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ABSTRACT. The paper investigates conditions, which guarantee the existence of a stable
outcome in a school matching in the presence of peer effects. We consider economy, where
agents are characterized by their type (e.g. SAT score), and schools are characterized
by their value (e.g. teaching quality) and capacity. Moreover, we divide agents and
schools into groups, so that going to a school outside of one’s group maybe associated
with additional costs or even prohibited. A student receives utility from a school per
se (its value minus costs of attending) and from one’s peers, students who also go to
that school. We find that sufficient condition for a stable matching to exist is that a
directed graph, which governs the possibility to go from one group to another, should
not have cycles (nor directed, nor undirected). We also construct an algorithm, which
produces a stable matching. It runs in a finite time and takes no more than number of
groups multiplied by total number of schools steps. Furthermore, we show that if the
graph has a cycle, then there exist other economy parameters (types, costs and so on),
so that no stable matching exists. In addition, in cases where a stable matching exists

we investigate whether it is unique or not.

1. INTRODUCTION

Peer effects are a common phenomenon in everyday life. Parents often try to place their
kids in schools where they believe that their children will have good classmates. That is,
parents not only care about quality of teachers and curriculum, but also about whom is
going to study with their children. Similarly, many students want to go to Ivy League
universities because of the connections that they will likely make at such places.

The presence of peer effects in schooling was noticed more than fifty years ago (see
e.g. (Coleman et al| (1966] Section 2.4)). Sacerdote| (2011)) provides an overview of the
current state of empirical research on peer effects and points to its importance. A number
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of recent papers show the significance of peer effects in schooling (yet, the magnitude
of the importance of peer effects varies across papers). Examples are Ding and Lehrer
(2007) (peer effects in China), [Sacerdote| (2001)) (peer effects at Dartmouth), Winston and
Zimmerman (2004)) (peer effects in US colleges), Zabel (2008)) (peer effects in New York),
Zimmerman (2003) (peer effects at Williams College).

When we go to theory, the relationship between schools or colleges and students is
usually modelled as a two-sided matching problem. In matching models without peer
effects and externalities, substitutability is a sufficient (and in some sense necessary)
condition for the existence of a (group) stable matching (see |Hatfield and Milgrom (2005)
and Hatfield and Kojima (2008)). Unfortunately, matching models with peer effects are
known to often lack existence of equilibria. This motivates us to study theoretical models
of matching in the presence of peer effects.

We start by modifying the college admission model, which was studied in the seminal
paper of (Gale and Shapley, (1962)), and add preferences over schoolmates. Consequently,
students now care both about their assigned school and their peers. This is modelled as a
linear combination of school-related utility and utility from a given set of peers. We focus
on a pairwise stable matchings; in the context of schools this means that no single student
can profitably deviate to another school which would accept him. We believe pairwise
stability to be a natural assumption in case of schools, where a parent cannot coordinate
with twenty other parents and place their children in the same school.

Specific feature of our setting is based on the following real life phenomena. Sometimes
an agent may be prohibited from applying to particular schools. For example, religious
schools generally accept only those students, who practice the same religion. Moreover,
to go to a Jewish school, one often needs to present a proof of one’s Jewish roots. Si-
milarly sometimes schools accept only those, who live in a pre-specified areas. Thus,
students, who live outside of those areas cannot be admitted. A large set of schools in
Moscow function in that way. They can be viewed as district-specific as they admit only
those who live close enough. Finally, segregation corresponds to the structure, where
some agents are restricted from some set of schools. Instead of schools we can think

about specific majors. Then it may be too late (and, thus, impossible) to switch from
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studying, e.g., ballet to studying quantum physics. Those patterns can be encoded into a
graph. Possibility /impossibility to move from one group to the other corresponds to the
presence/absence of an edge between the groups, which correspond to graph vertices.

The main question for us is whether there is a stable matching in our model. We find
that the sufficient condition is that there are no cycles in the graph associated with our
setting. Moreover, we find that if the graph has a cycle, then there is a set of parameters’
values, for which no stable matching exists.

Consider the example, which illustrates the model and the associated existence problem.

Illustrative example

Suppose we have two schools, A and B, and each school has two seats. There are
four students characterized by their type (e.g. test score) # = 0,7,8,10. Schools prefer
students with higher types, and utility of an agent # sharing a school s with another

student &' is

ug(s,0") = ve(s) + 6.

If 6 is alone at school s, then wuy(s, () = ve(s). Utility of the school per se, vg(s) is

Al B
vg(s): 0,10 | 10|5.5
7,8 6 9.5

That is, 0 and 10 prefer school A, while 7 and 8 prefer school B. The example is in
some sense similar to a classical roommate problem with two rooms and four agents, one
of whom no one likes (see, for example, Roth and Sotomayor| (1990))). Here we have a
zero type, whom no one wants as a peer, as it means zero peer effects. Although 10 is
the best possible peer, it is still not worth to switch to a less desirable school to join 10,
if the most favorite one has a “normal” (i.e. 7 or 8) peer.

There are no pairwise stable matchings. The argument, summarized in Figure [1] is:

e If (8,10) — v{, then 7 — v%, so that 8 deviates to v¥:
ug(l) =10+10 -4 =16 < 9.5+ 7 = 16.5 = ug(2);

e Similarly, if (7,10) — v{, then 7 deviates;
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o If (8,10) — v?, then 7 — v{, so that 10 deviates to vj:

e Similarly, if (7,10) — v?, then 10 deviates;

o If (7,8) — v, then 10 — v{, so that 10 deviates to v:

e Similarly, if (7,8) — v{, then 10 deviates;
Thus, there are no stable matchings in the above economy. Note that our example

corresponds to a full graph (each agent can go to any school), thus, it has a cycle.

F1GURE 1. No stable matchings in the illustrative example.

Motivated by the above real life observations, we prohibit 10 from going to school B.
Then the existence of a stable matching is restored. We assign 0,10 to A and 7,8 to B.

10 is not allowed to deviate, and we get a stable matching, as summarized in Figure

Let us describing general setting in more details. In our model preferences of schools
coincide: they prefer students who have higher type (e.g. higher test scores). We allow
more flexibility on the students’ side. We divide the set of students into groups, similarly,
we assign each school to one of those groups. All agents from the same group have the

same valuations of schools.
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FIGURE 2. Stable matching restored in the illustrative example.

Such division can be viewed as different markets. That is, being in one group means
being from the same market such as country/race/religion/specialization/etc. A school
attached to a group is located in the same market as students from that group. For
example, they all are in the same city. Then the difference between how an agent from a
market values a school from the same market and how an agent from a different market
values that school is expressed in additional “market switching” cost c¢. Such cost is
location and origin specific, so that we still have the same preferences across markets. We
can view this cost as the expenses associated with buying an apartment near that school
or with commuting costs or with costs of switching from one field of primary study to the
other (e.g. switching from mathematically inclined school to the one which focuses more
on humanities).

To sum up, we get a set of separate markets, where students only differ by their ability
or type, but do not differ in their preferences of schools. Moreover, going to a school
in a foreign market is associated with additional costs for an agent born in a different
home market. Obviously, in some cases such cost may be prohibitively high, so that there
is no way an agent from a market X can attend a school in a market Y (e.g. religious
schools for someone outside of that religion or legal segregation of schools in the US in
the 20th century). We can summarize that prohibition by drawing an oriented graph,

where vertices represents our groups/markets, and an edge from one vertex to another
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means that switch from the former to the latter is not prohibited. Such prohibitively
high costs will be crucial for our results. What would matter for our constructions and
conclusions is the oriented switching graph, not the exact values of intermediate, not

prohibitive switching costs.

Our central result provides conditions for the existence of a stable matching in the
above model. We find that the sufficient condition is that there are no cycles (nor directed,
nor undirected) in the directed graph of possible market switches: when the switching
graph is an oriented forest, we present an algorithm, which produces a stable matching.
Further, we show the necessity of “no cycles” condition: if there is a cycle (possibly undi-
rected), then there are parameters for which there is no stable matching. Our main results
are given in Theorems |1| and [2l We also discuss when a stable matching is unique/non-
unique (see Theorems |4 and . To our knowledge, the most novel aspect of our condition
lies in the non-directness. The classical results on the existence of a stable matching pro-
hibit only directed cycles. E.g. in a roommate problem lack of directed cycles in agents’
preferences guarantees stability. Non-directed cycles were not playing a major role before,
however for our setting they are of the same importance as non-directed cycles.

Related papers, which investigate the existence of stable matching with peer effects,
are Pycial (2012) and [Echenique and Yenmez (2007)). The first paper provides a condition
(pairwise alinement of preferences), which guarantees the existence of a core stable (and,
thus, also pairwise stable) matching. This condition and ours are non-nested. In our
setting, pairwise alinement means that if we assign two students, say a and b, to some
school and some set of peers and then consider a different assignment, where again a and
b are at the same school, they must agree on whether the former or the latter allocation is
better. However, such condition is not satisfied in our framework: a and b may disagree
even if they were born in the same market, because they have different set of peers (a
is in the set of peers of b, but not in the set of peers of itself), and this distinction may
be of different importance depending on how large the school is. When school is small
having one better peer means more than when school is large. So that even if the quality
per se of a smaller school is worse, a may still prefer it: e.g. if b is very good peer, a

may want to choose a small school, where there will be almost no one except itself and
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b. But if the second school is way better than the first, and is filled with agents similar
to a, b may choose a second, larger school. Thus, preferences are not aligned, and our
model still leads to an open question. The second paper, Echenique and Yenmez (2007)),
presents an algorithm, which produces a set of allocations containing all stable matchings
in case they exist. However, it may also produce extra allocations, which are not stable,
and implementing such an algorithm may be very time consuming (in fact, in some cases
it leads to just checking all possible allocations), while we provide specific conditions for

a stable matching to exist, so that we do not need to check different possible allocations.

Other related literature

The idea that sometimes agents have to choose from subsets of possible matching part-
ners (i.e. choose a market with fixed subset of alternatives) prior to matching has been
studied in the trade literature in the context of firms and workers. For example, Davis
and Dingel| (2014)) consider a model, where people choose in which city to work. Different
cities have different opportunities with different employees. In that paper it is important
that there are many monopolists who produce intermediate goods, which in turn are later
aggregated into final good by a perfectly competitive firm. However, in our approach we
do not need intermediate stage of production (in some sense we only have universities
as producers of the final good, education). Moreover, in the preliminary model we do
not allow for transferable utility, so that agents cannot influence their utilities or wages.
Another international trade paper Gaubert| (2015) allows firms to choose their location,
so that their initial choice determines whether they will be located in a more or less
developed country, which, in turn, will affect their profits and production opportunities.

The concept of multiple markets is also present in mechanism design literature, where
either auction houses or online advertising platforms compete for buyers. For example, in
McAfee (1993) multiple buyers each period propose general mechanisms in order to sell
their goods to potential buyers. Buyers in turn choose the mechanism, which looks the
best for them. Here the main interest lies in how an action of one seller would change the
strategy of others. A survey [Pail (2010)) explains difficulties associated with competition

of mechanisms and discusses current progress regarding it.
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Finally, there are also relevant papers on kidney exchange. Using the dynamic matching
model of |Akbarpour et al.| (2016), Das et al| (2015) propose a model of two competing
matching markets. One market operates fast and does not wait for new agents to arrive,
while the other performs slower and waits until there are many agents and, thus, many
possible matchings, and agents are randomly sorted into those markets. The result is that
such artificial segmentation into two markets increases losses. The other relevant example
is Nikzad et al. (2016), where authors look at the possibility of merging two markets into
one. One of the markets represent US, where kidney exchange is well developed, but there
is lack of donors, and the other represents a developing country with almost no suitable
medical facilities, but with willing donors. Authors show that merging those markets into
one will increase the welfare in US.

On the peer effect side, coalition formation literature such as Bogomolnaia and Jackson
(2002), Banerjee et al. (2001), and Kaneko and Wooders| (1986) is relevant. If one views
schools as additional agents and ask players to form coalitions, additionally assuming that
coalition with more than one or zero schools will lead to a utility of a negative infinity,
we get precisely the problem of finding a stable coalition. However, as in with |[Pycia
(2012), our model does not satisfy conditions from the above papers to ensure existence

of a stable matching.

The rest of the paper is organised as follows. Section 2 builds up the model and defines
our solution concept, pairwise stability. Section 3 provides the sufficient condition (no
cycles) for the existence of a pairwise stable matching, while section 4 shows that that
condition can be viewed as necessary: for any graph G with a cycle there exist set of other
parameters (types, school values, etc.), so that in the corresponding economy no stable
matching exists. Section 5 talks about uniquenes/non-uniqueness of a stable matching,
when it exists. Section 6 discusses the role, which our assumptions play in obtaining the
results, and possible generalizations. Finally, section 7 concludes. All proofs are in the

Appendix.
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2. BASIC MODEL

2.1. Setting. Let us consider a world with n markets. Each market ¢ has k; different
schools. In any market ¢, any school ¢ has capacity ¢; > ﬂ and is associated with utility
vy. It cannot exceed its capacity for students and would like to take as many students
below capacity as possible. Moreover, schools prefer students with higher ability. Without
loss of generality we number schools in each market by their attractiveness, i.e. we assume
v] > vy > ... > foralli=1,...,n. Without loss of generality we may also assume
that the best school is located in country 1, that is we assume v; > v} for alli =2,... n.
To simplify the notation, we will also use v} to denote a school £ in a market i.

Additionally, each market 7 is populated with m; students of different abilitieﬂ Chan-
ging one’s initial market is costly for the students. The possibility to switch between
markets is governed by a two-sided directed graph G. If {i — j} € G, then it is allowed
to switch from market ¢ to market j, although the switch may be associated with some
costs. If {i — j} ¢ G, then it means that market j is infeasible to agents born in market
i. That is, either it is too costly for them to attend (even the best allocation in j would
not offset switching costs) or it is just prohibited by some underlying laws.

Each student is characterized by type 6 and home market i, and joint distribution of
types across markets is denoted by F' (F' restricted to market i is F;). Distribution Fj is
discrete, lies in R, and has a positive large mass of zero types. We discuss the zero types
assumption in Section [6] Ignoring the zero types, F; has finite support.

The difference across students in different countries comes from the fact that if a student
from market ¢ wants to change one’s initial market and apply to a school in a different (but
feasible, i.e. such that {i — j} € G) market j, one has to bear additional cost ¢;; > 0,
where ¢; = 0. This can be viewed as a travelling costs of going to a foreign market (e.g.
additional time it takes every morning to go to a further located school). Alternatively

we can view those costs as psychological losses from being far from one’s family and/or

1We may allow for capacity of one with minor modification to the Algorithm in Theorem

2Most of our results also hold for continuous distributions, so that instead of m; students we will have

mass m; of students. Discreteness is only used in the construction in Theorem
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being surrounded by people from a different background. This is in a sense a mismatch
penalty. There can be a number of other interpretations of costs beyond presented.

Each student has an outside option with 0 utility (i.e. not attend a school). If student
does attend a school, then one’s utility from attending a school is composed of school’s
own effect UZ and a peer effect. Peer effect is described by a peer-effect function p(-),
defined on all real multisets.

Definition. A real multiset is a finite collection of reals, in which we allow the same
number to be repeated arbitrary many times. The order of the elements of the multiset
is irrelevant. Let m[R] denote the family of all real multisets.

Definition. A peer-effect function is a function p : m[R] — R, such that p() = 0 and
p(+) is increasing and non-negative. By increasing we mean that if ’ > sup © (¢’ < inf ©),
then p(O@U{#'}) > p(©) (p(OU{A}) < p(O)), and if § > 0, then p(OU{#'}) >
p(©U{#}) for any set © of one’s peers.

Finally, utility from attending a school UZ is
u@ﬂ-(vg, peers of ) = UZ + o - p(peers of ) — ¢,

where the coefficient a@ > 0 measures the importance of peer effects.

Average quality of one’s peers is the natural example of a peer-effect function. It
satisfies our assumptions, and we will use it quite frequently. Moreover, in some sense it
corresponds to an approach in empirical research where a student’s outcome Y (e.g. test
scores or alcohol use) linearly depends on the average of background characteristic (types
in our case) of one’s peers (see, for example, review article Sacerdote| (2011)).

Denote by s(6,i) the school, where agent (6,7) goes, and by O the set of all peers of
that agent. That is, © = {(#',7) # (0,7)| s(0,7) = s(#',7)}. Then the average quality of

(0,1)’s peers is:

2. ¢

(¢',5)€©

YRS

(¢",5)€®
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Two other common examples of a peer effect function would be the best and the worst
types: p(©) = sup© and p(O) = inf ©. Similarly, we can do an average of, say, two best

or two worst students.

2.2. Stable matching. We are interested in pairwise stable matchings, so that no
student-school pair can profitably deviate and match together.
Definition. A matching is a mapping p from set of all students into set of all schools,

such that for all ¢, ¢,
W)l < g
where | M| stays for the number of elements in the set M. That is, schools cannot accept

above their capacities.

Definition. A matching p is individually rational if for any agent (6,1),

ug i (p(0,0), 1" (1(9,9)) \ {(6,9)}) > 0.

That is, no one prefers being unmatched to one’s assignment under pu.

Definition. A matching p is feasible if u(6,7) = v) implies that {i,j} € G.

Namely, feasibility implies that each agent is matched to a school in a market, where
one is allowed to switch.

Define a set of peers, which one gets after a deviation to a school ’ug under a matching
L as

ot 1D el <

p=H ) \Amin(u= (o)} e~ ()] = -

Thus, if the school vZ is full, and an agent 6 deviates to that school, # pushes away the
lowest type.

Definition. A feasible matching p is stable if it is individually rational and for any

agent (6,1),

i wg (4u(6,1), 17 (u(0,0))\ {(6,9)}) < v + @ - p(O(vf, ) — ¢y, then

i @) = ¢f and 0 < min(u(v])),
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The above means that for each student, all more preferred schools are filled up to
capacity by higher types.

Alternatively we can think of a decentralized game, where each student first chooses a
market and then applies to a school in that market. Then schools accept top students up
to capacity.

In the following two sections we are going to first propose a sufficient condition on
the graph of available market switches, G, which guarantees the existence of a stable
matching. Then we will show that our condition is in a sense necessary, that is if G has
cycles, then it is possible to find types, costs, and school values and capacities, such that

no stable matching would exist.

3. SUFFICIENCY

In this section we present a sufficient condition, which guarantees the existence of
a stable matching. Under our condition, there exists an algorithm, which produces a
stable matching. Some properties of that algorithm and associated stable outcome are
investigated below. We also compare our sufficiency condition with the pairwise alignment

condition of Pycia (2012).

3.1. Construction of a stable matching. The example, presented in the Introduction,
illustrates that non-existence of stable matchings may come from the possibility of agents
cyclically switching their locations: an agent X, born in market ¢, moves to market 5 and
pushes an agent Y away from a school in his home market j, so that Y needs to switch
market. The agent Y switches the market from j to ¢, so that market ¢ becomes better,
and X prefers to stay at home and not pay extra travelling costs. When X moves home,
Y can go back, as his previous seat is now empty. Y returns to 5 and we are back to the
start of the cycle. This is summarised in the Figure [3]

Similar pattern may arise with multiple market switch. E.g., if someone moves from
market i; to market i, and pushed other agent away, that other one moves from iy to
13, and so on until an agent is pushed from ¢; and moves to 7;. That makes i; attractive
again, so that the first agent returns, leaving an empty seat at 5. Then the second agent

returns and so on.
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X pushes Y away

_—  Ta

mkt ¢ @ ® mkt j

\_/

Y moves to i, so that X returns ¢;
Y moves back to his seat at j.

Ficure 3. Cycle of length 2.

Moreover, even non-directed cycles like i1 — 15 — 73, 11 — 73 may cause a problem: an
agent from ¢; may go to i3, which is the most desired place for an agent from 75, so that
that agent from i now cannot go to i3 (it is full). However, when that agent is at s,
the agent from ¢; may decide to stay with him at s, thus, leaving the seat at i3 vacant.
Thus, the agent from i, will take it and leave the agent from i; alone at i5. Therefore, the
agent from 4y will switch to 723 and push the other agent bach to iy, and we get a cyclical
pattern, which prohibits the existence of a stable matching.

The following theorem proves that as long as no cycles exist in the switching graph G,
a stable matching exists.

Definition. An oriented tree is a directed graph whose underlying undirected graph
is a tree.

Definition. An oriented forest is a disjoint union of finite number of oriented trees.

Theorem 1. Suppose that the switching graph G is an arbitrary oriented forest. Then a

stable matching exists. Such matching can be found by a finite iterative algorithm.

In each step of the algorithm we will be trying to fix the best school in some market,
say ¢, with the highest types among those, who are allowed to switch to ¢. That is, we will
be trying to fill v with the best students from F; |J Fj up to capacity. One of such
allocations will be fixed and we will restart the préjczgﬁfe. It turns out, we only need to

look at the best type in each market. Lower types will agree to follow the highest one.
(See Appendix for the proof.)

The matching, which we get in the algorithm from Theorem [I| has an assortative

pattern: inside each market, agents are allocated to schools in an assortative manner.
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That is, the better is school in market i, the higher types have students assigned to that

school. Formally,
Vi, 0,0 s.t. £ < ¢ if 0 is matched to v} and @ is matched to v}, then § > ¢’

Such construction serves as an instrument to make deviations inside a given market un-
profitable.

Note also that for a given oriented tree, at each round of the algorithm we take at most
n steps (the worst is if we go from the root to a leaf covering all other n — 2 markets).
Then at each round we fill one school (including an outside option). Thus, in total we

will need at most n(k; +1+ko+1+...+k,+1)=n (n + > kz> units of time.
i—1

)

3.2. Comparison with Pycia (2012)). The questions in Pycia (2012) are closely related
to ours. The author investigates necessary and sufficient conditions for the existence of a
group stable matching in the matching model with peer effects. His crucial condition is
pairwise alinement of preferences. This means that if we fix two agents and consider any
two assignments, under both of which those agents share the same coalition, then they
must agree on which assignment is better. This requirement and ours are non-nested.

When there is only one market, n = 1, our algorithm leads to the assortative matching.
In that case agents agree on which school is the best, and, thus, if we match the best
students with the best school, there will be no reason to unilaterally deviate from such
assignment. However, the case of only one market still can violate pairwise alinement
condition for group stability of |Pycial (2012).

The violation comes from the fact that different agents in the same school can get
different peer effects, as they have different set of peers (agent a is in the set of peers
of agent b, but not in the set of peers of oneself). For example, let &« = 1 and “average
peer” is a peer-effect function. Suppose we have two schools with values 10 and 9.5. The
first school has capacity 3, while the second has capacity 2. We consider a = 5, b = 0,
and fill the remaining seat at the first school with additional zero. Then w,(10,{0,0}) =
10 > 9.5 = u,(9.5,{0}), while u,(10, {5,0}) = 12.5 < 14.5 = 4;(9.5,{5}). Thus, a and b

disagree on which assignment is the best, and their preferences are not pairwise aligned.
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Group stability is a more demanding condition than the pairwise stability. Yet, our
algorithm applied to schools vy, ..., v} filled with the top students instead of v{,..., v}

will produce a group stable outcome for the case n = 1.

4. NECESSITY

In this section we show that if a directed graph G of available market switches has
cycles (not necessary directed), then there exists a set of parameters, for which there is no
stable matching. The following theorem, which is proved in the Appendix, summarizes

the result.

Theorem 2. Assume that p({z}) is strictly increasing but grows slower than exponentially
as a function of x € Ry. If, ignoring edge directions, G has a cycle, then there exist values

of {vi}iks {cijtij, {Fi}i such that the resulting economy has no stable matching.

Remark. We need to assume that peer-effect function is not constant. Otherwise agents
do not care about their peers: they get the same constant utility from any set of peers. So
we are left with a model without peer effects, and the classical Gale-Shapley algorithm will
produce a pairwise stable matching. The assumption that p({x}) is strictly increasing as

a function of x € Ry helps as to get rid of the above.

The construction in the proof is in the spirit of the Illustrative Example from the
Introduction. We put the highest type M and the lowest type, 0, in the same originating
market. We choose costs such that the highest type would prefer to stay at some market,
say ¢ (either home or foreign market), with non-zero type, but will deviate to a different
market, say j, if one has to share a seat with 0 at market ¢ while j guarantees a non-zero
peer. Then if M goes to a market j, it eventually leads to some non-zero type going to
market ¢, so that M can go to his best choice, ¢. Similarly, if M goes to market ¢, then

no positive types join him there, so that he is left with 0 peer, and deviates to market j.

5. UNIQUENESS/NON-UNIQUENESS OF A STABLE MATCHING

In the previous sections we have seen that when G has no cycles, stable matchings exist.

However, we have not explored whether there is only one stable matchings or there are
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many of them. In this section we will answer the question of uniqueness/non-uniqueness
of stable matchings for the two boundary cases: “no peer effects” (« = 0) and “only peer
effects” (« large enough).

We will show that when there are no peer effects, a stable matching can be found by
applying Gale-Shapley algorithm (Gale and Shapley| (1962)), and it is generically uniqueﬂ
In contrast, when peer effects dominate, so that only one’s classmates matter we get a

multiplicity of equilibria.

5.1. No peer effects. We can calculate the equilibrium by iterative matching of the
best schools and the most high-skilled students (that is, we apply student-proposing Gale-
Shapley algorithm). When a = 0 we get a special case of a model of (Gale and Shapley
(1962), where prohibition to go to a market can be interpreted as having a large negative
utility from schools in that market. Thus, we are guaranteed the existence of a stable

matching.

Theorem 3. If o = 0, then for any graph structure G there exists a stable matching in

the above model.

We can have more than one stable matching in two cases. First, if there are two or
more agents of the same types 6 (possibly from different originating markets), so that a
school does not know whom to accept for the last available seat. Second, if some agent is
indifferent between two schools, so that this agent does not have exactly one best option
to which to point in the above construction. Thus, generically we get a unique stable
matching, and may lose uniqueness if v} — ¢, ; = vi — ¢p,j for some p, 1, j, £, k or if we have
more than one agent with a type 6.

The intuition for uniqueness is that if we look at the most high-skilled student among
those, who play different strategy compared to the above equilibrium, then this student is
going to a worse school. That happens because in the above equilibrium one is guaranteed

the best choice among those which are not occupied by higher types, so deviating to

3Assuming there is no indifferences of the form v} — ¢, ; = v} — ¢, ; and there are no two agents of the

same type.
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the strategy from the above equilibrium will be beneficial (we assume no indifferences).

Theorem [4] summarizes uniqueness results and is proved in the Appendix.

Theorem 4. If o = 0, then for any graph structure G the stable outcome of the above

model is generically unique.

5.2. Only peer effects. The next theorem illustrates that when a becomes large enough,
so that peer effects dominate, and v’s and ¢’s become unimportant, the situation becomes
a coordination problem. High types would like to coordinate and stay together, and they
have different possibilities on which to coordinate. Such different possibilities give us
multiple equilibria. The idea is instead of trying to put the best types in schools with the
highest values we can try to put them, for example, in the schools with lowest values, and

they still wont deviate, as they are getting the highest possible peer effects.

Theorem 5. If « is large enough, G has no cycles, and at least one market has at least

2 schools, then there are multiple stable matchings.

6. ROLE OF THE ASSUMPTIONS AND EXTENSIONS

In this section we examine what role are various assumptions of the model playing, how
important they are, and how generalizable they are. First let us talk about the assumption
on F;. We impose that it has a positive mass on 0. We use it to get rid of only partially
filled schools (completely empty schools do not cause a problem). The following example
illustrates why a partially filled school may cause a problem for the existence of a stable

matching even when a switching graph has no cycles.

Example 1. (“empty seats”) Suppose there are 2 markets, and 1 school per market,
g =2v=1¢g=3v=1 F ={1,10}, i, = {11}, a = 1,¢1p = 7, G = {1,2}.
Thus, it is now impossible to move from market 2 to market 1, and we do not have cycles.
However, there still does not exist a stable matching. Capacities are such that agents can
always be admitted to their home school, thus, no one will choose outside option (1 > 0).

Possible matchings are

o If (1,10) — vi, then 10 deviates to vi:

U10(1)21+1:2<1+11—7:5:U10(2),
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o If1 — v}, (10,11) — v, then 1 deviates to vi:
u (1) =1<1410.5—-7=4.5=uy(2);
e If(1,10,11) — v, then 10 deviates to vi:
up(1) =1>146—7=0= uyp(2);
Thus, there are no stable matchings in the above economy.

Zero types help to get rid of non-existence, because then if an agent switches to some
school, the peer effect from that school can only go up (someone with a lower type is
pushed away). In contrast, with empty seats low types can switch and decrease the peer
effect. In the Example [I] this happened when 1 switched to the second market.

Example [1] illustrates, that if there is a partially filled school in a market ¢ and it is
possible to switch from market j to i, then the existence of a stable matching may fail.
However, we do not need to impose zero types in the markets, to which no one can switch
(ie. #j st. {j — i} € G). This is because in the algorithm in Theorem [I} when we
compare different allocations and choose the most preferred one for the highest types, we
need to know that if one does not want to go to some school ¢ in market j, then one
will not want to go to that school later (e.g. we cannot have a situation where 10 prefers
to stay at home with 0 more than being abroad with 0 and 11, but after we fix such
assignment, 10 wants to join 11 assuming 0 remains at home). If later the school will
have empty seats, others may want to join (as 10 joins 11). However, if no one can switch
to market 7, by monotonicity inside markets of the algorithm, only low types will stay at
the partially filled school ¢, so that higher types do not have incentive to go back. When
higher types were choosing whether to stay at home or not, they were looking at even
better peer-set at home, and still decided to leave.

The second crucial assumption is that agents inside any market have the same preferen-
ces, and agents from different markets ¢ and j still agree on the relative order of schools
in any given market. The former guarantees us that lower types do not deviate from an
assignment as long as higher types of the same origin also stay. The latter guarantees that
highest types from different origins agree on the best school inside any market and, thus,

if placed in that school, do not wish to deviate to a different school inside that market.
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It is possible to relax the assumption of identical preferences of agents from the same
origin. We can assume that utility of an agent § who was born in a market ¢ and attends

a school UZ with peers © is:
vl + - p(0) — ¢y — c(0,1),

where for all i, 7,£,0,60 > 0" if v} + a-p(OUE) — ¢;; — ¢(6,4) > 0, then v} + - p(OUH) —
¢;j —c(0',4) > 0. This can be satisfied if, for example, ¢(6,7) is an increasing function of
6, so that higher types also have higher costs. Alternatively, for discrete economy we will
have finite set of equations for ¢(f,7). Such generalization allows different agents born
in the same market to have different preferences. Yet, the relative utility between two
different schools still remains the same. That means, that the proof of Theorem [1] is still
valid. (We only need to add outside option as one more alternative to compare for each
of the highest type, as now for large enough value of ¢(#, i) a high type may have negative
utility even from the best school and, thus, prefer to stay unmatched.)

Finally let us analyze the switching graph G. Sometimes, as in the examples with
religious or district schools we have it as given. There may be cases, when there are no
explicit restrictions on who can apply to a given set of schools. Yet, if for some group
of students, 7, the utility associated with another group of schools, j, even in the best
possible matching (best school plus best peers) is less than switching costs (e.g. exams
are too hard so that it is not worth an effort), then we can deduce that {i — j} ¢ G.
Such method allows us to construct a graph. Of course, if we want the graph not to have

cycles, there should be a large set of prohibitively high costs.

7. CONCLUSION

When we think about many real life examples (e.g. school/college/internship/etc. ma-
tchings), peer effects should be a necessary component of agents preferences. Thus, it
seems crucial to be able to identify conditions for existence of a stable matching in the
presence of peer effects. Moreover, it is worth being able to explicitly construct a stable
matching.

Current paper provides an algorithm, which can be used to construct a (pairwise) stable

matching in the presence of peer effects. The sufficient (and in some sense necessary for
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the existence of a stable matching) condition for the algorithm to work is that the graph,
which governs the ability of agents to apply to different schools, does not have cycles (nor
directed, nor undirected). The algorithm uses school values and capacities, agents types
and their costs associated with applying to different schools, and a peer effect function as
inputs. The algorithm takes a finite amount of time, which is polynomial in the number
of schools. Thus, theoretically it is possible for a central planner to implement such
mechanism if one has enough information regarding the underlying economy.

In case of a decentralized markets, we may view our stable matching as an outcome
of a decentralized game between schools and students. As is common for an equilibrium
notions, we may not get uniqueness. In particular, we do not have a unique stable
matching when a peer effect component is very important (i.e. « is large enough). When
« is large enough, our model resembles a coordination problem, which is known to have
multiple equilibria. In contract, when peer effects are negligible (i.e. a ~ 0) we go back to
a classical many-to-one matching problem with identical preferences on the schools side,
which has a unique solution.

Our algorithm and existence condition rely on a structure of a switching graph. It is
still an open question whether we can get some additional conditions, if we do not have
the graph as exogenously given, but start from costs per se. Obviously, we know that if
a cost of going from ¢ to j is more than utility from the best outcome in j, then we can
erase an edge {i — j}. Yet, it may be possible to say something more for an intermediate
values of costs based on their relative values when compared to feasible utilities even in
the presence of cycles. Which intermediate values would guarantee the existence of a

stable matching in the presence of cycles? That issue is left for further research.
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8. APPENDIX

Proof of Theorem|1].

Proof. Let us provide an iterative construction, which leads to a stable matching in a
finite time. Then we will show, why it works. We work separately with each tree from
the forest. Fix any tree from the forest.

Choose an arbitrary node to be the root of the tree and denote it as mg. Denote its
children as my 1,...my,,, where z; is the number of children of my. Similarly, denote all
“grand-children” of myg (i.e. children of my1,...my ) as may,..., Mg, and so on. That
notation is illustrated in the Figure [

Now consider the following procedure, where the outside option can be viewed as the
worst school with fixed zero utility. Suppose that the longest path from the root to a
terminal node (leaf) has K edges.

Algorithm:

Step 0: Put the best students from all the markets, who can be at mg, up to capacity

to the best school at mg (school v{*®). That is, we work with market mq and the
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FIGURE 4. Directed tree: notation.

subset of markets mq1,...,m;,, which have towards the root direction of the
edge from them to my.

Denote by H_k’z the best student from my, ,. For each 9_17,3, who gets a seat at v},
ask what school he/she prefers the most among v, v7""*, and v, >*' for all Mg,
to which one can go from m; .. That is, whether one prefers the above allocation
at v]"°, or allocation, where we put top students from m, , and its eligible children
markets to the best school at m; ., or allocation, where we put top students from
m1,. along with all other eligible markets to m; ,’s child market ms ... Similarly
ask 0y (if gets a seat at v]") what school he/she prefers the most among v]" and
v;nl’zﬁ for all markets m; .» where one can move from my.

In the Figure [4| that would mean asking 6, and 9172. We ask 6, whether one
prefers seating at mg with students from mg and m; o or seating at m,; with
students from mg, my 1, and my;. We ask 0_1,2 whether one prefers seating at my
with students from mg and m, 5, or seating at m, , with students from m; > and
M4, OF seating at mq o with students from m; o, and mg o, or seating at mgy 3 with
students from m; o, and mg 3.

e If 6, does not get a seat at some v;nl’zﬁ, move to Step 1;

e If some of such 6, , does not get a seat at v;""*, move to Step 1;

e If some of such 6, , does not get a seat at UTZ’ZI, move to Step 2;

o If A, gets a seat everywhere and prefers some v;nl’z”, move to Step 1;

e If some of such 9_17,2 gets a seat everywhere and prefers v;""*, move to Step 1;

e If some of such 6, , gets a seat everywhere and prefers v;ng’z', move to Step 2;
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e Otherwise fix the above assignment at v]". Delete that school and its stu-
dents. Go back to Step 0 with the new economy.

Step 1: Consider the market identified at Step 0. Denote it m, .. Put the best

students from market m; . and its eligible to travel to m, , children and parent

markets to the best school at m; . up to capacity. For each égyzl, who gets a seat

, ask what school he/she prefers the most among v}, vInQ’z/

2 2!

mi, mg
at vy , and v

for all mg .~ to which one can go from ms .. Similarly ask H_M (if gets a seat at

mi,z z

v what school he/she prefers the most among v;""* and v, >*" for all markets
ms .~ where one can move from my ..
Note that we do not need to ask 6, even if one gets a seat at v] "*. If 6, gets

z

a seat at v]""*, and we get that market from previous step, then it was 0y’s first
choice. Similarly, we do not need to ask 9_1,z about mg. If it is possible to travel
from m, , to mp and we get m; . from Step 1, it means either 51,2 does not get a
seat at v;""*, so we do not ask 9_112 at all, or it is 9_17Z’s first choice, thus, it is better
than my.

o If §17Z does not get a seat at some v?z’z", move to Step 2;

e If some of such 6, does not get a seat at v;nz’zl, move to Step 2;

z

e If some of such 6., does not get a seat at v;ng’ ", move to Step 3;
o If H_M gets a seat everywhere and prefers some vin“", move to Step 2;
e If some of such 9_27,2/ gets a seat everywhere and prefers v;n“', move to Step 2;

e If some of such 0, gets a seat everywhere and prefers v

3;

, move to Step

e Otherwise fix the above assignment at v;""*. Delete that school and its stu-

dents. Go back to Step 0 with the new economy.

Step k: Do the same thing as in the previous steps, but with the best school at
market my, ., v]""*. Tt is the market, which we identified in previous steps (either
at Step k — 1 or at Step k — 2). Put the best students from market my, , and its
eligible to travel to my, . children and parent markets to the best school at my, .

up to capacity. For each §k+1,z', who gets a seat at v;"*", ask what school he/she



STABILITY IN MATCHING MARKETS WITH PEER EFFECTS 25

m m ’ m " .
prefers the most among v, “*, vy *™"* and v, """ for all my;2 .~ to which one

can go from my. . Similarly ask 6y . (if gets a seat at v;""*) what school he/she

m 1"
and v; """ for all markets my1 ,» where one can

z

prefers the most among ka’
move from my, ,.

As before, we do not need to ask the parent of . even if one gets a seat at
v 7. If the parent gets a seat at v,""*, and we get market my . from Step k — 1
or k — 2, then v];"™* was the parent’s first choice. Similarly, we do not need to ask
0. about its parental market. If it is possible to travel from m; . to the parental
market and we get my, . from previous steps, then it must be from Step k£ —1 (with
such edge direction my, . does not participate in Step k —2). Thus, either ék,z does
not get a seat at v; %, so we do not ask ék,z at all, or it is G_k,z’s first choice, thus,
it is better than the parental market.

e If ;. does not get a seat at some v; " move to Step k + 1;

e If some of such 6 . does not get a seat at vink“’z', move to Step k + 1;

e If some of such 0, . does not get a seat at v;"**>*", move to Step k + 2;

e If 0. gets a seat everywhere and prefers some UT’M’Z", move to Step k + 1;

e If some of such §k+172/ gets a seat everywhere and prefers v;n'““’z', move to
Step k + 1;

e If some of such 0. gets a seat everywhere and prefers v ** move to
Step k + 2;

e Otherwise fix the above assignment at v;"**. Delete that school and its stu-

dents. Go back to Step 0 with the new economy.

Step K: We must stop if we have reached a node mg ., as by definition it is a
terminal node. No other markets can get a seat at v "%, thus all bullets except
the last one in the above steps are not satisfied, and we are left with the last bullet

point, i.e. we finalize the assignment.

Let us explain why the algorithm, presented above, leads to a stable matching. Note
that in each step we are trying to get the best possible scenario for the highest type in

some market. Thus, that type does not want to deviate: schools in a given market by
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construction have decreasing peer effect and value, thus, there is no reason to deviate to
a school with a larger number in the same market. Here we are using the properties of a
peer effect function, which implies that if peers in one set are weakly larger than in the
other, then the former set has weakly higher value of a peer effect function. Moreover,
there is no reason to deviate to the other possible market, as in the algorithm we were
choosing the best market.

We also need to show that agents, which are assigned to some school during some step
in the algorithm, and were not the highest types in that step, still do not want to deviate.
Suppose we implement an assignment at Step k, that is, we fill a school at some market
my... Thus, if 6y ., its parental market 6;_; ./, and any of its children markets 0,1 .» get
a seat at v; ©7, then it is their desired allocation. (They get a seat in all of the markets,
where they are eligible to travel, but choose my..) Let us look at the second highest type
from my ., 6. Staying in the same school as 0y ., 6’ gets higher utility, as its set of peers

is better:

peers(0') = peers(Oy...) U {0} \ {0'}.

Moreover, deviating to a different market leads to a weakly lower utility than 6, . was
getting, while we were doing a comparison at Step k (or k — 1 or k — 2). Deviating to the
best school at the other market means sharing weakly worse set of peers than H_W had:
élaz is no longer there and is replaced by someone worse. If §” was at that school with ék,z,
then even by someone weakly worse than 6’ and the best possible set of peers is peers(ék,z)
from that school at the moment of comparison at Step k (or k — 1 or k —2). If #' was not
at that school with G_k,z, then he takes G_k,z’s place and, again, gets peers no better than
Q_k,z had. Thus, deviating to a different market leads to a weakly smaller utility than H_k’z
had at that market, while staying with 6, . leads to a weakly higher utility than ék,z has.
Thus, second highest type from my, . does not deviate. Similarly, other agents from my, .,

Mi—1,, and myy1 .» do not deviate. O
Proof of Theorem[3.

Proof. Suppose G has a cycle. Choose the smallest cycle of G. Without loss of generality

let us assume that it involves markets 1, ..., /.
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First, let us fix k; = 1, ¢¢ = 2 for all markets 4. That is, there is only one school
per market with capacity 2. Now assume that for ¢ > ¢, F;, = {M;, M;}, where M; is
an increasing sequence of i. That is, the higher is the number of a market, the better
student occupy it. Moreover, for each i > ¢ choose M; high enough (agents in markets
1,...,¢ will have lower types). Additionally assume that for i > ¢, v} is an increasing
sequence of 4, and if i > j > ¢, then v} > U{ + ap(M,). Thus, it is better to be alone at
school v* than go to worse school ¥ with the best possible peer. Schools and students in
the remaining markets 1, ..., ¢ will be worse. Therefore, in any stable matching we must
have that agents from market n, {M,, M, } stay home and attend v}. Then agents from
market n — 1 also stay home and attend v7~* and so on until market ¢ + 1. We are left

with markets 1,...,¢, which now represent a separate problem, independent of markets

(+1,...,n.

Case I (directed cycle): First suppose that the cycle is directed, so that (without
loss of generality) it has the following structure: 1 — 2 — .-+ — £. That is, if
there are links i; — 75 — i3 and i; — i3, then we do not include 75 in our smallest
cycle.

Choose M large enough, but smaller than M, and consider the following
distributions: Fy = {M,0}, Fo ={M -1, M -3},....F,={M—(+1,M—(—1}.
That is in any market ¢ there is one type greater than any one in Fj,; and one
type which lies between types in Fi+1E| Next set v; = --- = vy < vy41, and assume
ciiv1 < wvp forall e =1,...,¢. Thus, it is always better to go to some school than

take the outside option. Moreover, choose costs such that

a(p(M) = p(M — £ —1)) < ciit1 < a(p(M — € —1) — p(0)) ]
We are going to show that in any stable matching all agents must be matched
to some school.

First note, that two agents from market ¢ cannot push away both agents from

market i+1 (type M —i from market i+1 is higher than M —i—1 from market 7, so

4For ease of notation we avoid writing i mod ¢ and assume that i = ¢ + 1 stays for market 1.

5This can be done as p(-) grows slower than exponentially.



28

ANNA BYKHOVSKAYA

M —i will be able to stay at home). Thus, if both agents from market ¢ are allocated

to vi*t!, then agent M — i from market i + 1 must be assigned to v{™ (otherwise

he deviates and pushes M —i — 1 out of v}{*'). However, assuming cost ¢;;, is not
too low for all j = 1,...,¢, we get v{"> + ap(M) — ciy1i2 < 07 +ap(M —i+1)
or equivalently ¢;4142 > a(p(M) — p(M — i+ 1)). Thus, agent M — i is better
deviating and staying at home. Therefore, it cannot be a part of a stable matching,
and no 2 agents from market ¢ are assigned to market 7 + 1.

Because 2 agents from market ¢ cannot be assigned to market i+ 1, any positive
type goes to some school. Suppose some positive type from market ¢ takes outside
option. By construction, it is always better to go to some school. If unassigned,
the highest type from market ¢ will deviate and go to v}, as he is better than
the other type from market ¢ and better than the lower type from market ¢ — 1.
If the lower type is unassigned, he will not be able to deviate to v{ only if it is
occupied by the highest type from market ¢ and the highest type from market
i — 1. However, in that case the lower type, M —i — 1, may go to vi™, as he is
better than one of the citizens of market ¢ + 1. Note here, that the last argument
does not work for type 0, as he is smaller than everyone. Therefore, any positive
type must be assigned to some school in a stable matching.

Now let us show that in fact 0 must also be assigned to some school. Suppose
there is a stable matching, where 0 is unassigned. If there is an empty seat at
v, then 0 will deviate and take that seat. Thus, both seats at v{ must be taken.
They can be taken by agents M —¢ —1, M — ¢+ 1 from market ¢ and by agent M
from market 1. If they are taken by agents from market ¢, then M will deviate:
c12 > a(p(M — 1) —p(M — £+ 1)). Thus, it must be taken by M and one of the
agents from market . Yet, in that case the other agent from market ¢ stays at
home, so that for the former one it is better not to pay ¢, and stay at home (the
difference between peer types is not large comparing to travelling costs). Thus, in
a stable matching 0 must also be assigned to some school, and all agents must go

to some school.
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If everyone goes to some school, we can either have autarky allocation, or move
one agent from market i to market ¢ + 1 for all i (from previous arguments we
know that we cannot move two agents from market i to i + 1). Suppose we have
autarky allocation. In that case M will deviate to market 2 to get a way better
peer: c12 < a(p(M — 3) — p(0)). Therefore, we are left with the second case. In
that case either 0 goes to v? along with one of the market 2’s agents or 0 stays at
home and M moves to market 2. If 0 moves, than the agent from market 2 who is
assigned to vj will deviate and not pay costs: ca3 > a(p(M —2) — p(M —3)). If 0
stays at home, than he is joined by one of the agents from market ¢. Yet than M
will deviate home if ¢35 > a(p(M — 1) — p(M — ¢ — 1)). Thus, there is no stable
matching for the constructed configuration.

Case II (undirected cycle): Now suppose that the above cycle is undirected.
There are two possible subcases. Either there is only one vertex with both edges
going away from it or at least two of them. Such type of vertex is shown in the
Figure f] Note that the case with non such vertices corresponds to a directed

cycle.

FIGURE 5. Vertex with both edges going away from it.

(1) Suppose that there is only one vertex with both edges going away from it.
Then the cycle is shown in the Figure [6ff That is, there are two directed
pathes from A to B: one via A;’s and the other via B;’s. Note that a non-
directed cycle must have at least three vertices. Those necessary three vertices
are {A, B, By }.

Now let us define the market structure. Choose M large enough, but smaller

than M;y; and consider the following distributions:
FA = {QA,QA} = {M—nA - 1,M—77,A - 1},

SFor convenience we have changed the names of markets i1, . .., .
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L5

nBBnB 1 1

FIGURE 6. Case II.1.
Fy, :={04,,04,}={M —(na+1—49),M — (na+1—1)},
Fg ={0,0}, Fp, :={0p,,0} = {M, 0},
Fp, :={0p,,05,}={M —ns—2—(ng—1i),M —ng—2—(np—1)}, i # 1.

That is, the highest type lives in B;. The next highest types are in A,,,, and
with the decrease in A’s subscript, types decline, until we reach the last one,
A;. Among the remaining markets, the highest types are in A, followed by
B, . With the decrease in B’s subscript, types decline until we reach Bj.

Now let us define values of schools:

A __ B __ _ Bnp _
vy =0, =...=v; ¥ =0,

v =v4+ap(M)+ 1, v2 = v +ap(M)+1=v+2ap(M)+2,...,

vl = ol ap(M) + 1 = v +iap(M) +i,. ..,

vl :UIA”A +ap(M)+1=v+ (na+ Dap(M)+na+ 1.

Thus, in the markets Ay,..., A, ,, B values are highest and they are an in-
creasing sequence.

Assume all switching costs to be smaller than v, so that it is always better to
be assigned to a foreign school than stay unassigned. Moreover, choose costs

such that

An
(1) v "+ ap(M) < vf — ca,, B+ ap(0) & ca, B <1+ ap(0).



(2)

TExistence of such CB;B

lei +ap(M) < vfl”l — Ca,4,4, +ap(0) & cazn
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<1+ ap(0), i <na.

141

v+ ap(0) < vP + ap(fa,,) — cs B,

v+ ap(fp,) < vf + ap(ba,,) — c,s

cg,B < (na+1ap(M) +na+ 1+ a(p(fa,,) —p(0)),

cgB > (na+1ap(M) +na+ 1+ a(p(fa,,) —p0s,))-
Moreover, choose cq4, = CAB,, < U, SO that agent 04 prefers A; over B, ,
(and both over A). This is because vi* + ap(0) = v + ap(M) + 1 4+ ap(0) >

By

v+ ap(M) =v; """ + ap(M). Additionally choose cg,p, ,, i > 1 such that

1—17

a(p<931) - p(O) <CBB;_; <V

s al(pM —nsp—2—(ngp—1)) —p0) < cp,p,_, < L|Z|

Eq. guarantees that at least one agent from A, , switches to B. Whether

na
the second agent switches depends on the behavior of agent with highest
possible type, M, from market B;. Eq. guarantees that 0p, prefers to
switch to B and enjoy the peer effect from 04, instead of staying with zero
type at home. However, 5, wont switch to B if fp, joins him at B;. Eq.
guarantees that all agents from markets B;,7 > 1 will stay at home even with
zero type of peer.

Suppose first that we have a stable matching where agent 65, = M from B,
goes to B. Then only one agent can switch from A, ,. The second agent stays
at A,,. By Eq. , we know that one agent switches from A, ,_; to A,,,
then one agent switches from A,,,_» to A, ,_1 and so on, until A;. Moreover,
as agents in A prefer A; over B, ,, one agent from A will switch to A;. The

second one is forced to go to B, (it is better than staying at A). Thus one of

agents from B, , is pushed away. That agent moves to B,,,_1, as it is better

,_, can be guaranteed by choosing v high enough.
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to be assigned than unassigned. Similarly, we end up with agent 6p,, who is
pushed to B;. Thus, by Eq. , type 0p, deviates and moves back to B;.
Now suppose that we have a stable matching where agent g, = M from B,
does not go to B and stays at home. Thus, by Eq. both agents from
A, , switch to B. Similarly both agents from A, ,_; switch to A, , and so on.
Finally, both agents from A switch to 4;. By Eq. (3)), type 0p, will deviate
to B, if his peer is zero type. Therefore, he must be with 65,. However, as no
one from market A goes to B,,, both agents from B, , are not pushed away
from home. Thus, by Eq. , they stay at B,,,. Similarly, by Eq. all
agents 0p,, 1 > 1 stay at home. Thus, 0p, cannot be at B; with 0p,, and
we get a contradiction. Therefore, no stable matching exists for the above
economy.

(2) Suppose that there are at least two vertices with both edges going away from
them. Then the cycle is shown in the Figure m That is, nodes with names
Asi_1 have both edges pointing away from them, nodes with names As;, have
both edges pointing towards them, nodes with names Bfk_l have edges both
in the direction of Ay (first towards then away), and nodes with names B2*
have edges both in the direction of Ay (first away then towards).

Now let us define the market structure. Choose M large enough, so that 2p(M —
K) > p(M)} but smaller than M, and consider the following distributions:

FA1 = {0,41,0} = {M, 0}, FA21 = {0,0} Vl,

FA21+1 = {8A2l+179142l+1} = {M - l, M — l}7 [>0

i 7
Fro = {9 241, 0 2l+1} = QA - QA -
B; B; "V B; 20+1 14+ n21+1’ 20+1 1+ Nl
7 7
SRV L Vi R —
L+ ng 1+ nora
8For convenience we have changed the names of markets i1,... .

9This can be done as p(-) grows slower than exponentially.
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B} B, A, DBj A3 B}

B el s

2K -1

FiGUuRrE 7. Case I1.2.

F = {0 79 =<0 —+ 7& _
B t & B?l} { Aat (14 n9)(1 4+ ng-1) et (1 +ng) (1 + ng1) }
1+ng —1 14+n9 —1 } .
=eM-—1 + 7M —1 + y Ka
{ (1 + ng) (1 4+ ng—1) (1 +ng)(1 4+ ng—1) 7
1 7
Fppre i= {0, Opnc} = | Oares =1 = 7 O = 1=

:{M—K—;,M—K— ! }
1+ nox 1 4+ nok

That is, the highest type lives in A;. The larger is the subscript of A; (among

odd ones), the smaller are types in that market. Moreover, 0211 > QB%HZ, and
n2l+1

types in intermediate markets, BF are decreasing in 7 and they lie on the intervals

(04, —1,04,) for odd &k and (04,,,,04,,, + 1) for even k # 2K.

Now let us define values of schools:

A BTt A .
v =0, 0" =v? =oVi,i,

B2l

vt = (ng —i+ ap(M —1+1)+ng —i+ 1V, i,

where v is large enough so that v > (ng + )ap(M — 1+ 1) + ny + 1 VL.
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(8)

1 B n
UlBl+Oép<M— >—CAlB%<U1”2K +ap(M—K— 2K )—CA132K

=
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Assume all switching costs to be smaller than v, so that it is always better to
be assigned to a foreign school than stay unassigned. Set c4, B = 0. Moreover,
choose costs such that (assume that BXtl = Ay .o and B2 = Ay)

nop+1+1

B} B2 1+ ny — i
v, 4 ap(0) — Cpap > V" +ap (M —l= (1 + 1) (1 + ny 1))

14+mngy—1
N < M-—1+1)— M—1-— +p0) | +1,
Cpaipn <X (p( ) p( (1+n21)(1+n21—1)) p( >>

21

Bn
v, "+ ap(0) — Cgyr B2 > vf”“ +ap(M —1) = ap(M —1)

= Cagyipz, < a(p(M —1+1)=p(M —1)+p(0)) +1,

1 B2K
B n
B 4+ ap (M 1T n1) —capp > vy 7+ ap(0) = caypar

capt <v—ap(M —K—-1)—1+ap (M— 1+1n1> —ap(0), nox #0,

=
Ca,B! < Qp (M - Hlm) — ap(0), nog =0

Y

2K

1+nq 1+ nog n2K

CAIB%>v—ap(M—K—1)—1—|—ap<M— L >—ap<M—K— Dok ), nog # 0,

14nq 14+noK

14+nq

CAIB%>CKP(M— ! >—ap(M—K+1), nog = 0,

P ap(0) > ol M- —"
vi" Hap0)>v"T +ap - — ——— ) — cput1 5211
1+ ngp B Bin

?
= CBleBiQJﬁl > o (p <M -1 — m) —p(0)> .

Note that Eq. and Eq. @ do not contradict the initial requirement that
¢ < v, as because p(-) grows slower than exponentially, we can find M such

that 2p(M — K) > p(M) andv>v—ap(M—K—1)—1+ap<M— ! )—

14+nq

B2+l 20+1

ap (M - K- ”2—K> Moreover as v;* = v, by choice of v, vfi > (ngy +

14+naok

1)ap(]\/[—l+1)+n21+1>oz(p<M—l—+> —p(O)).

1+ngi41

9
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Because Ufh = 0, 64, wont stay at home in a stable matching. Suppose first
that in a stable matching 64, goes to Bi. Then he pushes away 0p:. Note that the
other #p1 will stay at home, as home guarantees a better peer and no switching
costs, while school value is the same at home and abroad. Thus, only one 0p:1 goes
to Bj. Similarly, only one 935 goes to Bl and so on. Finally, only one 937111 goes
to As. By Eq. both g2 want to switch to Az, but only one can, as (937111 > Ope.
Thus, one fp2 switches and another stays at home. Similarly, one fpz switches
to Bf and another stays at home and so on. Thus, one 64, switches to B2, and
another to B} and so on. Finally, we are left with the fact that one 6 B2 switches
to B2E | and another stays at home. Then by Eq. , 04, deviates and switches

na2K
to B2K .

Now suppose that 64, goes to B2 . Then by Eq. (9], no one switches from Bi.
Similarly no one switches from B} and so on until B} . Thus, by Eq. (f), both
agents switch from B? to Ay. By the same logic both agents switch from B2 to B?
and so on. Finally, by Eq. @, both agents switch from As to Bfu. Applying the
same arguments to next markets, we get that agents from Bfé; ‘}1 stay at home,
while agents from B?E switch to A and, at the end, agents from Bfé; switch
to B2K _|. Thus, 04, is left alone at B2X . However, by Eq. (7)), in that case 04,

deviates and switches to Bj. Thus, there is no stable matching for the constructed

configuration.

Proof of Theorem[4].

Proof. In the proof we assume that no two agents share the same type 6, and no agent is
indifferent between two schools.

Denote the equilibrium from the student-proposing (thus, student-optimal) Gale-
Shapley algorithm as eq;, and suppose there exists another equilibrium eqy. Let us prove
that eqo = eq;. When students propose to their most preferred schools, schools start to
accept the highest types. The agent with § = max{F; U...U F,} is admitted for sure
(this is the most preferred type for schools). Then the second highest type is admitted

for sure and so on until some school reaches its capacity. Suppose school v} reaches its
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capacity first (then those, who were proposing to that school and were not accepted need
to propose to another school). Denote by #% the smallest type admitted to v?.

We claim that all types § > 6 have the same allocations under both equilibria. Suppose
by contradiction, that there exist a type 6y from market g, such that he has different

%) thus

allocations in eq; and eqo. Under eq; he is admitted to the first best option, vi
under egs he is admitted to a different school. If he can switch to vi(e‘)), he would do
so. Thus, he must be below the cut-off for vi(GO), and the school must be filled up to

{(60)

capacity. Thus, 6, < Qzl( , where ¢ denote cut-offs under eqy. If he is not accepted,

it means that there are other agent, which have types above ino) and are assigned to

vi(%), while were assigned to a different school under eq;. Thus, we get an agent 6; from

@) but is assigned to vi(%).

market i; who prefers to switch to his first best from eqq, vi
Thus, his first best school is filled up to capacity and has threshold ﬁiwl) > #,. Because
number of schools is finite, we can repeat the process until we get k, ¢,k > ¢ such that
0k > 0, and the first best option for the agent 6% from market i(k) is vi(ak), but he is
assigned to a different school <vi(0"‘1)>, while #° wants to go to vi(eé) but is admitted to
vi(ee‘l) = vi(g’“) under egy. Thus, 0% can profitably deviate, and we get a contradiction.
Therefore, all types # > 6 have the same allocations under both equilibria. Applying
the same procedure to the next cut-off in eq;, we get that, again, allocations coincide.
Because number of schools, and, thus, cut-offs is finite, we get that eq; = eqs. Thus,

equilibrium is generically unique. 0
Proof of Theorem[J.

Proof. Let us proceed in the following way: first, reorder in any way schools in each
market, then apply the algorithm from Theorem [1| for the new school ordering. We will
get a different matching, because now not schools with highest v’s are getting the best
peers in each market, but some other schools. For example, if we reorder schools from last
to first, across each market we will see the best students in the schools with the smallest
values.

Let us show that no one will deviate from the above assignment. Because v’s and c’c
now do not matter, no one is going to deviate across markets (all schools, which can

accept a given agent have lower peers than one’s current assignment). Thus, the only
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possible deviation would be to a different market. However, the construction in Theorem

guarantees that it is also non-profitable. O
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