take their policy positions
after observing polling data. Morgan and Stocken (2008) also find similar results and
argue that strategic behavior should be taken into account when interpreting polling
statistics. Burke and Taylor (2008) show that in the absence of independent voters,
truth-telling is not an equilibrium if the electorate is large or voting costs are not
negligible. In these studies, polls may be wrong because respondents lie. By contrast,

I analyze an equilibrium in which no one lies, but polls may still be wrong.!

3 The Model

In this section, I present a model of elections in which uninformed independent voters
may learn about the state of the world by observing an opinion poll result. As I base the
model on Feddersen and Pesendorfer (1996), I closely follow their notations whenever
possible.

There are two states, Z = {0,1}; two candidates X = {0,1}; and N + 1 agents.
The agents consist of partisan voters, independent voters, and non-voters. The parti-
san voters prefer either candidate 0 or candidate 1 regardless of the state, while the

independent voters prefer candidate 0 in state 0 and candidate 1 in state 1. Among the

"When there are more than two candidates, this can happen because people may vote strategically.

For example, see Andonie and Kuzmics (2012).



independent voters, some learn the state of the world but the others do not. In case
one is ignorant of the state, he/she only knows the prior «a, that is, the probability of
nature choosing state 0. Finally, the non-voters do not vote. Formally, the set of types
of agents is given by T' = {¢,0, 1,u, i} where type-¢ agents are non-voters, type-0 and
type-1 agents are partisan voters who prefer 0 and 1 respectively, type-u agents are
uninformed independents, and type-i: agents are informed independents who know the
state. For (z,z) € X x Z, the utility of an independent voter (i.e., type-u or type-i
agent) is

Ul(x,z) =

-1 if x#z,

0 if z==z2

The game starts with nature choosing a state, z € Z. State 0 is chosen with proba-
bility o and state 1 with probability 1—c«. Nature then takes N+1 times of independent
random draws to determine the type of each agent. The total number of voters and the
number of voters of each type are not known to the players. In each draw, an individual
is chosen as a voter with probability 1 —p,. Among the voters, an individual is of type-1
with probability p;/ (1 — pg), and type-0 with probability py/ (1 — p,). Finally, a voter
is an independent with probability ps/ (1 —pg), and each of the independent voters
learns the state of the world with probability q. Thus, a voter is an informed indepen-
dent (i.e., type-i) with probability ¢ps/ (1 — ps) and an uninformed independent (i.e.,
type-u) with probability (1 — ¢)ps/ (1 —pg). The probabilities a, p = (ps, po, P1,Ds) ,
and ¢ are common knowledge, whereas the type of each voter is private information.

Before an election is held, a public opinion poll asks whom the potential voters intend
to vote for between candidates 0 and 1. I assume that every agent participates in the
poll. Each agent may answer that he/she supports 0 or 1, or has not yet made up his/her
mind: A ={0,1, (ND)} (see footnote 2 for an alternative set of responses). The vector
of poll responses is denoted a = (ay, ...,an41) € ANTL. The poll result is summarized
as m (a) = (mg,mi,mxp)€ M = {m € {0,1,...,N +1}°: 3 m, = N + 1}, where m,
denotes the number of respondents whose answer was r € A, and then publicly released.
Finally, an election is held. In the election, each voter chooses an action v € {0, 1, ¢},
where 0 or 1 denotes his/her vote for candidate 0 or 1 respectively, and ¢ indicates
his/her abstention. The candidate who gains more votes wins the election. If there is
a tie, each candidate wins with equal probability.

The solution concept is perfect Bayesian equilibrium. I restrict attention to sym-
metric equilibria in which agents of the same type choose the same voting and poll
response strategies. I also assume that no agent plays a weakly dominated strategy

in answering the poll question or in voting. Thus, every agent behaves as if he/she is
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pivotal. A poll response strategy is a function r : T' x Z — A, which assigns an answer
to each of the types in each state, where only the informed voters’ poll strategy can
depend on the state z € Z. Note that only the uninformed independent agents (UIAs)
are affected by the poll result when deciding what to do in the voting stage, because
type-¢ voters will not participate in voting and the partisan voters will support their
preferred candidate in both states. Therefore, I can simply concentrate on the UIAS’
voting strategy given their beliefs about z based on the summary statistic m (a). A
type-u’s mixed voting strategy is a measurable function 7 : M — [0, 1]3, which maps
every poll result into probabilities to choose an action v € {0,1, ¢}, where 7,(m), for

x € X, denotes the probability of voting for  and 7,(m), the probability of abstaining.

4 Analysis

As is typical in private information games, this game has multiple equilibria. Among
these multiple equilibria, I consider an uninformative and the most informative ones,
depending on how much information can be delivered through the opinion poll. Specifi-
cally, I consider two poll response strategies which I subsequently show can be supported

in equilibrium.
Definition 4.1. (Uninformative poll) Poll response strategy 1:

r1(t|]z) = ND for all t € T and all z € Z.

Definition 4.2. (Informative poll) Poll response strategy 2:

z if t=1
ro(t]z) = t if te{0,1} forallze Z.
ND if te{¢,u}

Note that if players use the uninformative poll response strategy, 1 (-), the game is
essentially identical to Feddersen and Pesendorfer’s (1996). In poll response strategy 1,
agents’ choices of answers do not depend on their types. Thus, the poll result delivers
no information to the UIAs, and as a result, they will behave as in Feddersen and
Pesendorfer’s model.

By contrast, given the set of responses A, poll response strategy 2 forms the most



informative equilibrium.? Agents sincerely answer which candidate they support if they
surely prefer one candidate to the other. If they do not have such preferences or are
not sure about who the right candidate is for them, they indicate they have not decided
yet. This is a natural and plausible poll response strategy that one would expect to see
in reality.

The UIAs update their beliefs about the state based on the poll result. Specifically,
if players use poll response strategy r; (-), the belief that the state is 0 remains the
same as the prior belief, that is, u (z = 0|m, r1) = « for all m = (mg, m;, myp). On the
other hand, if players use poll response strategy rs (), an UIA indexed by j can update
his/her belief on z = 0 from the poll result m_; = m(a_;) = (mg, my,mnxp — 1),

: 7
a_j = (ay,...,aj_1,a;41,...,an41) using Bayes’ rule,

aPr(m_;|z=0,ry)
aPr(m_jlz=0,ry) + (1 — ) Pr(m_;|z = 1,72)
_ a (po + ps)™ pi™
@ (po+ps)™ pi" + (1= @) pi" (pr +psg)™

pj (2 =0lm_j,r2) = (4.1)

As respondents answer truthfully, the UIAs can infer whose side the informed in-
dependents are on between the two candidates. It is easy to see that as mg increases,
the UIAs believe that candidate 0 is more likely to match the state. Likewise, as m;
increases, the UIAs believe that candidate 1 is more likely to be the right one. Since
belief i is the same for any UIA, I omit the index j hereinafter.

To decide UIAs’ voting strategy given u, I need to consider the probabilities of an
UIA being pivotal because only in those cases will his/her decision make a difference
in his/her expected utility. There are three possible cases: a tie, candidate 0 losing

by exactly 1 vote, and candidate 1 losing by exactly 1 vote. In what follows, I specify

2A fully revealing equilibrium in which each type can choose a distinctive response to the poll
question does not exist even if I enlarge the set of responses A so that #A > #7T. This is because the
partisan voters have an incentive to choose the same response as the informed independents. Since the
UIAs will decide whom to vote for according to the informed independents’ responses in the end, the
partisan voters will mimic the informed independents to raise their candidate’s chance.

As a small variation of poll response strategy 2, one can imagine an alternative poll response strategy
with an enlarged A in which the non-voters respond differently from the UIAs or other types of voters.
However, this strategy delivers essentially the same information as poll response strategy 2. That
is, the additional information from this new poll response strategy does not affect the UIAs’ voting
behavior. Moreover, empirical studies show that people do not want to reveal their intention to abstain
and that many respondents (25-50%) lie about their voting participation when asked (Silver et al.,
1986; Harbaugh 1996; Belli et al., 1999; DellaVigna et al., 2016). Thus, I use poll response strategy 2
with set A rather than this alternative situation.



the probabilities of each of these events for an agent, given state z, N other agents,
strategy profile 7, poll result m, and poll response strategy r. I denote the probability
of a tie by . (2,7 |m_;,r) and the probability of candidate = receiving one less vote
than candidate y by 7, (2,7 |m_;,r). In addition, for a given profile 7 and poll response
strategy r, I define 0, ., (7|r) as the probability that a random selection among whose
poll response was a € A, results in a choice of voting behavior v € {0,1, ¢} in state z.
In the following two lemmas, I compute these probabilities under the two poll response

strategies.

Lemma 4.1. (Feddersen and Pesendorfer 1996, p. 412-413) If players use poll response
strategy r1 (+), then

L/ET
Te (2,7 |m_j,11) = _
’ ; (N = 2j)!

X Og . ND (T|7“1)N72j (00,2.np (T|11) 01,2 ND (r|r1))’

and
[(N-1)/2) N
e (2,7 Im_j,r1) = Z ; o ' ‘ '
= (7 + DN =25 —1)!
x 0 n0 (1) 7 0y vp (7171) (4o np (T111) 0y evp (T171))

where x,y € {0,1}, x # vy, and

Do+ s (1 —q) Ty if v=¢
o np (TIT1) =8 po+ps(1—q) T +0sq if z=v,ve{0,1} .
pv"—ps(l_Q)Tv Zf Z#U,UE{O,l}

Lemma, 4.1 shows that the probabilities that an UIA is pivotal vary depending on the
state under the uninformative poll response strategy r;. This is because the probability
of a random voter voting for either candidate depends on the state. By contrast, the
next lemma shows that this is not the case if players use the informative poll response

strategy, s,

Lemma 4.2. When players use poll response strateqy rs (+), for any m and T,
7e (0,7 |m_j,re) =7 (1,7 |m_;,72) and
7, (0,7 |m_j,m3) = mp (1,7 |m_j,72) for allz € {0,1}.
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Lemma A.1 in the appendix specifies the probabilities 7, (2,7 |m_;, r2) and w, (2,7 |m_;,r2)
for z € {0,1} . Lemma 4.2 establishes that the expected number of votes for each can-
didate does not depend on state z when the poll is informative. Since the partisan
and informed independent voters will vote as they did in the poll, the poll result m
reveals how many votes each candidate will receive from these types of voters. Thus,
the uncertainty remains only in the UIAs’ decisions, and the UIAs cannot condition
their decision on the state because they do not know in what state they are.

Lemmas 4.1 and 4.2 imply that an opinion poll helps the UIAs learn more about
not only for whom they should vote but also how much their votes matter. Lemma 4.1
shows that under 71, the pivotality of UIAs’ vote in state 0 is in general different from
that in state 1 because the informed voters vote differently depending on the state. In
contrast, Lemma 4.2 shows that their vote matters equally in either state under rs.
The poll result reveals how many decided voters there are for each candidate, and the
pivotality of an UIA’s vote is also determined accordingly.

Now, I am ready to prove that the swing voter’s curse — that abstention is strictly
better when indifferent between the two candidates — disappears when the poll is infor-
mative. Let Eu (v, T|m_;,r) be the expected payoff to an UIA of taking action v when
the other UIAs use a strategy profile 7 given poll results m and a poll response strategy
r. Proposition 4.1 shows that when agents answer the poll question truthfully (i.e., use

poll response strategy ), announcing the poll result may encourage people to vote.

Proposition 4.1. Suppose p, > 0, ¢ > 0, and N > 2 . For any symmetric strategy
profile T in which no agent plays a strictly dominated strategy,
1) (Feddersen and Pesendorfer 1996, p. 413) if Eu(1,7|m_;,m1) = Eu (0, 7|m_;, 1),
then

Eu(l,7im_j,m) < Eu (¢, TIm_;,11) .

In contrast,
2) Eu (¢, 7/m_j,m2) < max{Eu(1,7|m_;,rs), Eu(0,7|m_;,72)}.

Before discussing the intuition on why informative polls make the swing voter’s
curse disappear, I turn to the uninformative poll case first. Proposition 4.1 Part 1) is
from Feddersen and Pesendorfer (1996) and shows that with uninformative polls (or no
polls), the UTAs sometimes have a strong incentive to abstain even though voting is not
costly. Why not vote for one of the candidates if they are indifferent between them when

doing so is not costly? To see this, consider a case in which p(z = 0jm_j,7) = o > 3.
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Since
Eu(1,7lm_j,r) — Bu(0,7|m_j;,71)

1 1
= (1 — p(0)m_j,m)) (7‘(‘6 (1,7 |m_j,m) + 5T (1,7 |m_j,m) + 570 (1,7 |m_j,7"1))

1 1
— w(0lm—j,r) <7Te (0,7 |m_;,r1) + §7r1 (0,7 |m_j;,r1) + §7r0 (0,7 |m_j, rl)) ,

the condition Eu (1, 7|m_;,7m) = Eu (0, 7|m_;,r) implies that

1 1
Te (1,7’ |m,j,'r’1) + =—m (1,7’ |m,j,7°1) -+ —To (1,7’ |m,j, 7’1)

2 2
1 1
> (0,7 |m_j, 1) + 5771 (0,7 |m_j;,r1) + §7T0 (0,7 |m_j,r1).

Roughly speaking, this means that the probability of being pivotal is higher when z = 1
than when z = 0. For example, consider pg > p; with psq = po—p1. As an UIA believes
that candidate 0 is more likely to match the state (i.e., u(z = 0[m_j,71) > 1), it might
seem that he/she should vote for 0 and not abstain. However, this is not the case,
because an UIA’s voting for 0 has a different effect on the election outcome depending
on the state. Specifically, when z = 0, candidate 0 is highly likely to win because all
the type-0 and the informed voters vote for 0, and thus an UIA’s vote might not affect
the election outcome. If z = 1, however, candidate 1’s chance is relatively lower, and
an UIA is now more likely to be pivotal because py &~ p; + psq, which means that the
number of the informed voters might not be large enough to fill the gap between the
partisan supports. Thus, if an UIA votes for candidate 0, he/she marginally increases
the chance of the right candidate winning in state 0 but, at the same time, greatly
increases the chance of the wrong person winning in state 1. As he/she loses more than
he/she gains on average by voting for 0, he/she would rather abstain.

If agents truthfully answer the poll, however, abstention can never be the single
best option. As the poll result clears up the uncertainty about the probabilities of an
UIA’s vote being pivotal, voting for someone who is more likely to match the state is
always (weakly) better than abstaining. For example, compare the expected utilities
from voting for 0 and abstaining. Because

Eu (0, 7|m_j,1m2) — Eu (¢, T|m_j;,rs)

— (1= p(0|m_j,r9)) [me (1,7 |m_j,7ma) + mo (1,7 |m_j,12)]

1
2 1 (0lm—j, r2) [me (0,7 |m—j,r2) 4+ mo (0,7 |m—j,72)]

1
== 5 (1 =2 (0fm—j, ) [me (1,7 |m—j, 72) + 70 (1,7 [m—j, 12)]
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by Lemma 4.2, it is easy to see that voting for 0 is strictly better than abstaining if

11 (0lm_j,r2) > 3. It can be similarly shown that voting for 1 is strictly better than
1
5.
The following proposition shows that there is an equilibrium in which every agent

abstaining if p (1|m_;, 7o) >

answers the poll truthfully and the UIAs vote according to their beliefs.

Proposition 4.2. Suppose ps > 0, ¢ > 0, and N > 2. There is a perfect Bayesian

equilibrium in which players use poll response strateqy 2, r9, and all UIAs vote for

candidate 0 if p(z = Olm_j,75) > L and candidate 1 if p(z = 0lm_j,75) < 3.

In the equilibrium specified in Proposition 4.2, all players but the UIAs vote as they
did in the poll. The UIAs cannot indicate in the poll whom they are going to vote for
because they are not sure about the state. After learning the poll outcome, however,
they do vote for the candidate they believe is more likely to be the right one for them.

Because the UIAs decide whom to vote for after the poll result is disseminated, I
get the following corollary stating that polls might be wrong in case there are enough

UIAs and the leading candidate does not do well enough in the poll.

Corollary 4.1. In the equilibrium specified in Proposition 4.2,

1) there exists a threshold, d*, such that if d = m, —m, < d*for x,y € {0,1} with
x #y, then p(z =zlm_j,15) < 3.

2) there exists a parameter value such that d* > 0.

3)if 0 < d < d* and myp > d, then candidate y wins the election with probability w*,

where

= ( : >W mZ ! (po)™ ™" (pe (1 — )™
Y20 + Ds (1—(]) 1 (d+])'(mND—d—j)' °

Corollary 4.1 shows that the candidate who leads in the poll might not win the
election, even though everyone answers the poll question truthfully. Here, the threshold
d* shows how much more support a candidate needs to receive in the poll relative to the
other candidate for the UIAs to believe that he/she is more likely to match the state.
In particular, part 2) implies that the threshold to gain the UIAs’ support might be
strictly positive, and thus performing relatively better in the poll is not enough to win
the election under some parameter values. If the leading candidate does not pass this
threshold in the poll, all the UTAs will vote for the other candidate in election, which
makes the poll result wrong.

Specifically, even if m, > m, (ie., d > 0), the belief ;1 (2 = z|m_;,r2) might be

1

smaller than ; when p, is far higher than p,. For example, Figure 4.1 shows the
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Figure 4.1: p and d when N + 1 = 100, mxp = 40, « = 0.5, p, = 0.4, and ¢ = 0.2

relationship between d = my — m; and the posterior belief p(z = 0lm_;,72) when
N =99, myp = 40, a = 0.5, p, = 0.4, and ¢ = 0.2. In the panel on the left, because
po = prand o = %, the posterior belief u is larger than % as long as mg>m;. Thus, in
this case, the candidate who wins the poll will also win the election. This is not the case
when pg is much larger than p;, however. The panel on the right shows the case when
po = 0.35 > p; = 0.15. In this case, (2 = 0|m_j, r2) is smaller than % if d < 20. Since
po > p1, the difference in mg and m; needs to be large enough—Ilarger than 20—to infer
that the informed independent agents support candidate 0. If candidate 0 does not lead
by more than 20 points in the poll, all UIAs vote for candidate 1 according to their
posterior belief. The probability that an agent whose answer was ND in the poll votes
for candidate 1 is % ~ (.76, and thus the probability of candidate 1 getting 20
or more votes from the forty agents is almost 1 (w* & 1), which means candidate 1 is
highly likely to win the election if candidate 0 leads the poll by less than 20 points.
Two important implications flow from the examples in Figure 4.1. First, polls can be
wrong even if N is very large. Under the parameter settings on the right-hand side, no
matter how large NV is, candidate 0 leading candidate 1 by 20 percentage points in the
poll is not enough to guarantee a victory on Election Day. The UIAs do not randomly
choose for whom to vote. Rather, they learn from the poll outcome and choose the

candidate who they think matches the state. Second, depending on parameter values,
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a seemingly close election might end up with a landslide, whereas a seemingly lopsided
one might end up with an unexpected winner. When pg = p; with psq = 0.08, the gap
between the two candidates will be relatively small in the pre-election poll. However,
whoever (barely) wins the poll will gain far greater support on election day because
all the UIAs will vote for this candidate. By contrast, when pg is much larger than
p1, the poll results are likely to be lopsided, favorable to candidate 0. However, if
the lead is not big enough?®, candidate 1 is highly likely to be the winner on Election
Day with a relatively small margin of victory. The victory of candidate 1 will be even
more surprising because everyone knows that candidate 1 does not have enough loyal
supporters relative to candidate 0.

In contrast with existing models of polls (e.g., Meirowitz 2005; Morgan and Stocken
2008), my model shows that polls might be wrong not because of strategic misrep-
resentation but because of learning. Here, no one intends to misrepresent his or her
preference in the poll. Rather, refusing to choose between 0 and 1 in a poll is the best
the UIAs can do because otherwise the poll is less informative. If they answer either 0
or 1 in the poll, it is more difficult to learn about the state. Because they decide whom
to vote for after the poll result is known, the poll outcome will always differ from the
election outcome. Sometimes, the difference might be large enough to surprise everyone
if the learning process is not taken into account.

The next result establishes that in a large election, information is successfully ag-
gregated with informative polls, in the sense that the winner of the election is the same
as the winner if all agents were fully informed about the state of the world. Consider
z = 0 without loss of generality, and let n;, denote the number of agents whose type
ist e T. If |(ng + n;) — n1| > ny, the election fully aggregates information no matter
what the UIAs do. If |(ng + n;) — n1| < n,, then the election fully aggregates informa-
tion only if the UIAs vote for the candidate who matches the state. Since the UIAs
vote according to the belief i in the informative equilibrium, it suffices to show that as
the size of the electorate grows large, belief 1 on the true state converges to 1 almost

surely. Proposition 4.3 states this formally.

Proposition 4.3. Suppose ¢ > 0. For each Z = 0,1, p (2 = Z|m_j;,r2) converges to 1

almost surely conditional on z =Z. That is, Pr (Umy_eo pt (2 = Z|m_j,r9) = 1|2 = 2) =

3Specifically, to have yu(z = 0lm_j,r2) > 3, the following should hold:

1 P +psq) -«
mo > m log( +log —— | .
® 7 Tog ((po + p<a) /po) ( ' P o
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Proposition 4.3 implies that in a large election, the UIAs can learn the state almost
surely, and thus, will vote correctly. Feddersen and Pesendorfer (1996, p. 415) show
that information is fully aggregated with no polls (or uninformative polls) because the
UIAs optimally abstain and thereby compensate the gap in partisan supports so that
the informed independents get to choose the winner. My result verifies that informative
polls encourage the UIAs to participate in voting and still achieve the efficient outcome.

Then, does an election with informative polls aggregate information more success-
fully than without them? A naive answer is that it does so because agents have more
information to consider when making their voting decisions. However, depending on the
realization of z and n,’s, the informative equilibrium performs better or worse than the
uninformative equilibrium. For example, assume the same parameter values as in the
right-hand panel of Figure 4.1 (&« = 0.5, ps = 0.4, po = 0.35, p; = 0.15, and ¢ = 0.2) and
consider the case in which the random draws of each agent’s type and the state result
in ng = 30, n; = 20, n; = 10, n, = 30, ny = 10, and z = 0. Then, in the informative
equilibrium, I have my — m; = (ng + n;) — ny = 20. Thus, as discussed previously, all
the UIAs vote for candidate 1 because i (z = 0| (mo, m1, map) = (40,20, 39) ,72) < 3.
As a result, candidate 1 wins the election for sure. On the other hand, in the unin-
formative equilibrium, candidate 0 has a chance to win the election, because the UIAs
abstain with a strictly positive probability.? Since candidate 0 is the winner if the state
of the world is publicly known (i.e., ng + n; + n, > ny), the equilibrium with unin-
formative polls performs better in this case. However, if just one agent switches from
type-1 to type-0, so that ng = 31 and n; = 19, all else being equal, candidate 0 wins
for sure in the informative equilibrium because every UIA votes for candidate 0 by the
fact 11 (z = 0| (mo, m1, map) = (41,19,39) ,72) > 5. In the uninformative equilibrium,
candidate 0 may lose because the UIAs vote for 1 with a strictly positive probability.?
Thus, the informative equilibrium works better in this case.

These examples imply that one equilibrium does not dominate the other for every
(ex post) realization of z and n;’s. Thus I need to compute and compare the ex ante
probabilities that an election aggregates information for the two equilibria. Let W
denote the event of n = (ng, n1, ns, ny, ny) in which the winner of the election is different
from the winner of the election if all agents were fully informed (i.e., the election fails

to aggregate information). The event W happens if the number of agents who prefer

“When N + 1 = 100, py = 0.35, p; = 0.15, p, = 0.4, ¢ = 0.2, and o = 0.5, the probability of an
UIA voting for 0 in the uninformative equilibrium is give by 74 ~ 0.39.

51 =1-14~0.61

T = T ~ U. .
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candidate x exceeds the number of agents who prefer candidate y, but candidate y wins
the election where x,y€ {0,1},  # y. In the uninformative equilibrium, this happens
with probability 1 if z = z, n, < n, + n; + ny, and n, + nyy > ng +n; + Ny, and with
probability % it 2 = 2, ny < ng +n; + ny, and ny + Ny, = Ny + N + Ny, Where 1y,

and n,, denote the number of the UIAs who vote for candidate x and y, respectively.

Therefore,
Pr(W|ry, z==x, N)
(N +1)! " _
= nllnoln InaIng! <Hptt) X =
nel'l teT
where

r {{n€R+|ZteTnt N +1,ng, +n; — ugny<nx+ni—l—nu} if 7,=0

{n€R+’Zt€Tnt_N+1anx+niSny<nz+ni+nu} if 7,=0 ’
and
5 T Ty hop{te =) g (5o ol (=)} e 2 0 and b > 0
2 hl(nu—h)1"y " & Nuy =h+1 gyl (ng —nag) 'Y 16 r = >
== 1 if 7,=0and h<0
h =1 u! L 1 u! I uw—h 1 —
(ang =0 nuy!(nu n 7nuy)'7'g T¢> ¢>—|—§me Tg if Ty = 0
with

h =ng +n; —n, and ' =n, —n, —n,.

Note that it is enough to consider two cases, 7, = 0 and 7, = 0, because the UIAs never
mix between 0 and 1 by Proposition 4.1. The term = is the probability of candidate y
winning given n,’s, z, and 7.

Similarly, in the informative equilibrium, the event W happens with probability 1
if 2 =2, ny < ng +n; +ny, ny+mn, > n, +n;, and p(z =z|m_j,r) < %, and with
probability % if 2 =z, ny, < ng+n;+mny, ny+n, =n,+n;, and p(z = x|m_;,re) < %
Thus,

Pr(Wiry, z=2x, N)

- Z (nllnoln n 1%1 H t) 9 Z <n1|n0|n n ln¢| H t)

nels nEF’2

where

1
FQ—{nER |Znt N +1, ng +n; — nu<ny<nx—|—ni+nu,andu(z:x\m_j,rg)<§},
teT
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Figure 4.2: Probabilities Pr(W|ry, N) and Pr(W|r;, N) when a = 0.5, py = 0.1,
ps = 0.4 and ¢ = 0.2

1
F/2 = {n c Ri|znt =N +1, Ny + Ny = Ny + Ny, and M(Z=33|m_j,7“2) < 5}7
teT

and

m—j; = (mxamznmND) = (nm”yaN — (ng + ny)) .

Instead of comparing Pr(W|ry, z =2, N) and Pr(W|ry, z =z, N) directly for fi-
nite IV, I consider large elections. Since the election fully aggregates information in
a large election under both poll response strategies, the probability of W converges
to zero regardless of the poll response strategy being used. By taking the large de-
viation approach, I compare the converging speed of these probabilities to show that
limpy oo N+Lllog Pr(Wlry, 2=, N) < limy_, N+r1 log Pr (W|ry, z=x, N) for all x,
which in turn implies that Pr(W|re, z =2, N) < Pr(W/|ry, z =z, N) for sufficiently
large N. Proposition 4.4 proves it formally.

Proposition 4.4. Suppose py > 0, p1 > 0, p, > 0, and ¢ > 0. If p1 # po and
ps (1 —q) > |p1 — pol, then, for sufficiently large N, Pr (Wlre,z = 2, N) < Pr(W|ri,z =z, N)
for each x € {0,1}.

Proposition 4.4 shows that polls can be welfare improving in a large election if

the expected fractions of partisans, py and p;, are not exactly the same and the ex-
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pected fraction of UIAs is larger than the difference between the fractions of partisans.’

Figure 4.2 shows numerical examples of Pr (W|r, N) in which Pr (W|ry,z =2, N) <
Pr (W{ry, z =z, N) does not hold for small N but it does eventually. Parameters are
set to o = 0.5, py = 0.1, p; = 0.4, and ¢ = 0.2. Note that even when everyone tells the
truth, polls are not always helpful when the size of electorate is not large enough. For
example, for N = 5, the expected number of the informed independent agents is far less
than 1. Since most of the times there are too few informed independent agents, if any,
to signal the state, and all the UIAs are voting anyway in the informative equilibrium,
the wrong candidate might be elected quite often. On the contrary, in the uninforma-
tive equilibrium, the UIAs just try to fill the partisan gap and optimally abstain.” This
means that the UIAs might make a wrong decision, but not all of them do so. Thus,
the chance of electing the wrong candidate is relatively lower. However, as [N increases,
Pr(Wiry, N) converges to zero more rapidly than Pr(W|ry, N) does, as illustrated in
the figure.

5 Discussion and Conclusion

My analysis implies that in large elections, such as presidential or congressional elec-
tions, it is better to take public pre-election opinion polls regardless of whether these
polls can clearly predict the winner. I show that there is an equilibrium in which ev-
eryone truthfully answers the poll question and that in such an equilibrium, the swing
voters’ curse disappears and everyone votes as if they had no uncertainty about the
state of the world.

What if there are multiple rounds of polling, as is typical in real elections? Theo-
retically, all kinds of things can happen in this case. For example, in equilibrium, it is
possible that players use the informative poll response strategy in the first few rounds
and thereafter answer the poll as they would vote on election day based on their poste-
rior belief. It is also possible that everyone keeps playing the informative poll response
strategy throughout the campaign periods and then votes on election day according to
the posterior belief. In either case, the equilibrium being played with multiple pollings
is essentially the same as described in the game with one-round polling regarding in-

formation transmission, but the gap between the poll results and the election outcome

SWhen py = p1, the converging speeds coincide. The other assumption p, (1 — q) > |p1 — po| means

that the expected fraction of UIAs is large enough to overturn the election outcome.
"For N =5, po = 0.3 and p; = 0.2, an UIA abstains with probability 75 = 1 and for py = 0.35 and

p1 = 0.15 with probability 74 ~ 0.71.
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will vary depending on which strategies are played.

It would be useful for future research to test the theoretical results using experi-
ments. In particular, because there are multiple equilibria in the game, it should be
empirically examined how agents answer the poll question and how they interpret the
poll results. Existing experimental studies show considerable support for the swing
voter’s curse (Battaglini et al. 2008, 2010). Will the curse disappear when agents
answer a public opinion poll? Will the uninformed voters be willing to participate in
voting and do so in the right way? Answers to these questions would lead to further

understanding of democratic institutions.

A Appendix

Lemma A.1 proves Lemma 4.2. T omit proof of Lemma A.1 as it is straightforward.

Lemma A.1. For z,y € X with x # y, assume m, > m,. Let é = m, —m, and

m/yp = mnp — 1. When players use poll response strategy o (+), for all z € {0,1},

1)ifo =mlhyy =0, thenm. (2,7 |m_j,ra) =1 andm, (2,7 |m_j,12) = m, (2,7 |m_j,12) =

0,

2)ifo =1 andm/yp =0, thenm, (2,7 |m_j,12) = 7, (2,7 |m_j,12) =0, and m, (2,7 |m_j;,rs) =
L,

3)if § —mlyp =1 and myp > 0, then m. (2,7 |m_j,r3) = 7, (2,7 |m_j,7r3) =0, and

N! /
] (Uy,z,ND (T|r2))mND )

wy (2,7 Im_i 1) = ——————
v (27 [ s) mo!my!m/'yp)

4) if 6 —mlyp > 1, then m. (2,7 |m_j,12) = 7, (2,7 |m_j,19) = m, (2,7 |m_j,72) =0,
5) if § = mlyp > 0, then

N!
| (O-%Z,ND (T|r2))m/ND )

T (2, T Im_sry) = ————
e (5,7 |m—j,72) molma!m/yp!

7y (2,7 Im_j,re) =0, and
1

N! ro_
iMinp0s,zND (TI12) (0 np (T]r2)) "0

Ty (2,7 |m_i,ry) = ————M—
v (27 [mj) molmy!m'yp!
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5)if 0 < § < mlyp, then

Te (2,7 |m_j,72)

N! L(m'NDZ‘S)/ 2 myp!
Comolmamlyp!l S G0+ ) (il — (64 25))!

mivp (523 Oz 2 ND (T|7’2)5+j Oy,2,ND (7'|7”2)j ;

X O0¢,2,ND (T|7’2)

Ty (2,7 |m_j,72)

Nt L(%Z«;H))/ﬂ )
molmy!m’yp! far @1+ D) (mhyy— (6 +2) + 1))
X 02 ND (T’T2)mlij_(5+2j+1) usND (T|T’2)j Gy 2 ND (7_|7,2)6+j+1 7
and
Ty (2,7 [m—j,72)
__om e e
mo!mﬂm/ND! =0 j[(5+j_1)!(m/ND_(6+2j_1))!
X O¢,2,ND (7'|7"2)m§w7(6+2j71) Og,2,ND (T|T2)j Oy,2,ND (7'|7“2)5+j71 ;
where o
Potps(1=)7s ¢
Oy np (T|T2) = { P¢(J£ps()1—q) if v=2¢
vi% Ps\1l—q)Tv . .
Py+ps(1—q) if ve {0, 1}

[Proof of Proposition 4.1] The proof of part 1) can be found in Fey and Kim

(2002). To prove part 2), I need to make a pair-wise comparison between voting

actions as follows. Since m. (1,7 |m_;,r2) = 7 (0,7 |m_;,r2), m (1,7 |m_j,r2) =
m (0,7 |m_j;,re), and mo (1,7 |m_;,73) = mo (1,7 |m_;,72) by Lemma 4.2, I have

Eu(1,7|m_j,m9) — Eu (¢, TIm_;,rs)
(1= p(0lm_j,12)) [me (1,7 [m_j, 7o) + 71 (1,7 |m_j,12)]

—p (0lmj,r2) [me (0,7 |mj, 72) + 71 (0, 7 [mj,75)]

(1 =2 (0lm—j,r2)) [me (1,7 |m_j, r2) + w1 (1,7 |m_j, )],
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and

Eu(0,7|m_j,1m2) — Eu (¢, T|m_;,r3) (A.2)
1 = (= Olmj,r2)) [me (1,7 [mj,r2) + 70 (1,7 [m_j,72)]
2 +u (0lm_j, 7o) [me (0,7 |m_;,7m2) + 70 (0,7 |m_j,79)]
1

= =5 (1 =20 (0lm—j,72)) [me (1,7 |m—j, 72) + mo (L, 7 [m_j,15)]

[\

Thus, if ¢ (0m_j,r2) > 5, Thave Eu (0,7|m_j,75) > Eu (¢, 7Im_;,r2). I pu (0)m_j,73) <
%, then Eu (1, 7|m_;,re) > Eu (¢, 7|m_j,72), as needed. O

[Proof of Proposition 4.2] I first show that no player has an incentive to deviate
from the specified voting strategy given the beliefs. Then, I show that given the voting
strategy, no one has an incentive to deviate from the specified poll response strategy.

Voting strategy:

By Proposition 4.1, it suffices to compare Eu (1, 7|m_;,r3) and Eu (0, 7|m_;,rs).

Since
Eu(1,7|m_j,1r2) — Eu(0,7|m_j;,rs)

1 1
= (1 —p(0lm_j,12)) (We (1,7 |m_j,mo) + 57 (1,7 |m_j,mo) + 570 (1,7 |m_j,r2))

1 1
— w(0lm_j, o) (7re (0,7 |m_j;,r2) + o (0,7 |m_;,r2) + 570 0,7 |m_j, rz))
= (1 =20 (0lm—j,72)) 2 (1,7 [m_j,ma) +m (1,7 [mj, 72) + w0 (1,7 [mj, 73))

by Lemma 4.2, 1 have Eu (0,7|m_j,r2) > Eu(1,7|m_;,79) if p(0|m_;,m) > % and

2
Eu(1,7lm_j,r5) > Eu(0,7|m_;,ra) if pu(0|m_j,m) < 1.

Poll response strategy:

Note that the probability of candidate 0 winning weakly increases with p (z = 0lm_;, ra).
Since aa—n’:l < 0 and aa—wﬁ‘o > 0, a type-0 or type-1 voter does not have an incentive to
deviate from ro. For the same reason, an informed independent agent truthfully an-
swers the poll question to signal the state. Now, to check an UIA’s incentive, consider
her/his deviation to 0 while the other players play 7. The only case in which an
UIA’s deviation to 0 makes a difference is when g (z = 0|(mo, m1, mxp — 1),72) < 3
and 11 (z = 0| (mo + 1,m1, mxp — 2),72) > 5. In this case, if an UIA deviates to 0, the
other UIAs switch their votes to candidate 0, which gives an equal or worse expected
utility to the UIA since z = 1 is more likely. Deviation to 1 can be checked similarly.

O
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[Proof of Proposition 4.3] Suppose z = 0. The case in which the state is 1 can

be proved similarly.

Note that
o (po + psq)™ pi™*
u(z:0|m_~,r2) = mo _m m m
! o (po +ps0)™ P71 + (1 — ) p™° (o1 + ps@)™
1
- mo/(N+1) m1/(N+1)] N+
1-a Po 0 P1+Psq
v (22 | (i)™ ()™

By the Strong Law of Large Numbers, mg/ (N + 1) converges to py + psq a.s., and
my/ (N + 1) converges to p; a.s. as N — oco. Thus, it suffices to show that

Po+psq P1
< Po ) (pl +PsCI) <1
Po + Dsq P1

( Do )po+psq (pl +psq)p1
Do + Psq D1

— (po + psq) log (1 - &) +py log (1 + psg)
Po +psq D1

Dsq Dsq
< (po + psq) (——) +p1( ) =0.
Po + Psq P1

The inequality follows from the fact that log (1 +a) < a for all @ € (—1,0) U (0, 00),
which can be verified by observing that log (1 4+ a) —a is strictly concave and maximized
at a = 0.

Note that

log

O

[Proof of Proposition 4.4]

Without loss of generality, assume p; > py. Before proceeding with the proof, define
new notations. Let {TN }?Vozobe a sequence of equilibrium voting strategy for type-u in
which agents use uninformative poll response strategy. Let p; = psq, pu = ps (1 — q),
Pao = ps(L—q) 10", phi = ps (1 —q) 7" and pJ, = ps(1 —¢q) 7). Note that since I
assume p, > p1 — Po, Pay — Puo = P1 — Po and phy — pug = pu — (p1 — o) (Feddersen
and Pesendorfer 1996, Proposition 3). Further, let n,, denote the number of agents
whose type is u and chooses to vote for 0, n,; the number of agents whose type is u
and chooses to vote for 1, and n,, the number of agents whose type is u and chooses
to abstain. Clearly, n, = nuo + Ny + nue. 1 will abuse the notation and denote

n = (no, M1, i, N, Ng) OF (Mg, M1, M, My, Ny, N ), depending on the context.
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For a positive integer K, let AX = {f e R : 3", fy =1}. I may omit N when it
is clear from the context.

I need the following lemmas. I will use the large deviation principle (for example,
see DasGupta (2008, Theorem 23.2)) in the proofs below.

Lemma A.2. Suppose p1 > py > 0, py, > p1 — po, Py > 0 and ¢ > 0. Then,

) 1 )
Jim_ <= log Pr(Wlry, = =0) = — min » 1ZO Mgklog (9/Dk) -

where Go = {g = (91, 90, Gi, Guo, Gue 9) € A% 91 < go + Gi + Guo + Guss 91 > Go + i + Guo}-

Proof: I ignore the event of ties and let W' be the event in which n; < ng+n; +n,
(more agents prefer candidate 0) and ny + n,; > ng + n; + nye (more agents vote for
candidate 1). Since the probability of a tie (the event that n; + n,1 = ng + n; + nyo)
vanishes in the limit, I compute the probability of W' instead. Note that since p; > po,
Nyo = Nyu1 = 0 by Proposition 4.1. Then,

Pr (W'|ry, 2 =0)

(n1 < ng+n; +n, and ny > ng + n; + nyolry, z = 0)

Pr
Pr(n; < ng+ ni + nuo + nue and ny > ng + n; + nyolr, 2 = 0)
Pr

n
<N—|—1 €G0|7’1,Z:0>,

Here, Gy is defined in the statement of the lemma.

By the large deviation principle, I have

lim

1 n
N—>ooN+1logPr(N+1 < G°|“’Z:O>

=— inf sup (¢"d—¢(d)),

9€Go JcR6

where T is the transformation operator and ¢ (d) = limy_,o 5 log E [exp (d"n)] is
the limit of the cumulant generating function of n. Since the voter types are independent

and identically distributed, I can consider the type distribution of the first agent only
and hence ¢ (d) = log <Zk:0 Lisu0.ud Pk €XD (dk)>

1Lyl

Simple algebra shows sup, (¢'d — ¢ (d)) = >, gr10g (gx/pk). This implies

lim

/ . .
A log Pr (W'|ry, 2=0) = glengo zk:gk log (gx/pr) -

Since the objective function is continuous and G is compact, the minimum is achieved

and the lemma is proved. O
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Lemma A.3. Suppose p1 > po > 0, py, > p1 — po, Py > 0 and ¢ > 0. Then,
(1) imy o0 g log Pr (Wry, 2 =0) = —mingecs Y 5—01.5.u0.u0.6 9k 108 (9r/Dr), where

Go = {9 = (91,90, 9i> Guos Gug» 9s) € A% g1 > go + gi + guo} and g1 > go + gi + guo is
binding at the minimizer, and

(1) limpy 00 NLH log Pr (W|ry, z2=10) =limy_« ﬁ log Pr (W|ry,z =1).

Proof: 1 solve the constrained optimization problem in Lemma A.2 to compute

lim

A log Pr (W|ry, z=0).

The Kuhn-Tucker conditions give the following solution at which only one inequality
constraint g; > go + g; + guo is binding:

_ Do \/pl (po + pi + Puo)
Po = Pi+ Puo 2 <\/P1 (po +pz‘+puo)> + (Pug +p¢)7
g = V' P1 (Do + pi + Puo) ’
2 (\/Pl (po + pi +puo)> + (Pug + Pg)

90

. Di \/pl (po + pi + Puo)
gi = T ,
Po T pi p“02<\/]?1 (Po +pz‘+puo)> + (Pug + Do)
. DPuo \/ p1 (Po + pi + Puo)
Guo = + o, + )
Po = pi pu02<\/p1 (Po +pz‘+puo)> + (Pug + Do)
Gup = Pug , and
2 (\/Pl (po + pi +pu0)) + (Pug + Po)
Do

9o = :
2 (\/pl (po + pi +puo)> + (Pug + o)
Plugging these into — >, g log (gx/px) gives

i
Nl—r>nooN—|—1

log Pr (Wlrs, == 0) = log (2v/p1 (b1 + 1) + (pu — (11 — po) +13))
(A.3)
Because the inequality g1 < go + gi + guo + gug 1s not binding, the minimization
problem under G{, has the same solution and thus 1) holds.
Turn to z = 1. Recall that the probability of a tie vanishes in the limit. Ignoring
the probability of a tie, I consider the event denoted by W’ again in which ng <

n1 + n; + Ny + nye (more agents prefer candidate 1) and ng + nyo > ny + n; (more
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agents vote for candidate 0). Applying the large deviation principle again (see the proof
of Lemma A.2 for detail), I obtain

: 1 :
Jim S log Pr (Wl 2 = 1) = —glenglggk log (g5/px)

where G = {g = (90, 91, i Ju0s Gug» 9o) € A° 2 go < g1+ gi + Guo + Gugs o + Guo > g1 + gi}-
Then, the Kuhn-Tucker conditions give the following solution at which only one inequal-

ity constraint go + guo > g1 + ¢; is binding;:

Po ( vV (Po + puo) (p1 +pz) )

9o =
(pO + puO 2\/ Po + puO) (pl + pz pu¢ + pd))
g = D1 vV (Po + puwo) (p1 + pi)
(p1 + i) 2v/(Po + puo) (1 + pi) + (Pug + Do)
g = D \/(po + puo) (p1 + pi)
;=
(P14 2i) \ 2¢/(po + Puo) (p1 + i) + (Pug + Do)
oo = Duo \/(po + puo) (p1 + i)
(Po + Puo) 2v/(po + puo) (1 + pi) + (Pue + Do) ’
puqb
Gus = , and
(2\/(290 + puo) (p1 + pi) + (pup + p¢)>
B P
9o =

2v/(Po + puo) (01 + i) + (Pus + Do)

The statement of the lemma is verified by plugging these into the objective function

and comparing with (A.3). O]

Lemma A.4. Suppose p1 > py > 0, py, > p1 — po, Py > 0 and ¢ > 0. Then,

lim
N—oo +1

log Pr (W|ry, 2 = 0) Z filog (fi/pr)

k=0,1,i,u,¢
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where

fo= Do (1—77)
° po+pi \1+C)’

R
¢ Pu + Dy 1+C)°

— log((po+pi)/po) — HEER R
with 1 = log((pO"ij/pI;O)'f‘fog((pI?l-‘rpi)/pl) and C = (pu + p) <£1_) <p0+pi> .

Proof: Asin Lemma A.2; the probability of a tie vanishes in the limit. Thus, instead
of W, I can consider the event denoted by W’ in which n; < ng + n; + n, (more agents
prefer candidate 0), ny + n, > ng + n; (more agents vote for candidate 1 if the UTAs
vote for 1) and p (z = 0lm_j;,75) < 3 (the UIAs vote for candidate 1). Observe

Pr (W'|ry, 2 =0)
1
=Pr (m < ng 4+ n; 4+ Ny, + 1y > ng A+, p(z=0lmoj,r) < 5\7’2,2 = O)

=Pr(no +n; —ny, < ny < ng +n; + ny,

|re, 2 = 0)

—nylo > log
Po + Di ! gp1+pz' -«

n 1 «
=P F | =0
r(N+1€ O(N+1Og1_a>|rlaz )7

where

(ng + n;) log

Fo0) ={f = (fo, fr, fis fus fo) €A fo+ fi = fu < fr < fo+ fi+ fu and

Do D1
+ i lO — lO Z b .
(ot 1) gpo + p; f gp1 + p; }

Claim: limpy ﬁ log Pr (W'|re, 2 = 0) = —inf rep 0y Dok fr10g (fi/pr)-

To show this, note that N+r1 log 7%= converges to 0. Thus, for any ¢ > 0, there is

N > 0 such that N > N implies

- 1 Q
€ N—|—10
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and also

n n
Pr (N—i—l GFO(E)]rl,z:[)) < Pr(W'lry,2=0) < Pr (N+1

€ Fy(—¢)|r,z= O) :

Therefore, for any € > 0,

Aim N1 log Pr <N7jr T € Fo(e)|r1, 2z = O> < A}l_rgo 1 log Pr (W'|re, 2 = 0)
(A.4)
< lim ! logPr( n € Fy(—¢) |r1,z:O> .
T Nooo N +1 N +1
(A.5)

Now, apply the large deviation principle to obtain

lim
N—oo +1

n
log P
og T (N +1 fEF(e")

€ Fy(g)|ry, z = 0) = — inf ka log (fx/pr)
k

for each ¢’ € R. (See the proof of Lemma A.2 for detail.) Because Fj (¢') is compact-

valued and continuous in &', the Maximum Theorem implies that

lim

1 n ,
NﬁooN—l—llOgPr(N—l—l €F0(5)|r1,2—0>

is continuous at ¢’ = 0. Therefore, by taking ¢ | 0 in (A.4) and (A.5) I have shown the

claim.

Compute

feFH(0)

— inf Z Jelog (fu/pr) -
%

The Kuhn-Tucker conditions give the solution in the lemma at which only one inequality

constraint (fo + f;)log <p0’i£pi> — filog (pfim) > 0 is binding. O

Lemma A.5. Suppose p1 > po > 0, py, > p1 — po, Py > 0 and ¢ > 0. Then,

1
lim log Pr (W|ry, 2z =0) = lim Nl log Pr (Wrg,z =1).

N—oo +1 N—oo

1
N

speed for z = 1 is computed similarly as follows.

Proof: In Lemma A.4, limy_, ~ log Pr (W|ry, z = 0) is computed. The converging

Assume z = 1. Ignoring a tie, I consider the event denoted by W’ in which ny <

ny + n; + n, (more agents prefer candidate 1), ng + n, > n1 + n; (more agents vote
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for candidate 0 if the UIAs vote for 0) and p(z = 1jm_;,r2) < 1 (the UIAs vote for

candidate 0). By the large deviation principle, it suffices to solve

— inf kalog (fr/Pk)

feF(
where

Fl <b> - {f: (f()aflafiafuaftb) € A5 : f1+fl_fu S fO S fl+fz+fu:
Jolog <p0+pi) — (fi + fi)log (M) > b}
Do p

1

The Kuhn-Tucker conditions give the following solution at which only one inequality
constraint flog <p°+pl> — (f1 + fi)log <’%> > 0 is binding:

fo= 12 (A.6)
n

pl +pz <1+C>’ (A.7)
n

Ji= p1+p@<1+0) (4.8)
C

fu pu+p¢> (1+C>’ and (A.9)

fom 2 (1+c>' (A.10)

Note that n and C' are defined in Lemma A 4.

Note that, for each z = 0, 1, the converging speed is expressed as

= felog (fu/pr)

where the minimizer f is given in Lemma A.4 for z = 0 and (A.6)-(A.10) for z = 1.
I will plug the two solutions into the objective function and verify the two are the

same. Because (f,, f,) coincides between z = 0 and z = 1, I need to show
po]jfpi (11+—g> o8 (popﬁpi (11;0) /p°> 1 fclog (HLC/M)
(1= P (1-
i poipi (1 +g> o8 (poyjrpi (1 +g) /pi)
e (em) ok () e (G2 () )
* pll—?lfpi (110) log (plz—)ﬁpi (1 —ZC) /pl)
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The left-hand side is

1—7] 1 1—77 n n
LHS) = —2L)1 1
(L) (1+C> Og(po+pi<1+0)>+1+00g(1+0/p1)’

and the right-hand side is

1—n 1—n n 1 n
HS) = 1 — )1 .
(RHS) 1+Cog<1+0/p°)+<1+c) Og<p1+pi(1+0))

(LHS) — (RHS) = H—;C <<1 ~ e (poﬁ?pi) s (pljiip))

1 log <p1}$pi> > log ( Po ) -

b+e log <p0+P ) ™ log (Pﬁipi o+ pi

e <p0132pi> log( il ) =0.

+ Di
log () +1log (G2)  \P1 P

Thus,

Lemma A.6. Suppose p1 > po > 0, py, > p1 — po, e > 0 and ¢ > 0. Then,

, 1
A log Pr(Wry, 2 = 0) = — > gilog(gh/p)

kZO»lziauovud):d)

where §' = (90, 91 i Guos Gug 95)» G = fr for k= 0,1,4,6, gio = B2 fu, gly = 22 fo
and (fo, f1, fis fus fs) is defined in Lemma A.4.

Proof: The lemma holds because of Lemma A.4 and the fact

fulog (fu/pu) = @fu (puo fu/puo) ZZL¢fu log (Z;:(bfu/puqb)

O

Define ag = log (1 + ry) and a; = log (1 + 1) for positive ry and 71. In addition, let

(ap —ay)ro (1 + 1)

(?“0—7'1)@0

(ao - a1)7”1
(7'0 - 7"1) a1 .

® = qplog + ay log

Lemmas A.7 through A.9 are needed for Lemma A.10 that shows & > 0 for ro > r; > 0.
Then, (A.11), the key step to prove Proposition 4.4, relies on Lemma A.10.
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Lemma A.7. Ifrg >1r; >0,
1 1

2 - 2 > O.
(14+79) (1 +71) (ap — a1) (ro —m1)
Proof: Let ¥ = ay —a; — #ﬁ and it suffices to show W < 0. If ry = rq,
U = 0. I need to show that %\I’ < 0. Compute
d 1 1 1
U= 1- 24719 +71) ) <O0.
dro 1+To< 2\/1+r0\/1+r1( 0 1))

The inequality follows because

2471941 —2¢/(1+7) (1 +7) = (\/1—|—r0—\/1+r1)2>0.

O
Lemma A.8. Ifrg>rmr >0, %Cb > 0.
Proof: Compute
d 1 — 1 + 1 + 1
s log(ao ar) o ( +7’1)+6L0 ay Qo a1+@_ .
d’f‘o 1+7‘0 (TO—Tl)CLO CLO—CL11+T0 To —T1 To 1+’I“0
Then,
d
lim —® = 0.
T‘lll:L% dro
Therefore, I only need to show deZTOCD > 0. Observe
d? 1 1
o = ag + aq ( — ) >0
d’l“ld’l“o ( ) (1+T0) (1+’f‘1) (CLO —a1)2 (TO—T1)2
by Lemma A.7. O

Lemma A.9. Forr >0, 2log o+ —a; > 0.

Proof: By L’Hopital’s rule,

. M . 1
lim — =lim ——— = 1.
110 a1 r140 1/ (1 + 7“1)

Thus, lim,, | 2log % — ay; = 0. Moreover,

r 1 1 1 1 241 11
L (210g ™t —a ) =2= —2— - - 9=
dry a; 1 apl+r  14r  rmn(1+4+mr) a1 l+m7r

2—|—7“1 ( 27"1 )
=T (- > 0,
7’1(1"‘7"1)@1 2+7"1

where the last inequality is implied by the inequality log (1 4 r) > 22—+’“T forr>0. O
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Lemma A.10. Ifro>r; >0, & > 0.

Proof: First, L’Hopital’s rule implies

lim ao—alzhm 1/(1+T0>: 1 ’
rodr1 g — 71 rodri 1 1 + (a1
and thus
lim & = a, log + ay log o
rodri (]. + 7”1) aq

:allog——i—allog——allog(l—f—rl)

—2a110g——a1 = (QIOgE—al) >0
ai ay

by Lemma A.9. In addition, I have shown %QD > 0 in Lemma A.8. Therefore, ® > 0.
O

Lemma A.11. Suppose py > pg > 0 and p; > 0. For ¢ and Gy, defined Lemmas A.3
and A.6, ¢' lies in the interior of Gj,.

_pz

Proof: Set ry = g—; and 7 . Then, ro > r; > 0 and Lemma A.10 implies

(ap —ay)ro (1 +11)

(7"0—7‘1)@0

(ao - Cll) T

> 0.
(7‘0 - 7“1) 5]

ag log + aq log

Recalling that n = ﬁa%, I can rewrite this inequality as

(a0 — a1) P (o +pi) " > (p1 — po) agay .

Then,

Ui +1—77 (Pl—po) C
1+C  1+C  (putpy)1+C

1 (p1 — Do) >
= 1—277+—C
1+C< (Pu + 1o)
n (1-n)
n L—n
aewem () (G 50)
( 1= Po) P1 Po + Pi
_ G —do (2 1=\
_1+C a0+a1 — P1 Po + pi
(ap — ay) P1(po+Pz) n+(p1_p0>aga1—n <0
1+ C Pl (po+pi) " (ao + ay) ’

—h + 90+ 9i 4 Gog = —
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which implies ¢ lies in the interior of G, 0

Now I prove Proposition 4.4. I need to prove that

. 1
lim N1 log Pr (W|ry, z = x) (A.11)

A log Pr (Wrqg, z = z) < ]\}gnoo

for each x = 0,1. Lemmas A.3(ii) and A.5 imply that it is enough to prove (A.11) for
z = 0 only. Note that
lim
N—oco N +1

= —min » gilog(gr/pk) (A.12)
geGy B

log Pr (W|ry,z = 0)

>— > gilog(gi/pe)

k=0,1,7,u0,u¢p,p

log Pr (W|rq, z = 0)

=N N
where Lemmas A.3(i) and A.6 define Gy, and ¢', respectively, and prove the two equal-
ities. Lemma A.11 shows ¢’ does not satisfy g1 = go + g; + guo (the constraint in Gj)).
Thus, ¢’ cannot be a minimizer of (A.12) by Lemma A.3(i). This implies the strict
inequality. 0
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