
Nonlinear Pricing Schedule under Competition∗

Yong Chao† Guofu Tan‡ Adam Chi Leung Wong§

April 12, 2018

Abstract

Motivated by several recent antitrust cases, we study a strategic model of

competition in intermediate-goods markets. Our model is a three-stage game

with complete information in which a dominant firm offers a general tariff first

and then a rival firm responds with a per-unit price, followed by a buyer making

her decision to purchase from one or both firms. We characterize subgame

perfect equilibria of the game and study the implications of the equilibrium

outcome.

Our paper makes three main contributions. First, it provides a novel

explanation for the prevalence of nonlinear pricing (a menu of offers conditional

on volumes) under duopoly in the absence of private information: The dominant

firm can use a menu of offers to constrain its rival’s choices and extract surplus

from the buyer. Second, it shows that when the capacity of the rival firm is

constrained, as compared to linear pricing schemes, the nonlinear pricing tariff

adopted by the dominant firm reduces the price, sales, and profits of the rival
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firm as well as the buyer’s surplus. In other words, nonlinear pricing may

have antitrust implications in the sense that it can lead to partial foreclosure

and harm consumer welfare. Third, we establish an equivalence between a

subgame perfect equilibrium of the game and an optimal mechanism in a

“virtual” principal-agent model with hidden action and hidden information.

This involves treating the rival firm’s (an agent’s) price as its hidden action

meanwhile letting the buyer (another agent) to report the rival firm’s price as

her private information to the dominant firm (the principal). As a result of

such an equivalence, we can apply mechanism design techniques to solve for

subgame perfect equilibria of the game.

Keywords: Nonlinear Pricing Schedule, Asymmetric Competition, Capacity

Constraint, Complete Information, Subgame Perfect Equilibrium, Principal-agent

Model, and Partial Foreclosure.

JEL Code: L13, L42, K21
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1 Introduction

Nonlinear pricing is often observed in intermediate-goods markets. It takes the form

of various rebates and discounts conditional on volumes (or share of the volumes

among competitors) purchased by a buyer. An example is all-units discount pricing

scheme that lowers a buyer’s marginal price on every unit purchased when the buyer’s

purchase exceeds or is equal to a pre-specified volume threshold. The adoption of

such conditional rebates and discounts by dominant firms has become a prominent

antitrust issue. Indeed, in a number of recent antitrust cases in the U.S., E.U.,

Canada, and China, a plaintiff (a government antitrust agency or a rival firm) alleged

that a dominant firm used pricing schemes such as conditional rebates/discounts to

its downstream buyers to fully or partially exclude its rival firm(s) and that such

an exclusion had harmed competition and consumer welfare. Those antitrust cases

share some common features: First, there is a firm that is considered as “dominant”

in market share, capacity, product lines, profits, and so on. Second, there is one or

several smaller firms (or recent entrants) that have limited capacity, narrower product

lines, or limited distribution channels. Third, the “dominant” firm typically offers

more complex pricing schemes (e.g., rebates/discounts conditional on volumes) than

its rival(s). What explains the observed practices of various nonlinear pricing schemes

in intermediate-goods markets and what are the implications of those practices? The

main objective of this paper is to provide an explanation for nonlinear pricing in the

presence of asymmetric competition and in the absence of private information.

Motivated by recent antitrust cases, we study a stylized model of asymmetric

competition. In the model, there are two firms, a dominant firm (Firm 1) and a rival

firm (Firm 2). Both firms can produce a homogeneous product at constant marginal

cost. However, the rival firm is capacity constrained. There is a representative

downstream buyer who may purchase the product from one or both firms. We

consider a three-stage game with complete information in which the dominant firm

offers a general tariff first and then its rival firm responds with a per-unit price,

followed by the buyer making her decision to purchase from one or both firms. We

characterize subgame perfect equilibria of the game and study the implications of
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the equilibrium outcome.

Our model involves three kinds of asymmetries between the two firms. The first

is concerned with pricing schemes: The dominant firm is able to make nonlinear

tariff schedules, i.e., payments conditional on volumes, while the rival firm can only

choose linear pricing schemes. This assumption appears to be consistent with the

observations from the major antitrust cases, and is perhaps due to the fact that

the dominant firm is more experienced in dealing with downstream buyers than new

entrants to the market. The second asymmetry concerns the timing of the game:

The dominant firm commits to offering tariffs before its rival. This might be related

to the dominant firm’s bargaining power and its willingness to commit its offers when

dealing with the buyer. Another asymmetry is about capacity levels of the firms.

That is, relative to the demand size the dominant firm has no capacity limit while its

rival is capacity-constrained. Our analysis suggests that the asymmetry in capacity

is not crucial for the equilibrium adoption of nonlinear pricing by the dominant firm,

but is important for the results of partial foreclosure and harming the buyer welfare.

Our paper makes several major contributions. First, it provides a novel explanation

for the prevalence of nonlinear pricing (a menu of offers conditional on volumes) under

duopoly in the absence of private information: The dominant firm can use a menu

of offers to constrain its rival’s choices and extract surplus from the buyer. Second,

it shows that when the capacity of the rival firm is relatively small, as compared

to linear pricing schemes, the nonlinear pricing tariff adopted by the dominant firm

reduces the price, sales, and profits of the rival firm as well as the buyer’s surplus.

In other words, nonlinear pricing in this context can lead to partial foreclosure

and harm consumer welfare, which may have antitrust implications. Third, we

establish an equivalence between a subgame perfect equilibrium of the game and

an optimal mechanism in a “virtual” principal-agent model with hidden action and

hidden information. This involves treating the rival firm’s (an agent’s) price as its

hidden action meanwhile letting the buyer (another agent) to report the rival firm’s

price as her private information to the dominant firm (the principal). As a result

of such an equivalence, we can apply mechanism design techniques to characterize

subgame perfect equilibria of the game. Other properties of the equilibrium tariffs
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are also discussed in the paper.

[Relevant literature to be discussed.]

The remainder of the paper is organized as follows. In Section 2, we set up our

model of asymmetric competition in intermediate-goods markets. Section 3 examines

the buyer’s problem in the last stage and points out a difficulty in applying standard

backward induction procedure. Using simple price-quantity bundles, Section 4 demonstrates

how an extra bundle could improve firm 1’s profit, albeit it will not be chosen

in equilibrium. Section 5 establishes an equivalence between a subgame perfect

equilibrium of the game and an optimal mechanism in a “virtual” principal-agent

model with hidden action and hidden information. Section 6 characterizes the

equilibrium outcome of the game. Other properties and implications of the equilibrium

are discussed in Section 7. Section 8 contains concluding remarks.

2 Model

There are three players in our model: two firms, producing a homogeneous product,

and one buyer for the product. To capture a notion of dominance, we allow for

a possible capacity asymmetry between the two firms. In particular, firm 1, as a

dominant firm, can produce any quantity at a unit cost c ≥ 0. Firm 2, as a possibly

smaller firm, has a capacity k ∈ (0,∞], up to which it can produce any quantity

at the same unit cost c. If the buyer chooses to buy Q ≥ 0 units from firm 1 and

q ∈ [0, k] units from firm 2, his payoff is the gross utility given by u(Q+ q), less the

payments to the two firms.

We consider a three-stage game as follows. First, firm 1 offers a nonlinear tariff

τ(·), which specifies the payment τ(Q) ∈ R∪ {∞} that the buyer has to make if she

chooses to buy Q units from firm 1, with the restriction that τ(0) ≤ 0.1 Second, after

observing τ(·), firm 2 offers a unit price p (up to k units). Third, after observing τ(·)
and p, the buyer chooses the quantities she buys from the two firms. As a necessary

tie-breaking rule, when indifferent, the buyer purchases from firm 2. This is an

1τ(Q) =∞ means that purchasing Q units is not allowed.
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extensive-form game with complete and perfect information. We use the equilibrium

concept of pure strategy subgame-perfect equilibrium (SPE).

We say a nonlinear tariff is regular if the subgame after firm 1 offers such a

tariff has some SPE. We do not allow firm 1 to offer irregular tariffs.2 That is,

the set of feasible tariffs firm 1 can choose from, denoted as T , is the collection of

τ : R+ → R∪{∞} that is regular and satisfies τ(0) ≤ 0. Also, we do not allow firm 2

to offer prices below c, in which case it makes non-positive profit for sure. Therefore,

the set of feasible unit prices firm 2 can choose from is

P ≡ [c,∞).

A SPE is composed of a firm 1’s strategy τ ∗ ∈ T , a firm 2’s strategy p∗ : T → P ,

and a buyer’s strategy q∗ : T × P → R+ × [0, k], such that

q∗(τ, p) ∈ argmax
(Q,q)∈R+×[0,k]

{u(Q+ q)− pq − τ(Q)} ∀(τ, p) ∈ T × P , (1)

p∗(τ) ∈ argmax
p∈P

{(p− c)q∗2(τ, p)} ∀τ ∈ T , (2)

τ ∗ ∈ argmax
τ∈T

{τ(q∗1(τ, p∗(τ)))− cq∗1(τ, p∗(τ))} . (3)

We make the following two regularity assumptions.

Assumption 1. u : R+ → R is twice continuously differentiable, satisfies u(0) = 0,

u′′(·) < 0, u′(0) > c, and there exists a unique qe > 0 such that u′(qe) = c.

Denote the quantity demanded by the buyer at a per-unit price p as

D(p) ≡ argmax
q≥0

{u(q)− pq} ,

and the monopoly profit under linear pricing p as

π(p) ≡ (p− c)D(p).

2By definition, if we allow firm 1 to choose an irregular tariff, the whole game has no SPE.
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Assumption 1 implies that D(·) and π(·) are continuously differentiable and D(·) is

strictly decreasing on [c, u′(0)].

Assumption 2. The monopoly profit function π(·) is strictly concave on [c, u′(0)].

Assumption 2 implies that there is a unique optimal monopoly price pm ≡
argmaxp π(p) ∈ (c, u′(0)) given by π′(pm) = 0.

3 Buyer’s Problem

Since our game is a sequential-move complete information one and we try to determine

its SPE outcome, standard backward induction method requires us to investigate

the buyer’s problem in the last stage first. However, as we shall see in this section,

we immediately encounter a difficulty in characterizing the buyer’s optimal purchase

response in the last stage. As a result, the standard procedure of backward induction

cannot be applied to our game.

In the last stage, given the two firms’ offers τ ∈ T and p ∈ P , the buyer’s

optimal purchase is given by (1). However, (1) may not be a well behaved problem

since firm 1’s offer τ is an endogenous function, on which we have imposed only

minimal restrictions. So solving the SPE outcome of our game seems unmanageable:

without knowing what τ is, it is impossible to solve (1); nevertheless, without knowing

the buyer’s optimal purchase in the last stage, it is impossible for firms 2 and 1 to

pin down their optimal pricing p2 in (2) and τ in (3), respectively. Therefore, the

standard backward induction loses its bite in our game, and we need a transformation

of the whole game in order to solve its SPE.

As a first step of the transformation, we introduce a buyer’s conditional payoff if

she is endowed with Q units and can buy at most k more units at price p as

V (Q, p) ≡ max
q∈[0,k]

{u(Q+ q)− pq} . (4)

Accordingly, given the two firms’ offers τ ∈ T and p ∈ P , we can decompose the

buyer’s maximization problem (1) into two sub-problems:
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• in the first sub-problem, for any given Q, the buyer chooses q from firm 2 by

solving (4);

• in the second sub-problem, the buyer chooses Q from firm 1, i.e.,

max
Q≥0
{V (Q, p)− τ(Q)} . (5)

Even though we still cannot solve (5) without knowing τ , the buyer’s conditional

payoff V (Q, p) in (4) has some nice properties which turn out to be important for us

to transform the SPE and solve for the optimal general tariff τ .

Note that problem (4) has a unique maximizer3

Proj[0,k](D(p)−Q) ≡ max {min {D(p)−Q, k} , 0} . (6)

By the Envelope Theorem, we have the following lemma.

Lemma 1. For every (Q, p) ∈ R+ × P,

Vp(Q, p) = −Proj[0,k](D(p)−Q), (7)

VQ(Q, p) = u′(Proj[Q,Q+k](D(p))) = Proj[u′(Q+k),u′(Q)](p). (8)

For every (Q, p) ∈ R+ × P such that Q 6= D(p) and Q 6= D(p)− k,

VQp(Q, p) = VpQ(Q, p) =

1 if D(p)− k < Q < D(p)

0 if Q < D(p)− k or Q > D(p)
. (9)

Note that, from (9), V satisfies weak increasing differences. On the region

Φ ≡ {(Q, p) ∈ R+ × P : D(p)− k ≤ Q ≤ D(p)}, (10)

the property of increasing differences is strict, which turns out to be important for

our analysis.

3For any closed interval X ⊂ R and any point x ∈ R, let ProjX(x) denote the projection of x
on X, that is, argminy∈X |y − x|.
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4 Why an Unchosen Bundle Helps

Before we characterize the optimal general tariff τ(·) for firm 1, let us first look at

some specific nonlinear tariffs: price-quantity point offers, and gain some insights

on why an unchosen bundle could help improve firm 1’s profits. In this section, we

assume that firm 2 does not have capacity constraint, i.e., k ≥ qe for expositional

simplicity.

Our starting point will be the simplest one, a single bundle offer (Q, T ), which

people might think as optimal for firm 1. After all, there is only one buyer and there

is no demand uncertainty, so there can be only one quantity that the buyer will

purchase from firm 1 in equilibrium, regardless how many quantities offered by firm

1. Nevertheless, as we shall see, firm 1 can strictly improve its profit over its optimal

profit level in the “one-bundle equilibrium,” by offering an extra bundle which will

not be chosen in equilibrium!

4.1 Optimal One-Bundle Offer

In this section, we show how the optimal one-bundle offer is determined. Let Q∗

and T ∗ denote the optimal bundle quantity and bundle price offered by firm 1,

respectively, in “one-bundle equilibrium.”

First, given firm 1’s one bundle (Q∗, T ∗), the buyer may accept or reject it. By

accepting (Q∗, T ∗), the buyer’s surplus is V (Q∗, p)−T ∗; otherwise it is V (0, p). From

Lemma 1, we have VQp(Q, p) > 0 for 0 ≤ Q < D(p). It implies the two surplus curves

must cross once and only once at x∗ as shown in Figure 1a, i.e.,

V (0, x∗) = V (Q∗, x∗)− T ∗. (11)

It follows that the buyer will accept (Q∗, T ∗) from firm 1 and thus buy D(p) − Q∗

from firm 2 if and only if p > x∗; otherwise buy D(p) solely from firm 2.

Accordingly, firm 2’s profit function, as shown in Figure 1b, will consist of two
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pieces as

Π2(p) =

(p− c)D(p) if p ≤ x∗

(p− c)(D(p)−Q∗) if p > x∗
.

Since firm 1 has positive sales if and only if it can induce firm 2 to set p > x∗, firm

1 must ensure

max
p>x∗
{(p− c)(D(p)−Q∗)} ≥ max

p≤x∗
(p− c)D(p). (12)

The optimal (Q∗, T ∗) in “one-bundle equilibrium” must solve the following firm

1’s optimization problem

max
(Q,T )
{T − c·Q s.t.(11) and (12)} . (13)

Note that

Π∗1 = T ∗ − c·Q∗

= V (Q∗, x∗)− V (0, x∗)− c·Q∗. (by (11))

To maximize V (Q∗, x∗) − V (0, x∗) and hence its profit, firm 1 would like x∗ to be

as large as possible, because VQp(Q, p) > 0 for 0 ≤ Q < D(p) from Lemma 1.

However, firm 1 faces competitive constraint (12) from firm 2, whose right-hand side

(monopoly profit) increases faster than the left-hand side (residual demand profit)

as x∗ increases. Consequently, at the optimal one bundle (Q∗, T ∗), (12) must be

binding, i.e., Π2(p∗) = (x∗ − c)D(x∗), where p∗ ∈ argmaxp>x∗(p − c)(D(p) − Q∗) is

firm 2’s equilibrium price. Figure 1b illustrates it.
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(a) Buyer’s Surplus under One Bundle

(b) Firm 2’s Profit under One Bundle

Figure 1: One Bundle
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4.2 Adding an Unchosen Bundle to Improve

We now, given the optimal one-bundle offer (Q∗, T ∗), construct one extra bundle to

relax the originally binding competitive constraints from firm 2. As a result, firm 1

can strictly improve its profit over Π∗1 with the unchosen bundle.

We demonstrate the profitable improvement through the following two steps.

Step 1: Given (Q∗, T ∗) , add an extra unchosen bundle (Q1, T1(ε)) to relax

originally binding competitive constraints.

Pick any Q1 ∈ (0, Q∗), and let T1(ε) = V (Q1, x
∗) − V (0, x∗) − ε (ε > 0). Recall

from Lemma 1 that VQp(Q, p) > 0 for 0 ≤ Q < D(p). It follows that V (Q1, p)−T1(ε)

(the solid red curve in Figure 2a) must uniquely crosses V (0, p) and V (Q∗, p) − T ∗

at x0(ε) and x1(ε), respectively. Here x0(ε) and x1(ε) are given by

V (Q1, x0(ε))− T1(ε) = V (0, x0(ε)) (14)

V (Q1, x1(ε))− T1(ε) = V (Q∗, x1(ε))− T ∗. (15)

Note that (11) implies x0(0) = x1(0) = x∗, as indicated by the dashed red curve

in Figure 2a. For small ε > 0, we have 0 < x0(ε) < x∗ < x1(ε) < p∗ so that, if

firm 1 offers two bundles characterized by (Q1, T1(ε)) and (Q∗, T ∗), the buyer would

pick the large bundle (Q∗, T ∗) when firm 2’s price is above x1(ε), and would pick the

small bundle (Q1, T1(ε)) when firm 2’s price is between x0(ε) and x1(ε), and would

not pick any bundle from firm 1 when firm 2’s price is below x0(ε).

Accordingly, firm 2’s profit function, as shown in Figure 2b, will consist of three

pieces as

Π2(p) =


(p− c)D(p) if p ≤ x0(ε)

(p− c)(D(p)−Q1) if x0(ε) < p ≤ x1(ε)

(p− c)(D(p)−Q∗) if p > x1(ε)

.

Again, to ensure the buyer still choose the large bundle (Q∗, T ∗), firm 1 must ensure

max
p>x1(ε)

(p− c)(D(p)−Q∗) ≥ max
p≤x0(ε)

(p− c)D(p) (16)
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and

max
p>x1(ε)

(p− c)(D(p)−Q∗) ≥ max
x(ε)<p≤x1(ε)

(p− c)(D(p)−Q1). (17)

Thus, by offering an extra bundle, firm 1 breaks firm 2’s profit function from two

pieces to three pieces, and hence replace constraints (11) and (12) with (14), (15),

(16), and (17).4 With the two bundles, firm 1’s optimization problem now becomes

max
(Q∗,T ∗),(Q1,T1)

{T ∗ − c·Q∗ s.t.(14), (15), (16), and (17)} , (18)

Interestingly, firm 1 relaxes originally binding competitive constraint (12), by

adding one extra unchosen bundle. This can be seen from Figure 2b. When ε > 0 is

small, 0 < x0(ε) < x∗ < x1(ε) < p∗. Π2(p∗) = π(x∗) > π(x0(ε)) follows from binding

(12) and x0(ε) < x∗. So (16) is not binding. In addition, because (p−c)(D(p)−Q1) <

π(p) for any p, we have (x∗ − c)(D(x∗) − Q1) < π(x∗). Note that for ε > 0 small

enough, we must have x1(ε) is close enough to x∗, so that (x1(ε)−c)(D(x1(ε))−Q1) <

π(x∗). It follows that Π2(p∗) = π(x∗) > (x1(ε) − c)(D(x1(ε)) − Q1). So (17) is not

binding, neither.

Step 2: Improve profit by increasing T ∗ to T ∗(ε) = T ∗ + ε.

From Step 1, the newly added unchosen bundle (Q1, T1(ε)) can make constraints

(16) and (17) non-binding. As long as these constraints are non-binding, firm 1

will be able to strictly increase its profit by increasing T ∗ to T ∗(ε) = T ∗ + ε with

(Q∗, T ∗(ε)) being chosen.

4Note when ε = 0, x0(0) = x1(0) = x∗, (14) and (15) are reduced to (11), (16) and (17) are
reduced to (12).
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(a) Buyer’s Surplus under Two Bundles

(b) Firm 2’s Profit under Two Bundles

Figure 2: Two Bundles
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4.3 Summary

From the above one-bundle and two-bundle cases, we can see that, by adding extra

bundles, firm 1 provides the buyer extra options. Such extra unchosen options, as

a latent strategy, reduce the profitability for firm 2 to deviate from the equilibrium.

This can be seen from Figures 1b and 2b. Previously, if firm 2 cuts to the original

threat price x∗, the buyer buys nothing from firm 1. However, with the extra bundle,

if firm 2 cuts to the original threat price x∗, the buyer still buys something, rather

than nothing, from firm 1. So now the increases in firm 2’s sales and profits will be

limited. If firm 2 wants to induce single-sourcing with the extra bundle, a deeper

price cut is needed so that the increase in firm 2’s profit is limited too.

In this simple price-quantity point offers example, we have seen having two-bundle

offers can improve firm 1’s profit over the optimal one-bundle offer. As we add more

extra bundles, firm 1’s profit can be increased even further. Indeed, we shall see in

the following sections that firm 1’s profit maximizing tariff involves a continuum of

quantities for the buyer to choose from, although firm 1 understands that all but one

would never be chosen by the buyer in equilibrium.

5 Equivalence between SPE and a Mechanism Design

Problem

As we argued in Section 3, the standard backward induction cannot be applied to

solve the SPE. Therefore, we shall transform our original problem as follows.

Let π(Q, ·) denote firm 2’s profit function conditional on the buyer’s purchase

from firm 1 being Q, i.e.,

π(Q, p) ≡ (p− c) Proj[0,k](D(p)−Q). (19)

Now we are ready to formulate a mechanism design problem that allows us to

determine SPE outcomes. Observe that, every tariff τ ∈ T firm 1 might offer induces

a continuation subgame in which firm 2 and the buyer sequentially choose their
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actions. When choosing τ , firm 1 understands that firm 2 and the buyer would play

a SPE of the continuation subgame. Given τ , the buyer would optimally choose

some purchase Q(p) ≥ 0 from firm 1, contingent on any possible price p ∈ P chosen

by firm 2. The payment for this purchase is thus τ(Q(p)) ≡ T (p). Given that the

buyer’s optimal purchase from firm 1 is Q(p), and hence the optimal purchase from

firm 2 is Proj[0,k](D(p)−Q(p)), firm 2 would optimally choose some price p̄ ∈ P .

Virtually, we have a one-principal-two-agent model, in which firm 1 (the principal)

offers a direct revelation mechanism Q : P → R+ and T : P → R to the buyer (Agent

1), and recommends a price p̄ ∈ P for firm 2 (Agent 2). In the spirit of Revelation

Principle (imagining firm 1 asks the buyer to report firm 2’s price), solving SPE

for the whole game is equivalent to solving the following constrained optimization

problem (OP1):

Maximize
Q(·),T (·),p̄

T (p̄)− c ·Q(p̄) (OP1)

subject to

V (Q(p), p)− T (p) ≥ V (Q(p̃), p)− T (p̃) ∀p, p̃ ∈ P (B-IC)

V (Q(p), p)− T (p) ≥ V (0, p) ∀p ∈ P (B-IR)

π(Q(p̄), p̄) ≥ π(Q(p), p) ∀p ∈ P . (F2-IC)

Constraint (B-IC) is the incentive compatibility constraint for the buyer, i.e.,

the buyer has incentive to report firm 2’s price truthfully. Constraint (B-IR) is the

individual rationality constraint for the buyer, i.e., the buyer is willing to participate

in the mechanism rather than obtaining nothing from and paying nothing to firm 1

(and single-sourcing from firm 2). Constraint (F2-IC) is the incentive compatibility

constraint for firm 2, i.e., firm 2 has incentive to charge the recommended price

p̄, understanding that the buyer will always report its price truthfully. Finally, the

objective function of (OP1) is firm 1’s profit provided firm 2 follows the recommendation

p̄ and the buyer reports truthfully.

The equivalence between SPE and the optimization problem (OP1) is formalized

in the following theorem.
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Theorem 1. (Equivalence) Take any Q∗ : P → R+, T ∗ : P → R, and p̄∗ ∈ P.

(Q∗(·), T ∗(·), p̄∗) is a solution of (OP1) if and only if there is a SPE (τ ∗, p∗, q∗) such

that

Q∗(p) = q∗1(τ ∗, p) ∀p ∈ P , (20)

Proj[0,k](D(p)−Q∗(p)) = q∗2(τ ∗, p) ∀p ∈ P , (21)

T ∗(p) = τ ∗(Q∗(p)) ∀p ∈ P , (22)

p̄∗ = p∗(τ ∗). (23)

By virtue of Theorem 1, we reduce our task of finding SPE to determining the

solution to (OP1’). From now on we also call any solution of (OP1) an equilibrium.

6 Equilibrium Characterization

Following Theorem 1, in this section we solve the optimization problem (OP1).

6.1 Constraints for Buyer

The following lemma characterizes the incentive constraint (B-IC) and individual

rationality constraint (B-IR) for the buyer.

Lemma 2. (Constraints for Buyer) Any Q : P → R+ and T : P → R satisfy

(B-IC) and (B-IR) if and only if the following conditions hold:

∀p1, p2 ∈ P with p1 ≤ p2,either Q(p1) ≤ Q(p2)

or D(p1) ≤ Q(p2) or Q(p1) ≤ D(p2)− k
(24)

∀p ∈ P , T (p)− T (c) = V (Q(p), p)− V (Q(c), c)−
∫ p

c

Vp(Q(t), t)dt (25)

V (Q(c), c)− T (c) ≥ V (0, c) (26)
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Condition (24) is a weakened version of the standard monotonicity condition

for mechanism design problems; it is weakened because the increasing differences

property (9) of V is strict only on Φ. If Q(·) is non-decreasing, condition (24)

automatically holds. The converse holds only partially: if condition (24) holds, Q(·)
is non-decreasing for all p ∈ P with (Q(p), p) ∈ Φ, but may be decreasing when

(Q(p), p) /∈ Φ. Condition (24) says that Q(·) may be decreasing only in a particular

way: whenever p1 < p2 and Q(p1) > Q(p2), the rectangle [Q(p2), Q(p1)] × [p1, p2]

must not intersect the region Φ. Such weakened monotonicity implies the following

result.

Corollary 1. (24) implies Proj[0,k](D(p)−Q(p)) is non-increasing in p on P.

Condition (25) is the envelope formula for payment in standard mechanism design

problems. Condition (24) and condition (25) together are necessary and sufficient

conditions for (B-IC). Condition (26) is a necessary and sufficient condition for

(B-IR), since V (Q(p), p)− T (p)− V (0, p) is non-decreasing in p, which is a result of

(25).

Once the constraints (B-IC) and (B-IR) are replaced with (24), (25), and (26), we

see that (26) must be binding, for otherwise firm 1 can increase its profit T (p̄)−c·Q(p̄)

by increasing T (p) for every p ∈ P by a constant, after which all other constraints

((24), (25), and (F2-IC)) are intact. Therefore,

T (c) = V (Q(c), c)− V (0, c). (27)

6.2 Constraints for Firm 2

We now take a closer look at the incentive constraint (F2-IC) for firm 2. Given

that firm 1 offers the buyer Q(·) and recommends firm 2 to charge p̄, firm 2’s profit,

provided the recommendation is followed, is

Π2 = π(Q(p̄), p̄) = (p̄− c) Proj[0,k](D(p̄)−Q(p̄)). (28)
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The incentive constraint (F2-IC) requires that firm 2’s profit π(Q(p), p) after deviating

to any other p ∈ P cannot be higher than Π2. Graphically, it means that the graph

of Q(·) must not intersect the region {(Q, p) ∈ R+ × P : π(Q, p) > Π2}.
Note that the largest feasible firm 2’s profit is π(max{pm, u′(k)}). Figure 3

shows firm 2’s iso-profit curves, i.e., the level curves of π(Q, p), for various level

of Π2 ∈ (0, π(max{pm, u′(k)})). The shape of those iso-profit curves are guaranteed

by Assumption 2, which implies that π(Q, ·) is concave on {p : π(Q, p) > 0} for every

Q ≥ 0. If firm 2 does not have capacity constraint (i.e., k ≥ qe), its iso-profit curves

are the same as the level curves of π(p)−(p−c)Q, whose slopes are (p−c)/(π′(p)−Q),

as shown in Figure 3a. When firm 2 has capacity constraint (i.e., k < qe), the

iso-profit curves are horizontal when Q < D(p)− k, and coincide the level curves of

π(p)− (p− c)Q otherwise, as shown in Figure 3b.

To sum up, constraint (F2-IC) simply says that the graph of Q(·) must not cut

into the left side of the iso-profit curve that passes through (Q(p̄), p̄).

(a) when k ≥ qe (b) when k < qe

Figure 3: Firm 2’s Iso-profit Curves
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6.3 Equilibrium

Using (25) and (27) to eliminate T (p̄), firm 1’s profit can be written as

Π1 = T (p̄)− c ·Q(p̄)

= V (Q(p̄), p̄)− V (0, c)−
∫ p̄

c

Vp(Q(p), p)dp− c ·Q(p̄) (29)

With the introduction of Π2 from (28), (OP1) can now be rewritten as

Maximize
Q(·),p̄,Π2

(29) (OP1’)

subject to

(24)

Π2 ≥ π(Q(p), p) ∀p ∈ P (F2-IC)

Π2 = π(Q(p̄), p̄). (F2-Pro)

Our strategy of solving (OP1’) is as follows. We decompose (OP1’) into two

stages: in the first stage, for any given Π2, Q(·) and p̄ are chosen contingent on Π2;

in the second stage, optimal Π2 is chosen. Lemma 3 below solves the first stage for

any feasible Π2 > 0, and Lemma 4 solves the second stage to pin down Π2.

To graphically show firm 1’s profit, we use (7) and (8) to rewrite (29):

Π1 =

∫ p̄

c

[Vp(Q(p̄), p)− Vp(Q(p), p)] dp+

∫ Q(p̄)

0

[VQ(Q, c)− c]dQ

=

∫ p̄

c

[Proj[0,k](D(p)−Q(p))− Proj[0,k](D(p)−Q(p̄))]dp+

∫ Q(p̄)

0

[Proj[u′(Q+k),u′(Q)](c)− c]dQ

=

∫ p̄

c

[Proj[D(p)−k,D(p)](Q(p̄))− Proj[D(p)−k,D(p)](Q(p))]dp+

∫ Q(p̄)

0

[Proj[u′(Q+k),u′(Q)](c)− c]dQ

(30)
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(a) when k ≥ qe (b) when k < qe

Figure 4: Firm 1’s profit Π1 contingent on Q(·) and p̄

Figure 4 shows the area of Π1 given by (30) for a given Q(·) and p̄: Area A and

Area B correspond to the first and the second integral in (30) respectively. It is worth

noting that Figure 4 demonstrates that what really matters for Π1 is the part of Q(·)
in region Φ. Hence, we denote the intersection point of Q(p) and max{D(p)− k, 0}
as (Q0, x0), i.e.,

max{D(x0)− k, 0} = Q(x0) (31)

Q0 = max{D(x0)− k, 0}. (32)

It can be seen from Figures 3 and 4 that, given a Π2 and hence a firm 2’s iso-profit

curve, in order to maximize (29) subject to (24) and (F2-IC), (i) the function Q(·)
must lie on the iso-profit curve in region Φ, and (ii) the point (Q(p̄), p̄) must be

chosen to be the most rightward point on the firm 2’s iso-profit curve. Lemma

3 below formalizes these claims. Figures 5a and 5b graphically show the partial

solutions contingent on Π2 for two examples when firm 2’s capacity is large and

small, respectively.
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(a) when k is large (b) when k is small

Figure 5: Optimal Q(·) contingent on Π2

Lemma 3. Contingent on any Π2 ∈ (0, π(max{pm, u′(k)})), there exist solutions

(Q(·), p̄) of (OP1’). Any such contingent solution satisfies

Q(p) = D(p)− Π2

p− c
∀p ∈ [x0, p̄], (33)

and p̄ is the unique solution of

max{D(p̄)− k, π′(p̄)} = D(p̄)− Π2

p̄− c
, (34)

where x0 and Q0 are given by (31) and (32), respectively.

To solve (OP1’), it remains to pin down Π2, which should be chosen to make the

Π1 area in Figure 5 as large as possible. It turns out the corresponding first-order

condition can be simplified as (35) below. Once a solution (Q(·), p̄,Π2) of (OP1’) is

obtained, we can use the equivalence between (OP1) and (OP1’) to obtain a solution

(Q(·), T (·), p̄) of (OP1).

Lemma 4. (OP1’) has at least one solution. For any such solution (Q(·), p̄,Π2),

(p̄, x0) are determined by

p̄− c = e · (x0 − c) > 0, (35)

(p̄− c)(D(p̄)− π′(p̄)) = (x0 − c) min {D(x0), k} , (36)
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and

Π2 = (p̄− c)(D(p̄)− π′(p̄)), (37)

Q̄ = π′(p̄), (38)

Q0 is given by (32).

A solution of Q(·) is given by

Q(p) =


D(p)− Π2

p−c if p ∈ [x0, p̄]

Q0 if c ≤ p < x0

Q̄ if p̄ < p ≤ u′(0)

, (39)

and the T (·) satisfies

T (p) = u(Q0 + k)− u(k) +

∫ p

x0

tdQ(t) ∀p ∈ [x0, p̄]. (40)

Finally, we can use the equivalence between solving SPE of the original game and

solving (OP1) or (OP1’) established in Theorem 1 to characterize the equilibrium

outcome of the original game. Figure 6 illustrates the features of an equilibrium

tariff offered by firm 1.

Theorem 2. (SPE Outcome) There exists at least one SPE. In any SPE, (Π2, p̄, x0, Q̄, Q0)

solves (32), (35)˜(38). Firm 2 chooses p = p̄, and the buyer purchases Q̄ units and

D(p̄) − Q̄ < k units from firm 1 and firm 2 respectively. An equilibrium tariff τ(·)
offered by firm 1 can be constructed as

τ(Q) =


u(Q0 + k)− u(k) +

∫ Q
Q0
x(Q̃)dQ̃ if Q ∈ [Q0, Q̄]

0 if Q = 0

∞ otherwise

, (41)

where x(·) on [Q0, Q̄] is the inverse of Q(·) on [x0, p̄] given by (33).

Strictly speaking, equilibrium is never unique because Q(p), T (p) for p /∈ [x0, p̄]

and hence τ(Q) for Q /∈ [Q0, Q̄] are not unique. As demonstrated in Figure 4,
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only the part of Q(p) for p ∈ [x0, p̄] matters. In Theorem 2, equilibrium τ(Q) for

Q /∈ [Q0, Q̄] ∪ {0} do not affect the allocation, as long as they are sufficiently large.

We say the equilibrium is essentially unique if the equilibrium objects Π1,Π2, p̄, x0, Q̄, Q0

and hence Q(p) for p ∈ [x0, p̄] are unique. The following proposition provides a simple

sufficient condition for the uniqueness.

Proposition 1. (Uniqueness) The equilibrium is essentially unique if one of the

following two equivalent conditions is satisfied:

u′(q)− c is strictly log-concave in q on [0, qe]; (42)

− (p− c)D′(p) is strictly increasing in p on P. (43)

Note that −(p − c)D′(p) = D(p) − π′(p). Thus, a graphical interpretation of

condition (42) is that, for any k, the curve π′(p) = Q (or D(p) + (p− c)D′(p) = Q)

and the curve D(p)− k = Q cross at most once, as shown in Figure 3.

7 Implications of the equilibrium

7.1 Other properties of the equilibrium

Corollary 2. (Increasing and Convex Tariff) In any equilibrium, firm 1’s tariff

τ is strictly increasing and strictly convex on [Q0, Q̄].

A typical equilibrium tariff is shown in Figure 6. This is a stark contrast to a

typical nonlinear tariff in Maskin and Riley (1984): in Maskin and Riley (1984), under

some regularity conditions, a monopolist’s optimal nonlinear tariff often involves

quantity discount; nevertheless, under competition, we find that the dominant firm’s

optimal nonlinear tariff’s marginal price in the effective supplying range [Q0, Q̄] is

always increasing, although it is still possible that the average price is decreasing in

that range.
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Figure 6: Equilibrium nonlinear pricing

Interestingly, as stated in the following corollary, what firm 2 and the buyer jointly

earn in equilibrium is equal to their joint outside option under the counterfactual

situation that firm 2’s unit cost was raised to x0, as stated in Corollary 3 below.

Corollary 3. In any equilibrium,

Π2 +BS =

∫ ∞
x0

min{D(p), k}dp (44)

= u(min{D(x0), k})− x0 ·min{D(x0), k}

= u(D(x0)−Q0)− x0 · (D(x0)−Q0).

By Lemma 3, constraint for firm 2 (33) is binding for any p ∈ [x0, p̄], so firm 2 is

indifferent between any prices in this range. However, in the proof of Lemma 2, we

know that V (Q(p), p)−T (p)−V (0, p) being non-decreasing in p. Hence, the buyer’s

most preferred deviation will be the one when firm 2 sets x0 and the buyer buys Q0

from firm 1.

The impact of firm 2’s capacity k on equilibrium is not monotone in general, as

shown in Corollary 4 below.

Corollary 4. (Comparative Statics on k) There is a unique k̂ ∈ (D(pm), qe) such

that Q0 = 0 in equilibrium if and only if k ≥ k̂. The set of equilibria is independent
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of k on [k̂,∞].

The comparative statics for k are as follows.

(a) The equilibrium objects Π2, p̄, x0, p̄ − x0 (and also D(p̄) − Q̄ if we assume

condition (42), or the equivalent one (43)) are increasing in k on (0, k̂].

(b) The equilibrium objects Π1, Q̄, Q0, TS are decreasing in k on (0, k̂].

(c) The equilibrium objects Π2 +BS and BS are increasing in k when k is small,

and are decreasing in k when k is close to but below k̂.

First, there exists a unique cutoff k̂ above which the minimum quantity requirement

from firm 1 shrinks to zero, and the equilibrium outcomes become independent of

k. For k ≥ k̂, firm 2’s competitive threat is so large that any further increase in its

capacity will no longer affect equilibrium. This is because when Q0 = 0, the buyer’s

best deviation is to buy nothing from firm 1 and single-source from firm 2. Due to

its linear pricing, firm 2 would not want to sell to the single-sourcing buyer at its

full capacity k when k is sufficiently large. Thus, the impact of k on equilibrium

outcomes is limited to 0 ≤ k ≤ k̂.

For k ≤ k̂, an increase in firm 2’s capacity benefits firm 2, and harms firm 1. This

is not surprising because firm 2’s capacity represents its competitive threat on firm

1. Social welfare decreases in k, because as firm 2’s capacity increases, firm 1 has

more to worry about the competitive constraint from its rival. Accordingly, it will

have stronger incentives to use its nonlinear pricing schedule, as a latent strategy,

to mitigate the competition with firm 2. Interestingly, as the potential competition

becomes more intensive, both what firm 2 and the buyer as a joint earn and the buyer

benefit from the increase in k when k is small, whereas get harmed from it when k

is close to but below k̂. This implies, even though firm 2 always has an incentive to

increase its capacity as long as k ≤ k̂, firm 1 will not want this to happen, and the

buyer will be on the same stance with firm 1 when k is close to but below k̂.

7.2 Comparing with linear pricing

Consider a game that is similar to the one we presented in Section 2, except that

firm 1 can only offer a unit price (linear pricing, or LP for short). First, firm 1
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offers a unit price p1 ∈ R+. Second, after observing p1, firm 2 offers a unit price

p2 ∈ R+. Third, after observing p1 and p2, the buyer chooses the quantities q1 ∈ R+

and q2 ∈ [0, k] he buys from firm 1 and from firm 2. Call it the LP vs LP game, and

the game presented in Section 2 the NLP vs LP game. We use superscript “LP” to

denote various variables for the LP vs LP game.

Proposition 2. (LP vs LP Equilibrium) Consider the LP vs LP game. If k < qe,

then there is a unique SPE outcome, in which both firms offer p̄LP , where π′(p̄LP ) = k,

and the buyer purchases qLP1 = D(p̄LP )−k and qLP2 = k units from firm 1 and firm 2

respectively. If k ≥ qe, then there are multiple SPE outcome, in which the prevailing

price can be any p̄LP ∈ [c, pm] (either p1 = p2 = p̄LP ∈ [c, pm] or p1 ≥ pm = p2) and

firm 1 makes no sales.

Corollary 5. (Comparative Statics for LP vs LP) (a) p̄LP ,ΠLP
1 + ΠLP

2 ,ΠLP
1

(and also qLP1 if we assume condition (43)) are decreasing in k on (0, qe).

(b) TSLP , qLP2 , qLP1 + qLP2 , BSLP ,ΠLP
2 +BSLP are increasing in k on (0, qe).

(c) ΠLP
2 is increasing in k when k is small, and is decreasing in k when k is close

to but below qe.

Proposition 3. (Comparison) Let k ∈ (0, qe) and compare any SPE outcome of

the NLP vs LP game with the unique SPE outcome of the LP vs LP game.

(a) D(p̄)− Q̄ < qLP2 = k, Π1 > ΠLP
1 , Π2 +BS < ΠLP

2 +BSLP .

(b) p̄ < p̄LP , D(p̄) > D(p̄LP ) = qLP1 + qLP2 , TS > TSLP , Π2 < ΠLP
2 when k is

small, and the opposite is true when k ∈ [k̂, qe).

(c) BS < BSLP when k is small or k ∈ [k̂, qe).

(d) Q̄ > qLP1 = D(p̄LP )− k when k is small or close to qe.

7.3 A linear demand example

This subsection considers a linear demand example. Suppose that u(q) = q − q2/2

and c ∈ [0, 1). Then D(p) = 1− p, π(p) = (p− c)(1− p), and π′(p) = 1 + c− 2p for

all p ∈ P = [c, 1]. Assumptions 1, 2 and the conditions in Proposition 1 are satisfied,

so that the equilibrium is essentially unique.
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Pricing
x0 Q0 p̄ Q̄

c+ 1
e2

min{k, k̂} 1+e2

e2
max{k̂ − k, 0} c+ 1

e
min{k, k̂} 1− c− 2

e
min{k, k̂}

Surplus

Π1 Π2

(1−c)2
2(1+e2)

+ 1+e2

2e2
(max{k̂ − k, 0})2 1

e2
(min{k, k̂})2

BS TS

(1− c) min{k, k̂} − 4+e2

2e2
(min{k, k̂})2 (1−c)2

2
− 1

2e2
(min{k, k̂})2

Table 1: Linear Demand Example

Substituting (35) into (36), the latter becomes

p− c =
1

e
·min

{
1− c− p− c

e
, k

}
.

So

p̄ = c+
1

e
min{k, k̂},

where

k̂ =
e2(1− c)

1 + e2
.

Other endogenous objects follow directly, and the solution is listed in Table 1.

As we claim generally in Corollary 4, all the above objects except Π2 + BS and

BS are monotone in k. When k < e2(1−c)
2+e2

, Π2 + BS is increasing in k. When
e2(1−c)

2+e2
< k < k̂, Π2 + BS is decreasing in k. When k < e2(1−c)

4+e2
, BS is increasing

in k. When e2(1−c)
4+e2

< k < k̂, BS is decreasing in k. Figure 7 demonstrates these

non-monotone patterns.
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Figure 7: BS and Π2 +BS for Linear Demand Example

Figure 8 and Table 2 show various equilibrium objects in the linear demand

example, when nonlinear pricing (NLP), quantity forcing (QF) (i.e. offering a take-it-or-leave-it

quantity-payment bundle), or linear pricing (LP) is feasible to the dominant firm.

Figure 8: Dominant firm’s equilibrium tariff schedules and the corresponding chosen
purchases under assumptions D(p) = 1 − p, c = 0, and k = 0.9 or 0.2, when
nonlinear pricing (NLP), quantity forcing (QF), or linear pricing (LP) is feasible to
the dominant firm (the LP schedule is omitted in the right panel because its scale is
far below that of the NLP schedule)
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q1 q2 Π1 Π2 BS TS
k = 0.2

LP 0.4 0.2 0.16 0.08 0.18 0.42
QF 0.8472 0.0764 0.3218 0.0058 0.1694 0.4971

NLP 0.8528 0.0736 0.3227 0.0054 0.1692 0.4973
k = 0.9

LP 0.05 0.9 0.0025 0.045 0.4513 0.4987
QF 0.2929 0.3536 0.0429 0.125 0.2696 0.4375

NLP 0.3519 0.324 0.0596 0.105 0.2829 0.4475

Table 2: Equilibrium outputs (q1, q2), profits (Π1,Π2), buyer’s surplus (BS), and
total surplus (TS) under assumptions D(p) = 1− p, c = 0, and k = 0.9 or 0.2, when
nonlinear pricing (NLP), quantity forcing (QF), or linear pricing (LP) is feasible to
the dominant firm

8 Concluding remarks

Recall that our model involves three kinds of asymmetries between the two firms:

(1) the dominant firm is able to make nonlinear tariff schedules, while the rival firm

can only choose linear pricing schemes; (2) the dominant firm commits to offering

tariffs before its rival; and (3) relative to the demand size the dominant firm has no

capacity limit while its rival is capacity-constrained. Our analysis above suggests that

the asymmetry in capacity is not crucial for the equilibrium adoption of nonlinear

pricing by the dominant firm, but is important for the results of partial foreclosure

and harming the buyer welfare.

What would happen if we relax our assumptions about the asymmetry between

the two firms by endogenizing the choices of timing and tariff options? One may

consider a 4-stage extended game as follows. In Stage 0, each firm simultaneously

decides whether to commit itself to use linear pricing. Any firm who makes this

commitment can only offer a linear pricing scheme in later stages; and otherwise

can more generally offer a nonlinear tariff schedule in later stages. In Stage 1, each

firm can either offer a tariff (from the feasible set determined by its choice in stage

0), or wait until stage 2. In stage 2, any firm who chose waiting in stage 1 has

to offer a tariff (again from the feasible set determined by its choice in stage 0).
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Lastly, in stage 3, the buyer chooses the quantities she purchases from the two firms.

We can show that this extended game has a subgame perfect equilibrium with the

following properties: only the rival firm commits itself to linear pricing in stage 0, the

dominant firm offers a nonlinear tariff in stage 1, the rival firm waits in stage 1 and

offers a linear tariff in stage 2, and their offers and the buyer’s choices are the same

as those we characterized for our original 3-stage game. As a result, when both firms

can choose their timing and pricing options the equilibrium outcome in the original

3-stage game remains to be part of the subgame perfect equilibrium outcome in the

extended game. This demonstrates that our assumptions regarding the sequence

of the moves and asymmetry in tariff options are not crucial for our main results.

The asymmetry in capacity between the firms allows the unconstrained firm to take

advantage of a menu of tariff offers in order to restrict the choices of the constrained

firm and extract surpluses from the buyer.
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Appendix

Proof of Lemma 1. Fix anyQ ∈ R+. Note that the unique maximizer Proj[0,k](D(p)−
Q) of the value function V (Q, p) is piecewise continuously differentiable. For any

p ∈ P at which Proj[0,k](D(p)−Q) is differentiable (i.e., D(p)−Q 6= 0 and D(p)−Q 6=
k), clearly V (Q, p) is also differentiable at p and the derivative Vp(Q, p) computed

from the Envelope Theorem is given by (7). Moreover, even for p ∈ P at which

Proj[0,k](D(p) − Q) is not differentiable (i.e., D(p) − Q = 0 or D(p) − Q = k),

Proj[0,k](D(p)−Q) is still continuous; it is clear that the left-derivative and right-derivative

of V (Q, ·) exist and both are equal to the r.h.s. of (7). Thus, V (Q, ·) is differentiable

and (7) holds. The same logic proves that V (·, p) is differentiable and (8) holds.

From (7) and (8), we know Vp(Q, ·), Vp(·, p), VQ(Q, ·), and VQ(·, p) are all piecewise

continuously differentiable. In particular, whenever differentiable (i.e., D(p)−Q 6= 0

and D(p)−Q 6= k), the cross derivatives VQp and VpQ are given by (9). �

The proof of Theorem 1 requires the following two lemmas.

Lemma A.1. For any Q : P → R+, T : P → R, and p̄ ∈ P that satisfy (B-IC),

(B-IR), and (F2-IC), there is a τ ∈ T and a SPE of the subgame after firm 1 offers

τ such that

(i) in this SPE of the subgame, firm 2 chooses p = p̄, and the buyer, contingent

on any firm 2’s unit price p ∈ P, chooses to buy Q(p) and Proj[0,k](D(p) − Q(p))

units from firm 1 and firm 2 respectively, and

(ii) τ(Q(p)) = T (p) for all p ∈ P.

Proof of Lemma A.1. Suppose that Q : P → R+, T : P → R, and p̄ ∈ P satisfy

(B-IC), (B-IR), and (F2-IC). Define

τ(Q) =


T (p) if ∃p ∈ P s.t. Q(p) = Q

0 if Q = 0 and @p ∈ P s.t. Q(p) = 0

∞ otherwise

. (A1)

Note that the above τ is well defined because (B-IC) implies T (p) = T (p̃) whenever

Q(p) = Q(p̃). Clearly, (ii) holds. To see that τ(0) ≤ 0, note that if @p ∈ P s.t.
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Q(p) = 0, then τ(0) = 0; if Q(p̂) = 0 for some p̂ ∈ P , then τ(0) = T (p̂) ≤ 0, where

the inequality follows from (B-IR). Thus, τ(0) ≤ 0.

Given this τ and any p ∈ P , (B-IC) and (B-IR) imply that a buyer’s optimal

action is to buy Q(p) and Proj[0,k](D(p) − Q(p)) units from firm 1 and firm 2

respectively. Given τ and that the buyer uses the above strategy, (F2-IC) implies

that a firm 2’s optimal action is to choose p = p̄. Therefore, the strategies in (i)

constitute a SPE of the subgame after firm 1 offers τ . It follows that τ is regular

and hence τ ∈ T . �

Lemma A.2. For any τ ∈ T and any SPE of the subgame after firm 1 offers τ ,

if Q : P → R+, T : P → R, and p̄ ∈ P satisfy (i) and (ii) in Lemma A.1, then

Q(·), T (·), p̄ also satisfy (B-IC), (B-IR), and (F2-IC).

Proof of Lemma A.2. Take any τ ∈ T and any SPE of the subgame after firm 1

offers τ . Suppose that Q : P → R+, T : P → R, and p̄ ∈ P satisfy (i) and (ii) in

Lemma A.1. Since the strategies described in (i) constitute a SPE of the subgame

after firm 1 offers τ , we have (F2-IC) and

V (Q(p), p)− τ(Q(p)) ≥ V (Q, p)− τ(Q) ∀(Q, p) ∈ R+ × P . (A2)

To see (B-IC), take Q = Q(p̃) for arbitrary p̃ ∈ P in (A2) and use (ii). To see (B-IR),

take Q = 0 in (A2) and use τ(0) ≤ 0 and (ii). �

Proof of Theorem 1. (“only if” part) Suppose that (Q∗(·), T ∗(·), p̄∗) is a solution

of (OP1). Then Q∗(·), T ∗(·), p̄∗ satisfy (B-IC), (B-IR), and (F2-IC). From Lemma

A.1, there is a τ ∗ ∈ T (defined by (A1) with τ(·), Q(·), T (·) replaced by τ ∗(·), Q∗(·), T ∗(·))
such that (22) holds and a SPE (p∗(τ ∗), q∗(τ ∗, ·)) of the subgame after firm 1 offers

τ ∗ is described by (20), (21), and (23).

In the subgame after firm 1 offers this τ ∗, we let firm 2 and the buyer play the

SPE (p∗(τ ∗), q∗(τ ∗, ·)), so that firm 1’s profit is T ∗(p̄∗)− c ·Q∗(p̄∗). In the subgame

after firm 1 offers any other τ ∈ T \{τ ∗}, we let firm 2 and the buyer play any SPE

(p∗(τ), q∗(τ, ·)), which exists because every τ ∈ T is regular. By such constructions,

p∗, q∗ satisfy (1) and (2).
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From Lemma A.2, the SPE outcome of the subgame after firm 1 offers an arbitrary

τ ∈ T must be characterized by some Q(·), T (·), p̄ that satisfy (B-IC), (B-IR), and

(F2-IC), and the associated firm 1’s profit is T (p̄)−c ·Q(p̄). Since (Q∗(·), T ∗(·), p̄∗) is

a solution of (OP1), firm 1 cannot make strictly higher profit than T ∗(p̄∗)−c ·Q∗(p̄∗)
by offering any τ ∈ T . That is, (τ ∗, p∗, q∗) satisfies (3) and hence is a SPE of the

whole game.

(“if” part) Suppose that (τ ∗, p∗, q∗) is a SPE and Q∗(·), T ∗(·), p̄∗ satisfy (20),

(21), (22), and (23). From Lemma A.2, Q∗(·), T ∗(·), p̄∗ satisfy (B-IC), (B-IR), and

(F2-IC). Suppose, by way of contradiction, that (Q∗(·), T ∗(·), p̄∗) is not a solution of

(OP1). Then, there is some (Q0(·), T 0(·), p̄0) satisfying (B-IC), (B-IR), and (F2-IC),

such that T 0(p̄0)−c ·Q0(p̄0) > T ∗(p̄∗)−c ·Q∗(p̄∗). We shall show that firm 1 then can

offer a tariff in T that guarantees itself a profit arbitrarily close to T 0(p̄0)− c ·Q0(p̄0)

in every SPE of the firm 2-buyer subgame that follows. Once this is proved, offering

such a tariff is a firm 1’s profitable deviation in the SPE (τ ∗, p∗, q∗), which is a

contradiction.

To do that, we perturb the solution (Q0(·), T 0(·), p̄0) so that firm 2 would have

to lower its price a bit more if it wishes to increase its sales by any given amount.

We can keep p̄0 unchanged and, for any ε > 0, let

Qε(p) =


Q0(p) if p ≥ p̄0

Q0(p̄0) if p̄0 − ε < p < p̄0

Q0(p+ ε) if p ≤ p̄0 − ε

,

and

Tε(p) = V (Qε(p), p)− V (0, c)−
∫ p

c

Vp(Qε(t), t)dt.

Note that (Qε(·), Tε(·), p̄0) satisfies all the constraints of (OP1); the (F2-IC)

constraint holds strictly at every p 6= p̄0; the value of (OP1) evaluated at (Qε(·), Tε(·), p̄0)

is arbitrarily close to the maximum value T 0(p̄0)−c·Q0(p̄0) when ε is made arbitrarily

small.

Define τε(·) by the r.h.l. of (A1) with Q(·) and T (·) replaced by Qε(·) and Tε(·).
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Now, if firm 1 offers τε, the best responses of the buyer and firm 2 are unique. In

particular, firm 2 would surely offer p̄0; the buyer would surely purchase Qε(p̄
0) from

firm 1; firm 1’s profit would surely be the value of (OP1) evaluated at (Qε(·), Tε(·), p̄0).

Therefore, offering τε with small enough ε > 0 is a firm 1’s profitable deviation as

desired. �

Proof of Lemma 2. We shall first show that (B-IC) is equivalent to (24) and

(25), then establish that, given (24), (B-IR) is equivalent to (26). Let U(p) ≡
V (Q(p), p)− T (p). Then (B-IC) can be written as

U(p)− U(p̃) ≥ V (Q(p̃), p)− V (Q(p̃), p̃) ∀p, p̃ ∈ P , (A3)

and (25) can be written as

U(p)− U(c) =

∫ p

c

Vp(Q(t), t)dt ∀p ∈ P . (A4)

Step 1: (B-IC) implies (24) and (25).

Suppose (B-IC) is satisfied. Then (A3) implies that, for any p1, p2 ∈ P ,

V (Q(p1), p2)− V (Q(p1), p1) ≤ U(p2)− U(p1) ≤ V (Q(p2), p2)− V (Q(p2), p1). (A5)

If (24) does not hold, then there exist p1, p2 ∈ P such that p1 < p2 and Q(p1) > Q(p2)

and D(p1) > Q(p2) and Q(p1) > D(p2)− k. But then (A5) implies

0 ≥ [V (Q(p1), p2)− V (Q(p1), p1)]− [V (Q(p2), p2)− V (Q(p2), p1)]

=

∫ p2

p1

∫ Q(p1)

Q(p2)

VpQ(Q, p)dQdp > 0,

which is a contradiction. The above equality holds because, from Lemma 1, V (Q, ·)
is continuously differentiable and Vp(·, p) is piecewise continuously differentiable (and

hence they are absolutely continuous on any compact interval). The last inequality

holds because, first, VpQ ≥ 0 almost everywhere and VpQ = 1 on the interior of Φ;
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second, in the Q-p space, the point (Q(p2), p1) is strictly below the curve Q = D(p)

(from D(p1) > Q(p2)) and the point (Q(p1), p2) is strictly above the curve Q =

D(p) − k (from Q(p1) > D(p2) − k), so the rectangle [Q(p2), Q(p1)] × [p1, p2] must

intersect the interior of Φ, on which VpQ > 0. Therefore, (24) must hold.

Moreover, (A5) implies (A4). Therefore, (25) holds.

Step 2: (24) and (25) imply (B-IC).

First, (24) implies that, for all p1, p2 ∈ P with p1 ≤ p2, we have

Proj[0,k](D(p2)−Q(p1)) ≥ Proj[0,k](D(p2)−Q(p2)), (A6)

Proj[0,k](D(p1)−Q(p1)) ≥ Proj[0,k](D(p1)−Q(p2)). (A7)

Indeed, p1 ≤ p2 and (24) imply either (i) Q(p1) ≤ Q(p2), or (ii) D(p1) ≤ Q(p2), or

(iii) Q(p1) ≤ D(p2)− k. In case (i), clearly (A6) and (A7) hold. In case (ii), we have

D(p2) ≤ D(p1) ≤ Q(p2) so that the right-hand sides of (A6) and (A7) are 0. In case

(iii), we have Q(p1) + k ≤ D(p2) ≤ D(p1) so that the left-hand sides of (A6) and

(A7) are k > 0. Therefore, (A6) and (A7) hold in each case.

Recall that (25) is equivalent to (A4). Therefore, for any p1, p2 ∈ P (no matter

whether p1 ≤ p2 or not), we have

U(p2)− U(p1) =

∫ p2

p1

Vp(Q(p), p)dp

= −
∫ p2

p1

Proj[0,k](D(p)−Q(p))dp

≥ −
∫ p2

p1

Proj[0,k](D(p)−Q(p1))dp (∵ (A6) when p1 ≤ p2; and (A7) when p1 ≥ p2)

=

∫ p2

p1

Vp(Q(p1), p)dp

= V (Q(p1), p2)− V (Q(p1), p1),

where the inequality is from (A6) when p1 ≤ p2 and from (A7) when p1 ≥ p2. It

proves (A3) and hence (B-IC).

Step 3: Given (B-IC) (in fact, (25) only), (B-IR) is equivalent to (26).
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It suffices to show that V (Q(p), p)−T (p)−V (0, p) = U(p)−V (0, p) is non-decreasing

in p on P . Indeed, from (25), which is equivalent to (A4), and Lemma 1, we know

both U(·) and V (0, ·) are differentiable, and U ′(p) = Vp(Q(p), p) = −Proj[0,k](D(p)−
Q(p)) ≥ −Proj[0,k](D(p)) = Vp(0, p). Therefore, (B-IR) is equivalent to (26). �

Proof of Corollary 1. It is implied by (A6) in the proof of Lemma 2. �

Proof of Lemma 3. Fix any Π2 ∈ (0, π(max{pm, u′(k)})) and hence a firm 2’s

iso-profit curve in the Q-p space (see Figure 3). Note that Π2 > 0 implies p̄ > c

and D(p̄) > Q(p̄). Moreover, from Assumption 2, firm 2’s iso-profit curves are

(horizontally) single-peaked, so each iso-profit curve has a unique most rightward

point.

Here we prove (Q(p̄), p̄) must be the most rightward point (the unique horizontal

peak) on the iso-profit curve by contradiction. Suppose that (Q(p̄), p̄) is not the

horizontal peak on the iso-profit curve. Consider the case where (Q(p̄), p̄) lies on the

strictly decreasing portion of the iso-profit curve (which implies D(p̄) − Q(p̄) < k).

Then, to satisfy (F2-IC), for small ε > 0, we have Q(p̄ − ε) > Q(p̄). But then,

from Lemma 1, (24) is violated. Now consider the case where (Q(p̄), p̄) lies on the

non-decreasing portion of the iso-profit curve. Then, Π1 can be raised by increasing

both Q(p̄) and p̄ along the iso-profit curve toward the horizontal peak (see Figures

3 and 4). (34) follows immediately.

From Figure 5, it is easy to see Q(·) on [x0, p̄] must coincide the iso-profit curve,

which satisfies (24) and (F2-IC), otherwise Π1 can be improved by shifting the part

of Q(·) on [x0, p̄] that does not match with the iso-profit curve toward the latter.

Thus, we have (33). �

Proof of Lemma 4. Lemma 3 has characterized the optimal (Q(·), p̄) and maximum

Π1 contingent on any Π2 ∈ (0, π(max{pm, u′(k)})). Clearly, the maximum Π1

contingent on Π2 = 0 is equal to the limiting contingent maximum Π1 as Π2 ↓ 0

(which is equal to u(max{qe − k, 0}) − c · max{qe − k, 0}), and the maximum Π1

contingent on Π2 = π(max{pm, u′(k)}) is equal to the limiting contingent maximum

Π1 as Π2 ↑ π(max{pm, u′(k)}) (which is equal to 0). After reducing the second stage
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(where (Q(·), p̄) is chosen contingent on Π2), (OP1’) has only one choice variable,

Π2, and the reduced objective function is continuous in Π2 on [0, π(max{pm, u′(k)})].
Thus, (OP1’) has at least one solution.

If Π2 = 0, then the contingent maximum can be raised by increasing Π2 (contemplating

an upward-and-leftward shift of Q(·) to a higher firm 2’s iso-profit curve in Figure

5). Thus, at any optimum, Π2 > 0. On the other hand, if Π2 is π(max{pm, u′(k)}) or

is so large that the contingent solution exhibits D(p̄) − Q̄ = k, then the contingent

maximum can be raised by decreasing Π2 (contemplating a downward-and-rightward

shift of Q(·) to a lower firm 2’s iso-profit curve in Figure 5 again). Thus, at any

optimum, 0 < Π2 < π(max{pm, u′(k)}) and D(p̄)− Q̄ < k. So (36)˜(39) follow from

Lemma 3.

Next, we show (35). From Figure 4, (30) can be rewritten as

Π1 =

∫ Q0

0

u′(Q+ k)dQ+ x0 ·
(
Q̄−Q0

)
+

∫ p̄

x0

(
Q̄−Q(p)

)
dp− cQ̄

=

∫ Q0

0

[u′(Q+ k)− x0] dQ+ (p̄− c)Q̄−
∫ p̄

x0

Q(p)dp

=

∫ ∞
x0

max{D(p)− k, 0}dp+ (p̄− c)Q̄−
∫ p̄

x0

[
D(p)− Π2

p− c

]
dp (∵ (32) and (33))

=

∫ ∞
x0

max{D(p)− k, 0}dp+ TS(p̄)− Π2 −
∫ ∞
x0

D(p)dp+ Π2 · ln
p̄− c
x0 − c

(∵ (p̄− c)Q̄ = TS(p̄)− Π2 −
∫ ∞
p̄

D(p)dp)

= TS(p̄)−
∫ ∞
x0

min{D(p), k}dp+

(
ln

p̄− c
x0 − c

− 1

)
Π2, (A8)

where

TS(p̄) ≡ u(D(p̄))− cD(p̄) =

∫ ∞
p̄

D(p)dp+ (p̄− c)D(p̄) (A9)

denotes the total surplus.
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The partial derivatives of (A8) are

∂Π1

∂p̄
= (p̄− c)D′(p̄) +

Π2

p̄− c
= π′(p̄)− Q̄ (∵ (33)),

∂Π1

∂x0

= min{D(x0), k} − Π2

x0 − c
,

∂Π1

∂Π2

= ln
p̄− c
x0 − c

− 1.

Note that (36)˜(38) imply that ∂Π1/∂p̄ = ∂Π1/∂x0 = 0. Therefore, the total

derivative of (A8) with respect to Π2 is

dΠ1

dΠ2

= ln
p̄− c
x0 − c

− 1. (A10)

Therefore, the first-order condition dΠ1/dΠ2 = 0 implies (35).

Last, we derive (40). From (25) and (27),

T (p) = V (Q(p), p)− V (0, c)−
∫ p

c

Vp(Q(t), t)dt

=

∫ Q(p)

0

VQ(Q, c)dQ+

∫ p

c

[Vp(Q(p), t)− Vp(Q(t), t)]dt

=

∫ Q(p)

0

Proj[u′(Q+k),u′(Q)](c)dQ+

∫ p

c

[Proj[0,k](D(t)−Q(t))− Proj[0,k](D(t)−Q(p))]dt

=

∫ Q0

0

u′(Q+ k)dQ+ x0 · (Q(p)−Q0) +

∫ p

x0

(Q(p)−Q(t)) dt

= u(Q0 + k)− u(k) +

∫ p

x0

tdQ(t)

where the third equality follows from (7) and (8), the fourth one follows from

Proj[u′(Q+k),u′(Q)](c) = u′(Q+ k) for Q < Q(p) when p ∈ [x0, p],

Proj[0,k](D(t)−Q(t))−Proj[0,k](D(t)−Q(p)) =


0 if c ≤ t < u′(Q(p) + k)

Q(p) + k −D(t) if u′(Q(p) + k) ≤ t ≤ x0

Q(p)−Q(t) if x0 < t ≤ p̄

,
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∫ x0
u′(Q(p)+k)

[Q(p) + k −D(t)] dt =
∫ Q(p)

Q0
[x0 − u′(Q+ k)] dQ through integration by

substitution, and the last equality follows from integration by parts. �

Proof of Theorem 2. The results are from Lemma 4 and Theorem 1. (41) is

derived from (40) through changing of variable: x(·) for Q(·).
Suppose that firm 1’s tariff τ is given by (41). Then, firm 2’s profit would be Π2

if it chooses any p ∈ [x0, p̄]. One can see from Figure 5 that, firm 2’s profit would

be lower than Π2 if it chooses any p > p̄ (so that the buyer would still purchase Q̄

units from firm 1) or any p < x0 (so that the buyer would purchase Q0 units from

firm 1). �

Proof of Proposition 1. From Theorem 2, the equilibrium is essentially unique

if and only if the solution of (p̄, x0), i.e., (35)˜(36), is unique.

Using (35) to eliminate x0 and dividing both sides of (36) by p̄− c, (36) becomes

− (p̄− c)D′(p̄) =
1

e
min

{
D

(
c+

p̄− c
e

)
, k

}
. (A11)

(A11) can be solved for p̄. Therefore, the equilibrium is essentially unique if and only

if (A11) has at most one solution. Under condition (43), the left-hand side of (A11)

is strictly increasing in p̄, and the right-hand side is non-increasing in p̄. Therefore,

(A11) has at most one solution under (42).

It is easy to see that (42) and (43) are equivalent, so the proposition follows. �

Proof of Corollary 2. From (40) and T (p) = τ(Q(p)), the first line of (41) must

hold for any equilibrium τ . Thus, τ ′(·) = x(·) on [Q0, Q̄]. Since x(·) on [Q0, Q̄] is the

inverse of Q(·) on [x0, p̄], and the latter is positive and strictly increasing on [Q0, Q̄].

The corollary follows. �

Proof of Corollary 3. In equilibrium, the total output is D(p̄) and firm 2’s output

is D(p̄)− Q̄ < k. So the buyer’s surplus

BS ≡ u(D(p̄))− p̄(D(p̄)− Q̄)− τ(Q̄) = TS − Π1 − Π2

= TS − Π1 − Π2 (∵ (A9)) (A12)
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(35) and (A8) give a simple formula to compute Π1, i.e.,

Π1 = TS −
∫ ∞
x0

min{D(p), k}dp. (A13)

So the corollary follows. �

Proof of Corollary 4. Let x̂0 be the minimum equilibrium x0 when k =∞, given

by (35) and (36) with min {D(x0), k} = D(x0) in (36). Define k̂ ≡ D(x̂0). From

Theorem 2, k̂ satisfies the first two claims (see Figure 5).

The rest of the proof considers comparative statics for k ∈ (0, k̂]. Following the

proof of Lemma 4, we regard Π1, p̄, Q̄, x0, Q0, x(·), BS, TS as functions of Π2. Here

we also regard them as functions of k. In particular, we write Π1(Π2; k).

Fix Π2 and let k increase on (0, k̂]. Note that Q0 = max{D(x0)−k, 0} > 0 before

the increase, so that we have D(x0) > k before the increase. The p̄ and Q̄ determined

by (37) and (38) do not change. The x0, Q0, and Π1 determined by (36), (32), and

(A8) decrease as k increases (see Figure 5).

In equilibrium, Π1 = maxΠ2 {Π1(Π2; k)} decreases, because Π1(·; k) shifts down

as k increases. From (A10), we see that ∂Π1(Π2; k)/∂Π2 increases, because p̄ is

unchanged whereas x0 decreases when we fix Π2 and let k increase. In other words,

Π1(Π2; k) satisfies strict increasing differences. Therefore, the Π2 that maximizes Π1

must increase when k increases. Then, from (37) and Assumption 2, p̄ must increase,

and hence Q̄ decreases follows from (38). Then from (A9), TS decreases. From (35),

x0 increases. From (32), Q0 decreases. Also, p̄ − x0 increases because (35) can be

written as p̄−x0 = (e− 1)(x0− c). The result for D(p̄)− Q̄ can be immediately seen

from D(p̄)− Q̄ = −(p̄− c)D′(p̄). This completes the proof of parts (a) and (b).

Last, we prove part (c). To see the first half of part (c), note that both Π2 and BS

are positive and tend to zero as k → 0. To see the second half of part (c), first note

that, as shown above, we have min{D(x0), k} = k when k ≤ k̂. From Proposition

44, Π2 +BS = u(k)− x0k whenever k ≤ k̂. Hence,

d(Π2 +BS)

dk

∣∣∣∣
k↗k̂

= u′(k̂)− x0 − k̂ ·
dx0

dk

∣∣∣∣
k↗k̂

< 0.
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The last inequality follows from u′(k̂) − x0 ≤ u′(k̂) − x̂0 = 0 and dx0
dk
|k↗k̂ > 0.

Therefore, Π2 + BS is decreasing in k when k is close to but below k̂. This is true

for BS as well, because Π2 is increasing in k. �

Proof of Proposition 2. Straightforward and omitted. �

Proof of Corollary 5. Straightforward and omitted. �

Proof of Proposition 3. In the proof of Lemma 4, we have shown D(p̄)− Q̄ < k.

Clearly, Π1 > ΠLP
1 hold.

ΠLP
2 +BSLP = v(pLP ) +

(
pLP − c

)
k

>

∫ ∞
c

min {D(p), k} dp

≥
∫ ∞
x0

min {D(p), k} dp (∵ x0 > c)

= Π2 +BS (∵ (44)).

This completes the proof of part (a).

Compare π′(p̄) = Q̄ with π′(p̄LP ) = k and note that Q̄ > k when k is small, and

Q̄ < k when k ≥ k̂ because Q̄ < D(p̄) < D(x0) < D(x̂0) = k̂ ≤ k. It proves the

result for p̄, p̄LP . The results for D(p̄), D(p̄LP ) and TS, TSLP follows.

Clearly, both Π2 and ΠLP
2 tend to zero as k ↘ 0. Since ΠLP

2 = (p̄LP − c)k,

dΠLP
2

dk

∣∣∣∣
k↘0

= p̄LP |k↘0 − c = pm − c > 0.

Since Π2 = (p̄− c)(D(p̄)− Q̄), and both p̄− c and D(p̄)− Q̄ tend to zero as k ↘ 0

(contemplating(Q̄, p̄) moves along the curve Q = π′(p) toward (qe, c) in Figure 5b),

dΠ2

dk

∣∣∣∣
k↘0

= 0.

It proves the result for Π2,Π
LP
2 when k is small.
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When k ∈ [k̂, qe), (36) implies Π2 = (x̂0 − c)k, where x̂0 is (as in the proof of

Corollary 4) the minimum equilibrium x0 when k = ∞. Therefore, ΠLP
2 = (p̄LP −

c)k < Π2 since p̄LP < u′(k) ≤ x̂0. It proves the result for Π2,Π
LP
2 when k ∈ [k̂, qe).

It completes the proof of part (b).

Compare BS = TS−Π1−Π2 and BSLP = TSLP−ΠLP
1 −ΠLP

2 . When k ∈ [k̂, qe),

our previous results that TS < TSLP , Π1 > ΠLP
1 , and Π2 > ΠLP

2 together imply

BS < BSLP . As k ↘ 0, from (44), BS tends to zero but BSLP is positive. Therefore,

we also have BS < BSLP when k is small. It completes the proof of part (c).

For any k, Q̄ + k > D(p̄) (see Figure 5). It, together with part (b), implies that

Q̄ > D(p̄LP )− k when k is small. As k ↗ qe, D(p̄LP )− k tends to zero and Q̄ tends

to qe > 0. It proves part (d). �
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