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Abstract

We introduce the axiom of composition independence for power indices and
value maps. In the context of compound (two-tier) voting, the axiom requires
the power attributed to a voter to be independent of the second-tier voting
games played in all constituencies other than that of the voter. We show that
the Banzhaf power index is uniquely characterized by the combination of com-
position independence, four semivalue axioms (transfer, positivity, symmetry,
and dummy), and a mild efficiency-related requirement. A similar characteri-
zation is obtained as a corollary for the Banzhaf value on the space of all finite
games (with transfer replaced by additivity).
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1 Introduction

The Banzhaf power index is arguably the most adequate mechanism for measuring
the a priori influence of voters in a voting situation; see, e.g., the extensive discussion
in Section 3.1 of Felsenthal and Machover (1998). The idea behind the index is clear
and simple. If a voter, or an outside observer, stand behind the standard "veil of
ignorance," the best they can do is to assume that Yes and No votes by the electorate
members constitute outcomes of Bernoulli trials with p = % (i.e., each voter is a priori
equally likely to choose Yes or No). In this setting, it is natural to define the power
of a voter to influence the voting outcome as the probability that his vote is decisive,
namely, that the election would be lost without that voter’s support but won with
his support.

The Banzhaf power index has a long history. A version of it was initially suggested
by Penrose (1946), followed by two subsequent rediscoveries by Banzhaf (1965, 1966,
1968) and Coleman (1971).! The much-used probabilistic version described above?
has its origin in the work of Dubey and Shapley (1979), who initiated the study of the
Banzhaf index in the game-theoretic framework. Following the approach of Shapley
and Shubik (1954), they model a voting situation as a simple cooperative game (or
voting game); the Banzhaf index of a player (voter) is then the probability that he
is a swinger for a random coalition of other players (which each player joins with
probability %, independently of anyone else), meaning that he turns that coalition
from losing to winning by joining it.?

The simple probabilistic model upon which the Banzhaf index is based has a

fascinating implication for measuring voting power in compound voting. The latter

IThe name of John F. Banzhaf III has been the one most associated with that power index, due
to the number of works he authored on the subject and the legal repercussions of his findings and
recommendations. Thus, siding with most of the literature, we will use the term "Banzhaf power
index" for brevity, although, and perhaps more appropriately, the index is sometimes referred to as

the Penrose-Banzhaf-Coleman power index.
?Felsenthal and Machover (1998) call this version "the Banzhaf measure."
3Our notion of swinger is a slight adaptation of the term used in Dubey and Shapley (1979, p.

103), who defined it in relation to a random coalition that may include the swinger, in which case the
effect of his departure from that coalition on its winning status is also considered. The probability
of being a swinger is the same under both definitions, and hence both swinger notions may be used

in defining the Banzhaf index.



term refers to two-tier voting systems, of which there are numerous examples rang-
ing from high-profile ones such as the US Electoral College and the Council of the
European Union to the legislative organization of a local government. The common
game-theoretic model underlying these systems is the one in which the player set N is
partitioned into £ disjoint "constituencies" (71, ..., Ck, and the outcome of the vote in
a constituency C; is described by a simple game w; with player set C; (w; is, in most
cases, the simple majority game). Following the vote in N = Ué?:lC’j, decision-making

moves into the "council of representatives,"

where players-representatives from the
set R = {1,...,k} vote in accordance with the voting outcomes in their respective
constituencies; the outcome of the council vote is in turn determined by a simple
game v (which is, in most cases, a weighted majority game?*).

In the compound game v [wy, ..., wy] thus described, player ig € C, is a swinger
with respect to a coalition S C N \ {ip} if and only if he is a swinger in the game
wj, (for SN Cj,) and his representative j, is a swinger in v (for the coalition T
of representatives j # jo whose vote is sanctioned by S, i.e., w;(SNC;) = 1). A
little reflection reveals that when players in N \ {io} form S by joining randomly
and independently (each with probability %), the event that 7 is a swinger in wj,
and the event that jy is a swinger in v are themselves independent; moreover, the
induced distribution of T" C R is such that each representative participates in it with

probability %,5 independently of other representatives. The definition of the Banzhaf

index of a player as his probability of being a swinger — for a coalition joined by

each other player with probability % and independently of the rest — thus implies
a well-known property of the index: the power of player iy, in the compound game
v [wy, ..., wy] is equal to the product of his power in his second-tier game w;, and the
power of his representative jy in the first-tier game v.

The latter attribute of the Banzhaf index, to which we will refer as the composition

4The weights given to different representatives may be (roughly) proportional to the population
sizes of the counties they represent; but that is often not the case, either by necessity or by design.
(See Chapter 4 of Felsenthal and Machover (1998)) for many examples of weighted voting in the
Us.)

>To be precise, in order for the this property to hold all second-tier games w; need to be decisive,
i.e., constant-sum (as in the scenario where all w; are simple majority games with an odd number

of players).



property, was first noticed by Owen (1975). Owen also showed that the composition
property is satisfied by the Banzhaf value — the natural extension of the Banzhaf
index to all games — for properly generalized compound games whose components
are not necessarily simple. This strikingly simple behavior of the Banzhaf index has
an immediate computational upshot, as the complexity of calculating the power of
a voter in real-life instances of compound voting (where constituency sizes can run
into millions) is immensely reduced. Indeed, the first-tier games are mostly too small
to pose a serious problem in computing power,® while the (possibly huge) second-tier
games are usually the simple majority ones, where the power can be approximated
with a high degree of precision by applying the standard Stirling’s formula. This
computational simplicity is what stands behind the derivation of the famous "square-
root rule" of Penrose, as rendered in Theorem 3.4.3 of Felsenthal and Machover
(1998), whereby all voters enjoy (approximately) equal voting power only when the
Banzhaf power indices of their representatives are proportional to the square root of
the size of their respective constituencies.”

The appeal of the composition property leads to the natural question of whether
there are other sensible power indices sharing this property. It turns out that the
composition property is too powerful to allow any significant freedom of choice. Owen
(1978) showed that, on the space of all games,® the Banzhaf value is essentially the
only value map that satisfies standard axioms in conjunction with the composition
property.” The strength of the composition property is particularly noticeable when
attention is restricted to simple games: Dubey et al. (2005) showed that imposing just
two axioms together with the composition property yields the Banzhaf power index.

(The two axioms are transfer (or valuation), which has been the standard substitute

6For instance, when the first-tier game is a weighted majority one, the generating functions
method suggested in Owen (1982, Chapter X, pp. 226-227) provides an effective way to compute
the Banzhaf index of each representative if the number of representatives is not too large (which is

typically the case).
"The underlying assumption behind this principle is that all second-tier voting games are simple

majority games, which is the case in most real-life instances of compound voting.
8The claim is also true for the space of all constant-sum games.
9See Theorems 7 and 8 in Owen (1978). Although some other indices, such as the useless null

index and the simplistic "dictatorial" index, also emerge from his axiomatization, they are easily

removed by adding the dummy and strict positivity axioms; see Section 5 in Owen (1978).



for the additivity axiom in the context of simple games since its introduction in Dubey
(1975), and strict positivity (or monotonicity), which requires the power measure to
be non-negative and non-zero.)

The composition property may, as an axiom, be criticized on the grounds of being
a technical or computational requirement, lacking a compelling conceptual basis.
As a very strong condition, however, the composition property can be weakened
in various ways, which may provide a conceptually sounder axiom. That is the
path we intend to follow, starting with the following observation. According to the
composition property, the ingredients for computing the power of player iy € C}, in
the compound game v [wy, ..., wy| are his power in his second-tier game w;, and the
power of his representative jy in first-tier game v. In particular, in order to compute
his power, all ¢y needs to be aware of is his own game w;, and the game v played on
the first tier. We shall state that partial aspect of the composition property as an
axiom, calling it composition independence. The axiom will require, for any compound

0

game'® v [wy, ..., wy], the power of any player i who belongs to a constituency C,

to be independent of the second-tier games w; played in all other constituencies (i.e.,
for j # jo).

On the conceptual level, the justification of composition independence lies in un-
derstandable limitations of the knowledge that a player may possess about the overall
voting structure. The new axiom says that a huge deal of seemingly important details
are, in fact, of no relevance to the player when he assesses his voting power. Com-
position independence implies that he does not need to have any detailed idea of the
structure of the voting process (i.e., the simple game played) in any of the constituen-
cies other than his own. In particular, he does not need to know the number of voters
in other constituencies, or even what these constituencies are. The only characteristic
of the other constituencies the player is expected to know is their total number, as it
pertains to the knowledge of the first-tier game v between the representatives, which
remains necessary.

We will show that both the Banzhaf power index and the Banzhaf value can be

uniquely characterized using the composition independence axiom. As composition

10As in the premise for the composition property, it will be assumed that the second-tier games

w1, ..., W§ are constant-sum.



independence is relatively mild on its own, the result of the type of Dubey et al. (2005)
— where the composition property was accompanied by just two extra requirements —
should not be expected. And, indeed, in our results a total of five (logically indepen-
dent) requirements will accompany composition independence. Four of them are the
semivalue axioms (the term comes from the works of Dubey et al. (1981) and Einy
(1987) who considered maps satisfying the conjunction of these axioms in the context
of general games, and simple games, respectively). The semivalue axioms for power
indices on the domain of simple games — the already mentioned transfer and positiv-
ity axioms, symmetry, and dummy — are quite standard, and all four axioms or their
subsets figure prominently in the literature on axiomatizations. (In particular, the
transfer axiom, which is the "heaviest" of the four, has been a backbone of most ax-
iomatic approaches to the Banzhaf index; see, e.g., Dubey and Shapley (1979), Lehrer
(1988), Albizuri and Ruiz (2001), Dubey et al. (2005), Casajus (2012), Haimanko
(2017)). For general games, linearity replaces transfer in the set of semivalue axioms,
but its weaker form — additivity — will suffice for our needs. (Additivity is the most
frequently used axiom in the treatment of value maps ever since its introduction in
Shapley (1953).)

The extra non-semivalue axiom that we impose is new, and contains a requirement
that is significantly weaker than efficiency. The efficiency axiom, whereby the total
power of all players is equal to 1 (or the total value is equal to the worth of the grand
coalition, in the case of general games) is almost invariably assumed in axiomatiza-
tions of the Shapley-Shubik power index and the Shapley value, but it is flagrantly
violated by the Banzhaf index. However, we will show that the Banzhaf index has
the following flavor of efficiency: Consider a sequence of simple games where the size
of the player set tends to infinity; then it cannot be the case that, in the limit, every
player’s power is above some positive constant that is common to all players.!! This
will be postulated for general power indices by our wvanishing power axiom. Stated
slightly more generally, the same axiom will be assumed on value maps in the context
of general games.

The paper is organized as follows. In Section 2 we recall the basic definitions

11'We will establish this claim in Remark 2. Any efficient power index would satisfy such a claim,

but it is not entirely obvious in the case of the non-efficient Banzhaf index.



pertaining to finite and simple games, and the notions of the Banzhaf index and
value. Section 3 states our axioms for power indices on the domain of simple games
and Section 4 proves the characterization result for the Banzhaf index. Section 5 does

likewise for the Banzhaf value on the space of all finite games.

2 Preliminaries

2.1 Finite games and simple games

Let U be an infinite universe of players; it may be assumed w.l.o.g. that U includes
the set N of positive integers. Denote the collection of all coalitions (subsets of U)
by 2V, and the empty coalition by #. A game on U is given by a map v : 2 — R
with v (0) = 0. A coalition N C U is called a carrier of v if v(S) = v(S N N) for
any S € 2Y. We say that v is a finite game if it has a finite carrier; the minimal
carrier of such v is, in effect, its true player set. The space of all finite games on U
is denoted by G. A game v € G is said to be constant-sum, or of constant sum c, if
v(S) +v(U\S) =c (=v(U)) for every S € 2Y.

The domain SG C G of simple games on U consists of all v € G such that: (i)
v(S) € {0,1} for all S € 2Y; (ii) v(U) = 1; and (iii) v is monotonic, i.e., if S C T then
v(S) <v(T). If v € §G, a coalition S is winning if v(S) = 1, and losing otherwise. If
v € §G is constant-sum, i.e., S is winning in v if and only if U\S is losing in v, then
v is called decisive.

The space AG C G of additive games consists of all v € G satisfying v(SUT) =
v(S) 4+ v(T) whenever SNT = (. Any w € AG with (finite) carrier N is identifiable
with the vector'? {w(i) | i € N}, and thus may be thought of as a payoff vector to
the players in N.

2.2 Power indices and value maps

A power index ¢ is a map ¢ : SG — AG, where ¢ (v) (i) is interpreted as the voting
power of player i in a simple game v. A map ¢ : G — AG, defined on the full domain

of finite games, is called a wvalue map; for v € G, ¢ (v) (i) may be viewed as an

12We shall henceforth omit braces when indicating one-element sets.



evaluation of player i’s "utility of playing the game" (see Roth 1988).!3
The Banzhaf value is a value map (3 that is given, for any v € G with a finite

carrier N, by

B) (i) =55 Y v(SUD) —u(S)
SCN\i
if i € N, where n = |[N|; and
p(v) (i) =0

if i € U\ N. It is easy to see that 3 (v) is well defined, being independent of the
choice of the carrier N of v. The restriction of 5 to SG is the Banzhaf (power) indez.

3 Axioms for Power Indices

This section introduces our axioms — plausible requirements that a general power
index ¢ may be expected to obey — whose combination will later be shown to uniquely
characterize the Banzhaf power index. We begin with four familiar semivalue axioms
that are quite routinely assumed in dealing with power indices, either in their entirety
or in part.'4

In order to state the first axiom, given v, w € SG let vV w,v Aw € SG be defined
by

(vVw)(S) =max{v(S),w(S)}, (vAw)(S)=min{v(S),w(S)}

for all S € 2V.

Axiom I: Transfer (Tran) For any v,w € §G, ¢ (vV w) + ¢ (v Aw) = ¢ (v) +
v (w).

13We do not impose the usual efficiency requirement on a value map ¢ (whereby the equality
© (v) (U) = v(U) should hold for any v € G), and, indeed, the objects of our investigation (namely,
the Banzhaf power index and the Banzhaf value, defined next) do not satisfy efficiency. The inter-
pretation of ¢ (v) (i) as ¢’s "utility of playing the game" is still valid, however, as the framework
of Roth allows inefficient subjective valuations when players are averse to strategic risk (see Roth

(1988, p. 61)).
Variants of these axioms have been present in the original axiomatizations of the Shapley-

Shubik and the Banzhaf power indices (see Dubey (1975) and Dubey and Shapley (1979)). The

term "semivalue" comes from Einy (1987); see Remark 1 below.



As was shown in Dubey et al. (2005, p. 24), Tran can be restated in an equivalent
but conceptually clearer form, amounting to a requirement that the change in power

depends only on the change in the voting game.'®

Next, denote by II the set of all permutations of U. For any 7 € II and v € G,
define a game 7v € G by (7v) (S) = v(7(S)) for all S € 2. The game 7v is the same

as v except that players are relabeled according to 7—1.16

Axiom II: Symmetry (Sym). For any v € §G, i € U, and 7 € II, p (7v) (i) =
w (v) (7 (1)) -

According to Sym, if players are relabeled in a game, their power indices will be
relabeled accordingly. Thus, irrelevant characteristics of the players, outside of their

role in the game v, have no influence on the power index.
Axiom III: Positivity (Pos). For any v € SG and i € U, ¢ (v) (i) > 0.

The positivity requirement is natural, as every v € SG is monotonic by assumption

and hence the influence of any player joining a coalition is always non-negative.

Axiom IV: Dummy (Dum). If v € SG and i is a dummy player in v, i.e.
v(SU) =0v(S) 4+ v(i) for every S C U\ 4, then ¢ (v) (i) = v (4) .

A dummy player in a simple game can be either a dictator (if v(i) = 1), in which
case a coalition is winning if and only if it contains i, or a null player (if v (z) = 0),
that does not belong to the minimal carrier of v. Accordingly, Dum can be viewed
as a normalization requirement, assigning power 1 to a dictator and power 0 to a null

player.

Remark 1 (Semivalues). Einy (1987) referred to power indices satisfying Tran,
Sym, Pos, and Dum as semivalues, and we adopt this term. He showed that a power

index ¢ is a semivalue if and only if it has the following representation: there exists

15The possibility of such a restatement has been mentioned in Dubey and Shapley (1979, p. 106).

A special version of the restatement also appeared in Laruelle and Valenciano (2001).
16That is, player 7! (i) has the same role in 7v as player i in v.



a (uniquely determined) probability measure £ on [0, 1] such that, for every v € SG

with some finite carrier NV,

p ) (@)= > p3 (S U —v($)] (1)

SCN\i
if i € N, where
1
P = / 2 (1— )"V de (a) )
0

and ¢ (v) (i) =0 if i € U \ N. When £ is concentrated on 3, the Banzhaf index £ is

obtained; in particular, 5 is a semivalue. [

Now recall the notion of a compound game (see Shapley (1964)). Consider
v, Wy, ..., w, € SG such that R = {1,...,k} (the set of representatives) is a carrier
for v, and wy, ..., wx have disjoint finite carriers (constituencies) C1, ..., C. (Note that
no assumption is made on the relation between the set of representatives and the
constituencies; we think of player j € R as the representative of constituency C}, but
he need not be a member of C;.) The game u € SG is said to be the compounding of

v with wy, ..., wg, written u = v[wy, ..., wy], if

u(S) =v({j [ w; (S) =1})
for all S € 2Y. Notice that U?Zl C}; is a carrier for .

Axiom V: Composition Independence (Complnd). Let v[wy,...,w;] be a
compound simple game in which wy, ..., w, € SG are decisive, with corresponding con-
stituencies C1, ..., Cy. Given 1 < j <k, let wi, ..., w; ;,w}y,...,w), € SG be another
collection of decisive games with corresponding disjoint carriers Cy, ..., C7_1, Cl 4, ..., C}, C

Jj—b
U\ C;. Then, for every i € C},

o (vlun, ws, -y we]) (1) = o (vl oy, w0y, eh]) (0,

The axiom requires the voting power of any player 4 in any constituency C; to be
independent of the voting games that played in all other constituencies (and even of
the composition of the other constituencies). Thus, i should be able to determine his
power based only on the knowledge of the voting game of his constituency, and of the

second-tier voting game played between the representatives 1, ..., k.

10



The Banzhaf index 3 satisfies ComplInd because it adheres to a much stronger
requirement, the composition property. The latter means that the index is multiplica-
tively separable for any compound game: it is well known (see Theorem 2 in Owen

(1975)) that if v[wy, ..., wy] is a compound game in which wy, ..., wy are decisive, then

B (wlwy, ..., wi]) (i) = B (v) (7) - B (w;) () 3)

for every j = 1,....k and every ¢ € C;. It follows that [ (v[wy, ..., wg]) (i) does not
depend on the games w; for j' # j, and hence [ satisfies CompInd.

Axiom VI: Vanishing Power (VanPow). Let {v;}?°, C SG be a sequence of
games with corresponding (nonempty) carriers { Ni. }72 ;, and assume that limy_, | V|
= 00. Then

. N
lim inf min e (v;) () <0

The axiom embodies a mild aspect of efficiency (that would require the total power
of all players to be equal to 1), by stipulating that, when the size of the player set
of a game tends to infinity, it cannot be the case that every player’s power is above

some positive constant that is common to all players.!'”

Remark 2. (The Banzhaf index satisfies VanPow). While the Banzhaf
index is not efficient, it does satisfy the significantly weaker VanPow. Indeed, by

Theorem 2 of Dubey and Shapley (1979),
. |N1€| |Nk| -1
Z ﬁ (Uk) (Z) S 2|Nk|—1 [M] ) (4)
2
where [n]| denotes the integer part of n. This implies that

(0 <) minf (vg) (7) < #(U{i}c—] 1>.

1€ Ng,
2

A direct application of the Stirling’s formula n! ~ n"e™"v/27wn readily yields the
asymptotic relation (2:) ~ f—%, which in turn implies that (T;]l )~ \/22—"7 Therefore
2 ™

k—00 1€ N} o k—oo 2‘Nk|71 5

lim min 3 (vg) (i) = lim 1 (U\[]ik'_} 1) =0.0

1"When Pos is also assumed to hold, VanPow implies that lim infj,_. o, min;en, ¢ (vg) (i) = 0, as

power cannot be negative.

11



4 Uniqueness of the Banzhaf Index
The six axioms of the previous section uniquely characterize the Banzhaf power index:

Theorem 1. The Banzhaf index 3 is the only power index on SG that satisfies
Tran, Sym, Pos, Dum, ComplInd, and VanPow.

Proof. The fact that [ satisfies the axioms has been established in the previous
section. Now assume that ¢ is a power index on SG that satisfies the six axioms.
In particular, ¢ is a semivalue (see Remark 1), and hence there exists a probability
measure ¢ on [0, 1] for which (1), (2) hold. Denote by u; the unanimity game with
carrier {i} C U, i.e., a dictator game, where

1, ifies,
0, otherwise
for all S € 2V, and by m, ; the simple two-player majority game on {i,j,k} C U,

where
1, if |[SN{s g,k > 2,
mesu(S) = 1SN {i,j, Kk}

0, otherwise

for all S € 2Y. Such w; and m, j; are decisive.

Next consider the game v = my 3 [u1, u2, m345] . By (1) and (2) in Remark 1,

o (v) (1) = /0 o (1= 2)* + 3(1 — 2)%2) + (1 — @) - (* + 322(1 — 2))] d€ (x).
(5)
On the other hand,

1
pmiag) (1) = [ 20(1-0)d (o). ©)

0
It follows from ComplInd, applied to the compound games v = my o3 [u1, ua, M3 45]

and mj 93 = My 23 [Uu1, U2, us), that the expressions in (5) and (6) are equal. Thus

/0 p()dé () =0, (7)

p(z) = [x ((1—2)*+31—2)2)+ (1 —2)- (:c?’ + 32%(1 — x))] —2z(1—2)
= —a(1—2)(2z — 1)

12



Notice that p(0) = p(3) = p(1) = 0, and that the polynomial p is negative on
[0,1]\ {0, 2,1}. Thus (7) implies that ¢ is supported on {0, %, 1}.

’ 9 )9

Finally, for each k > 2 consider the games 7, = u; V... Vuy, and U, = ug A ... A uy,

with carrier N, = {1,...,k}. By applying (1) and (2), and using the fact that & is

1

supported on {0, 5,1}, we obtain

P () =€)+ 5 5)

and

o (@) ) =€+ 56 (5
for every i € Nj. The conjunction of Pos and VanPow mandates that lim inf,_,., min;en, ¢ (T) (7)
= 0 and liminfy_ . miney, ¢ (a) (i) = 0, which is only possible if £ (0) = 0 and
¢ (1) = 0. We conclude that ¢ is, in fact, supported on %, which means that o = 5. R

Remark 3 (Logical independence of the axioms). No single axiom in the
statement of Theorem 1 may be omitted, as for any axiom there are power indices

other than 3 that satisfy the other five axioms. Indeed:

1. Let ¢ (v) (i) = 0 for every v € §G and i € U who is not a dummy player in v,
and ¢ (v) (¢) = v(i) for ¢ who is a dummy in v. The power index ¢ satisfies all

the axioms except Tran.

2. Fix iy € U, and let ¢ be given, for every v € SG, by ¢ (v) (i) = 5 (v) () if i # 4o,

and ¢ (v) (i9) = v(ip). The power index ¢ satisfies all the axioms except Sym.

3. Forevery v € SG and i € U, let ¢ (v) (i) = 23 (v) (i) — v(7). The power index ¢

satisfies all the axioms except Pos.
4. The null index, ¢ = 0, satisfies all the axioms except Dum.

5. The Shapley-Shubik power index, given by

ey @)= 3 B ZISI= Dl iy o))

n!
SCN\i

for every v € §G with a finite carrier N and i € N, and ¢ (v) (i) = 0 for every
i € U\ N, satisfies all the axioms except ComplInd.

13



6. Let ¢ (v) (i) = v(i) for every v € SG and i € U. The power index ¢ satisfies all
the axioms except VanPow. As VanPow only has "bite" because the universe
of players U is infinite, this example also shows that our axioms would not

uniquely characterize 3 for a finite U. [J

5 Axioms for Value Maps and the Banzhaf Value

In this section we will extend and modify our axioms in order to fit the setting of
value maps. Of the four semivalue axioms, Tran changes the most, returning to its
original form of the additivity axiom that has been immensely popular in cooperative
game theory since its introduction in Shapley (1953). (Tran, first suggested and used
in Dubey (1975), was a necessary adaptation of additivity in the context of simple

games, as their set is not closed under addition.)
Axiom I’: Additivity (Add) For any v,w € G, p (v +w) = ¢ (v) + ¢ (w).

The other three semivalue axioms undergo only two small changes: the domain
of games switches from SG to G, and the games in the premise of Pos’ are assumed
to be monotonic (that was not necessary for the domain SG of Pos because simple

games that we consider are monotonic by definition).

Axiom II’: Symmetry (Sym’). For any v € G, i € U, and 7 € II, ¢ (mv) (i) =

v (v) (7 (1))

Axiom III’: Positivity (Pos’). For any monotonicv € G and i € U, ¢ (v) (i) >

Axiom IV’: Dummy (Dum’). If v € G and ¢ is a dummy player in v, i.e.

v(SU) =v(S)+v(i) for every S C U \ i, then ¢ (v) (i) = v ().

Although the proof of our forthcoming characterization result for the Banzhaf
value does not require any change in Complnd, i.e., it would have sufficed to limit
attention to simple first- and second-tier games in compounding, we will introduce a
version of the axiom for general compound games in order to stress that the property

in Complnd is not specific to simple games, as far as the Banzhaf value is concerned.
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Following Owen (1964), we define a general compound game as follows. Consider
v,wy, ...,w, € G such that the set of representatives R = {1,...,k} is a carrier for
v, and wy, ..., wy have disjoint finite carrier-constituencies (1, ..., Ck. Let us moreover
assume that w;(S) € [0,1] for each j € R and S € 2V. The compounding of v with

Wiy ooy Wiy, U = V[wy, ..., wy| € G, is given by

u($) = ([Twi () I @ —w; ()| o(T)

TCR \jeT JER\T
for all S € 2V. Each game w; can be thought of as determining the probability that

a coalition S "controls" the representative j of the constituency C; in the first-tier

game v; u(S) is then the expected payoff to S in that probabilistic scenario.

Axiom V’: Composition Independence (ComplInd’). Let v|wy,...,wi] € G
be a compound game in which wy, ..., w; € G are non-negative and of constant sum 1,
with corresponding constituencies C1, ..., Cy. Given1 < j < k,let wy, ..., w)_y, W}y, ..., w €
G be another collection of non-negative games of constant sum 1, with corresponding

disjoint carriers Cy, ...,C}_,C% 4, ...,C, C U\ Cj. Then, for every i € Cj,

o (vl w, - we]) (1) = @ (o[, oy, w0y, eh]) (0,

Since the Banzhaf value § on G satisfies (3) for any v[wy,...wg] as above (see

Theorem 2 in Owen (1975)), it satisfies CompInd’. And, as a semivalue on G (see
Dubey et al. (1981)), [ satisfies Add, Sym’, Pos’ and Dum’.

The VanPow axiom could also have been left unchanged without affecting our
characterization result. Again, we present a generalized version in order to emphasize

that the Banzhaf value /3 satisfies such a generalization.

Axiom VI’: Vanishing Power (VanPow’). Let {v;}?°, C G be a sequence of
monotonic games with corresponding (nonempty) carriers { Ny }72,, and assume that

limy_, o | Vx| = 00 and that limsup,,_, ., vy (Vx) < oco. Then

R N
lim inf min e (v;) () <0

Remark 4 (The Banzhaf value satisfies VanPow’). Let A > 0 be such
that vy, (Ny) < A for all & > 1. For each 0 < ¢ < A and k > 1, denote by v} the
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simple game'® with carrier N}, that is given by v}(S) = 1 if v4(S) > ¢, and v}(S) =0
otherwise. Notice that )
u(S)= [ uS)dg 0
0
for all S € 2V. From the definition of 3 and (8) it follows that, for every k& > 1 and
i € Ng,

B (ug) (i) = / B (! (i) da,

and hence

- /oA (,Zkﬁ(l’g) (@) dg < %C]\[f% 1)’

where the last inequality is immediate from (4). Arguing as in Remark 2 from this

point on, we obtain the equality limy_., min;en, 8 (vg) (¢) = 0. O

The six modified axioms uniquely characterize the Banzhaf value, just as their

original versions did in the case of the Banzhaf power index:

Theorem 2. The Banzhaf value 3 is the only value map on G that satisfies Add,
Sym’, Pos’, Dum’, ComplInd’, and VanPow’.

Proof. It has already been established that § satisfies the above axioms, and it
only remains to be shown that any value map ¢ satisfying the axioms must coincide
with 5. Given any such ¢, its restriction ¢ |sg to the domain SG clearly satisfies the
axioms Tran,'” Sym, Pos, Dum, Complnd, and VanPow for power indices, and

thus
¢ lsg= B |sg 9)

by Theorem 1.

18Notice that v} may be the zero game, which is, in principle, excluded from the domain SG. For
technical reasons, we will admit the game v = 0 as part of SG in our forthcoming considerations,

keeping in mind that 5 (0) = 0.
19 Add implies Tran because v + w = v V w + v A w for any v,w € SG.
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Next fix a finite set ) # N C U, and, for any () # T' C N, denote by ur € SG the

unanimity game with carrier T, given by

1, ifTCS,

0, otherwise

ur (S) =

for all S € 2Y. Tt is well known that {ur}, srcn C SG forms a basis for the vector
space Gy of games with carrier N, and thus any v € Gy can be written as a unique
linear combination v = Z@ 27N ATUT of the members of this basis. It follows from

Add that
p)= Y ¢ larur). (10)

0£TCN
Add also implies that ¢ (aur) = ap (ur) for any rational a, and an application of
Pos’ (enabled by the fact that aur is monotonic for any positive a) establishes the

equality ¢ (aur) = ay (ur) for any real a. Using this and (9), equation (10) yields

pv) = Z ¢ (arur) = Z are (ur)

OATCN 0#TCN
= Z arB (ur) = Z B (arur) = B (v).
0£TCN 0#TCN

Our argument therefore shows that ¢ and S coincide on the space Gy for every

nonempty finite N C U. But, obviously, G = U Gn, and so ¢ and S coincide

0£NCU, |N|<oo
on the entire G. A

Remark 5. (Logical independence of the axioms in Theorem 2). None of
the axioms in the statement of the theorem can be omitted. Each power index listed
in Remark 3 can be extended to the domain G (by using v € G instead of v € §G in

its definition), yielding a value map different from S that simultaneously satisfies five

given axioms out of the six. [J

Remark 6. (Equal treatment instead of symmetry). The symmetry axiom
(Sym or Sym’) can be replaced by the weaker equal treatment (ET) requirement in
Theorems 1 and 2. The latter stipulates that if 7,5 € U are substitutes in a game
v (i.e., for every S C U\ {i,j}, v(SUiQ) = v(SU}J)), then ¢ (v) (i) = ¢ (v) (j).
The replacement by ET is possible due to the known results that the combination of

Tran, Dum, and ET implies Sym for power indices (see Proposition 3.5 in Albizuri
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and Ruiz (2001)), and the combination of Add, Dum’, and ET implies Sym’ for
value maps (see Theorem 4(b) in Malawski (2002)). O
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