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Abstract

This paper considers a timing game in which asymmetrically in-

formed agents have the option to delay an investment strategically

to learn about its uncertain return from the experience of others. I

study the effects of information exchange through strategic delay on

long-run beliefs and outcomes. Investment decisions are delayed when

the information structure prohibits the occurrence of informational

cascades. When there is only moderate inequality in the distribution

of information, equilibrium beliefs converge in the long-run, and there

is an insufficient aggregate investment relative to the efficient bench-

mark. When the distribution of information is more skewed, than the

poorly informed drive out the well-informed, leading to a persistent

wedge in posterior beliefs and excess investment.
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1 Introduction

In 1929, the young German physician Werner Forssmann secretly conducted

a risky self-experiment. He inserted a narrow tube into his arm and ma-

neuvered it along a vein unto his heart. The procedure, known as cardiac

catheterization, constituted a revolutionary breakthrough in cardiology and

later earned him the Nobel prize in medicine. Forssmann’s main contribution

was the proof that cardiac catheterization was safe to perform on humans.

The basic methods for the procedure had already been developed decades

earlier and successfully tested on animals. It was widely believed, however,

that inserting any object into the beating human heart was fatal, and thus

there was a need for someone to put this hypothesis to the ultimate test.

The story of Werner Forssman is of someone who took action in an envi-

ronment of “wait and see”, in which everyone hoped for the independent ini-

tiative of a volunteer who resolves some of the risks relating to an uncharted

course of action. There is a broad spectrum of areas in which these volunteer

mechanisms play a crucial role. Palfrey and Rosenthal (1984) report the case

of MCI, a telecommunications company, who fought for commercial access

to AT&T’s telephone networks in the 1960s, facing substantial legal fees and

significant risk. The legal procedure ended with a favorable ruling by Federal

Communications Commission (FCC) requiring AT&T to enable third parties

to access their networks. In the end, the ruling benefited not only MCI, but

also a host of other companies that were not previously involved in the case.

Empirically, it is a well-established fact that people learn from the behav-

ior and experience of their peers. Peer learning effects have been found for

example in the diffusion of innovations among health professionals (Becker,

1970), the enrollment in health insurance (Liu et al., 2014), the diffusion of

home computers (Goolsbee et al., 2002), stock market entry (Kaustia and

Knüpfer, 2012) and the introduction of the personal income tax (Aidt and

Jensen, 2009). In environments in which no formal institution or informal
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arrangement exists that coordinates exploratory activities, how efficient is it

to rely on the initiative of volunteers, and how well does such a decentralized

mechanism aggregate dispersed information?

To study this problem, I consider a stopping game with asymmetric dis-

tribution of information and a pure informational externality. In this game,

each agent has the option to make an investment. The investment generates

an unknown return that depends on an uncertain state of the world. At the

beginning of the game, agents privately receive information about the state

and then decide independently how long to wait before taking action. The

first agent who makes the investment realizes the state-dependent payoff and

thereby reveals the state to the remaining agents. Uncertainty about the

return of the investment and payoff observability generate a second-mover

advantage that provides agents with an incentive to free-ride on others’ ini-

tiative.

I characterize the Bayes-Nash equilibria allowing for an heterogeneous

distribution of information. The equilibria can be broadly classified into two

types. Equilibria may end immediately with some agent’s immediate invest-

ment if the information structure is capable of generating an informational

cascade. If this is not the case, then all robust equilibria exhibit delay. In an

equilibrium with delay, agents wait for a period of time before making their

investment. The delay is driven by the agents’ expectation that someone

else might invest first. The duration an agent is willing to wait provides a

noisy signal to others about the value of the investment. The agents strate-

gic considerations therefore influence beliefs which in turn affect investment

decisions.

I study the effects of information exchange through strategic delay on

long-run run beliefs and outcomes, and compare these to the efficient bench-

mark. Equilibria with delay can exhibit two structurally very different long-

run outcomes. When information is fairly equally distributed, the natural

equilibrium benchmark is one in which beliefs converge over time. All agents
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eventually become pessimistic about the state and investments stop. This

equilibrium generates too little investment in aggregate relative to the effi-

cient benchmark. In contrast, when the distribution of information is more

skewed, there can be a persistent wedge in posterior beliefs between well and

poorly informed agents.

I find that when optimism is high and information is distributed very

unevenly, then the poorly informed tend to drive out the well-informed. In-

tuitively, the belief of well informed agents is more strongly correlated with

the state of the world than that of the poorly informed. This means in partic-

ular that when the state is low, then poorly informed agents are less cautious

in their investments. The well-informed, who tend to be more pessimistic in

the low state, have thus a higher incentive to wait. As a result, the poorly

informed learn increasingly less from the better informed and do themselves

reveal more of their own information. In the limit, agents with more accurate

information become entirely passive while their belief remains above that of

the less informed.

In this equilibrium, agents stop with certainty regardless of the state of

the world. The results in the literature typically suggest the opposite: when

a public good is provided through voluntary contribution, then it is provided

for at a socially insufficient level, because no agent takes into account the

value of his own contribution to others. However, this insight is obtained

almost exclusively through the analysis of symmetric equilibria of models

featuring symmetric agents. The present paper deviates from this narrow

focus on symmetric environments, characterizing the equilibrium outcomes

in a more general model that allows agents to differ with respect to their

endowment with information.

The paper is related to the literature on voluntary contributions to dis-

crete public goods. These papers consider the strategic interaction between

agents who face the binary decision of whether to contribute to a public good

or not, and in which the public good is provided if the number of partici-
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pants exceeds a given threshold. Such a model was first analyzed by Palfrey

and Rosenthal (1984) who characterize its Nash equilibria. Consistent with

standard logic, they find that in the unique symmetric equilibrium there is

an insufficient provision of the public good. There are several extensions to

their model allowing for the presence of informational asymmetry. Bliss and

Nalebuff (1984) consider endogenous timing of voluntary contributions to a

discrete good in a “war of attrition” framework. In their model, agents are

privately informed about their own cost, and thus agents learn about others’

participation only, but not about an underlying common state of the world.

There is also a natural connection to the literature on social learning,

following the seminal articles of Bikhchandani et al. (1992) and Banerjee

(1992). These papers consider models in which agents are ordered in a fixed

sequence and learn from previous agents’ actions about the common payoff

to some risky action. They show that private information and sequential

decision making can lead to informational cascades in which agents ignore

their own information and herd on a socially undesirable action. Informa-

tional cascades arise in my model in symmetric equilibria, but never when

there is a strong informational asymmetry.

Somewhat more closely related to this paper is Chamley and Gale (1994),

who propose a variant of the game with endogenous timing of actions. In

their model agents have an incentive to delay their action strategically when

they expect to obtain additional information from other agents’ decisions. A

similar mechanism is at work in the present model as well, but the strategic

setup is nevertheless quite different. In their model it is really the sequen-

tiality of actions that is important – delays occur in their model only when

agents are restricted to act at discrete times. In my model, delay arises natu-

rally as a consequence of an informational spill-over that results from payoff

observability.

Informational spill-overs from payoff observability have been studied in

the strategic experimentation literature starting with Bolton and Harris (1999)
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and Keller et al. (2005). In these papers a group of agents dynamically choose

between two actions (i.e., the arms of a bandit) one of which yields a risky

and the other a safe payoff. Payoffs are observable giving rise to free-riding

among agents and inefficient levels of experimentation with the risky action

in equilibrium. Indeed, I view my model as a version of such a game, in

which choosing the risky action is immediately fully revealing.

A number of papers study versions of games of strategic experimentation

with asymmetrically informed agents. Those include non-competitive models

in which agents are privately informed about their cost of delay (Décamps

and Mariotti, 2004) or in which they privately observe their own payoffs

(Rosenberg, Solan, and Vieille, 2007; Murto and Välimäki, 2011). Another

array of papers considers model of competitive experimentation in which

agents are privately informed about the realization of a common state vari-

able (Malueg and Tsutsui, 1997; Moscarini and Squintani, 2010). To the

best of my knowledge there is no paper that considers a model with a pure

informational externality in which agents are asymmetrically informed about

a common state variable.

The paper is structured as follows. The model, definitions and basic

assumptions and the equilibrium concept are introduced in Section 2. Equi-

librium and existence results are presented in Section 3. Section 4 presents

the main result. Section 5 includes a discussion of efficiency and comparative

statics. Section 5 concludes.

2 Model

There is a set of agents N = {1, . . . , n} who face the option to invest into

a project with an uncertain return. The return for each project depends on

the realization of an unknown state of the world θ ∈ {H,L}, where H > 0 is

arbitrary and L is normalized to −1. At the outset, all agents believe that

θ = H with probability p0 ∈ (0, 1). Each agent decides if and when to stop.
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The timing of the game is as follows. After observing their signals, the

agents enter the preemption phase in which they decide sequentially whether

to preempt the game and realize payoffs immediately. Preemption allows

agents to move sequentially at time zero without delay, which is essential

for equilibrium existence and for establishing an appropriate efficient bench-

mark.1 When no agent preempts the game, they enter a waiting phase in

which each agent chooses a stopping time representing the time at which an

agent invests if no other agent has done so beforehand. Denote agent i’s

action by ti ∈ [0,∞] ∪ {−i} where ti = −i represents the event that agent i

preempts the game and ti ≥ 0 is his stopping time conditional on reaching

ti in the waiting phase. When ti =∞, agent i waits indefinitely. The payoff

for each agent i is

ui(ti, t−i, θ) =

e−rmax{ti,0}θ if ti = minj tj

e−rmax{minj tj ,0}max{θ, 0} if ti > minj tj
.

At the outset, it is commonly known that each agent i ∈ N is en-

dowed with a signal si ∈ [0, 1] that is drawn from a distribution Fi,θ(·)
which we assume is differentiable, has full support and a bounded density.

A strategy for agent i is a function σi : [0, 1] → [0,∞] ∪ {−i} with left

limits. A strategy profile (σi)i∈N is a Bayes-Nash equilibrium if σi(si) ∈
arg maxt E[ui(t, σ−i(si), θ)|si] for every si ∈ [0, 1]. W.l.o.g. we limit attention

to equilibria with Pr(σi(si) = 0) = 0 for all i ∈ N .

For a given strategy profile (σi)i∈N , let τ(s) = mini∈N σi(si) be first stop-

ping time among all agents. Further, define s+i = inf{si|σi(si) = −i} to

be the lowest signal such that agent i preempts the game. Similarly, let

s−i = inf{si|σi(si) <∞} be the lowest signal such that agent i stops in finite

time. We define inf ∅ = 1 for the case that one of these sets is empty. Finally,

1Without preemption, equilibria may fail to exist when some agent stops at t = 0 with
positive probability. Then other agents may prefer to wait for that agent to move first,
but since there is no first instance after t = 0, a best response may not exist.
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define

A(t) =
{
i ∈ N

∣∣∃si ∈ [0, 1] : σi(si) = t
}

to be set of agents that are “active” at time t, i.e., the set of agents for whom

there exists a signal si ∈ [0, 1] such that agent i stops at t after observing si.

We assume that signal distributions satisfy the Monotone Likelihood Ra-

tio Property (MLRP), that is, the likelihood ratio F ′i,H(si)/F
′
i,L(si) is increas-

ing in si for each agent i. We shall make two further assumptions to render

the strategic interaction interesting.

Definition 1 (Optimism). Agent i is weakly optimistic if E[θ|si = 1] > 0

and strongly optimistic, if E[θ|si = 0] > 0.

An agent is weakly optimistic if he assigns a positive expected value to θ

after observing his best signal. A strongly optimistic agent assigns a positive

expected value to θ after any signal. Weak optimism is a necessary condition

for this agent’s participation, since an agent for whom the expected value of

stopping is negative at the outset would never act in any equilibrium.

Assumption 1 (Initial Optimism). All agents are weakly optimistic

Next, we assume that there is aggregate uncertainty about the state of

the world. By aggregate uncertainty we mean that there is a signal for each

agent so that this agent prefers not to act for some realization of another

agents’ signals.

Assumption 2 (Aggregate Uncertainty). E[θ|si=0, sj=0] < 0 for any i 6= j.

The assumption of aggregate uncertainty is important, because we are

interested in studying issues relating the aggregation of dispersed informa-

tion. In particular, the purpose of our model is to assess how well equilibria

process information relative to the efficient benchmark. Aggregate uncer-

tainty ensures that other’s private information does not only influence when

an agent invests, but also if he invests at all.
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By Bayes’ rule, agent i’s belief that the state is H after observing signal

si but before the beginning of the game, is

Pr(H|si) =
p0F

′
i,H (si)

p0F ′i,H (si) + (1− p0)F ′i,L (si)
.

Denote by pi(ŝi, ŝ−i) agent i’s belief that the state is H after observing signal

si and conditional on the event that each agent j observed a signal no higher

than sj. By Bayes’ rule, this belief is given by

pi(si, s−i) =
Pr(H|si) (si)

∏
j 6=i Fj,H (sj)

Pr(H|si) (si)
∏

j 6=i Fj,H (sj) + Pr(L|si) (si)
∏

j 6=i Fj,L (sj)
.

Define the stopping value of agent i at the signal profile si and s−i = (sj)j 6=i

to be

ûi(si, s−i) = pi(si, s−i)H − (1− pi(si, s−i)).

In some cases, agents may be endowed with particularly informative sig-

nals, that dominates others’ information in the following sense.

Definition 2 (Dominant signal). Let s∗i be the signal solving E[θ|s∗i ] = 0.

Agent i’s signal is dominant, if E[θ|si ≤ s∗i , sj = 1] ≤ 0 for all j 6= i.

In other words, a dominant signal for agent i is a signal such that knowing

that agent i’s stopping value is negative discourages even the most optimistic

competitor.

We denote by α the likelihood ratio of the posterior probability that the

state is H, conditional on each agent i’s signal being below si. It follows

from Bayes’ rule that

α(s1, . . . , sn) =
p0

1− p0

n∏
i=1

Fi,H(si)

Fi,L(si)
.

MLRP implies that Fi,H/Fi,L is increasing for each i (Eeckhoudt and Gollier,
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1995) and thus α is increasing in each of its arguments.

Further, we denote by λi,θ the reverse hazard rate of agent i’s signal

distribution in state θ given by

λi,θ(si) =
F ′i,θ(si)

Fi,θ(si)
.

We shall impose the following technical assumption on the distribution of

signals in the low state.

Assumption 3. For every i ∈ N , we have

−∞ < lim
si→0

F ′′i,L(si)/F
′
i,L(si)

F ′i,L(si)/Fi,L(si)
< 1.(1)

This assumption is a mild regularity condition on the curvature of Fi,L.

Essentially, it says that the curvature close to zero is neither too small nor too

large relative to its slope. The condition is needed to ensure the function is

sufficiently well-behaved around zero. Note that it is not a restriction on the

informativeness of signals, because the restriction applies to the distribution

of signals in the low state only, while informativeness is governed by the

relative distribution of signals across states.

Denote by hi the reverse hazard rate ratio (RHR) for agent i at si ∈ [0, 1]

is defined as the ratio of reverse hazard rates, and given by

hi(si) =
F ′i,H(si)/Fi,H(si)

F ′i,L(si)/Fi,L(si)
.

It is well known that MLRP implies λi,H > λi,L and thus hi > 1. The

hazard rate ratio hi and the likelihood ratio of the public posterior α allows

us to decompose the public posterior belief about the state into the common
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component and a private component.

pi(si, s−i)

1− pi(si, s−i)
= α(s)hi(si).

Here, α represents a measure of the information about the state that is

commonly available to all agents. The factor hi represents the information

that agent i holds privately and it provides a measure of divergence of an

agent’s private belief from the public belief. Using decomposition, we write

the stopping value for each agent i as follows. We have

ûi(si, s−i)

1− pi(si, s−i)
= α(s)hi(si)H − 1(2)

The left-hand side shows the stopping value relative to the probability of the

low state. It measures the relative gain from delaying investment. The right-

hand side shows that this value differs across agents only through differences

in their respective RHR.

3 Socially optimal stopping

In this section we introduce a notion of efficiency that addresses the question

of how agents should behave in order to maximize welfare. Our efficiency

benchmark entails the restriction that agents cannot communicate their pri-

vate information prior to deciding when to stop. We can interpret it as the

solution to the “team problem” in which agents choose their strategies collab-

oratively, before observing their signals, so as to maximize the sum of their

payoffs. Comparing equilibrium outcomes with this benchmark allows us to

isolate inefficiencies in the use of information resulting from strategic effects

and exclude those inefficiencies that are the result of the way information is

processed in equilibrium. Our notion of efficiency is as follows.
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Definition 3. A strategy profile (σi)
n
i=1 is efficient if it maximizes

E

[
n∑
i=1

ui(σi(si), σ−i(s−i), θ)

]
.

An efficient allocation never entails any delay, because any outcome that

is feasible through delayed stopping in the waiting phase can be achieved

without delay in the preemption phase. To see this, fix any strategy profile

σ and define Ei = {si|σi(si) <∞} to be the set of all signals for agent i for

which i stops in finite time. Denote by E = E1× . . .×En the set of all signal

profiles for which some agent stops in finite time. We call E the stopping

region of σ. Now, consider an alternative strategy profile, in which agent i

preempts the game if and only if si ∈ Ei and waits indefinitely otherwise.

This strategy profile generates the same stopping region as σ without delay,

and thus increases the sum of payoff whenever stopping is indeed socially

desirable. Finding the efficient strategy profile thus means determining the

stopping region E that maximizes the expected welfare E[v(s)|s ∈ E], where

v(s) = Pr(H|s)nH − Pr(L|s).

Because preemption decisions have to be made autonomously by each agent,

each agent should preempt if the expected sum of payoffs is positive condi-

tional on his own signal and on the event that each other agent does not

preempt the game.

The stopping region for an efficient strategy profile is characterized by

thresholds, one threshold ŝi for each agent i. This follows from the monotone

likelihood ratio property: if it is socially optimal for an agent to preempt

when his signal is si, then it must also be socially optimal to do so for any

signal s′i > si as the higher signal implies a higher expected welfare.

Proposition 1. If σ̂ is an efficient strategy profile, there is a profile of signal

thresholds ŝ = (ŝ1, . . . , ŝn) ∈ [0, 1]n such that σ̂i(si) = −i if si ≥ ŝi and

13



σ̂i(si) =∞ otherwise. If ŝ > 0, then the threshold profiles satisfies ṽi(ŝ) ≤ 0

for all i and ṽi(ŝ) = 0 if ŝi < 1, where

ṽi(ŝ) = E
[
v(s)

∣∣∣ si = ŝi, s−i < ŝ−i

]
.

Efficient strategy profiles can be viewed as equilibria of a modified game in

which all agents pursue the common objective of maximizing social welfare.

In this modified game, each agent i takes as given the strategies of others and

then chooses the socially optimal response based on the information available

to him: his own signal and the event that no other agent preempts. The best

response for all agents is to preempt whenever the social value of doing so,

based on their subjective posterior belief, is positive. In equilibrium it must

therefore be the case that, conditional on no agent preempting the game,

everyone expects the social value to be non-positive.

Figure 1 illustrates efficient stopping graphically for the case of two agents.

Each agent i = 1, 2 preempts if his signal lies above the threshold ŝi, where

the profile (ŝ1, ŝ2) is given by the intersection of their zero-payoff curves.

Naturally, the agents could do better if they were to pool their information

before deciding whether to stop. In our benchmark agents fail to stop at

signal profiles that would generate positive expected welfare if they were to

pool information (Area I) and they do stop at signal profiles, at which it

would be socially preferable not to (Area II).

Interestingly, in some cases it is efficient to ignore an agent’s private

information entirely. This is possible if information is distributed in such a

way, that one agent’s decision not to preempt overpowers any good news of

others. Suppose, for example, there are two agents whose signals are drawn

from distributions satisfying F1,H(s) = F1,L(s)β and F2,H(s) = F2,L(s)γ where

β > γ > 1. These signal distributions satisfy MLRP and the reverse hazard

rate ratios are constants given by h1(s1) = β and h2(s2) = γ, respectively.
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Figure 1

By the same logic as in Equation (2), we have the following inequality:

ṽi(si) ≤ 0⇔ α(s1, s2)hi(si) ≤ 1/2H.

Since reverse hazard rate ratios are constant, the inequality cannot bind si-

multaneously for both agents. Therefore, by Proposition 1, the signal thresh-

olds must be ŝ1 = 1/
√

2βH and ŝ2 = 1. In this case, agent 2’s information

is entirely ignored, and agent 1’s signal becomes decisive. What’s happening

intuitively is that agent 1’s decision not to preempt is worse news than any

potential good news that agent 2 may have. We can easily extend this logic

to larger games by adding agents whose signal distributions are identical to

that of agent 2. Taking this reasoning to the extreme yields a striking result:

even as the number of agents becomes large and their information arbitrarily

precise in aggregate, almost all of it can become irrelevant in the efficient

benchmark under strong informational asymmetry.
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4 Equilibrium Analysis

In this section we consider equilibrium outcomes of the model and discuss

their properties. We begin with a preliminary result about the structure of

equilibria which shows that equilibrium strategies are monotone and almost

everywhere differentiable. We then provide a full equilibrium characterization

for the case of two agents and generalize these to larger games with many

agents. Finally, we consider the welfare implication and discuss connections

to other literature.

4.1 Preliminaries

We begin by showing that equilibrium strategies are monotone and induce

“smooth” distributions over stopping times. This result will be fundamental

for the remaining analysis.

Proposition 2. Let (σ1, . . . , σn) be a Bayes-Nash equilibrium. Then for each

i = 1, . . . , n, we have:

(i) (Monotonicity) Each σi is weakly decreasing with s+i < 1 for at most

one agent i ∈ N . If s−i < s+i , then σi is strictly decreasing on (s−i , s
+
i ).

(ii) (Smoothness) Let s−i < s+i , and let Di ⊂ (s−i , s
+
i ) be the set of discon-

tinuities of σi. Then σi is differentiable on (s−i , s
+
i ) \Di.

(iii) |A(t)| 6= 1 on any open interval I ⊂ R+.

Intuitively, the proposition says that each agent’s equilibrium strategy is

a decreasing function that has flat regions only at the upper and lower tail

where it takes the values zero and infinity, respectively. If these flat regions

do not meet, then there may be a countable number of downward jumps

in the space between. Jumps in the equilibrium strategy of some agent i

correspond to “passive” episodes in the equilibrium behavior of agent i, in

the sense that there exists a time period during which agent i never stops
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for any of his signal realization. Discontinuities in the agents’ strategies may

arise as the result of changes in the set of actively participating agents.

Equilibrium strategies are monotone because agents who are more opti-

mistic have a lower incentive to delay effort (this is the well-known cutoff

property of (Fudenberg and Tirole, 1991). Intuitively, consider the trade-off

of an agent choosing between stopping times t and t′ > t. The gain from

waiting at t until t′ is equal to the expected loss avoided if another agent

stops after t and before t′ when the state is low. However, the agent incurs

a loss from delay is decreasing in his signal. Thus, if an agent with signal si

prefers to stop at t, the same holds for every signal s′i > si.

Equilibrium strategies are “smooth” in the articulated sense because pay-

offs are differentiable with respect to stopping times and the signal distribu-

tions are well-behaved in the sense that they have full support with differen-

tiable distribution functions. Therefore, small variation in signals leads a.s.

to a small change in stopping times.

4.2 Two agents

In this section, we characterize the set of equilibria for the case of two agents.

We differentiate between equilibria with preemption in which the game ends

only in the preemption phase and equilibria with delay in which the game

ends with positive probability in the waiting phase.

4.2.1 Equilibria with preemption

There are two reasons the game may end in the preemption phase. On reason

is that an agent preempts the game because he has access to exceptionally

accurate information and thus takes on the role of an informational leader

whom others imitate. We call this scenario informed preemption. The second

possibility is that a poorly informed, strongly optimistic agent preempts the

game regardless of the realization of his signal, while all others wait for this
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agent wait for him to move. We refer to this second scenario as uninformed

preemption.

Informed preemption. In an equilibrium with informed preemption, some

agent i preempts the game if E[θ|si] > 0 and otherwise waits indefinitely. The

other waits forever for sure. Informed preemption of agent i is possible in

equilibrium if agent i’s signal is dominant.

Proposition 3. If agent i has a dominant signal, there exists an equilibrium

with informed preemption by agent i.

Informed preemption necessitates one agent to observe a dominant signal,

so that the bad news that are conveyed through the agents’ inaction at the

beginning of the game “overpowers” any potential positive information the

other agent might have. That the equilibrium conditions are satisfied follows

immediately from the definition of dominant signals. The preempting agent

expects that the other will never stop, and thus decides whether to preempt

based only on his own information. If he preempts, the game is over. If he

does not preempt, then the other agent updates his belief, and at this new

belief, he assigns a negative expected value to the state by the definition of

dominant signals. Thus it is optimal for him to wait indefinitely.

Uninformed preemption. The game may also end with certain preemp-

tion by a strongly optimistic agent. Certain preemption is optimal for an

agent who is strongly optimistic, provided all other agents wait indefinitely,

and waiting indefinitely is a best response for them to this one agent pre-

empting for sure.

Proposition 4. If agent i is strongly optimistic, then there exists an equi-

librium with uninformed preemption by agent i.

Uninformed preemption is conceptually more problematic than informed

preemption. It is the only equilibrium in which the waiting phase is never
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reached, and thus our restriction to Bayes-Nash equilibria is less plausible. In

particular, if we consider the analogous perfect Bayesian equilibrium of the

fully dynamic equivalent of our game, then the existence of an equilibrium

with uninformed preemption relies on the specification of off-equilibrium be-

liefs, and it is then not robust to slight perturbations to the payoff structure

(Fudenberg et al., 1988). To see this point, suppose the preempting agent,

agent 1 say, chooses to deviate and instead wait. How is the other suppose to

respond? In equilibrium, agent 2 would have to wait indefinitely, even if he

happens to be extremely optimistic himself. If we introduce a small change

in payoffs, such that that there is a small probability that agent 2 prefers to

never stop, waiting indefinitely is no longer a best response. The reason is

that agent 2, after observing that agent 1 does not preempt, assumes that

this is because agent 1 prefers to never stop. Thus agent 2’s best response

is to stop immediately thereafter. Naturally, given that agent 2 will respond

this way, it is no longer optimal for agent 1 to preempt. The problem is that

the equilibrium is sustained by action instead of information as is the case

with informed preemption.

4.2.2 Equilibria with delay

In an equilibrium with delay the game ends with positive probability in finite

time in the waiting phase. In such an equilibrium, each agent strategically

delays taking action to take advantage of the possibility that another agent

may move first. In this subsection, we show that the strategic interaction

in these equilibria is captured by a pair of coupled differential equations.

The long-run equilibrium outcomes correspond to fix-points of the associated

dynamical system. Fix-points can exist in the interior of the space of signal

profiles as well as on the boundary. We analyze equilibrium belief dynamics

and illustrate how the location of fix-points and their stability attributes

affect equilibrium properties.

When there are only two agents in the game, then it follows from Proposi-
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tion 2, that if (σ1, σ2) is an equilibrium with delay, then σi is differentiable at

si < s+i for each i = 1, 2. Moreover, each agent’s strategy has a differentiable

monotone inverse, and thus we can use first-order necessary conditions to

derive a system of differential equations whose solutions are candidates for

inverse equilibrium strategies.

By monotonicity of the equilibrium strategies the distribution over agent

i’s stopping time in state θ can be written as 1−Fi,θ(φi(t)). Therefore, agent

i’s expected payoff from stopping at time t > 0 is given by

(3) Pr(H|si)

(∫ t

0

F ′−i,H(φ−i(τ−i))φ
′
−i(τ−i)e

−rτ−idτ−i+F−i,H(φ−i(t))e
−rt

)
H

+ Pr(H|si)(1− F−i,H(φ−i(0))H − Pr(L|si)F−i,L(φ−i(t)) e
−rt.

The first and second term is the expected payoff from taking action at t

conditional on the state being high. Agent i with signal si assigns probability

Pr(H|si) to this event. He receives payoff e−rτ−iH if agent −i acts at τ−i < t,

and otherwise he acts himself at time t and obtains the payoff e−rtH. The

third term represents the expected payoff if the state is low. In this case agent

i receives a payoff of zero if the other agent acts before t, and otherwise he

incurs a loss −e−rt. Taking the first-order condition yields

rPr(H|si)F−i,H(φ−i(t))H − rPr(L|si)F−i,L(φ−i(t))

= −Pr(L|si)F ′−i,L(φ−i(t))φ
′
−i(t).

Finally, substituting si = φi(t) and dividing both sides by the total proba-

bility of reaching time t, we can rewrite the last equation more succinctly as

follows

rũi(φi(t), φ−i(t)) = −
(
1− pi(φi(t), φ−i(t))

)
λ−i,L(φ−i(t))φ

′
−i(t).(4)

Now, for any equilibrium σ = (σ1, σ2) with delay, the pair of inverses (φ1, φ2)
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must solve the system of differential equations

(5)
−φ′1(t) = Y1(φ1(t), φ2(t))

−φ′2(t) = Y2(φ1(t), φ2(t))

where

Yi(s1, s2) =
rũi(si, s−i)

(1− pi(si, s−i))λi,L(si)
.(6)

By Proposition 2, strategies belonging to an equilibrium with delay must be

monotonically decreasing, so that a solution path can belongs to an equilib-

rium if and only if it is strictly decreasing. Monotonicity and differentiability

are in fact sufficient.

Proposition 5. Let s+ = (s+1 , s
+
2 ) ∈ [0, 1]2 with s+i = 1 for some i. Suppose

φ is a pair of strictly decreasing inverse strategies solving (5) with initial

condition φ(0) = s+. Then φ is an equilibrium.

This result is a corollary to Proposition 8 which is proved in the appendix.

To characterize the set of all Bayes Nash equilibria, we first find the fix points

of the dynamical system (5) that are the solutions to the system of algebraic

equations Y1(s1, s2) = Y2(s1, s2) = 0. The solutions lie along the zero-payoff

curves which correspond to the set of all signal profiles at which an agent’s

stopping value is zero. Formally, the zero-payoff curve for agent i is defined

as the set {(s1, s2)|ũi(si, s−i) = 0} of all signal profiles at which agent i’s

stopping value is zero. By the implicit function theorem, we can represent

this set by a function ϕi, solving ũi(si, ϕi(si)) = 0 for each i = 1, 2. Note

that, if s−i < ϕi(si), then ũi(si, s−i) < 0 which implies Y−i(s−i, si) < 0, and

thus φ′−i(t) > 0.

The path of a solution to the dynamical system is decreasing in the area

above both zero-profit curves. Because each solution path will eventually

converge to one of the fix points, a path belongs to an equilibrium only if it
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stays above these curves. We can interpret any point (s1, s2) in the diagram

as a measure of the private information that remains with the agents. The

closer si is to zero, the more information he has revealed to the other agent.

Interior limits. An interior limit is a fix point (s1, s2) of (5) with si > 0

for each i. It represents a long run equilibrium outcome in which each agent

retains a positive amount of private information in the limit. At an interior

limit, the reverse hazard rate is positive for each i, so that the denominator

of each Yi(s1, s2) must be positive. Thus, by Equation (2), the point (s1, s2)

must lie at intersection of the zero profit curves.

The following proposition shows that an interior limit exists if no agent

has a dominant signal, and that any interior limit is also limit of an equilib-

rium with delay.

Proposition 6. There exists an equilibrium that converges to an interior

limit if both or neither agent has a dominant signal. Moreover, if s∗ =

(s∗1, s
∗
2) is an interior limit and ϕ′i(s

∗
i )ϕ

′
−i(s

∗
−i) < 1, then there exists a unique

equilibrium converging to s∗.

When no agent has a dominant signal, then, letting ŝi = ϕ−ii (1), we

have 0 = ũi(ŝi, 1) < ũ−i(1, ŝi) for each i, and thus zero-payoff curves must

indeed intersect. Similarly, when both agents have a dominant signal then

0 = ũi(ŝi, 1) > ũ−i(1, ŝi). The stability properties of interior limits depend

on the type of intersection. In general, when the zero-payoff curve for agent

1 intersects the zero-payoff curve for agent 2 from below (keeping s1 on the

horizontal axis) then the point of intersection is an unstable saddle point.

Intuitively, at a point between these lines to the left of the intersection,

the system flows upwards (ũ1 < 0) and to the left (ũ2 > 0), thus moving

away from the point of intersection. In contrast, when the zero-payoff curve

for agent 1 intersects the zero-payoff curve for agent 2 from above, then at

a point between the lines to the left of the intersection, the system flows
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downwards (ũ1 > 0) and to the right (ũ2 > 0), thus moving towards the

point of intersection.

The stability attributes of an interior limit determines the set of solution

paths that converge to it. First, note that each Yi is differentiable except

potentially at the upper boundary when si approaches 1.2 Therefore, the

dynamical system (5) is locally Lipschitz in the interior and thus for any

initial interior point s, there exists a unique solution. Now, starting at an

interior limit s∗, we can choose any s > s∗ in a small neighborhood around

the fix point, and solve (5) backwards in time starting at s. The solution is

unique and strictly increasing, and by Rademacher’s theorem we can extend

the solution all the way to the boundary. The limit point then determines

the initial signal pair (s+1 , s
+
2 ). If s∗ is an unstable saddle point, then there

exists a unique solution path approaching s∗ from above (i.e., the separatrix

that runs from the boundary of the space of signal profiles along the crest to

the saddle point).

Boundary limits. A boundary limit is a fix point (s1, s2) with si = 0

for one agent i. It represents a long run equilibrium outcome in which one

agent stops with certainty in finite time, and by doing so perfectly reveals

his private information. At a boundary limit, the reverse hazard for agent

i goes to infinity, while for the other it must remain positive.3 This implies

that at boundary limit, the stopping value is zero for agent i, and positive

for agent −i.

The following result shows that a boundary limit exists when an agent is

strongly optimistic, and that for any boundary limit, there is a continuum

of equilibria converging to it.

Proposition 7. If agent i is strongly optimistic, then there exists a threshold

2When limsi→1 F
′
i,L(si) = 0

3The latter follows from the fact that, by aggregate uncertainty (Assumption 2), the
boundary limit cannot lie at the origin.
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ŝi, such that for any s+i ≤ ŝi, there is an equilibrium that converges to a

boundary limit.

The proposition tells us that when an agent is strongly optimistic, then

there exists a continuum of equilibria converging to a boundary limit. The

strongly optimistic agent must potentially preempt the game with positive

probability, if that agent possesses “too much” information at the outset.

We construct such an equilibrium as follows. Suppose agent 1 is strongly

optimistic. Let s2 be the signal for agent 2 that solves ϕ2(s2) = 0. The signal

s2 has the property that the stopping value of agent 2 is zero if he observes

s2 and learns that agent 1 has received his worst signal. It is easy to check

that s∗ = (0, s2) is a boundary limit of the dynamical system (5).

The basic idea of the proof is to establish asymptotic stability of the

boundary limit s∗ and use this fact to show that there exists a continuum of

strictly decreasing solution paths that converge to it. To this end, consider a

sequence (sk)k∈N that converges to s∗, where α(s)h1(sk) = 1/H for all k ∈ N
(a sequence moving to the boundary limit along the zero-payoff curve). For

each k, solve the pair of coupled differential equations backwards in time

with sk as initial condition. Lipschitz continuity ensures a unique, strictly

increasing solution path for each k that extends to the boundary of the space

of signal profiles [0, 1]2. Then taking the limit of these solution paths as

k → ∞ yields, in the limit, a strictly decreasing, continuous solution path

that ends at s∗. If we now take a new point s along this path, and consider

another point sδ = (s1 − δ, s2) with δ ∈ (0, s1), then the solution path going

through the newly selected point sδ must also be strictly decreasing. For

each δ, the point sδ lies on a different solution path, and all of them (i) are

strictly decreasing and (ii) converge to s∗.4

Figure 2 illustrates different types of equilibria for the case of two agents

with symmetric signal distributions that have a monotone RHR. In each case,

4Note that when δ goes to s1, the slope of the corresponding solution goes to infinity.
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Figure 2: Phase diagrams for symmetric signal distributions with monotonically increasing
RHR (left panel) and decreasing RHR (right panel).

there exists a unique interior limit. The left panel shows the phase diagram

for the case in which the RHR is increasing and agents are strongly opti-

mistic. In this case, there exist two equilibria with uninformed preemption,

but neither agent has a dominant signal, and thus there is no equilibrium

with informed preemption. Moreover, there exists a unique equilibrium with

delay converging to an interior limit, and there is a continuum of equilibria

converging to a boundary limit, one for each agent.

The right panel shows the phase diagram for the case in which the RHR

is decreasing. When the RHR is decreasing, each agent has a dominant

signal. Thus, there exist two equilibria with informed preemption, and mul-

tiple equilibria with delay converging to the unique interior limit. Decreasing

RHR implies that neither agent is strongly optimistic, and thus there is no

equilibrium with uninformed preemption, and no equilibrium converging to

a boundary limit.
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4.3 Many Agents

We now move on to consider games with more than two agents. The main

insights from the case of two agents generalize to larger games. The essential

properties of equilibria with preemption remain the same. Propositions 3

and 4 hold verbatim for any number of agents and the limitations for equi-

libria with uninformed preemption still apply. One difference is that there

are stronger demands on a dominant signal, because the signal must infor-

mationally dominate all other agents’ signal.

A substantial difference in larger games arises in the waiting phase, where

agents can become now passive bystanders. With two agents, it is clear that

delay is possible only if each agent stops with positive probability at every

instant by Proposition 2. With more than two agents, any subset of at least

two agents can engage in this sort of attrition game, allowing the others to

wait and observe. This additional degree of freedom introduces an element

of coordination into the game that substantially increases complexity.

To shed some light on source of this complexity, note at any instant,

we can divide the set of all agents into those who are “active” in the sense

that they stop with positive probability, and those who are “passive” in the

sense that they stop with probability zero. Now, the inverse strategies for

active agents at that instant are solutions to a system of differential equa-

tions obtained from the first-order conditions of active agents. The inverse

strategies of passive agents are simply constants. The crucial observation

is that the partition into active and passive agents is arbitrary and can in

principle change at an arbitrary frequency as long as the probability that

some active agent stops is such that it is indeed optimal for passive agents to

wait. Because of the additional complexity, we do not attempt a full char-

acterization of equilibria as in the two agent case. Instead, we focus on the

characterization of equilibrium limit points.

Formally, periods of inactivity in the waiting phase correspond to jumps in
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an agent’s stopping strategy. Because of these jumps, equilibrium strategies

are generally not invertible. Instead, we work with the generalized inverse

φi(t) = sup{si|σi(si) ≥ t}

which, for each i, gives the highest signal for which agent i stops after t.

The function φi is the inverse of σi on its image, and its constant continu-

ation elsewhere. Because σi is weakly decreasing and differentiable almost

everywhere by Proposition 2, it follows that φi is weakly decreasing, con-

tinuous and almost everywhere differentiable. For convenience, we call the

function φi an inverse strategy, and we say that a given profile (φ1, . . . , φn)

of inverse strategies constitutes an equilibrium if there exists an equilibrium

(σ1, . . . , σn) such that φi is the generalized inverse of σi for each i ∈ N .

By monotonicity of the equilibrium strategies, the distribution over agent

i’s stopping time in state θ can be written as Fi,θ(φi(t)). The probability that

the earliest stopping time among all agents except i is after time t is equal

to the joint probability that the signal of each agent j 6= i is below φj(t), so

that by conditional independence

Gi,θ(t) = 1−
∏
j

Fj,θ(φj(t)).(7)

Since φi continuous and almost everywhere differentiable, and each Fi,θ is

differentiable and has full support, Gi,θ is continuous and almost everywhere

differentiable.

(8) Pr(H|si)
(∫ t

0

e−rτ−idGi,H(τ−i) + (1−Gi,H(t))e−rt
)
H

+ Pr(H|si)Gi,H(0)H − Pr(L|si)(1−Gi,L(t)) e−rt.

The interpretation is analogous to the two-agent case. The first and second

term represent the expected payoff from taking action at t conditional on
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the state being high. Agent i with signal si assigns probability Pr(H|si) to

this event. He receives payoff e−rτ−iH if another agent stops at τ−i < t,

and otherwise he stops himself at time t and obtains the payoff e−rtH. The

second term represents the expected payoff if the state is low. In this case,

agent i receives a payoff of zero if some agent stops before t, and otherwise

he incurs a loss −e−rt. The expectations are with respect to θ and τ−i.

We follow essentially the same steps as in the two-agent case. A sufficient

condition for agent i to be willing to delay stopping is that his marginal value

of waiting is greater than zero:

(9) −Pr(H|φi(t))(1−Gi,H(t))rH+ Pr(L|φi(t))
(
G′i,L(t)+r(1−Gi,L(t))

)
≥ 0.

Now, substituting he stopping distribution Gi,θ from equation (7) as well as

G′i,θ(t) = −
∏
j 6=i

Fj,θ(φj(t))

(∑
j 6=i

F ′j,θ (φj(t))

Fj,θ (φj(t))
φ′j(t)

)
.(10)

Then, divide both sides of equation (9) by the total probability of reaching

time t and substitute agent i’s posterior belief pi to obtain the following

condition.

rũi(φi(t), φ−i(t)) ≤ −(1− pi(φi(t), φ−i(t))
∑
j 6=i

λj,L(φj(t))φ
′
j(t).(11)

Consistent with intuition, the inequality tells us that an agent is willing to

delay effort for an instant, only if the probability that some other agent will

stop is higher than his the value he would receive if he were to stop.

The following result provides a sufficient condition for a profile of strate-

gies to constitute a Nash equilibrium with delay.

Proposition 8. A profile (φ1, . . . , φn) of inverse strategies constitutes an

equilibrium if the following hold.
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(i) Every φi is continuous, differentiable a.e. and weakly decreasing.

(ii) For every i ∈ N , condition (11) holds at all t ≥ 0.

(iii) |A(t)| ≥ 2 for all t ≥ 0.

(iv) For every i ∈ A(t) and any t ≥ 0, condition (11) holds with equality.

(v) If φi(0) < 1, then φj(0) = 1 for all j 6= i.

The first property follows directly from the necessary conditions of Propo-

sition 2. The second property says that there at least two agents active at

any point in time in the waiting phase. The third property implies that at

each time all agents at least weakly prefer to wait. The fourth property says

that for any active agent, the strategy is pinned down by first-order condi-

tions. The last property ensures that no more than one agent preempts the

game. Note that there is no clear restriction on the choice of active agents,

which introduces some degree of freedom.

For a given set of active agents, the inverse strategies are pinned down

by property (iv). Using elementary operations and rearranging the equa-

tion system obtained by setting (11) equal for each i ∈ A(t), we isolate the

derivatives of inverse strategies of active agents. Doing so yields the dynam-

ical system

(12)

−φ′1(t) = 1{1∈A(t)} · Y1(φ1(t), . . . , φn(t))

−φ′2(t) = 1{2∈A(t)} · Y2(φ1(t), . . . , φn(t))

...

−φ′n(t) = 1{n∈A(t)} · Yn(φ1(t), . . . , φn(t))

where 1{i∈A(t)} is an indicator function that takes the value 1 if agent i is

active and

Yi(s1, . . ., sn) =
r

λi,L(si)

 1

|A(t)|−1

∑
j∈A(t)

ũj(sj, s−j)

1− pj(sj, s−j)
− ũi(si, s−i)

1− pi(si, s−i)

 .(13)
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In contrast to the two-agent case, not all agents may be active in the limit.

Information asymmetry can result skewed posterior beliefs and agents with

less accurate information, who tend to be more pessimistic than better in-

formed ones, may eventually become too pessimistic to stop.

As a result, the specification of equilibrium limit points is more delicate

than in the two-agent case. We must account for those agents who remain

active in the limit. We thus define a equilibrium limit to be a profile s∗ =

(s∗1, . . . , s
∗
n) such that there is a set A ∈ N , so that

(14)
Yi(s

∗
1, . . . , s

∗
n) = 0 ∀i ∈ A

ũi(s
∗
i , s
∗
−i) < max

j∈A
ũi(s

∗
j , s
∗
−j) ∀i /∈ A.

In other words, an equilibrium limit is a fix-point of the dynamical system

(12), restricted to a set A ⊆ N of active agents, together with the requirement

that the stopping value for every agent not in A is no higher than that of any

active agent. The latter requirement makes sure than inactivity is in fact the

result of inferior information. It is easy to see that, for given signal profile s

and set A, condition (11) cannot hold along any solution path approaching

s when the inequality is violated.

Analogously to the two-agent case, we call a limit point an interior limit

if s∗i > 0 for all i, and boundary limit otherwise. In the following, we provide

a characterization of the stopping values at interior and boundary limits that

provide some basic insights into the nature of long-run equilibrium outcomes.

Proposition 9. Suppose s∗ = (s∗1, . . . , s
∗
n) is a limit point satisfying (14) for

some A ⊂ N . Then the following holds.

(i) If s∗ is an interior limit, then ũi(s
∗
i , s
∗
−i) = 0 for all i ∈ A.

(ii) If s∗ is a boundary limit, then there exists a unique i ∈ A such that

s∗i = 0. Moreover, we have ũi(s
∗
i , s
∗
−i) = 0 and there is u∗ > 0 such that

ũj(s
∗
j , s
∗
−j) = u∗ for all j ∈ A \ {i}.
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Interior limits generate a form of symmetry among agents in the sense that

their stopping value at the limit is zero for each active agent. In particular,

this implies that their posterior beliefs must be the same, that is, pi(si, s−i) =

pj(sj, s−j) for all i, j ∈ A. At a boundary limit, only the agent i with s∗i = 0

has a stopping value of zero. The stopping value of all other agents equalizes

as in the interior limit case, but may remain positive. This result is easy to

see for the case of two agents, but the proposition generalizes to any higher

number of agents.

To see that the stopping value of all agents must be zero at any interior

limit s∗, notice that for (13) to be equal to zero, the expression in paranthesis

must vanish. It is easy to see that this is possible for all i ∈ A only if their

stopping values are the same. We can thus simplify the expression and obtain

that Yi(s
∗) = 0 only if ũi(s

∗
i , s
∗
−i) = 0 for all i ∈ A.

That a boundary limit can lie on the boundary for at most one agent

follows immediately from the assumptioon of aggregate uncertainty. Recall

that this assumption says that pooling the worst information of any two

agents results in a negative stopping value for both of them.5 The stopping

value for the agent with s∗i = 0 is zero because, in the limit, the stopping

value and posterior beliefs of all active agents except i must equalize. Thus,

for j ∈ A \ {i}, it follows again from Yj(s
∗) = 0 that ũi(s

∗
i , s
∗
−i) = 0. The

remaining active agents retain a positive amount of private information and

thus a positive stopping value.

We can use these facts to establish existence results that extend the state-

ments of the two-agent case as follows.

Proposition 10. The following holds.

(i) An interior limit exists if no agent has a dominant signal.

5We made this assumption to ensure that agents are sufficiently interested in each
others’ information. Without this restriction, there would be equilibria that converge to
the boundary in which the agents whose boundary is reached receice a positive stopping
value.
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(ii) A boundary limit s∗ with s∗i = 0 exists if agent i is strongly optimistic.

The existence results are analogous to the two-agent case. If no interior

limit exist, then it must be the case that one agent is more optimistic than

all other agents. Thus, this agent must have a dominant signal. Equilibria

with preemption and delay are generally complementary, in the sense that

if one type of equilibrium does not exist, then there must be an equilibrium

of the other type. For the existence of a boundary limit strong optimism of

some agent is enough. The remaining active agents either converge to a point

that yields them with the same payoff, or, if such a point does not exist, all

but one become eventually passive.

So far, we have only considered equilibrium limit points, but we have

not actually contructed the associated equilibria. PRoviding a full charac-

terization is difficult. The following example illustrates the various different

equilibria that can arise.

4.4 Discussion

In this section we compare equilibrium outcomes to the efficient benchmark

and detail how strategic incentives to delay investments affect long-run run

equilibrium beliefs and outcomes. Inefficiencies arise because of a free-ride

incentive. Agents choose to wait if they expect someone else to move first in

an attempt to avoid the loss in a low state. We find that free-riding coupled

with passive learning through delay can lead to a surprising reversal of the

standard result saying that free-riding leads to insufficient investments: when

information is distributed unevenly, the less informed may invest too much

relative the first best.

Efficiency. In the efficient benchmark, the game always ends with pre-

emption. Preemption occurs in equilibrium either through informed or un-

informed preemption. Informed preemption is possible if some agent has
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access to a piece of critical information. In this case, the equilibrium struc-

ture coincides with the efficient benchmark in the sense that there is only

one agent who stops with positive probability. However, this agent disregards

the social value of the information he generates through his investment, and

thus invests too little. In contrast to informed preemption, uninformed can

generate excess investment. However, as we argued before, the equilibrium

is problematic because it is not robust to slight perturbations of payoffs.

The plausible alternative to equilibria with informed preemption when

no agent observes a dominant signal is an equilibrium involving strategic de-

lay. When information agents have access to similarly accurate information,

the natural equilibrium benchmark is one that converges to an interior limit.

The aggregate stopping region of equilibria with delay that converge to an

interior limit resemble the efficient stopping region. Both are determined by

a sequence of threshold which is the intersection of zero-payoff lines, except

that in equilibrium, agents disregard the social value of their actions. Con-

sequently, there is insufficient investment in equilibrium.Moreover, note that

the set of agents that are active in equilibrium might differ from those that

would take part in the efficient benchmark which might drive an additional

wedge between the social optimum and the long-run equilibrium outcome.

When the distribution of information is more skewed, and poorly informed

agents actively participate along equilibrium path, their inferior information

crowds out the activity of those agents who are better informed. Intuitively,

the behavior of well-informed agents is more strongly correlated with the

state of the world, than that of agents whose signal is noisy. This means

in particular that when the state is low, then poorly informed agents are

less cautious and due to their relatively higher rate of stopping the better

informed become more passive. As a result, the poorly informed learn little

from the better informed agents’ delay and do themselves reveal more of their

own information. In the limit, agents with more accurate information become

entirely passive. while retaining a positive stopping value. In contrast, a less
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informed agent who remains active in the limit has a stopping value of zero

in the limit (see Proposition 9).

There is a deeper insight that can be gained from our analysis: in the

presence of indirect learning through delay, better information reduces the

strategic incentive to stop. That this is the case can be seen immediately

by closer inspection of (12). An active agent who has very accurate private

information, as measured by the divergence of his private from the public

belief, stop more slowly than an agent with who is endowed with less in-

formative signals. More specifically, better information is associated with a

larger value of his reverse hazard rate ratio hi, and the larger this value the

lower the stopping rate of the agent.

Fundamentally, what follows is that free-riding does not necessarily result

in insufficient investment, as is the standard result in the literature (Foster

and Rosenzweig, 2010), but can also lead to excess when information is dis-

tributed very unevenly. The majority of the literature that deals with issues

of free-riding focuses on symmetric equilibria. Our analysis shows that allow-

ing for asymmetric environments significantly expands the set of possibilities.

Additionally, notice that when there is excess investment in equilibrium,

then the cost of this excess is borne mainly by the poorly informed. In fact,

the likelihood that poorly informed stop is larger in a low state, because well

informed agents are overall more likely to stop late or never. Thus, as far as

production of information is concerned, there is no “exploitation of the great

by the small” (Olsen, 1965) but rather an exploitation of the small by the

great.

Replicator Dynamics. There is a strong connection between the equilib-

rium learning dynamics and replicator dynamics frequently used in ecology

and evolutionary game theory. The classic “war of attrition” framework, on

which our model is based, has a natural connection to replicator dynamics,

because both have their roots in theoretical biology as dynamic models of
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competition. Here, however, replicator dynamics arise naturally as the re-

sult of strategic behavior. Recall that replicator dynamics are captured by a

number of coupled first-order differential equations, the replicator equations,

that characterize the changes in composition of a population over time as a

function of its payoff or “fitness” in relation to the population average. Here,

we consider evolution of the composition of private information distributed

across the society of agents, but the dynamics are characterized by equations

with similar properties. To see the similarity, note that (13) is also a function

of agent i’s stopping value in relation to an average.

The connection becomes most clear in the case of two agents. There,

the first-order condition yield differential equations that generates dynam-

ics identical to models of two competing species (a special case of replicator

dynamics model) which becomes apparent in the phase diagram shown in

Figure 2 (see Hofbauer and Sigmund, 1998). A crucial feature of the com-

peting species models is that, under sufficiently strong competition between

species, coexistence of both species is possible only at an instable fix point.

Any small imbalance that favors one species leads to its complete dominance

and the eventual extinction of the other. Here, we observe the same basic

effect but applied to the revelation of information through strategic delay:

in equilibrium, and agent who has relatively less private information must

reveal more of it by stopping at a higher rate.

Herding. There is also a connection to the literature on social learning

and herding. There are a number of papers that show how observational

learning can lead to herding behavior. There, agents who observe others’

behavior, and may ignore their own information in favor of the inferences

based on their actions. In this way, observational learning leads to what

Bikhchandani et al. (1992) call an informational cascade, wherein an agent’s

action is independent of his private information.

Here, we consider an environment with observational in which agents do
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not only observe others behavior but also the consequences to taking action.

The game ends once an agent makes the investment and reveals the state of

the world, so that herding in our model is, by construction, possible only on

inaction. An informational cascade occurs in equilibrium only with informed

preemption. After the preempting agent chooses to wait, every other agent

then revises their belief about the state downwards, and chooses not to invest,

independent of their private signal.

Informed preemption is the only type of equilibrium that exhibits a form

of herding that is consistent with the notion that agents . For equilibria

with delay, each active agents behavior is clearly dependent on their own

information. What

5 Conclusion

The objective of this paper was to reveal some of the mechanisms that un-

derly environments in which information is dispersed and privately informed

agents learn from others through their strategic delay. I characterize long-run

equilibrium outcomes for information structures that do not allow for infor-

mational cascades, and I show that these equilibria are typically inefficient.

Investments are insufficient when agents are evenly well informed, but may

also be excessive when information is distributed unevenly.

The basic setup of the model has been kept purposefully simple to re-

tain tractability. It is however natural to consider extensions. For example,

first-mover advantage or second-mover advantage appear plausible in many

applications, such as R&D competition. Such a change would create a bias

among agents for action or inaction, depending on whether we consider first

or second-mover advantages, but qualitatively the basic insights in this paper

remain the same.

Another possibility would be to study how private information affects
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free-riding in richer model in which experimentation occurs over time con-

temporaneously with learning from others’ action. We may view the current

model as a reduced form game in which the stopping payoffs represent the

continuation value in an extended game in which a second round is played

after agent stops.
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A Proofs

Proof of Proposition 1. Because of the monotone likelihood ratio prop-

erty, expected payoffs are non-decreasing in signals. Therefore, if it is optimal

to stop for a given signal si of some agent i, then it must also be optimal and

thus the stopping region is indeed characterized by a profile of thresholds ŝ.

The optimal threshold profile solves

max
(ŝ1,...,ŝn)

p0

(
1−

n∏
i=1

Fi,H(ŝi)

)
nH − (1− p0)

(
1−

n∏
i=1

Fi,L(ŝi)

)

The associated Lagrangian is

L(ŝ1, . . . , ŝn) = p0

(
1−

n∏
i=1

Fi,H(ŝi)

)
nH − (1− p0)

(
1−

n∏
i=1

Fi,L(ŝi)

)
+
∑
i∈N

ρi(ŝi − 0) +
∑
i∈N

µi(1− ŝi)

The efficient threshold profile ŝ solves the necessary conditions

p0
∏
j 6=i

Fj,H(ŝj)F
′
H,i(ŝi)nH − (1− p0)

∏
j 6=i

Fi,L(ŝj)F
′
i,L(ŝi) = ρi − µi.

together with the Kuhn-Tucker conditions ρi(si − 0) = 0 and µi(1− si) = 0

and ρi, µi ≥ 0 forall i ∈ N .

If ŝi ∈ (0, 1), then ρi = µi = 0, so that the right-hand side is equal to

zero, and ŝi satisfies

p0
1− p0

n∏
j 6=i

Fj,H(ŝi)

Fj,L(ŝi)

F ′i,H(ŝi)

F ′i,L(ŝi)
=

1

nH
.
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If there exists i ∈ N with ŝi = 1, then ρi = 0 and µi > 0. Thus,

p0
1− p0

n∏
j 6=i

Fj,H(ŝj)

Fj,L(ŝj)

F ′i,H(ŝi)

F ′i,L(ŝi)
=

1

nH
− µi

(1− p0)
∏n

j 6=i Fj,L(ŝj)F ′i,L(ŝi)
≤ 1

nH
.

Finally, if there exists an i ∈ N with ŝi = 0, then ρi > 0 and µi = 0. That is

the case only if

p0
1− p0

n∏
j 6=i

Fj,H(ŝj)

Fj,L(ŝj)

F ′i,H(0)

F ′i,L(0)
=

1

nH
+

ρi
(1− p0)

∏n
j 6=i Fj,L(ŝj)F ′i,L(ŝi)

≥ 1

nH
.

for each i.

Lemma 1. The distribution over stopping times of each agent i induced by

an equilibrium strategy σi has no atom except for at most one agent at time

t = 0.

Proof. (1) There is at most one agent whose distribution over stopping times

has an atom at t = 0. Suppose there are two agents i, j who stop at time

zero with positive probability. Then for each signal si with σi(si) = 0, agent

i would do stricty better by stopping at time ε > 0, for ε small.

(2) There are no atoms at t > 0. Suppose to the contrary that there is

an atom at t > 0. Then by standard arguments, it cannot be optimal for

any other to stop at a time t− ε, for ε > 0 small. But then σi(si) = t cannot

be a best response for any signal si of agent i, contradicting the hypothesis

that there is an atom at t.

Lemma 2. Equilibrium strategies are non-increasing.
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Proof. We show that equilibrium payoffs are submodular. Let q(si) = Pr(H|si).
The payoff of stopping at time t for agent i with signal si is

U∗i (t, si) = q(si)

∫ t

0

e−rzdGi,H(z)H + e−rtu∗i (t, si)

where

u∗i (t, si) = q(si)(1−Gi,H(t))H − (1− q(si))(1−Gi,L(t)).

Let ∆U∗i (t, t′, si) = U∗i (t, si)−U∗i (t′, si). Then, for t′ > t and s′i > si, we have

∆U∗i (t, t′, s′i)−∆U∗i (t, t′, si)

= q(s′i)

(∫ t′

t

e−rzdGi,H(z)

)
H + e−rt

′
u∗i (t

′, s′i)− e−rtu∗i (t, s′i)

−

(
q(si)

(∫ t′

t

e−rzdGi,H(z)

)
H + e−rt

′
u∗i (t

′, si)− e−rtu∗i (t, si)

)

= (q(s′i)− q(si))

(∫ t′

t

e−rzdGi,H(z)

)
H

+ e−rt
′(
u∗i (t

′, s′i)− u∗i (t′, si)
)
− e−rt

(
u∗i (t, s

′
i)− u∗i (t, si)

)
.

We can now use that∫ t′

t

e−rzdGi,H(z) ≤
∫ t′

t

e−rzdGi,H(z)+

∫ t′

t

re−rzGi,L(z) dz = e−rt
′
Gi,H(t′)−e−rtGi,H(t)

and substitute

u∗i (t, s
′
i)− u∗i (t, si) = (q(s′i)− q(si))

[
(1−Gi,H(t))H + (1−Gi,L(t))

]
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to obtain the inequality

∆U∗i (t, t′, s′i)−∆U∗i (t, t′, si)

≤ (q(s′i)− q(si))
(
e−rt

′
Gi,H(t′)− e−rtGi,H(t)

)
H

+ e−rt
′
(q(s′i)− q(si))

[
(1−Gi,H(t′))H + (1−Gi,L(t′))

]
− e−rt(q(s′i)− q(si))

[
(1−Gi,H(t))H + (1−Gi,L(t))

]
= (q(s′i)− q(si))(e−rt

′
((1−Gi,L(t′)) +H)− e−rt((1−Gi,L(t)) +H))

≤ (q(s′i)− q(si))e−rt(Gi,L(t)−Gi,L(t′))H

< 0.

Thus U∗i is submodular, so that by Topkis’ Monotonicity Theorem we have

that

σi(si) = arg max
t

U∗i (t, si)

is non-increasing in si.

Lemma 3. Let σ = (σ1, . . . , σn) be an equilibrium, and let φ = (φ1, . . . , φn)

be its generalized inverse. Suppose φi is strictly decreasing for all i ∈ A ⊆ N

on an interval I = (t, t′) with t′ > t > 0. Then φi is differentiable on I for

each i ∈ A.

Proof. We show that Fi,L(φi(t)) is Lipschitz-continuous for each i. Because

Fi,H has full support by hypothesis, it follows then that σi is differentiable

almost everywhere.
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By definition of U∗ it follows that

∆U∗i (t, t′, si) = q(si)

∫ t

0

e−rzdGi,H(z)H + e−rtu∗i (t, si)

− q(si)
∫ t′

0

e−rzdGi,H(z)H − e−rt′u∗i (t′, si)

= e−rtu∗i (t, si)− e−rt
′
u∗i (t

′, si) − q(si)
∫ t′

t

e−rzdGi,H(z)H.

Agent i prefers t = σi(si) over t′ ∈ (t, σi(s)), and therefore it must be the

case that ∆U∗i (t, t′, si) ≥ 0. Thus, it follows

e−rtu∗i (t, si)− e−rt
′
u∗i (t

′, si) ≥ q(si)

∫ t′

t

e−rzdGi,H(z)H.(15)

We further have∫ t′

t

e−rzdGi,H(z) ≥ e−rt
′
∫ t′

t

dGi,H(z) = e−rt
′
(Gi,H(t′)−Gi,H(t)).(16)

Using a zero-addition, we find that

e−rtu∗i (t, si)− e−rt
′
u∗i (t

′, si)

= e−rtu∗i (t, si)− e−rt
′
u∗i (t, si) + e−rt

′
u∗i (t, si)− e−rt

′
u∗i (t

′, si)

= (e−rt − e−rt′)u∗i (t, si) + e−rt
′
q(si)(Gi,H(t′)−Gi,H(t))H

− e−rt′(1− q(si))(Gi,L(t′)−Gi,L(t)).

where we used the definition of u∗i in the last equation. Rearranging the last

equality yields

(17) (e−rt − e−rt′)u∗i (t, si)

= e−rtu∗i (t, si)− e−rt
′
u∗i (t

′, si)− e−rt
′
q(si)(Gi,H(t′)−Gi,H(t))H

+ e−rt
′
(1− q(si))(Gi,L(t′)−Gi,L(t)).
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Now, use (15) and (16) successively to obtain

(e−rt − e−rt′)u∗i (t, si) ≥ e−rt
′
(1− q(si))(Gi,L(t′)−Gi,L(t)).

The exponential function e−rt is Lipschitz-continuous on the positive real-line

with Lipschitz bound r, and therefore r(t′ − t) ≥ e−rt − e−rt′ . Althogher, it

follows

L(t, t′)(t′ − t) ≥ (Gi,L(t′)−Gi,L(t))

where

L(t, t′) =
r

e−rt′
u∗i (t, φi(t))

1− q(φi(t))
.

The function L(t, t′) is positive because φi is strictly decreasing on (t, t′)

and thus u∗(t, φi(t)) > 0. Second, L(t, t′) is finite because q(φi(t
′)) < 1

(if q(φi(t
′)) = 1 agent i with signal φi(t

′) would not want to wait until

t′ > 0). Therefore, L(t, t′) is continuous and bounded on I × I which implies

L∗ = max(t,t′)∈I×I L(t, t′) exists. Hence,

|Gi,L(t′)−Gi,L(t)| ≤ L∗|t′ − t|

for all t ≥ t′ in I, which means that Gi,L is locally Lipschitz-continuous.

Moreover, for any j ∈ A \ {i} we have

|Gi,L(t′)−Gi,L(t)| =

∣∣∣∣∣∏
l 6=i

Fl,L(φj(t))−
∏
l 6=i

Fl,L(φj(t
′))

∣∣∣∣∣
≥
∏
l 6=i,j

Fl,L(φj(t
′)) |Fj,L(φj(t))− Fj,L(φj(t

′))| .

In equilibrium, we have
∏

l 6=i,j Fl,L(φj(t
′)) > 0, and thus we can combine the

last two inequalities to obtain

|Fj,L(φj(t
′))− Fj,L(φj(t))| ≤

L∗∏
l 6=i,j Fl,L(φj(t′))

|t′ − t|.
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which implies that each Fj,L(φj(·)) is locally Lipschitz-continuous, as well.

Now, each Fj,L is strictly increasing and continuously differentiable by as-

sumption, and hence it is invertible, and the derivative of the inverse F−1j,L

is again differentiable with bounded derivative (since Fj,L has full support).

Thus, F−1j,L is Lipschitz-continuous with some Lipschitz-bound M , and

|φj(t)− φj(t′)| = |F−1j,L (Fj,L(φj(t))− F−1j,L (Fj,L(φj(t
′))|

≤M |Fj,L(φj(t))− Fj,L(φj(t
′))|

≤

(
ML∗∏

l 6=i,j Fl,L(φj(t))

)
|t− t′|.

The last inequality shows that φj is locally Lipschitz-continuous. Since this

holds for all i, it follows from Rademacher’s Theorem that every φj is differ-

entiable almost everywhere on R+.

Proof of Proposition 2. (i) By Lemma 2, equilibrium strategies are non-

decreasing which implies 0 ≤ s−i ≤ s+i ≤ 1. By Lemma 1, the distribution

over stopping times of every agent has no atoms except at time zero. There-

fore, s+i = 1 for all agents except at most one.

(ii) Follows from Lemma 3.

(iii) Suppose A(t) = {i} on some open interval (t0, t1) ⊂ R+. But agent

i receives a strictly higher payoff from stopping at t0 than at t1 which implies

that stopping at t1 cannot be a best response.

Lemma 4. Let n = 2. There exists a fix-point in the interior if no agent has

a dominant signal.

Proof. It is sufficient to show that there are points (s1, s2) and (s′1, s
′
2) such

that u1(s1, s2) < u2(s2, s1) and u1(s
′
1, s
′
2) > u2(s

′
2, s
′
1).
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(i) Suppose neither agent is strongly optimistic. Let ŝi be defined such

that ûi(si, 1) = 0. Since neither agent has a dominant signal, we have

û1(ŝ1, 1) = 0 < û2(1, ŝ1) and û2(ŝ2, 1) = 0 < û1(1, ŝ2).

(ii) Suppose agent i but not agent −i is strongly optimistic. Define s†i
such that ûi(0, s

†
i ) = 0. Then,

0 = ûi(0, s
†
i ) = E[θ|si = 0, s−i < s†i ] < E[θ|si = 0, s−i = s†i ] = û−i(s

†
i , 0).

(iii) If both agents are strongly optimistic, then we can apply (ii) for each

of them.

Proof of Proposition 3. We prove the result for n ≥ 2. Suppose agent i

has a dominant signal. Let s∗i solve E[θ|si] = 0. Set

σi(si) =

−i if si > s∗i

∞ if si < s∗i

and let σj(sj) =∞ for all j 6= i. The payoff for agent i i

Ui(si) =

E[θ|si] if si > s∗i

0 if si < s∗i

If si < s∗i agent i cannot gain by stopping at a finite time. If si > s∗i and

agent i deviates by stopping at t > 0, then his payoff is e−rtE[θ|si] < Ui(si).

No agent j 6= i can gain by preempting before agent i. If agent j 6= i chooses

a stopping time t ≥ 0, his payoff is

e−rt
(

Pr(H|sj)Fi,H(s∗i )H − Pr(L|sj)Fi,L(s∗i )) < e−rtE[θ|sj, si < s∗i ] < 0.

Hence, this deviation is not profitable.
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Proof of Proposition 4. We prove the result for n ≥ 2. Suppose agent i

is strongly optimistic. Set σi(si) = −i and σj(sj) = ∞ for all j 6= i. The

payoff for agent i is Ui(si) = E[θ|si]. By strong optimism, Ui(si) ≥ 0 for all

si. If agent i deviates by stopping to t > 0, his payoff is e−rtE[θ|si] < Ui(si).

For any agent j 6= i, the payoff is Uj(sj) = E[max{θ, 0}|sj] which is the

maximum attainable payoff, so no deviation can be profitable.

Proof of Proposition 6. Define

ei(x, y) = α(x, y)hi(y)H − 1

Let s∗ = (x, y) be an interior limit. The Jacobian for the dynamical system

is

J =

 λ′L,1(x)e2(x,y)−λL,1(x)∂xe2(x,y)

λL,1(x)2
−∂ye2(x,y)

λL,1(x)

−∂xe1(x,y)
λL,2(y)

λ′L,2(y)e1(x,y)−λL,2(y)∂ye1(x,y)

λL,2(y)2

 .

Note that if s∗ is an interior limit, then e2(s
∗) = e1(s

∗) = 0. Thus, the

Jacobian becomes

J =

(
−∂xe2(x,y)

λL,1(x)
−∂ye2(x,y)

λL,1(x)

−∂xe1(x,y)
λL,2(y)

−∂ye1(x,y)

λL,2(y)

)
.

The associated characteristic polynomial is given by

det(J−ρI) =

(
−∂xe2(x, y)

λL,1(x)
− ρ
)(
−∂ye1(x, y)

λL,2(x)
− ρ
)
− ∂xe1(x, y)

λL,1(x)

∂ye2(x, y)

λL,2(x)
.
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The roots of the characteristic polynomial are

ρ1,2 = −λL,1(x)∂ye1(x, y) + λL,2(y)∂xe2(x, y)

2λL,1(x)λL,2(y)

±

(
(λL,2(y)∂xe2(x, y) + λL,1(x)∂ye1(x, y))2

4λL,1(x)2λL,2(y)2

− 4λL,1(x)λL,2(y)(∂xe2(x, y)∂ye1(x, y)− ∂ye2(x, y)∂xe1(x, y))

4λL,1(x)2λL,2(y)2

)1/2

.

By the implicit function theorem, the nullclines ϕ1, ϕ2 defined implicitly

through e1(s1, ϕ1(s1)) = 0 and e2(ϕ2(s2), s2) = 0, have the slopes

ϕ′1(x) = −∂xe1(x, y)

∂ye1(x, y)
, ϕ′2(y) = −∂ye2(x, y)

∂xe2(x, y)

If ϕ′1(s1)ϕ
′
2(s2) < 1, then

∂xe2(x, y)∂ye1(x, y)− ∂ye2(x, y)∂xe1(x, y) < 0.

Thus, the Eigenvalues r1 and r2 have opposite signs, which implies that the

interior steady is a saddle point, and hence unstable. Thus, there exists a

unique trajectory (the separatrix) that converges to s∗, and this trajectory

constitutes an equilibrium path.

Proof of Proposition 7. Let s∗ = (0, y) be a boundary limit. The Jaco-

bian for the dynamical system is again

J =

 λ′L,1(0)e2(0,y)−λL,1(0)∂0e2(0,y)

λL,1(0)2
−∂ye2(0,y)

λL,1(0)

−∂0e1(0,y)
λL,2(y)

λ′L,2(y)e1(0,y)−λL,2(y)∂ye1(0,y)

λL,2(y)2

 .
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We have e1(s
∗) = 0 and limsi→0 λ1,L(si) =∞. Thus, the Jacobian becomes

J =

( λ′L,1(0)e2(0,y)

λL,1(0)2
0

−∂0e1(0,y)
λL,2(y)

−∂ye1(0,y)

λL,2(y)

)
.

From condition (1), it follows that there is an a > 0 such that λ′L,1(0)/λL,1(0)2 =

a. We now substitute ei for each i = 1, 2,

J =

(
−a (α(s∗)h2(s2)H − 1) 0

−∂s1α(s
∗)

λL,2(s2)
H −∂s2α(s

∗)

λL,2(s2)
H

)
.

It is easy to see that the associated Eigenvalues are ρ1 = −a(α(s∗)h2(s2)H−
1) and ρ2 = −∂s2Hα(s∗)/λL,2(s2). Now, e1(s

∗) = 0 implies α(s∗)H − 1 = 0.

Thus, α(0, s2)h2(s2)H > 1 which implies ρ1 < 0 . Moreover, ρ2 < 0, because

α is increasing in each argument and λL,2(s2) > 0. Thus s is asymptotically

stable.

Proof of Proposition 8. The necessity of part (i), (iii) and (v) follow from

Proposition 2. We show that if σ = (σ1, . . . , σn) is a strategy profile which

has φ = (φ1, . . . , φn) as its generalized inverse, where φ , satisfies part (ii)

and (iv), then σi(si) ∈ arg maxt ui(t, si) for all si ∈ [0, 1] and i ∈ N .

Fix si and set t = σi(si). We consider the possible deviations t′ > t and

t′ < t separately.

(1.) Suppose agent i with signal si = φi(t) chooses a stopping time
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t′ > t. Then

dui(t
′, si)

dt
= −Pr(H|si)(1−Gi,H(t′))rH + Pr(L|si)

(
G′i,L(t′) + r(1−Gi,L(t′))

)
= −Pr(L|si)r(1−Gi,L(t′))

(
Pr(H|si)
Pr(L|si)

1−Gi,H(t′)

1−Gi,L(t′)
H − 1 +

1

r

G′i,L(t′)

1−Gi,L(t′)

)
≤ −Pr(L|si)r(1−Gi,L(t′))

(
Pr(H|si)
Pr(L|si)

− Pr(H|φi(t′))
Pr(L|φi(t′))

)
1−Gi,H(t′)

1−Gi,L(t′)
H

≤ 0

where the third inequality follows by substituting (9) evaluated at t′, noting

that φi is decreasing by hypothesis, and

Pr(H|si)
Pr(L|si)

=
p0

1− p0
F ′i,H(si)

F ′i,L(si)

is increasing by MLRP. Thus, t′ > t cannot be optimal.

(2.) Suppose agent i with signal si = φi(t) chooses a stopping time

t′ < t. First, consider t′ in the image of σi. Using (9) we obtain

dui(t
′, si)

dt
= −Pr(H|si)(1−Gi,H(t′))rH + Pr(L|si)

(
G′i,L(t′) + r(1−Gi,L(t′))

)
= −Pr(L|si)r(1−Gi,L(t′))

(
Pr(H|si)
Pr(L|si)

1−Gi,H(t′)

1−Gi,L(t′)
H − 1 +

1

r

G′i,L(t′)

1−Gi,L(t′)

)
= −Pr(L|si)r(1−Gi,L(t′))

(
Pr(H|si)
Pr(L|si)

− Pr(H|φi(t′))
Pr(L|φi(t′))

)
1−Gi,H(t′)

1−Gi,L(t′)
H

where in contrast to (1.), the third line is now an equality. Since φi(t
′) > si, it

follows that dui(t
′, si)/dt > 0, so that t′ cannot be optimal. Second, consider

t′ < t outside the image of σi. Because t′ is outside the image of σi, by

(9),there exists an agent i with signal s′i > si who prefers to stop at a time

t′′ > t′. Therefore, by monotonicity of agent i’s best response (see Lemma 2),

agent i with signal si, also prefers to stop at t′′. Since this argument applies

to all t′ outside the image of σi, such a deviation is never optimal.
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Proof of Proposition 9. Part (i): At an interior limit, we have Yi(s
∗) = 0

for all i ∈ A. This is possible only if there exists an u∗ > 1 such that

ũi(s
∗
i ) =: u∗ for all i ∈ A. Thus Yi(s

∗) = 0 is equivalent to u∗ = 0.

Part (ii): By Aggregate Uncertainty, if there are two agents i 6= j such

that s∗i = s∗j = 0, then ũi(s
∗) = u∗j(s

∗) < 0. But then there exists a finite

time t such that i prefers not to stop after t which contradicts the hypothesis

that s∗ is a limit point with s∗i = 0. Now, let s∗i = 0. Then s∗j > 0 and thus

λj,L(s∗j) > 0 for all j ∈ A \ {i}. Therefore, Yj(s
∗) = 0 for all j ∈ A \ {i} is

possible only if there exists u∗ such that uj(s
∗) = u∗. Subsituting this back

into Yj(s
∗) for i 6= j, we obtain have

Yj(s
∗) = 0⇔ 1

|A| − 1

∑
j∈A

ũj(s
∗)

1− pj(s∗)
− ũi(s

∗)

1− pi(s∗)
=

1

|A| − 1

ũi(s
∗)

1− pi(s∗)
= 0

Where the last equation implies ũi(s
∗) = 0. Equation (2) then implies that

ũi(s
∗
i ) = 0. Finally, again by aggregate uncertainty, we have hj(s

∗
j) > 1 for

all j ∈ A \ {i}. Thus,

α(s∗)hj(s
∗
j)H − 1 ≥ α(s∗)H − 1 = 0.

It then follows from Equation (2) that u∗ > 0.

Proof of Proposition 10. Part (i): We show that if an interior limit does

not exist, then some agent has a dominant signal. Define

S0 = {(s1, . . . , sn)| ũi((si, s−i) ≤ 0 for all i with equality for some i}.

An interior limit exists if there is an (s1, . . . , sn) ∈ S0 and i 6= j ∈ N

such that ũi(si, s−i) = ũj(sj, s−j) = 0. Because the signal distributions are

differentiable and have full support, any curve in S0 is continuous. Therefore,
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if there is no interior limit, there must be an agent i such that ũi(si, s−i) >

ũj(sj, s−j) = 0.

Suppose agent i is the agent, for whom the last statement is true. It

then follows that ũi(0, (1, . . . , 1)) < 0. Otherwise, there would exists s with

si = 0 and s−i < (1, . . . , 1) such that 0 = ũi(0, s−i) ≤ ũj(sj, s−j) for every

j 6= i, contradicting the hypothesis. Thus, there is an ŝ with ŝi > 0 and

ŝ−i = (1, . . . , 1) such that 0 = ũi(ŝi, ŝ−i) > ũj(ŝj, ŝ−j). The last inequality

implies that agent i has a dominant signal.

Part (ii): The proof is easy. The details are omitted.
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