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Abstract. The paper investigates conditions, which guarantee the existence of a stable

outcome in a school matching in the presence of peer effects. We consider economy, where

agents are characterized by their type (e.g. SAT score), and schools are characterized

by their value (e.g. teaching quality) and capacity. Moreover, we divide agents and

schools into groups, so that going to a school outside of one’s group maybe associated

with additional costs or even prohibited. A student receives utility from a school per

se (its value minus costs of attending) and from one’s peers, students who also go to

that school. We find that sufficient condition for a stable matching to exist is that a

directed graph, which governs the possibility to go from one group to another, should

not have cycles (nor directed, nor undirected). We also construct an algorithm, which

produces a stable matching. It runs in a finite time and takes no more than number of

groups multiplied by total number of schools steps. Furthermore, we show that if the

graph has a cycle, then there exist other economy parameters (types, costs and so on),

so that no stable matching exists. In addition, in cases where a stable matching exists

we investigate whether it is unique or not.

1. Introduction

Peer effects are a common phenomenon in everyday life. Parents often try to place their

kids in schools where they believe that their children will have good classmates. That is,

parents not only care about quality of teachers and curriculum, but also about whom is

going to study with their children. Similarly, many students want to go to Ivy League

universities because of the connections that they will likely make at such places.

The presence of peer effects in schooling was noticed more than fifty years ago (see

e.g. Coleman et al. (1966, Section 2.4)). Sacerdote (2011) provides an overview of the

current state of empirical research on peer effects and points to its importance. A number

The author would like to thank Larry Samuelson for valuable comments, suggestions, and encourage-

ment throughout the duration of the project. The author is grateful to Vadim Gorin for support and

fruitful discussions.

1



2 ANNA BYKHOVSKAYA

of recent papers show the significance of peer effects in schooling (yet, the magnitude

of the importance of peer effects varies across papers). Examples are Ding and Lehrer

(2007) (peer effects in China), Sacerdote (2001) (peer effects at Dartmouth), Winston and

Zimmerman (2004) (peer effects in US colleges), Zabel (2008) (peer effects in New York),

Zimmerman (2003) (peer effects at Williams College).

When we go to theory, the relationship between schools or colleges and students is

usually modelled as a two-sided matching problem. In matching models without peer

effects and externalities, substitutability is a sufficient (and in some sense necessary)

condition for the existence of a (group) stable matching (see Hatfield and Milgrom (2005)

and Hatfield and Kojima (2008)). Unfortunately, matching models with peer effects are

known to often lack existence of equilibria. This motivates us to study theoretical models

of matching in the presence of peer effects.

We start by modifying the college admission model, which was studied in the seminal

paper of Gale and Shapley (1962), and add preferences over schoolmates. Consequently,

students now care both about their assigned school and their peers. This is modelled as a

linear combination of school-related utility and utility from a given set of peers. We focus

on a pairwise stable matchings; in the context of schools this means that no single student

can profitably deviate to another school which would accept him. We believe pairwise

stability to be a natural assumption in case of schools, where a parent cannot coordinate

with twenty other parents and place their children in the same school.

Specific feature of our setting is based on the following real life phenomena. Sometimes

an agent may be prohibited from applying to particular schools. For example, religious

schools generally accept only those students, who practice the same religion. Moreover,

to go to a Jewish school, one often needs to present a proof of one’s Jewish roots. Si-

milarly sometimes schools accept only those, who live in a pre-specified areas. Thus,

students, who live outside of those areas cannot be admitted. A large set of schools in

Moscow function in that way. They can be viewed as district-specific as they admit only

those who live close enough. Finally, segregation corresponds to the structure, where

some agents are restricted from some set of schools. Instead of schools we can think

about specific majors. Then it may be too late (and, thus, impossible) to switch from
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studying, e.g., ballet to studying quantum physics. Those patterns can be encoded into a

graph. Possibility/impossibility to move from one group to the other corresponds to the

presence/absence of an edge between the groups, which correspond to graph vertices.

The main question for us is whether there is a stable matching in our model. We find

that the sufficient condition is that there are no cycles in the graph associated with our

setting. Moreover, we find that if the graph has a cycle, then there is a set of parameters’

values, for which no stable matching exists.

Consider the example, which illustrates the model and the associated existence problem.

Illustrative example

Suppose we have two schools, A and B, and each school has two seats. There are

four students characterized by their type (e.g. test score) θ = 0, 7, 8, 10. Schools prefer

students with higher types, and utility of an agent θ sharing a school s with another

student θ′ is

uθ(s, θ
′) = vθ(s) + θ′.

If θ is alone at school s, then uθ(s, ∅) = vθ(s). Utility of the school per se, vθ(s) is

vθ(s):

θ s A B
0, 10 10 5.5

7, 8 6 9.5

That is, 0 and 10 prefer school A, while 7 and 8 prefer school B. The example is in

some sense similar to a classical roommate problem with two rooms and four agents, one

of whom no one likes (see, for example, Roth and Sotomayor (1990)). Here we have a

zero type, whom no one wants as a peer, as it means zero peer effects. Although 10 is

the best possible peer, it is still not worth to switch to a less desirable school to join 10,

if the most favorite one has a “normal” (i.e. 7 or 8) peer.

There are no pairwise stable matchings. The argument, summarized in Figure 1, is:

• If (8, 10)→ v1
1, then 7→ v2

1, so that 8 deviates to v2
1:

u8(1) = 10 + 10− 4 = 16 < 9.5 + 7 = 16.5 = u8(2);

• Similarly, if (7, 10)→ v1
1, then 7 deviates;
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• If (8, 10)→ v2
1, then 7→ v1

1, so that 10 deviates to v1
1:

u10(1) = 10 + 7 = 17 > 9.5 + 8− 4 = 13.5 = u10(2);

• Similarly, if (7, 10)→ v2
1, then 10 deviates;

• If (7, 8)→ v2
1, then 10→ v1

1, so that 10 deviates to v2
1:

u10(1) = 10 + 0 = 10 < 9.5 + 8− 4 = 13.5 = u10(2);

• Similarly, if (7, 8)→ v1
1, then 10 deviates;

Thus, there are no stable matchings in the above economy. Note that our example

corresponds to a full graph (each agent can go to any school), thus, it has a cycle.

7

08

10
A B 8

0 10
A B7 0 8

10
A B

7

7 0

810
A B 8

0 10
A B7 08

10
A B

7

Figure 1. No stable matchings in the illustrative example.

Motivated by the above real life observations, we prohibit 10 from going to school B.

Then the existence of a stable matching is restored. We assign 0, 10 to A and 7, 8 to B.

10 is not allowed to deviate, and we get a stable matching, as summarized in Figure 2.

Let us describing general setting in more details. In our model preferences of schools

coincide: they prefer students who have higher type (e.g. higher test scores). We allow

more flexibility on the students’ side. We divide the set of students into groups, similarly,

we assign each school to one of those groups. All agents from the same group have the

same valuations of schools.
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Figure 2. Stable matching restored in the illustrative example.

Such division can be viewed as different markets. That is, being in one group means

being from the same market such as country/race/religion/specialization/etc. A school

attached to a group is located in the same market as students from that group. For

example, they all are in the same city. Then the difference between how an agent from a

market values a school from the same market and how an agent from a different market

values that school is expressed in additional “market switching” cost c. Such cost is

location and origin specific, so that we still have the same preferences across markets. We

can view this cost as the expenses associated with buying an apartment near that school

or with commuting costs or with costs of switching from one field of primary study to the

other (e.g. switching from mathematically inclined school to the one which focuses more

on humanities).

To sum up, we get a set of separate markets, where students only differ by their ability

or type, but do not differ in their preferences of schools. Moreover, going to a school

in a foreign market is associated with additional costs for an agent born in a different

home market. Obviously, in some cases such cost may be prohibitively high, so that there

is no way an agent from a market X can attend a school in a market Y (e.g. religious

schools for someone outside of that religion or legal segregation of schools in the US in

the 20th century). We can summarize that prohibition by drawing an oriented graph,

where vertices represents our groups/markets, and an edge from one vertex to another
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means that switch from the former to the latter is not prohibited. Such prohibitively

high costs will be crucial for our results. What would matter for our constructions and

conclusions is the oriented switching graph, not the exact values of intermediate, not

prohibitive switching costs.

Our central result provides conditions for the existence of a stable matching in the

above model. We find that the sufficient condition is that there are no cycles (nor directed,

nor undirected) in the directed graph of possible market switches: when the switching

graph is an oriented forest, we present an algorithm, which produces a stable matching.

Further, we show the necessity of “no cycles” condition: if there is a cycle (possibly undi-

rected), then there are parameters for which there is no stable matching. Our main results

are given in Theorems 1 and 2. We also discuss when a stable matching is unique/non-

unique (see Theorems 4 and 5). To our knowledge, the most novel aspect of our condition

lies in the non-directness. The classical results on the existence of a stable matching pro-

hibit only directed cycles. E.g. in a roommate problem lack of directed cycles in agents’

preferences guarantees stability. Non-directed cycles were not playing a major role before,

however for our setting they are of the same importance as non-directed cycles.

Related papers, which investigate the existence of stable matching with peer effects,

are Pycia (2012) and Echenique and Yenmez (2007). The first paper provides a condition

(pairwise alinement of preferences), which guarantees the existence of a core stable (and,

thus, also pairwise stable) matching. This condition and ours are non-nested. In our

setting, pairwise alinement means that if we assign two students, say a and b, to some

school and some set of peers and then consider a different assignment, where again a and

b are at the same school, they must agree on whether the former or the latter allocation is

better. However, such condition is not satisfied in our framework: a and b may disagree

even if they were born in the same market, because they have different set of peers (a

is in the set of peers of b, but not in the set of peers of itself), and this distinction may

be of different importance depending on how large the school is. When school is small

having one better peer means more than when school is large. So that even if the quality

per se of a smaller school is worse, a may still prefer it: e.g. if b is very good peer, a

may want to choose a small school, where there will be almost no one except itself and
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b. But if the second school is way better than the first, and is filled with agents similar

to a, b may choose a second, larger school. Thus, preferences are not aligned, and our

model still leads to an open question. The second paper, Echenique and Yenmez (2007),

presents an algorithm, which produces a set of allocations containing all stable matchings

in case they exist. However, it may also produce extra allocations, which are not stable,

and implementing such an algorithm may be very time consuming (in fact, in some cases

it leads to just checking all possible allocations), while we provide specific conditions for

a stable matching to exist, so that we do not need to check different possible allocations.

Other related literature

The idea that sometimes agents have to choose from subsets of possible matching part-

ners (i.e. choose a market with fixed subset of alternatives) prior to matching has been

studied in the trade literature in the context of firms and workers. For example, Davis

and Dingel (2014) consider a model, where people choose in which city to work. Different

cities have different opportunities with different employees. In that paper it is important

that there are many monopolists who produce intermediate goods, which in turn are later

aggregated into final good by a perfectly competitive firm. However, in our approach we

do not need intermediate stage of production (in some sense we only have universities

as producers of the final good, education). Moreover, in the preliminary model we do

not allow for transferable utility, so that agents cannot influence their utilities or wages.

Another international trade paper Gaubert (2015) allows firms to choose their location,

so that their initial choice determines whether they will be located in a more or less

developed country, which, in turn, will affect their profits and production opportunities.

The concept of multiple markets is also present in mechanism design literature, where

either auction houses or online advertising platforms compete for buyers. For example, in

McAfee (1993) multiple buyers each period propose general mechanisms in order to sell

their goods to potential buyers. Buyers in turn choose the mechanism, which looks the

best for them. Here the main interest lies in how an action of one seller would change the

strategy of others. A survey Pai (2010) explains difficulties associated with competition

of mechanisms and discusses current progress regarding it.
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Finally, there are also relevant papers on kidney exchange. Using the dynamic matching

model of Akbarpour et al. (2016), Das et al. (2015) propose a model of two competing

matching markets. One market operates fast and does not wait for new agents to arrive,

while the other performs slower and waits until there are many agents and, thus, many

possible matchings, and agents are randomly sorted into those markets. The result is that

such artificial segmentation into two markets increases losses. The other relevant example

is Nikzad et al. (2016), where authors look at the possibility of merging two markets into

one. One of the markets represent US, where kidney exchange is well developed, but there

is lack of donors, and the other represents a developing country with almost no suitable

medical facilities, but with willing donors. Authors show that merging those markets into

one will increase the welfare in US.

On the peer effect side, coalition formation literature such as Bogomolnaia and Jackson

(2002), Banerjee et al. (2001), and Kaneko and Wooders (1986) is relevant. If one views

schools as additional agents and ask players to form coalitions, additionally assuming that

coalition with more than one or zero schools will lead to a utility of a negative infinity,

we get precisely the problem of finding a stable coalition. However, as in with Pycia

(2012), our model does not satisfy conditions from the above papers to ensure existence

of a stable matching.

The rest of the paper is organised as follows. Section 2 builds up the model and defines

our solution concept, pairwise stability. Section 3 provides the sufficient condition (no

cycles) for the existence of a pairwise stable matching, while section 4 shows that that

condition can be viewed as necessary: for any graph G with a cycle there exist set of other

parameters (types, school values, etc.), so that in the corresponding economy no stable

matching exists. Section 5 talks about uniquenes/non-uniqueness of a stable matching,

when it exists. Section 6 discusses the role, which our assumptions play in obtaining the

results, and possible generalizations. Finally, section 7 concludes. All proofs are in the

Appendix.
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2. Basic model

2.1. Setting. Let us consider a world with n markets. Each market i has ki different

schools. In any market i, any school ` has capacity qi` ≥ 21 and is associated with utility

vi`. It cannot exceed its capacity for students and would like to take as many students

below capacity as possible. Moreover, schools prefer students with higher ability. Without

loss of generality we number schools in each market by their attractiveness, i.e. we assume

vi1 > vi2 > . . . > viki for all i = 1, . . . , n. Without loss of generality we may also assume

that the best school is located in country 1, that is we assume v1
1 > vi1 for all i = 2, . . . , n.

To simplify the notation, we will also use vi` to denote a school ` in a market i.

Additionally, each market i is populated with mi students of different abilities2. Chan-

ging one’s initial market is costly for the students. The possibility to switch between

markets is governed by a two-sided directed graph G. If {i → j} ∈ G, then it is allowed

to switch from market i to market j, although the switch may be associated with some

costs. If {i→ j} /∈ G, then it means that market j is infeasible to agents born in market

i. That is, either it is too costly for them to attend (even the best allocation in j would

not offset switching costs) or it is just prohibited by some underlying laws.

Each student is characterized by type θ and home market i, and joint distribution of

types across markets is denoted by F (F restricted to market i is Fi). Distribution Fi is

discrete, lies in R+, and has a positive large mass of zero types. We discuss the zero types

assumption in Section 6. Ignoring the zero types, Fi has finite support.

The difference across students in different countries comes from the fact that if a student

from market i wants to change one’s initial market and apply to a school in a different (but

feasible, i.e. such that {i → j} ∈ G) market j, one has to bear additional cost cij ≥ 0,

where cii = 0. This can be viewed as a travelling costs of going to a foreign market (e.g.

additional time it takes every morning to go to a further located school). Alternatively

we can view those costs as psychological losses from being far from one’s family and/or

1We may allow for capacity of one with minor modification to the Algorithm in Theorem 1.
2Most of our results also hold for continuous distributions, so that instead of mi students we will have

mass mi of students. Discreteness is only used in the construction in Theorem 2.
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being surrounded by people from a different background. This is in a sense a mismatch

penalty. There can be a number of other interpretations of costs beyond presented.

Each student has an outside option with 0 utility (i.e. not attend a school). If student

does attend a school, then one’s utility from attending a school is composed of school’s

own effect vj` and a peer effect. Peer effect is described by a peer-effect function p(·),
defined on all real multisets.

Definition. A real multiset is a finite collection of reals, in which we allow the same

number to be repeated arbitrary many times. The order of the elements of the multiset

is irrelevant. Let m[R] denote the family of all real multisets.

Definition. A peer-effect function is a function p : m[R]→ R, such that p(∅) = 0 and

p(·) is increasing and non-negative. By increasing we mean that if θ′ ≥ sup Θ (θ′ ≤ inf Θ),

then p (Θ ∪ {θ′}) ≥ p (Θ) (p (Θ ∪ {θ′}) ≤ p (Θ)), and if θ′ > θ, then p (Θ ∪ {θ′}) ≥
p (Θ ∪ {θ}) for any set Θ of one’s peers.

Finally, utility from attending a school vj` is

uθ,i(v
j
` , peers of θ) = vj` + α · p(peers of θ)− cij,

where the coefficient α ≥ 0 measures the importance of peer effects.

Average quality of one’s peers is the natural example of a peer-effect function. It

satisfies our assumptions, and we will use it quite frequently. Moreover, in some sense it

corresponds to an approach in empirical research where a student’s outcome Y (e.g. test

scores or alcohol use) linearly depends on the average of background characteristic (types

in our case) of one’s peers (see, for example, review article Sacerdote (2011)).

Denote by s(θ, i) the school, where agent (θ, i) goes, and by Θ the set of all peers of

that agent. That is, Θ = {(θ′, j) 6= (θ, i)| s(θ, i) = s(θ′, j)}. Then the average quality of

(θ, i)’s peers is:

p(Θ) =

∑
(θ′,j)∈Θ

θ′∑
(θ′,j)∈Θ

1
.
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Two other common examples of a peer effect function would be the best and the worst

types: p(Θ) = sup Θ and p(Θ) = inf Θ. Similarly, we can do an average of, say, two best

or two worst students.

2.2. Stable matching. We are interested in pairwise stable matchings, so that no

student-school pair can profitably deviate and match together.

Definition. A matching is a mapping µ from set of all students into set of all schools,

such that for all i, `,

|µ−1(vi`)| ≤ qi`,

where |M | stays for the number of elements in the set M . That is, schools cannot accept

above their capacities.

Definition. A matching µ is individually rational if for any agent (θ, i),

uθ,i(µ(θ, i), µ−1 (µ(θ, i)) \ {(θ, i)}) ≥ 0.

That is, no one prefers being unmatched to one’s assignment under µ.

Definition. A matching µ is feasible if µ(θ, i) = vj` implies that {i, j} ∈ G.

Namely, feasibility implies that each agent is matched to a school in a market, where

one is allowed to switch.

Define a set of peers, which one gets after a deviation to a school vj` under a matching

µ as

Θ(vj` , µ) =

 µ−1(vj`), |µ−1(vj`)| < qj` ;

µ−1(vj`) \ {min(µ−1(vj`))}, |µ−1(vj`)| = qj` .

Thus, if the school vj` is full, and an agent θ deviates to that school, θ pushes away the

lowest type.

Definition. A feasible matching µ is stable if it is individually rational and for any

agent (θ, i),

if uθ,i(µ(θ, i), µ−1 (µ(θ, i)) \ {(θ, i)}) < vj` + α · p(Θ(vj` , µ))− cij, then

|µ−1(vj`)| = qj` and θ ≤ min(µ−1(vj`)).
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The above means that for each student, all more preferred schools are filled up to

capacity by higher types.

Alternatively we can think of a decentralized game, where each student first chooses a

market and then applies to a school in that market. Then schools accept top students up

to capacity.

In the following two sections we are going to first propose a sufficient condition on

the graph of available market switches, G, which guarantees the existence of a stable

matching. Then we will show that our condition is in a sense necessary, that is if G has

cycles, then it is possible to find types, costs, and school values and capacities, such that

no stable matching would exist.

3. Sufficiency

In this section we present a sufficient condition, which guarantees the existence of

a stable matching. Under our condition, there exists an algorithm, which produces a

stable matching. Some properties of that algorithm and associated stable outcome are

investigated below. We also compare our sufficiency condition with the pairwise alignment

condition of Pycia (2012).

3.1. Construction of a stable matching. The example, presented in the Introduction,

illustrates that non-existence of stable matchings may come from the possibility of agents

cyclically switching their locations: an agent X, born in market i, moves to market j and

pushes an agent Y away from a school in his home market j, so that Y needs to switch

market. The agent Y switches the market from j to i, so that market i becomes better,

and X prefers to stay at home and not pay extra travelling costs. When X moves home,

Y can go back, as his previous seat is now empty. Y returns to j and we are back to the

start of the cycle. This is summarised in the Figure 3.

Similar pattern may arise with multiple market switch. E.g., if someone moves from

market i1 to market i2 and pushed other agent away, that other one moves from i2 to

i3, and so on until an agent is pushed from il and moves to i1. That makes i1 attractive

again, so that the first agent returns, leaving an empty seat at i2. Then the second agent

returns and so on.



STABILITY IN MATCHING MARKETS WITH PEER EFFECTS 13

X pushes Y away

mkt i mkt j

Y moves to i, so that X returns i;
Y moves back to his seat at j.

Figure 3. Cycle of length 2.

Moreover, even non-directed cycles like i1 → i2 → i3, i1 → i3 may cause a problem: an

agent from i1 may go to i3, which is the most desired place for an agent from i2, so that

that agent from i2 now cannot go to i3 (it is full). However, when that agent is at i2,

the agent from i1 may decide to stay with him at i2, thus, leaving the seat at i3 vacant.

Thus, the agent from i2 will take it and leave the agent from i1 alone at i2. Therefore, the

agent from i1 will switch to i3 and push the other agent bach to i2, and we get a cyclical

pattern, which prohibits the existence of a stable matching.

The following theorem proves that as long as no cycles exist in the switching graph G,

a stable matching exists.

Definition. An oriented tree is a directed graph whose underlying undirected graph

is a tree.

Definition. An oriented forest is a disjoint union of finite number of oriented trees.

Theorem 1. Suppose that the switching graph G is an arbitrary oriented forest. Then a

stable matching exists. Such matching can be found by a finite iterative algorithm.

In each step of the algorithm we will be trying to fix the best school in some market,

say i, with the highest types among those, who are allowed to switch to i. That is, we will

be trying to fill vi1 with the best students from Fi
⋃

{j→i}∈G
Fj up to capacity. One of such

allocations will be fixed and we will restart the procedure. It turns out, we only need to

look at the best type in each market. Lower types will agree to follow the highest one.

(See Appendix for the proof.)

The matching, which we get in the algorithm from Theorem 1, has an assortative

pattern: inside each market, agents are allocated to schools in an assortative manner.
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That is, the better is school in market i, the higher types have students assigned to that

school. Formally,

∀i, `, `′ s.t. ` < `′ if θ is matched to vi` and θ′ is matched to vi`′ , then θ ≥ θ′.

Such construction serves as an instrument to make deviations inside a given market un-

profitable.

Note also that for a given oriented tree, at each round of the algorithm we take at most

n steps (the worst is if we go from the root to a leaf covering all other n − 2 markets).

Then at each round we fill one school (including an outside option). Thus, in total we

will need at most n(k1 + 1 + k2 + 1 + . . .+ kn + 1) = n

(
n+

n∑
i=1

ki

)
units of time.

3.2. Comparison with Pycia (2012). The questions in Pycia (2012) are closely related

to ours. The author investigates necessary and sufficient conditions for the existence of a

group stable matching in the matching model with peer effects. His crucial condition is

pairwise alinement of preferences. This means that if we fix two agents and consider any

two assignments, under both of which those agents share the same coalition, then they

must agree on which assignment is better. This requirement and ours are non-nested.

When there is only one market, n = 1, our algorithm leads to the assortative matching.

In that case agents agree on which school is the best, and, thus, if we match the best

students with the best school, there will be no reason to unilaterally deviate from such

assignment. However, the case of only one market still can violate pairwise alinement

condition for group stability of Pycia (2012).

The violation comes from the fact that different agents in the same school can get

different peer effects, as they have different set of peers (agent a is in the set of peers

of agent b, but not in the set of peers of oneself). For example, let α = 1 and “average

peer” is a peer-effect function. Suppose we have two schools with values 10 and 9.5. The

first school has capacity 3, while the second has capacity 2. We consider a = 5, b = 0,

and fill the remaining seat at the first school with additional zero. Then ua(10, {0, 0}) =

10 > 9.5 = ua(9.5, {0}), while ub(10, {5, 0}) = 12.5 < 14.5 = ub(9.5, {5}). Thus, a and b

disagree on which assignment is the best, and their preferences are not pairwise aligned.
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Group stability is a more demanding condition than the pairwise stability. Yet, our

algorithm applied to schools v1
1, . . . , v

1
k1

filled with the top students instead of v1
1, . . . , v

n
1

will produce a group stable outcome for the case n = 1.

4. Necessity

In this section we show that if a directed graph G of available market switches has

cycles (not necessary directed), then there exists a set of parameters, for which there is no

stable matching. The following theorem, which is proved in the Appendix, summarizes

the result.

Theorem 2. Assume that p({x}) is strictly increasing but grows slower than exponentially

as a function of x ∈ R+. If, ignoring edge directions, G has a cycle, then there exist values

of {vik}i,k, {cij}i,j, {Fi}i such that the resulting economy has no stable matching.

Remark. We need to assume that peer-effect function is not constant. Otherwise agents

do not care about their peers: they get the same constant utility from any set of peers. So

we are left with a model without peer effects, and the classical Gale-Shapley algorithm will

produce a pairwise stable matching. The assumption that p({x}) is strictly increasing as

a function of x ∈ R+ helps as to get rid of the above.

The construction in the proof is in the spirit of the Illustrative Example from the

Introduction. We put the highest type M and the lowest type, 0, in the same originating

market. We choose costs such that the highest type would prefer to stay at some market,

say i (either home or foreign market), with non-zero type, but will deviate to a different

market, say j, if one has to share a seat with 0 at market i while j guarantees a non-zero

peer. Then if M goes to a market j, it eventually leads to some non-zero type going to

market i, so that M can go to his best choice, i. Similarly, if M goes to market i, then

no positive types join him there, so that he is left with 0 peer, and deviates to market j.

5. Uniqueness/non-uniqueness of a stable matching

In the previous sections we have seen that when G has no cycles, stable matchings exist.

However, we have not explored whether there is only one stable matchings or there are
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many of them. In this section we will answer the question of uniqueness/non-uniqueness

of stable matchings for the two boundary cases: “no peer effects” (α = 0) and “only peer

effects” (α large enough).

We will show that when there are no peer effects, a stable matching can be found by

applying Gale-Shapley algorithm (Gale and Shapley (1962)), and it is generically unique3.

In contrast, when peer effects dominate, so that only one’s classmates matter we get a

multiplicity of equilibria.

5.1. No peer effects. We can calculate the equilibrium by iterative matching of the

best schools and the most high-skilled students (that is, we apply student-proposing Gale-

Shapley algorithm). When α = 0 we get a special case of a model of Gale and Shapley

(1962), where prohibition to go to a market can be interpreted as having a large negative

utility from schools in that market. Thus, we are guaranteed the existence of a stable

matching.

Theorem 3. If α = 0, then for any graph structure G there exists a stable matching in

the above model.

We can have more than one stable matching in two cases. First, if there are two or

more agents of the same types θ (possibly from different originating markets), so that a

school does not know whom to accept for the last available seat. Second, if some agent is

indifferent between two schools, so that this agent does not have exactly one best option

to which to point in the above construction. Thus, generically we get a unique stable

matching, and may lose uniqueness if vi`− cp,i = vjk − cp,j for some p, i, j, `, k or if we have

more than one agent with a type θ.

The intuition for uniqueness is that if we look at the most high-skilled student among

those, who play different strategy compared to the above equilibrium, then this student is

going to a worse school. That happens because in the above equilibrium one is guaranteed

the best choice among those which are not occupied by higher types, so deviating to

3Assuming there is no indifferences of the form vi`− cp,i = vjk − cp,j and there are no two agents of the

same type.
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the strategy from the above equilibrium will be beneficial (we assume no indifferences).

Theorem 4 summarizes uniqueness results and is proved in the Appendix.

Theorem 4. If α = 0, then for any graph structure G the stable outcome of the above

model is generically unique.

5.2. Only peer effects. The next theorem illustrates that when α becomes large enough,

so that peer effects dominate, and v’s and c’s become unimportant, the situation becomes

a coordination problem. High types would like to coordinate and stay together, and they

have different possibilities on which to coordinate. Such different possibilities give us

multiple equilibria. The idea is instead of trying to put the best types in schools with the

highest values we can try to put them, for example, in the schools with lowest values, and

they still wont deviate, as they are getting the highest possible peer effects.

Theorem 5. If α is large enough, G has no cycles, and at least one market has at least

2 schools, then there are multiple stable matchings.

6. Role of the assumptions and extensions

In this section we examine what role are various assumptions of the model playing, how

important they are, and how generalizable they are. First let us talk about the assumption

on Fi. We impose that it has a positive mass on 0. We use it to get rid of only partially

filled schools (completely empty schools do not cause a problem). The following example

illustrates why a partially filled school may cause a problem for the existence of a stable

matching even when a switching graph has no cycles.

Example 1. (“empty seats”) Suppose there are 2 markets, and 1 school per market,

q1
1 = 2, v1

1 = 1, q2
1 = 3, v2

1 = 1, F1 = {1, 10}, F2 = {11}, α = 1, c12 = 7, G = {1, 2}.
Thus, it is now impossible to move from market 2 to market 1, and we do not have cycles.

However, there still does not exist a stable matching. Capacities are such that agents can

always be admitted to their home school, thus, no one will choose outside option (1 > 0).

Possible matchings are

• If (1, 10)→ v1
1, then 10 deviates to v2

1:

u10(1) = 1 + 1 = 2 < 1 + 11− 7 = 5 = u10(2);
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• If 1→ v1
1, (10, 11)→ v2

1, then 1 deviates to v2
1:

u1(1) = 1 < 1 + 10.5− 7 = 4.5 = u1(2);

• If (1, 10, 11)→ v2
1, then 10 deviates to v1

1:

u10(1) = 1 > 1 + 6− 7 = 0 = u10(2);

Thus, there are no stable matchings in the above economy.

Zero types help to get rid of non-existence, because then if an agent switches to some

school, the peer effect from that school can only go up (someone with a lower type is

pushed away). In contrast, with empty seats low types can switch and decrease the peer

effect. In the Example 1 this happened when 1 switched to the second market.

Example 1 illustrates, that if there is a partially filled school in a market i and it is

possible to switch from market j to i, then the existence of a stable matching may fail.

However, we do not need to impose zero types in the markets, to which no one can switch

(i.e. @j s.t. {j → i} ∈ G). This is because in the algorithm in Theorem 1, when we

compare different allocations and choose the most preferred one for the highest types, we

need to know that if one does not want to go to some school ` in market j, then one

will not want to go to that school later (e.g. we cannot have a situation where 10 prefers

to stay at home with 0 more than being abroad with 0 and 11, but after we fix such

assignment, 10 wants to join 11 assuming 0 remains at home). If later the school will

have empty seats, others may want to join (as 10 joins 11). However, if no one can switch

to market j, by monotonicity inside markets of the algorithm, only low types will stay at

the partially filled school `, so that higher types do not have incentive to go back. When

higher types were choosing whether to stay at home or not, they were looking at even

better peer-set at home, and still decided to leave.

The second crucial assumption is that agents inside any market have the same preferen-

ces, and agents from different markets i and j still agree on the relative order of schools

in any given market. The former guarantees us that lower types do not deviate from an

assignment as long as higher types of the same origin also stay. The latter guarantees that

highest types from different origins agree on the best school inside any market and, thus,

if placed in that school, do not wish to deviate to a different school inside that market.
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It is possible to relax the assumption of identical preferences of agents from the same

origin. We can assume that utility of an agent θ who was born in a market i and attends

a school vj` with peers Θ is:

vj` + α · p(Θ)− cij − c(θ, i),

where for all i, j, `,Θ, θ > θ′ if vj` +α · p(Θ∪ θ′)− cij − c(θ, i) ≥ 0, then vj` +α · p(Θ∪ θ)−
cij − c(θ′, i) ≥ 0. This can be satisfied if, for example, c(θ, i) is an increasing function of

θ, so that higher types also have higher costs. Alternatively, for discrete economy we will

have finite set of equations for c(θ, i). Such generalization allows different agents born

in the same market to have different preferences. Yet, the relative utility between two

different schools still remains the same. That means, that the proof of Theorem 1 is still

valid. (We only need to add outside option as one more alternative to compare for each

of the highest type, as now for large enough value of c(θ, i) a high type may have negative

utility even from the best school and, thus, prefer to stay unmatched.)

Finally let us analyze the switching graph G. Sometimes, as in the examples with

religious or district schools we have it as given. There may be cases, when there are no

explicit restrictions on who can apply to a given set of schools. Yet, if for some group

of students, i, the utility associated with another group of schools, j, even in the best

possible matching (best school plus best peers) is less than switching costs (e.g. exams

are too hard so that it is not worth an effort), then we can deduce that {i → j} /∈ G.

Such method allows us to construct a graph. Of course, if we want the graph not to have

cycles, there should be a large set of prohibitively high costs.

7. Conclusion

When we think about many real life examples (e.g. school/college/internship/etc. ma-

tchings), peer effects should be a necessary component of agents preferences. Thus, it

seems crucial to be able to identify conditions for existence of a stable matching in the

presence of peer effects. Moreover, it is worth being able to explicitly construct a stable

matching.

Current paper provides an algorithm, which can be used to construct a (pairwise) stable

matching in the presence of peer effects. The sufficient (and in some sense necessary for
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the existence of a stable matching) condition for the algorithm to work is that the graph,

which governs the ability of agents to apply to different schools, does not have cycles (nor

directed, nor undirected). The algorithm uses school values and capacities, agents types

and their costs associated with applying to different schools, and a peer effect function as

inputs. The algorithm takes a finite amount of time, which is polynomial in the number

of schools. Thus, theoretically it is possible for a central planner to implement such

mechanism if one has enough information regarding the underlying economy.

In case of a decentralized markets, we may view our stable matching as an outcome

of a decentralized game between schools and students. As is common for an equilibrium

notions, we may not get uniqueness. In particular, we do not have a unique stable

matching when a peer effect component is very important (i.e. α is large enough). When

α is large enough, our model resembles a coordination problem, which is known to have

multiple equilibria. In contract, when peer effects are negligible (i.e. α ≈ 0) we go back to

a classical many-to-one matching problem with identical preferences on the schools side,

which has a unique solution.

Our algorithm and existence condition rely on a structure of a switching graph. It is

still an open question whether we can get some additional conditions, if we do not have

the graph as exogenously given, but start from costs per se. Obviously, we know that if

a cost of going from i to j is more than utility from the best outcome in j, then we can

erase an edge {i→ j}. Yet, it may be possible to say something more for an intermediate

values of costs based on their relative values when compared to feasible utilities even in

the presence of cycles. Which intermediate values would guarantee the existence of a

stable matching in the presence of cycles? That issue is left for further research.
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8. Appendix

Proof of Theorem 1.

Proof. Let us provide an iterative construction, which leads to a stable matching in a

finite time. Then we will show, why it works. We work separately with each tree from

the forest. Fix any tree from the forest.

Choose an arbitrary node to be the root of the tree and denote it as m0. Denote its

children as m1,1, . . .m1,z1 , where z1 is the number of children of m0. Similarly, denote all

“grand-children” of m0 (i.e. children of m1,1, . . .m1,z1) as m2,1, . . . ,m2,z2 and so on. That

notation is illustrated in the Figure 4.

Now consider the following procedure, where the outside option can be viewed as the

worst school with fixed zero utility. Suppose that the longest path from the root to a

terminal node (leaf) has K edges.

Algorithm:

Step 0: Put the best students from all the markets, who can be at m0, up to capacity

to the best school at m0 (school vm0
1 ). That is, we work with market m0 and the
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m0

m1,1

m2,1

m3,1

m1,2

m2,2m2,3
m2,4

m3,2 m3,3

Figure 4. Directed tree: notation.

subset of markets m1,1, . . . ,m1,z1 , which have towards the root direction of the

edge from them to m0.

Denote by θ̄k,z the best student from mk,z. For each θ̄1,z, who gets a seat at vm0
1 ,

ask what school he/she prefers the most among vm0
1 , v

m1,z

1 , and v
m2,z′
1 for all m2,z′

to which one can go from m1,z. That is, whether one prefers the above allocation

at vm0
1 , or allocation, where we put top students from m1,z and its eligible children

markets to the best school at m1,z, or allocation, where we put top students from

m1,z along with all other eligible markets to m1,z’s child market m2,z′ . Similarly

ask θ̄0 (if gets a seat at vm0
1 ) what school he/she prefers the most among vm0

1 and

v
m1,z′′
1 for all markets m1,z′′ where one can move from m0.

In the Figure 4 that would mean asking θ̄0 and θ̄1,2. We ask θ̄0 whether one

prefers seating at m0 with students from m0 and m1,2 or seating at m1,1 with

students from m0, m1,1, and m2,1. We ask θ̄1,2 whether one prefers seating at m0

with students from m0 and m1,2, or seating at m1,2 with students from m1,2 and

m2,4, or seating at m2,2 with students from m1,2, and m2,2, or seating at m2,3 with

students from m1,2, and m2,3.

• If θ̄0 does not get a seat at some v
m1,z′′
1 , move to Step 1;

• If some of such θ̄1,z does not get a seat at v
m1,z

1 , move to Step 1;

• If some of such θ̄1,z does not get a seat at v
m2,z′
1 , move to Step 2;

• If θ̄0 gets a seat everywhere and prefers some v
m1,z′′
1 , move to Step 1;

• If some of such θ̄1,z gets a seat everywhere and prefers v
m1,z

1 , move to Step 1;

• If some of such θ̄1,z gets a seat everywhere and prefers v
m2,z′
1 , move to Step 2;
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• Otherwise fix the above assignment at vm0
1 . Delete that school and its stu-

dents. Go back to Step 0 with the new economy.

Step 1: Consider the market identified at Step 0. Denote it m1,z. Put the best

students from market m1,z and its eligible to travel to m1,z children and parent

markets to the best school at m1,z up to capacity. For each θ̄2,z′ , who gets a seat

at v
m1,z

1 , ask what school he/she prefers the most among v
m1,z

1 , v
m2,z′
1 , and v

m3,z′′
1

for all m3,z′′ to which one can go from m2,z′ . Similarly ask θ̄1,z (if gets a seat at

v
m1,z

1 ) what school he/she prefers the most among v
m1,z

1 and v
m2,z′′
1 for all markets

m2,z′′ where one can move from m1,z.

Note that we do not need to ask θ̄0 even if one gets a seat at v
m1,z

1 . If θ̄0 gets

a seat at v
m1,z

1 , and we get that market from previous step, then it was θ̄0’s first

choice. Similarly, we do not need to ask θ̄1,z about m0. If it is possible to travel

from m1,z to m0 and we get m1,z from Step 1, it means either θ̄1,z does not get a

seat at v
m1,z

1 , so we do not ask θ̄1,z at all, or it is θ̄1,z’s first choice, thus, it is better

than m0.

• If θ̄1,z does not get a seat at some v
m2,z′′
1 , move to Step 2;

• If some of such θ̄2,z′ does not get a seat at v
m2,z′
1 , move to Step 2;

• If some of such θ̄2,z′ does not get a seat at v
m3,z∗
1 , move to Step 3;

• If θ̄1,z gets a seat everywhere and prefers some v
m2,z′′
1 , move to Step 2;

• If some of such θ̄2,z′ gets a seat everywhere and prefers v
m2,z′
1 , move to Step 2;

• If some of such θ̄2,z′ gets a seat everywhere and prefers v
m3,z∗
1 , move to Step

3;

• Otherwise fix the above assignment at v
m1,z

1 . Delete that school and its stu-

dents. Go back to Step 0 with the new economy.

. . .

Step k: Do the same thing as in the previous steps, but with the best school at

market mk,z, v
mk,z

1 . It is the market, which we identified in previous steps (either

at Step k − 1 or at Step k − 2). Put the best students from market mk,z and its

eligible to travel to mk,z children and parent markets to the best school at mk,z

up to capacity. For each θ̄k+1,z′ , who gets a seat at v
mk,z

1 , ask what school he/she
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prefers the most among v
mk,z

1 , v
mk+1,z′
1 , and v

mk+2,z′′
1 for all mk+2,z′′ to which one

can go from mk+1,z′ . Similarly ask θ̄k,z (if gets a seat at v
mk,z

1 ) what school he/she

prefers the most among v
mk,z

1 and v
mk+1,z′′
1 for all markets mk+1,z′′ where one can

move from mk,z.

As before, we do not need to ask the parent of θ̄k,z even if one gets a seat at

v
mk,z

1 . If the parent gets a seat at v
mk,z

1 , and we get market mk,z from Step k − 1

or k− 2, then v
mk,z

1 was the parent’s first choice. Similarly, we do not need to ask

θ̄k,z about its parental market. If it is possible to travel from m1,z to the parental

market and we get mk,z from previous steps, then it must be from Step k−1 (with

such edge direction mk,z does not participate in Step k−2). Thus, either θ̄k,z does

not get a seat at v
mk,z

1 , so we do not ask θ̄k,z at all, or it is θ̄k,z’s first choice, thus,

it is better than the parental market.

• If θ̄k,z does not get a seat at some v
mk+1,z′′
1 , move to Step k + 1;

• If some of such θ̄k+1,z′ does not get a seat at v
mk+1,z′
1 , move to Step k + 1;

• If some of such θ̄k+1,z′ does not get a seat at v
mk+2,z∗
1 , move to Step k + 2;

• If θ̄k,z gets a seat everywhere and prefers some v
mk+1,z′′
1 , move to Step k + 1;

• If some of such θ̄k+1,z′ gets a seat everywhere and prefers v
mk+1,z′
1 , move to

Step k + 1;

• If some of such θ̄k+1,z′ gets a seat everywhere and prefers v
mk+2,z∗
1 , move to

Step k + 2;

• Otherwise fix the above assignment at v
mk,z

1 . Delete that school and its stu-

dents. Go back to Step 0 with the new economy.

. . .

Step K: We must stop if we have reached a node mK,z, as by definition it is a

terminal node. No other markets can get a seat at v
mK,z

1 , thus all bullets except

the last one in the above steps are not satisfied, and we are left with the last bullet

point, i.e. we finalize the assignment.

Let us explain why the algorithm, presented above, leads to a stable matching. Note

that in each step we are trying to get the best possible scenario for the highest type in

some market. Thus, that type does not want to deviate: schools in a given market by
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construction have decreasing peer effect and value, thus, there is no reason to deviate to

a school with a larger number in the same market. Here we are using the properties of a

peer effect function, which implies that if peers in one set are weakly larger than in the

other, then the former set has weakly higher value of a peer effect function. Moreover,

there is no reason to deviate to the other possible market, as in the algorithm we were

choosing the best market.

We also need to show that agents, which are assigned to some school during some step

in the algorithm, and were not the highest types in that step, still do not want to deviate.

Suppose we implement an assignment at Step k, that is, we fill a school at some market

mk,z. Thus, if θ̄k,z, its parental market θ̄k−1,z′ , and any of its children markets θ̄k+1,z′′ get

a seat at v
mk,z

1 , then it is their desired allocation. (They get a seat in all of the markets,

where they are eligible to travel, but choose mk,z.) Let us look at the second highest type

from mk,z, θ
′. Staying in the same school as θ̄k,z, θ

′ gets higher utility, as its set of peers

is better:

peers(θ′) = peers(θ̄k,z) ∪ {θ̄k,z} \ {θ′}.

Moreover, deviating to a different market leads to a weakly lower utility than θ̄k,z was

getting, while we were doing a comparison at Step k (or k− 1 or k− 2). Deviating to the

best school at the other market means sharing weakly worse set of peers than θ̄k,z had:

θ̄k,z is no longer there and is replaced by someone worse. If θ′ was at that school with θ̄k,z,

then even by someone weakly worse than θ′ and the best possible set of peers is peers(θ̄k,z)

from that school at the moment of comparison at Step k (or k− 1 or k− 2). If θ′ was not

at that school with θ̄k,z, then he takes θ̄k,z’s place and, again, gets peers no better than

θ̄k,z had. Thus, deviating to a different market leads to a weakly smaller utility than θ̄k,z

had at that market, while staying with θ̄k,z leads to a weakly higher utility than θ̄k,z has.

Thus, second highest type from mk,z does not deviate. Similarly, other agents from mk,z,

mk−1,z′ , and mk+1,z′′ do not deviate. �

Proof of Theorem 2.

Proof. Suppose G has a cycle. Choose the smallest cycle of G. Without loss of generality

let us assume that it involves markets 1, . . . , `.
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First, let us fix ki = 1, qi1 = 2 for all markets i. That is, there is only one school

per market with capacity 2. Now assume that for i > `, Fi = {Mi,Mi}, where Mi is

an increasing sequence of i. That is, the higher is the number of a market, the better

student occupy it. Moreover, for each i > ` choose Mi high enough (agents in markets

1, . . . , ` will have lower types). Additionally assume that for i > `, vi1 is an increasing

sequence of i, and if i > j > `, then vi1 > vj1 + αp(Mn). Thus, it is better to be alone at

school vi than go to worse school vj with the best possible peer. Schools and students in

the remaining markets 1, . . . , ` will be worse. Therefore, in any stable matching we must

have that agents from market n, {Mn,Mn} stay home and attend vn1 . Then agents from

market n − 1 also stay home and attend vn−1
1 and so on until market i + 1. We are left

with markets 1, . . . , `, which now represent a separate problem, independent of markets

`+ 1, . . . , n.

Case I (directed cycle): First suppose that the cycle is directed, so that (without

loss of generality) it has the following structure: 1 → 2 → · · · → `. That is, if

there are links i1 → i2 → i3 and i1 → i3, then we do not include i2 in our smallest

cycle.

Choose M large enough, but smaller than M`+1 and consider the following

distributions: F1 = {M, 0}, F2 = {M−1,M−3}, . . . , F` = {M−`+1,M−`−1}.
That is in any market i there is one type greater than any one in Fi+1 and one

type which lies between types in Fi+1.4 Next set v1 = · · · = v` < v`+1, and assume

cii+1 < v1 for all i = 1, . . . , `. Thus, it is always better to go to some school than

take the outside option. Moreover, choose costs such that

α(p(M)− p(M − `− 1)) < cii+1 < α(p(M − `− 1)− p(0)).5

We are going to show that in any stable matching all agents must be matched

to some school.

First note, that two agents from market i cannot push away both agents from

market i+1 (type M−i from market i+1 is higher than M−i−1 from market i, so

4For ease of notation we avoid writing imod ` and assume that i = ` + 1 stays for market 1.

5This can be done as p(·) grows slower than exponentially.
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M−i will be able to stay at home). Thus, if both agents from market i are allocated

to vi+1
1 , then agent M − i from market i + 1 must be assigned to vi+2

1 (otherwise

he deviates and pushes M − i−1 out of vi+1
1 ). However, assuming cost cjj+1 is not

too low for all j = 1, . . . , `, we get vi+2
1 +αp(M)− ci+1,i+2 < vi+1

1 +αp(M − i+ 1)

or equivalently ci+1,i+2 > α(p(M) − p(M − i + 1)). Thus, agent M − i is better

deviating and staying at home. Therefore, it cannot be a part of a stable matching,

and no 2 agents from market i are assigned to market i+ 1.

Because 2 agents from market i cannot be assigned to market i+1, any positive

type goes to some school. Suppose some positive type from market i takes outside

option. By construction, it is always better to go to some school. If unassigned,

the highest type from market i will deviate and go to vi1, as he is better than

the other type from market i and better than the lower type from market i − 1.

If the lower type is unassigned, he will not be able to deviate to vi1 only if it is

occupied by the highest type from market i and the highest type from market

i − 1. However, in that case the lower type, M − i − 1, may go to vi+1
1 , as he is

better than one of the citizens of market i+ 1. Note here, that the last argument

does not work for type 0, as he is smaller than everyone. Therefore, any positive

type must be assigned to some school in a stable matching.

Now let us show that in fact 0 must also be assigned to some school. Suppose

there is a stable matching, where 0 is unassigned. If there is an empty seat at

v1
1, then 0 will deviate and take that seat. Thus, both seats at v1

1 must be taken.

They can be taken by agents M − `− 1,M − `+ 1 from market ` and by agent M

from market 1. If they are taken by agents from market `, then M will deviate:

c12 > α(p(M − 1)− p(M − ` + 1)). Thus, it must be taken by M and one of the

agents from market `. Yet, in that case the other agent from market ` stays at

home, so that for the former one it is better not to pay c`1 and stay at home (the

difference between peer types is not large comparing to travelling costs). Thus, in

a stable matching 0 must also be assigned to some school, and all agents must go

to some school.
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If everyone goes to some school, we can either have autarky allocation, or move

one agent from market i to market i + 1 for all i (from previous arguments we

know that we cannot move two agents from market i to i + 1). Suppose we have

autarky allocation. In that case M will deviate to market 2 to get a way better

peer: c12 < α(p(M − 3) − p(0)). Therefore, we are left with the second case. In

that case either 0 goes to v2
1 along with one of the market 2’s agents or 0 stays at

home and M moves to market 2. If 0 moves, than the agent from market 2 who is

assigned to v3
1 will deviate and not pay costs: c23 > α(p(M − 2)− p(M − 3)). If 0

stays at home, than he is joined by one of the agents from market `. Yet than M

will deviate home if c12 > α(p(M − 1) − p(M − ` − 1)). Thus, there is no stable

matching for the constructed configuration.

Case II (undirected cycle): Now suppose that the above cycle is undirected.

There are two possible subcases. Either there is only one vertex with both edges

going away from it or at least two of them. Such type of vertex is shown in the

Figure 5. Note that the case with non such vertices corresponds to a directed

cycle.

Figure 5. Vertex with both edges going away from it.

(1) Suppose that there is only one vertex with both edges going away from it.

Then the cycle is shown in the Figure 66. That is, there are two directed

pathes from A to B: one via Ai’s and the other via Bj’s. Note that a non-

directed cycle must have at least three vertices. Those necessary three vertices

are {A,B,B1}.
Now let us define the market structure. Choose M large enough, but smaller

than Ml+1 and consider the following distributions:

FA := {θA, θA} = {M − nA − 1,M − nA − 1},
6For convenience we have changed the names of markets i1, . . . , i`.
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A B

A1 A2 AnA

BnBBnB−1 B1

Figure 6. Case II.1.

FAi
:= {θAi

, θAi
} = {M − (nA + 1− i),M − (nA + 1− i)},

FB = {0, 0}, FB1 := {θB1 , 0} = {M, 0},

FBi
:= {θBi

, θBi
} = {M − nA − 2− (nB − i),M − nA − 2− (nB − i)}, i 6= 1.

That is, the highest type lives in B1. The next highest types are in AnA
, and

with the decrease in A’s subscript, types decline, until we reach the last one,

A1. Among the remaining markets, the highest types are in A, followed by

BnB
. With the decrease in B’s subscript, types decline until we reach B2.

Now let us define values of schools:

vA1 = 0, vB1
1 = . . . = v

BnB
1 ≡ v,

vA1
1 = v + αp(M) + 1, vA2

1 = vA1
1 + αp(M) + 1 = v + 2αp(M) + 2, . . . ,

vAi
1 = v

Ai−1

1 + αp(M) + 1 = v + iαp(M) + i, . . . ,

vB1 = v
AnA
1 + αp(M) + 1 = v + (nA + 1)αp(M) + nA + 1.

Thus, in the markets A1, . . . , AnA
, B values are highest and they are an in-

creasing sequence.

Assume all switching costs to be smaller than v, so that it is always better to

be assigned to a foreign school than stay unassigned. Moreover, choose costs

such that

(1) v
AnA
1 + αp(M) < vB1 − cAnA

B + αp(0)⇔ cAnA
B < 1 + αp(0).
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(2) vAi
1 + αp(M) < v

Ai+1

1 − cAiAi+1
+ αp(0)⇔ cAiAi+1

< 1 + αp(0), i < nA.

 vB1
1 + αp(0) < vB1 + αp(θAnA

)− cB1B,

vB1
1 + αp(θB2) < vB1 + αp(θAnA

)− cB1B

⇔

 cB1B < (nA + 1)αp(M) + nA + 1 + α(p(θAnA
)− p(0)),

cB1B > (nA + 1)αp(M) + nA + 1 + α(p(θAnA
)− p(θB2)).

(3)

Moreover, choose cAA1 = cABnB
< v, so that agent θA prefers A1 over BnB

(and both over A). This is because vA1
1 + αp(0) = v + αp(M) + 1 + αp(0) >

v + αp(M) = v
BnB
1 + αp(M). Additionally choose cBiBi−1

, i > 1 such that

α(p(θBi
)− p(0) < cBiBi−1

< v

⇔ α(p(M − nA − 2− (nB − i))− p(0) < cBiBi−1
< v7.

(4)

Eq. (1) guarantees that at least one agent from AnA
switches to B. Whether

the second agent switches depends on the behavior of agent with highest

possible type, M , from market B1. Eq. (3) guarantees that θB1 prefers to

switch to B and enjoy the peer effect from θAnA
instead of staying with zero

type at home. However, θB1 wont switch to B if θB2 joins him at B1. Eq. (4)

guarantees that all agents from markets Bi, i > 1 will stay at home even with

zero type of peer.

Suppose first that we have a stable matching where agent θB1 = M from B1

goes to B. Then only one agent can switch from AnA
. The second agent stays

at AnA
. By Eq. (2), we know that one agent switches from AnA−1 to AnA

,

then one agent switches from AnA−2 to AnA−1 and so on, until A1. Moreover,

as agents in A prefer A1 over BnB
, one agent from A will switch to A1. The

second one is forced to go to BnB
(it is better than staying at A). Thus one of

agents from BnB
is pushed away. That agent moves to BnB−1, as it is better

7Existence of such cBiBi−1 can be guaranteed by choosing v high enough.
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to be assigned than unassigned. Similarly, we end up with agent θB2 , who is

pushed to B1. Thus, by Eq. (3), type θB1 deviates and moves back to B1.

Now suppose that we have a stable matching where agent θB1 = M from B1

does not go to B and stays at home. Thus, by Eq. (1) both agents from

AnA
switch to B. Similarly both agents from AnA−1 switch to AnA

and so on.

Finally, both agents from A switch to A1. By Eq. (3), type θB1 will deviate

to B, if his peer is zero type. Therefore, he must be with θB2 . However, as no

one from market A goes to BnB
both agents from BnB

are not pushed away

from home. Thus, by Eq. (4), they stay at BnB
. Similarly, by Eq. (4) all

agents θBi
, i > 1 stay at home. Thus, θB2 cannot be at B1 with θB1 , and

we get a contradiction. Therefore, no stable matching exists for the above

economy.

(2) Suppose that there are at least two vertices with both edges going away from

them. Then the cycle is shown in the Figure 78. That is, nodes with names

A2k−1 have both edges pointing away from them, nodes with names A2k have

both edges pointing towards them, nodes with names B2k−1
i have edges both

in the direction of A2k (first towards then away), and nodes with names B2k
i

have edges both in the direction of A2k (first away then towards).

Now let us define the market structure. Choose M large enough, so that 2p(M−
K) > p(M)9, but smaller than Ml+1 and consider the following distributions:

FA1 := {θA1 , 0} = {M, 0}, FA2l
= {0, 0} ∀l,

FA2l+1
:= {θA2l+1

, θA2l+1
} = {M − l,M − l}, l > 0

FB2l+1
i

:= {θB2l+1
i

, θB2l+1
i
} =

{
θA2l+1

− i

1 + n2l+1

, θA2l+1
− i

1 + n2l+1

}
=

{
M − l − i

1 + n2l+1

,M − l − i

1 + n2l+1

}
,

8For convenience we have changed the names of markets i1, . . . , i`.

9This can be done as p(·) grows slower than exponentially.
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A1

B1
1

B1
2

B1
n1

A2 B2
1

A2K
B2K

n2K B2K−1
n2K−1

A3 B3
1

A4

Figure 7. Case II.2.

FB2l
i

:= {θB2l
i
, θB2l

i
} =

{
θA2l+1

+
1 + n2l − i

(1 + n2l)(1 + n2l−1)
, θA2l+1

− 1 + n2l − i
(1 + n2l)(1 + n2l−1)

}
=

{
M − l +

1 + n2l − i
(1 + n2l)(1 + n2l−1)

,M − l +
1 + n2l − i

(1 + n2l)(1 + n2l−1)

}
, i 6= K,

FB2K
i

:= {θB2K
i
, θB2K

i
} =

{
θA2K−1

− 1− i

1 + n2K

, θA2K−1
− 1− i

1 + n2K

}
=

{
M −K − i

1 + n2K

,M −K − i

1 + n2K

}
.

That is, the highest type lives in A1. The larger is the subscript of Ai (among

odd ones), the smaller are types in that market. Moreover, θB2l+1
n2l+1

> θB2l+2
1

, and

types in intermediate markets, Bk
i are decreasing in i and they lie on the intervals

(θAk
− 1, θAk

) for odd k and (θAk+1
, θAk+1

+ 1) for even k 6= 2K.

Now let us define values of schools:

v
A2l+1

1 = 0, v
B2l+1

i
1 = vA2l

1 ≡ v ∀l, i,

v
B2l

i
1 = (n2l − i+ 1)αp(M − l + 1) + n2l − i+ 1 ∀l, i,

where v is large enough so that v > (n2l + 1)αp(M − l + 1) + n2l + 1 ∀l.
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Assume all switching costs to be smaller than v, so that it is always better to

be assigned to a foreign school than stay unassigned. Set cA1B2K
n2K

= 0. Moreover,

choose costs such that (assume that B2l+1
n2l+1+1 = A2l+2 and B2l

0 = A2l)

v
B2l

i−1

1 + αp(0)− cB2l
i B

2l
i−1

> v
B2l

i
1 + αp

(
M − l − 1 + n2l − i

(1 + n2l)(1 + n2l−1)

)
⇒ cB2l

i B
2l
i−1

< α

(
p(M − l + 1)− p

(
M − l − 1 + n2l − i

(1 + n2l)(1 + n2l−1)

)
+ p(0)

)
+ 1,

(5)

v
B2l

n2l
1 + αp(0)− cA2l+1B2l

n2l
> v

A2l+1

1 + αp(M − l) = αp(M − l)

⇒ cA2l+1B2l
n2l

< α (p(M − l + 1)− p(M − l) + p(0)) + 1,
(6)

vB1
1 + αp

(
M − 1

1 + n1

)
− cA1B1

1
> v

B2K
n2K

1 + αp(0)− cA1B2K
n2K

⇒

 cA1B1
1
< v − αp(M −K − 1)− 1 + αp

(
M − 1

1+n1

)
− αp(0), n2K 6= 0,

cA1B1
1
< αp

(
M − 1

1+n1

)
− αp(0), n2K = 0

,

(7)

vB1
1 + αp

(
M − 1

1 + n1

)
− cA1B1

1
< v

B2K
n2K

1 + αp

(
M −K − n2K

1 + n2K

)
− cA1B2K

n2K

⇒

 cA1B1
1
> v − αp(M −K − 1)− 1 + αp

(
M − 1

1+n1

)
− αp

(
M −K − n2K

1+n2K

)
, n2K 6= 0,

cA1B1
1
> αp

(
M − 1

1+n1

)
− αp(M −K + 1), n2K = 0,

,

(8)

v
B2l+1

i
1 + αp(0) > v

B2l+1
i+1

1 + αp

(
M − l − i

1 + n2l+1

)
− cB2l+1

i B2l+1
i+1

⇔ cB2l+1
i B2l+1

i+1
> α

(
p

(
M − l − i

1 + n2l+1

)
− p(0)

)
.

(9)

Note that Eq. (8) and Eq. (9) do not contradict the initial requirement that

c < v, as because p(·) grows slower than exponentially, we can find M such

that 2p(M − K) > p(M) and v > v − αp(M − K − 1) − 1 + αp
(
M − 1

1+n1

)
−

αp
(
M −K − n2K

1+n2K

)
. Moreover as v

B2l+1
i

1 = v, by choice of v, v
B2l+1

i
1 > (n2l +

1)αp(M − l + 1) + n2l + 1 > α
(
p
(
M − l − i

1+n2l+1

)
− p(0)

)
.
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Because vA1
1 = 0, θA1 wont stay at home in a stable matching. Suppose first

that in a stable matching θA1 goes to B1
1 . Then he pushes away θB1

1
. Note that the

other θB1
1

will stay at home, as home guarantees a better peer and no switching

costs, while school value is the same at home and abroad. Thus, only one θB1
1

goes

to B1
2 . Similarly, only one θB1

2
goes to B1

3 and so on. Finally, only one θB1
n1

goes

to A2. By Eq. (5) both θB2
1

want to switch to A2, but only one can, as θB1
n1
> θB2

1
.

Thus, one θB2
1

switches and another stays at home. Similarly, one θB2
2

switches

to B2
1 and another stays at home and so on. Thus, one θA3 switches to B2

n2
and

another to B3
1 and so on. Finally, we are left with the fact that one θB2K

n2K
switches

to B2K
n2K−1 and another stays at home. Then by Eq. (8), θA1 deviates and switches

to B2K
n2K

.

Now suppose that θA1 goes to B2K
n2K

. Then by Eq. (9), no one switches from B1
1 .

Similarly no one switches from B1
2 and so on until B1

n1
. Thus, by Eq. (5), both

agents switch from B2
1 to A2. By the same logic both agents switch from B2

2 to B2
1

and so on. Finally, by Eq. (6), both agents switch from A3 to B2
n2

. Applying the

same arguments to next markets, we get that agents from B2K−1
n2K−1

stay at home,

while agents from B2K
1 switch to A2K and, at the end, agents from B2K

n2K
switch

to B2K
n2K−1. Thus, θA1 is left alone at B2K

n2K
. However, by Eq. (7), in that case θA1

deviates and switches to B1
1 . Thus, there is no stable matching for the constructed

configuration.

�

Proof of Theorem 4.

Proof. In the proof we assume that no two agents share the same type θ, and no agent is

indifferent between two schools.

Denote the equilibrium from the student-proposing (thus, student-optimal) Gale-

Shapley algorithm as eq1, and suppose there exists another equilibrium eq2. Let us prove

that eq2 = eq1. When students propose to their most preferred schools, schools start to

accept the highest types. The agent with θ = max{F1 ∪ . . . ∪ Fn} is admitted for sure

(this is the most preferred type for schools). Then the second highest type is admitted

for sure and so on until some school reaches its capacity. Suppose school vi1 reaches its
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capacity first (then those, who were proposing to that school and were not accepted need

to propose to another school). Denote by θi1 the smallest type admitted to vi1.

We claim that all types θ ≥ θi1 have the same allocations under both equilibria. Suppose

by contradiction, that there exist a type θ0 from market i0, such that he has different

allocations in eq1 and eq2. Under eq1 he is admitted to the first best option, v
i(θ0)
1 , thus,

under eq2 he is admitted to a different school. If he can switch to v
i(θ0)
1 , he would do

so. Thus, he must be below the cut-off for v
i(θ0)
1 , and the school must be filled up to

capacity. Thus, θ0 < ϑ
i(θ0)
1 , where ϑ denote cut-offs under eq2. If he is not accepted,

it means that there are other agent, which have types above ϑ
i(θ0)
1 and are assigned to

v
i(θ0)
1 , while were assigned to a different school under eq1. Thus, we get an agent θ1 from

market i1 who prefers to switch to his first best from eq1, v
i(θ1)
1 , but is assigned to v

i(θ0)
1 .

Thus, his first best school is filled up to capacity and has threshold ϑ
i(θ1)
1 > θ1. Because

number of schools is finite, we can repeat the process until we get k, `, k > ` such that

θk > θ`, and the first best option for the agent θk from market i(k) is v
i(θk)
1 , but he is

assigned to a different school
(
v
i(θn−1)
1

)
, while θ` wants to go to v

i(θ`)
1 but is admitted to

v
i(θ`−1)
1 = v

i(θk)
1 under eq2. Thus, θk can profitably deviate, and we get a contradiction.

Therefore, all types θ ≥ θi1 have the same allocations under both equilibria. Applying

the same procedure to the next cut-off in eq1, we get that, again, allocations coincide.

Because number of schools, and, thus, cut-offs is finite, we get that eq1 = eq2. Thus,

equilibrium is generically unique. �

Proof of Theorem 5.

Proof. Let us proceed in the following way: first, reorder in any way schools in each

market, then apply the algorithm from Theorem 1 for the new school ordering. We will

get a different matching, because now not schools with highest v’s are getting the best

peers in each market, but some other schools. For example, if we reorder schools from last

to first, across each market we will see the best students in the schools with the smallest

values.

Let us show that no one will deviate from the above assignment. Because v’s and c’c

now do not matter, no one is going to deviate across markets (all schools, which can

accept a given agent have lower peers than one’s current assignment). Thus, the only
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possible deviation would be to a different market. However, the construction in Theorem

1 guarantees that it is also non-profitable. �
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