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Abstract

This paper considers a timing game in which asymmetrically in-
formed agents have the option to delay an investment strategically
to learn about its uncertain return from the experience of others. I
study the effects of information exchange through strategic delay on
long-run beliefs and outcomes. Investment decisions are delayed when
the information structure prohibits the occurrence of informational
cascades. When there is only moderate inequality in the distribution
of information, equilibrium beliefs converge in the long-run, and there
is an insufficient aggregate investment relative to the efficient bench-
mark. When the distribution of information is more skewed, than the
poorly informed drive out the well-informed, leading to a persistent

wedge in posterior beliefs and excess investment.
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1 Introduction

In 1929, the young German physician Werner Forssmann secretly conducted
a risky self-experiment. He inserted a narrow tube into his arm and ma-
neuvered it along a vein unto his heart. The procedure, known as cardiac
catheterization, constituted a revolutionary breakthrough in cardiology and
later earned him the Nobel prize in medicine. Forssmann’s main contribution
was the proof that cardiac catheterization was safe to perform on humans.
The basic methods for the procedure had already been developed decades
earlier and successfully tested on animals. It was widely believed, however,
that inserting any object into the beating human heart was fatal, and thus

there was a need for someone to put this hypothesis to the ultimate test.

The story of Werner Forssman is of someone who took action in an envi-
ronment of “wait and see”, in which everyone hoped for the independent ini-
tiative of a volunteer who resolves some of the risks relating to an uncharted
course of action. There is a broad spectrum of areas in which these volunteer
mechanisms play a crucial role. Palfrey and Rosenthal (1984) report the case
of MCI, a telecommunications company, who fought for commercial access
to AT&T’s telephone networks in the 1960s, facing substantial legal fees and
significant risk. The legal procedure ended with a favorable ruling by Federal
Communications Commission (FCC) requiring AT&T to enable third parties
to access their networks. In the end, the ruling benefited not only MCI, but

also a host of other companies that were not previously involved in the case.

Empirically, it is a well-established fact that people learn from the behav-
ior and experience of their peers. Peer learning effects have been found for
example in the diffusion of innovations among health professionals (Becker,
1970), the enrollment in health insurance (Liu et al., 2014), the diffusion of
home computers (Goolsbee et al., 2002), stock market entry (Kaustia and
Kniipfer, 2012) and the introduction of the personal income tax (Aidt and

Jensen, 2009). In environments in which no formal institution or informal



arrangement exists that coordinates exploratory activities, how efficient is it
to rely on the initiative of volunteers, and how well does such a decentralized

mechanism aggregate dispersed information?

To study this problem, I consider a stopping game with asymmetric dis-
tribution of information and a pure informational externality. In this game,
each agent has the option to make an investment. The investment generates
an unknown return that depends on an uncertain state of the world. At the
beginning of the game, agents privately receive information about the state
and then decide independently how long to wait before taking action. The
first agent who makes the investment realizes the state-dependent payoff and
thereby reveals the state to the remaining agents. Uncertainty about the
return of the investment and payoff observability generate a second-mover
advantage that provides agents with an incentive to free-ride on others’ ini-

tiative.

I characterize the Bayes-Nash equilibria allowing for an heterogeneous
distribution of information. The equilibria can be broadly classified into two
types. Equilibria may end immediately with some agent’s immediate invest-
ment if the information structure is capable of generating an informational
cascade. If this is not the case, then all robust equilibria exhibit delay. In an
equilibrium with delay, agents wait for a period of time before making their
investment. The delay is driven by the agents’ expectation that someone
else might invest first. The duration an agent is willing to wait provides a
noisy signal to others about the value of the investment. The agents strate-
gic considerations therefore influence beliefs which in turn affect investment

decisions.

I study the effects of information exchange through strategic delay on
long-run run beliefs and outcomes, and compare these to the efficient bench-
mark. Equilibria with delay can exhibit two structurally very different long-
run outcomes. When information is fairly equally distributed, the natural

equilibrium benchmark is one in which beliefs converge over time. All agents



eventually become pessimistic about the state and investments stop. This
equilibrium generates too little investment in aggregate relative to the effi-
cient benchmark. In contrast, when the distribution of information is more
skewed, there can be a persistent wedge in posterior beliefs between well and

poorly informed agents.

I find that when optimism is high and information is distributed very
unevenly, then the poorly informed tend to drive out the well-informed. In-
tuitively, the belief of well informed agents is more strongly correlated with
the state of the world than that of the poorly informed. This means in partic-
ular that when the state is low, then poorly informed agents are less cautious
in their investments. The well-informed, who tend to be more pessimistic in
the low state, have thus a higher incentive to wait. As a result, the poorly
informed learn increasingly less from the better informed and do themselves
reveal more of their own information. In the limit, agents with more accurate
information become entirely passive while their belief remains above that of

the less informed.

In this equilibrium, agents stop with certainty regardless of the state of
the world. The results in the literature typically suggest the opposite: when
a public good is provided through voluntary contribution, then it is provided
for at a socially insufficient level, because no agent takes into account the
value of his own contribution to others. However, this insight is obtained
almost exclusively through the analysis of symmetric equilibria of models
featuring symmetric agents. The present paper deviates from this narrow
focus on symmetric environments, characterizing the equilibrium outcomes
in a more general model that allows agents to differ with respect to their

endowment with information.

The paper is related to the literature on voluntary contributions to dis-
crete public goods. These papers consider the strategic interaction between
agents who face the binary decision of whether to contribute to a public good

or not, and in which the public good is provided if the number of partici-



pants exceeds a given threshold. Such a model was first analyzed by Palfrey
and Rosenthal (1984) who characterize its Nash equilibria. Consistent with
standard logic, they find that in the unique symmetric equilibrium there is
an insufficient provision of the public good. There are several extensions to
their model allowing for the presence of informational asymmetry. Bliss and
Nalebuff (1984) consider endogenous timing of voluntary contributions to a
discrete good in a “war of attrition” framework. In their model, agents are
privately informed about their own cost, and thus agents learn about others’

participation only, but not about an underlying common state of the world.

There is also a natural connection to the literature on social learning,
following the seminal articles of Bikhchandani et al. (1992) and Banerjee
(1992). These papers consider models in which agents are ordered in a fixed
sequence and learn from previous agents’ actions about the common payoff
to some risky action. They show that private information and sequential
decision making can lead to informational cascades in which agents ignore
their own information and herd on a socially undesirable action. Informa-
tional cascades arise in my model in symmetric equilibria, but never when

there is a strong informational asymmetry.

Somewhat more closely related to this paper is Chamley and Gale (1994),
who propose a variant of the game with endogenous timing of actions. In
their model agents have an incentive to delay their action strategically when
they expect to obtain additional information from other agents’ decisions. A
similar mechanism is at work in the present model as well, but the strategic
setup is nevertheless quite different. In their model it is really the sequen-
tiality of actions that is important — delays occur in their model only when
agents are restricted to act at discrete times. In my model, delay arises natu-
rally as a consequence of an informational spill-over that results from payoff

observability.

Informational spill-overs from payoff observability have been studied in

the strategic experimentation literature starting with Bolton and Harris (1999)



and Keller et al. (2005). In these papers a group of agents dynamically choose
between two actions (i.e., the arms of a bandit) one of which yields a risky
and the other a safe payoff. Payoffs are observable giving rise to free-riding
among agents and inefficient levels of experimentation with the risky action
in equilibrium. Indeed, I view my model as a version of such a game, in

which choosing the risky action is immediately fully revealing.

A number of papers study versions of games of strategic experimentation
with asymmetrically informed agents. Those include non-competitive models
in which agents are privately informed about their cost of delay (Décamps
and Mariotti, 2004) or in which they privately observe their own payoffs
(Rosenberg, Solan, and Vieille, 2007; Murto and Valimaki, 2011). Another
array of papers considers model of competitive experimentation in which
agents are privately informed about the realization of a common state vari-
able (Malueg and Tsutsui, 1997; Moscarini and Squintani, 2010). To the
best of my knowledge there is no paper that considers a model with a pure
informational externality in which agents are asymmetrically informed about

a common state variable.

The paper is structured as follows. The model, definitions and basic
assumptions and the equilibrium concept are introduced in Section 2. Equi-
librium and existence results are presented in Section 3. Section 4 presents
the main result. Section 5 includes a discussion of efficiency and comparative

statics. Section 5 concludes.

2 Model

There is a set of agents N = {1,...,n} who face the option to invest into
a project with an uncertain return. The return for each project depends on
the realization of an unknown state of the world 6 € {H, L}, where H > 0 is
arbitrary and L is normalized to —1. At the outset, all agents believe that
0 = H with probability py € (0,1). Each agent decides if and when to stop.

7



The timing of the game is as follows. After observing their signals, the
agents enter the preemption phase in which they decide sequentially whether
to preempt the game and realize payoffs immediately. Preemption allows
agents to move sequentially at time zero without delay, which is essential
for equilibrium existence and for establishing an appropriate efficient bench-
mark.! When no agent preempts the game, they enter a waiting phase in
which each agent chooses a stopping time representing the time at which an
agent invests if no other agent has done so beforehand. Denote agent ’s
action by t; € [0,00] U {—i} where t; = —i represents the event that agent 4
preempts the game and ¢; > 0 is his stopping time conditional on reaching
t; in the waiting phase. When ¢; = 0o, agent ¢ waits indefinitely. The payoff

for each agent i is

e max{ti,o}e if tz = minj t]
wi(ti t;,0) = ; ' i .
e~ max{min; ¢;,0} max{g, 0} if t; > min; t;

At the outset, it is commonly known that each agent ¢ € N is en-
dowed with a signal s; € [0,1] that is drawn from a distribution F;g(-)
which we assume is differentiable, has full support and a bounded density.
A strategy for agent i is a function o; : [0,1] — [0,00] U {—i} with left
limits. A strategy profile (0;);en is a Bayes-Nash equilibrium if o;(s;) €
arg max; Elu;(t,0_;(s;),0)|s;] for every s; € [0,1]. W.lo.g. we limit attention
to equilibria with Pr(o;(s;) =0) =0 for all i € N.

For a given strategy profile (0;);en, let 7(s) = min;ey 04(s;) be first stop-
ping time among all agents. Further, define s} = inf{s;|o;(s;) = —i} to
be the lowest signal such that agent ¢ preempts the game. Similarly, let
s; = inf{s;|o;(s;) < 0o} be the lowest signal such that agent 7 stops in finite

time. We define inf () = 1 for the case that one of these sets is empty. Finally,

"'Without preemption, equilibria may fail to exist when some agent stops at t = 0 with
positive probability. Then other agents may prefer to wait for that agent to move first,
but since there is no first instance after t = 0, a best response may not exist.



define
A(t) = {i € N|3s; € [0,1] : 05(s;) =t}

to be set of agents that are “active” at time t, i.e., the set of agents for whom

there exists a signal s; € [0, 1] such that agent i stops at ¢ after observing s;.

We assume that signal distributions satisfy the Monotone Likelihood Ra-
tio Property (MLRP), that is, the likelihood ratio F} ;(s;)/Fj (si) is increas-
ing in s; for each agent . We shall make two further assumptions to render

the strategic interaction interesting.

Definition 1 (Optimism). Agent i is weakly optimistic if E[f]s; = 1] > 0
and strongly optimistic, if E[f]s; = 0] > 0.

An agent is weakly optimistic if he assigns a positive expected value to
after observing his best signal. A strongly optimistic agent assigns a positive
expected value to 0 after any signal. Weak optimism is a necessary condition
for this agent’s participation, since an agent for whom the expected value of

stopping is negative at the outset would never act in any equilibrium.

Assumption 1 (Initial Optimism). All agents are weakly optimistic

Next, we assume that there is aggregate uncertainty about the state of
the world. By aggregate uncertainty we mean that there is a signal for each
agent so that this agent prefers not to act for some realization of another

agents’ signals.
Assumption 2 (Aggregate Uncertainty). E[f]s;=0, s;=0] < 0 for any i # j.

The assumption of aggregate uncertainty is important, because we are
interested in studying issues relating the aggregation of dispersed informa-
tion. In particular, the purpose of our model is to assess how well equilibria
process information relative to the efficient benchmark. Aggregate uncer-
tainty ensures that other’s private information does not only influence when

an agent invests, but also if he invests at all.
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By Bayes’ rule, agent ¢’s belief that the state is H after observing signal

s; but before the beginning of the game, is

poF i (si)
poF] g (si) + (1 —po) F f, (si)

Pr(H|s;) =

Denote by p;(8;,5_;) agent ¢’s belief that the state is H after observing signal
s; and conditional on the event that each agent j observed a signal no higher

than s;. By Bayes’ rule, this belief is given by

. Pr(s:) (50) T, Fin (59)
Pr(H]se) (50) [T By (59) + Pr(Els:) (50 T F (57)

pi(5i7 S—i)

Define the stopping value of agent i at the signal profile s; and s_; = (s;) ;2
to be

sz’(Sz”S—i) = pi(Sz‘, 5—i>H - (1 —pi(Sz’,S—z’))-

In some cases, agents may be endowed with particularly informative sig-

nals, that dominates others’ information in the following sense.

Definition 2 (Dominant signal). Let s be the signal solving E[f|s}] = 0.
Agent i’s signal is dominant, if E[f]s; < sf,s; =1] <0 for all j #i.

In other words, a dominant signal for agent i is a signal such that knowing
that agent i’s stopping value is negative discourages even the most optimistic
competitor.

We denote by a the likelihood ratio of the posterior probability that the
state is H, conditional on each agent ¢’s signal being below s;. It follows

from Bayes’ rule that

Fin(si
05(817...7871) = po H F7H($‘).

MLRP implies that F; g/ F; 1, is increasing for each i (Eeckhoudt and Gollier,
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1995) and thus « is increasing in each of its arguments.

Further, we denote by A,y the reverse hazard rate of agent i’s signal

distribution in state 6 given by

Fz'/,@(si)

Fz‘,e(si) '

)\iﬁ(si) =

We shall impose the following technical assumption on the distribution of

signals in the low state.

Assumption 3. For every i € N, we have

F!' ()] F! 1 (s1)
1 —o00 < lim — 3 <L
(1) o0 = S F}(s0)/Fip(s:)

This assumption is a mild regularity condition on the curvature of F; .
Essentially, it says that the curvature close to zero is neither too small nor too
large relative to its slope. The condition is needed to ensure the function is
sufficiently well-behaved around zero. Note that it is not a restriction on the
informativeness of signals, because the restriction applies to the distribution
of signals in the low state only, while informativeness is governed by the

relative distribution of signals across states.

Denote by h; the reverse hazard rate ratio (RHR) for agent i at s; € [0, 1]

is defined as the ratio of reverse hazard rates, and given by

Fia(s:)/ Fun(s:)
hi(si) = Fip(si)/ Fip(si)

It is well known that MLRP implies A\; z > A; 1 and thus h; > 1. The
hazard rate ratio h; and the likelihood ratio of the public posterior a allows

us to decompose the public posterior belief about the state into the common

11



component and a private component.

pi(si, 5-i)
——— " = a(s)h(s;).
1 —pi(si, s-i) o
Here, o represents a measure of the information about the state that is
commonly available to all agents. The factor h; represents the information
that agent ¢ holds privately and it provides a measure of divergence of an
agent’s private belief from the public belief. Using decomposition, we write

the stopping value for each agent 7 as follows. We have

ﬂi(si, S—i)

Topiorsy) ~ A@hls)H —1

(2)
The left-hand side shows the stopping value relative to the probability of the
low state. It measures the relative gain from delaying investment. The right-
hand side shows that this value differs across agents only through differences

in their respective RHR.

3 Socially optimal stopping

In this section we introduce a notion of efficiency that addresses the question
of how agents should behave in order to maximize welfare. Our efficiency
benchmark entails the restriction that agents cannot communicate their pri-
vate information prior to deciding when to stop. We can interpret it as the
solution to the “team problem” in which agents choose their strategies collab-
oratively, before observing their signals, so as to maximize the sum of their
payoffs. Comparing equilibrium outcomes with this benchmark allows us to
isolate inefficiencies in the use of information resulting from strategic effects
and exclude those inefficiencies that are the result of the way information is

processed in equilibrium. Our notion of efficiency is as follows.

12



Definition 3. A strategy profile (0;)7_, is efficient if it mazimizes

n

E > uioi(si), o_i(s_i),0)

=1

An efficient allocation never entails any delay, because any outcome that
is feasible through delayed stopping in the waiting phase can be achieved
without delay in the preemption phase. To see this, fix any strategy profile
o and define E; = {s;|0;(s;) < 0o} to be the set of all signals for agent ¢ for
which ¢ stops in finite time. Denote by E = F; X ... x E,, the set of all signal
profiles for which some agent stops in finite time. We call E the stopping
region of 0. Now, consider an alternative strategy profile, in which agent ¢
preempts the game if and only if s; € E; and waits indefinitely otherwise.
This strategy profile generates the same stopping region as o without delay,
and thus increases the sum of payoff whenever stopping is indeed socially
desirable. Finding the efficient strategy profile thus means determining the

stopping region £ that maximizes the expected welfare E[v(s)|s € E], where
v(s) = Pr(H|s)nH — Pr(L]|s).

Because preemption decisions have to be made autonomously by each agent,
each agent should preempt if the expected sum of payoffs is positive condi-
tional on his own signal and on the event that each other agent does not

preempt the game.

The stopping region for an efficient strategy profile is characterized by
thresholds, one threshold §; for each agent 7. This follows from the monotone
likelihood ratio property: if it is socially optimal for an agent to preempt
when his signal is s;, then it must also be socially optimal to do so for any

signal s, > s; as the higher signal implies a higher expected welfare.

Proposition 1. If & is an efficient strategy profile, there is a profile of signal
thresholds § = (51,...,8,) € [0,1]" such that 6;(s;) = —i if s; > §; and

13



0i(s;) = oo otherwise. If $ > 0, then the threshold profiles satisfies v;(5) <0
for all i and v;(8) = 0 if $; < 1, where

S; = §i757i < 5] .

Efficient strategy profiles can be viewed as equilibria of a modified game in
which all agents pursue the common objective of maximizing social welfare.
In this modified game, each agent i takes as given the strategies of others and
then chooses the socially optimal response based on the information available
to him: his own signal and the event that no other agent preempts. The best
response for all agents is to preempt whenever the social value of doing so,
based on their subjective posterior belief, is positive. In equilibrium it must
therefore be the case that, conditional on no agent preempting the game,

everyone expects the social value to be non-positive.

Figure 1 illustrates efficient stopping graphically for the case of two agents.
Each agent ¢ = 1,2 preempts if his signal lies above the threshold §;, where
the profile (81, $2) is given by the intersection of their zero-payoff curves.
Naturally, the agents could do better if they were to pool their information
before deciding whether to stop. In our benchmark agents fail to stop at
signal profiles that would generate positive expected welfare if they were to
pool information (Area I) and they do stop at signal profiles, at which it
would be socially preferable not to (Area II).

Interestingly, in some cases it is efficient to ignore an agent’s private
information entirely. This is possible if information is distributed in such a
way, that one agent’s decision not to preempt overpowers any good news of
others. Suppose, for example, there are two agents whose signals are drawn
from distributions satisfying Fy g(s) = Fy 1.(s)? and Fy g(s) = Fy (s)” where
B >~ > 1. These signal distributions satisfy MLRP and the reverse hazard

rate ratios are constants given by hi(s1) = 8 and hy(sz) = 7, respectively.
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S1

By the same logic as in Equation (2), we have the following inequality:
171(81) <0< 06(81, Sg)hi(Si) < 1/2H

Since reverse hazard rate ratios are constant, the inequality cannot bind si-
multaneously for both agents. Therefore, by Proposition 1, the signal thresh-
olds must be §; = 1/4/2B8H and 3, = 1. In this case, agent 2’s information
is entirely ignored, and agent 1’s signal becomes decisive. What’s happening
intuitively is that agent 1’s decision not to preempt is worse news than any
potential good news that agent 2 may have. We can easily extend this logic
to larger games by adding agents whose signal distributions are identical to
that of agent 2. Taking this reasoning to the extreme yields a striking result:
even as the number of agents becomes large and their information arbitrarily
precise in aggregate, almost all of it can become irrelevant in the efficient

benchmark under strong informational asymmetry.
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4 Equilibrium Analysis

In this section we consider equilibrium outcomes of the model and discuss
their properties. We begin with a preliminary result about the structure of
equilibria which shows that equilibrium strategies are monotone and almost
everywhere differentiable. We then provide a full equilibrium characterization
for the case of two agents and generalize these to larger games with many
agents. Finally, we consider the welfare implication and discuss connections

to other literature.

4.1 Preliminaries

We begin by showing that equilibrium strategies are monotone and induce
“smooth” distributions over stopping times. This result will be fundamental

for the remaining analysis.

Proposition 2. Let (01,...,0,) be a Bayes-Nash equilibrium. Then for each

1=1,...,n, we have:
(i) (Monotonicity) Each o; is weakly decreasing with s; < 1 for at most
one agent i € N. If s; < s, then o, is strictly decreasing on (s; , s}).

i 91

(i1) (Smoothness) Let s; < s;, and let D; C (s;,s;) be the set of discon-

tinuities of o;. Then o; is differentiable on (s;,s7) \ D;.

(1i1) |A(t)] # 1 on any open interval I C R,..

Intuitively, the proposition says that each agent’s equilibrium strategy is
a decreasing function that has flat regions only at the upper and lower tail
where it takes the values zero and infinity, respectively. If these flat regions
do not meet, then there may be a countable number of downward jumps
in the space between. Jumps in the equilibrium strategy of some agent ¢
correspond to “passive” episodes in the equilibrium behavior of agent ¢, in

the sense that there exists a time period during which agent ¢ never stops

16



for any of his signal realization. Discontinuities in the agents’ strategies may

arise as the result of changes in the set of actively participating agents.

Equilibrium strategies are monotone because agents who are more opti-
mistic have a lower incentive to delay effort (this is the well-known cutoff
property of (Fudenberg and Tirole, 1991). Intuitively, consider the trade-off
of an agent choosing between stopping times ¢ and t' > ¢t. The gain from
waiting at t until ¢’ is equal to the expected loss avoided if another agent
stops after ¢ and before ¢ when the state is low. However, the agent incurs
a loss from delay is decreasing in his signal. Thus, if an agent with signal s;

prefers to stop at t, the same holds for every signal s} > s;.

Equilibrium strategies are “smooth” in the articulated sense because pay-
offs are differentiable with respect to stopping times and the signal distribu-
tions are well-behaved in the sense that they have full support with differen-
tiable distribution functions. Therefore, small variation in signals leads a.s.

to a small change in stopping times.

4.2 Two agents

In this section, we characterize the set of equilibria for the case of two agents.
We differentiate between equilibria with preemption in which the game ends
only in the preemption phase and equilibria with delay in which the game

ends with positive probability in the waiting phase.

4.2.1 Equilibria with preemption

There are two reasons the game may end in the preemption phase. On reason
is that an agent preempts the game because he has access to exceptionally
accurate information and thus takes on the role of an informational leader
whom others imitate. We call this scenario informed preemption. The second
possibility is that a poorly informed, strongly optimistic agent preempts the

game regardless of the realization of his signal, while all others wait for this

17



agent wait for him to move. We refer to this second scenario as uninformed

preemption.

Informed preemption. In an equilibrium with informed preemption, some
agent ¢ preempts the game if E[f]|s;] > 0 and otherwise waits indefinitely. The
other waits forever for sure. Informed preemption of agent i is possible in

equilibrium if agent ¢’s signal is dominant.

Proposition 3. If agent v has a dominant signal, there exists an equilibrium

with informed preemption by agent 7.

Informed preemption necessitates one agent to observe a dominant signal,
so that the bad news that are conveyed through the agents’ inaction at the
beginning of the game “overpowers” any potential positive information the
other agent might have. That the equilibrium conditions are satisfied follows
immediately from the definition of dominant signals. The preempting agent
expects that the other will never stop, and thus decides whether to preempt
based only on his own information. If he preempts, the game is over. If he
does not preempt, then the other agent updates his belief, and at this new
belief, he assigns a negative expected value to the state by the definition of

dominant signals. Thus it is optimal for him to wait indefinitely.

Uninformed preemption. The game may also end with certain preemp-
tion by a strongly optimistic agent. Certain preemption is optimal for an
agent who is strongly optimistic, provided all other agents wait indefinitely,
and waiting indefinitely is a best response for them to this one agent pre-

empting for sure.

Proposition 4. If agent i is strongly optimistic, then there exists an equi-

librium with uninformed preemption by agent 1.

Uninformed preemption is conceptually more problematic than informed

preemption. It is the only equilibrium in which the waiting phase is never
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reached, and thus our restriction to Bayes-Nash equilibria is less plausible. In
particular, if we consider the analogous perfect Bayesian equilibrium of the
fully dynamic equivalent of our game, then the existence of an equilibrium
with uninformed preemption relies on the specification of off-equilibrium be-
liefs, and it is then not robust to slight perturbations to the payoff structure
(Fudenberg et al., 1988). To see this point, suppose the preempting agent,
agent 1 say, chooses to deviate and instead wait. How is the other suppose to
respond? In equilibrium, agent 2 would have to wait indefinitely, even if he
happens to be extremely optimistic himself. If we introduce a small change
in payoffs, such that that there is a small probability that agent 2 prefers to
never stop, waiting indefinitely is no longer a best response. The reason is
that agent 2, after observing that agent 1 does not preempt, assumes that
this is because agent 1 prefers to never stop. Thus agent 2’s best response
is to stop immediately thereafter. Naturally, given that agent 2 will respond
this way, it is no longer optimal for agent 1 to preempt. The problem is that
the equilibrium is sustained by action instead of information as is the case

with informed preemption.

4.2.2 Equilibria with delay

In an equilibrium with delay the game ends with positive probability in finite
time in the waiting phase. In such an equilibrium, each agent strategically
delays taking action to take advantage of the possibility that another agent
may move first. In this subsection, we show that the strategic interaction
in these equilibria is captured by a pair of coupled differential equations.
The long-run equilibrium outcomes correspond to fix-points of the associated
dynamical system. Fix-points can exist in the interior of the space of signal
profiles as well as on the boundary. We analyze equilibrium belief dynamics
and illustrate how the location of fix-points and their stability attributes

affect equilibrium properties.

When there are only two agents in the game, then it follows from Proposi-
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tion 2, that if (01, 09) is an equilibrium with delay, then o; is differentiable at
s; < s; for each i = 1,2. Moreover, each agent’s strategy has a differentiable
monotone inverse, and thus we can use first-order necessary conditions to
derive a system of differential equations whose solutions are candidates for

inverse equilibrium strategies.

By monotonicity of the equilibrium strategies the distribution over agent
i’s stopping time in state 6 can be written as 1 — F; (¢;(t)). Therefore, agent

1’s expected payoff from stopping at time ¢ > 0 is given by

(3) Pr(H]s,) ( / Fii,st_i<T_z~>>¢'_i<f_i>e-”idf_i+F_,~,H<¢_i<t>>e-“) H
+ Pr(H|s;)(1 — F_; g(¢—;(0))H — Pr(L|s;) F_; 1.(¢—_;(t)) e .

The first and second term is the expected payoff from taking action at ¢
conditional on the state being high. Agent ¢ with signal s; assigns probability
Pr(H|s;) to this event. He receives payoff e "= H if agent —i acts at 7_; < ¢,
and otherwise he acts himself at time ¢ and obtains the payoff e ™" H. The
third term represents the expected payoff if the state is low. In this case agent
1 receives a payoff of zero if the other agent acts before ¢, and otherwise he

incurs a loss —e™". Taking the first-order condition yields

r Pr(H|s;) F_in(o-i(t)) H — r Pr(L]s;) F_i,.(¢—i(t))
= —Pr(L|s;) FL; L(0-i(t))d (1)

Finally, substituting s; = ¢;(¢) and dividing both sides by the total proba-
bility of reaching time ¢, we can rewrite the last equation more succinctly as

follows

(4)  radi(t), o—i(t) = — (1 = pi(i(t), o—i())) A, L(D—i(t)) 9" (D).
Now, for any equilibrium o = (01, 09) with delay, the pair of inverses (¢1, ¢2)
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must solve the system of differential equations

=@ (t) = Yi(1(t), p2(t))
—h(t) = Ya(ou(t), ¢a(t))

’I“QNLZ‘(SZ‘, S—i)

(1 — pi(si,5-0))Nin(si)

(6) Yi(s1,52) =

By Proposition 2, strategies belonging to an equilibrium with delay must be
monotonically decreasing, so that a solution path can belongs to an equilib-
rium if and only if it is strictly decreasing. Monotonicity and differentiability

are in fact sufficient.

Proposition 5. Let s = (sf,s5) € [0,1]? with s; =1 for some i. Suppose
¢ is a pair of strictly decreasing inverse strategies solving (5) with initial

condition ¢(0) = s*. Then ¢ is an equilibrium.

This result is a corollary to Proposition 8 which is proved in the appendix.
To characterize the set of all Bayes Nash equilibria, we first find the fix points
of the dynamical system (5) that are the solutions to the system of algebraic
equations Y7(s1, s2) = Ya(s1,82) = 0. The solutions lie along the zero-payoff
curves which correspond to the set of all signal profiles at which an agent’s
stopping value is zero. Formally, the zero-payoff curve for agent 7 is defined
as the set {(s1,s2)|U;(s;,s—;) = 0} of all signal profiles at which agent i’s
stopping value is zero. By the implicit function theorem, we can represent
this set by a function ;, solving ;(s;, pi(s;)) = 0 for each i = 1,2. Note
that, if s_; < @i(s;), then @;(s;,s—;) < 0 which implies Y_;(s_;, s;) < 0, and
thus ¢’ ,(t) > 0.

The path of a solution to the dynamical system is decreasing in the area
above both zero-profit curves. Because each solution path will eventually

converge to one of the fix points, a path belongs to an equilibrium only if it
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stays above these curves. We can interpret any point (s1, $3) in the diagram
as a measure of the private information that remains with the agents. The

closer s; is to zero, the more information he has revealed to the other agent.

Interior limits. An interior limit is a fix point (sy, s2) of (5) with s; > 0
for each i. It represents a long run equilibrium outcome in which each agent
retains a positive amount of private information in the limit. At an interior
limit, the reverse hazard rate is positive for each 7, so that the denominator
of each Y;(s1, s2) must be positive. Thus, by Equation (2), the point (s, s2)
must lie at intersection of the zero profit curves.

The following proposition shows that an interior limit exists if no agent
has a dominant signal, and that any interior limit is also limit of an equilib-

rium with delay.

Proposition 6. There exists an equilibrium that converges to an interior
limat if both or meither agent has a dominant signal. Moreover, if s* =
(1, 83) is an interior limit and ;(s7)¢";(s*;) < 1, then there exists a unique

equilibrium converging to s*.

When no agent has a dominant signal, then, letting 3; = ¢; (1), we
have 0 = @;(8;,1) < u_4(1,3;) for each i, and thus zero-payoff curves must
indeed intersect. Similarly, when both agents have a dominant signal then
0 = @;(8;,1) > @_;(1,38;). The stability properties of interior limits depend
on the type of intersection. In general, when the zero-payoff curve for agent
1 intersects the zero-payoff curve for agent 2 from below (keeping s; on the
horizontal axis) then the point of intersection is an unstable saddle point.
Intuitively, at a point between these lines to the left of the intersection,
the system flows upwards (4; < 0) and to the left (dy > 0), thus moving
away from the point of intersection. In contrast, when the zero-payoff curve
for agent 1 intersects the zero-payoff curve for agent 2 from above, then at

a point between the lines to the left of the intersection, the system flows
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downwards (@; > 0) and to the right (4 > 0), thus moving towards the

point of intersection.

The stability attributes of an interior limit determines the set of solution
paths that converge to it. First, note that each Y; is differentiable except
potentially at the upper boundary when s; approaches 1.2 Therefore, the
dynamical system (5) is locally Lipschitz in the interior and thus for any
initial interior point s, there exists a unique solution. Now, starting at an
interior limit s*, we can choose any s > s* in a small neighborhood around
the fix point, and solve (5) backwards in time starting at s. The solution is
unique and strictly increasing, and by Rademacher’s theorem we can extend
the solution all the way to the boundary. The limit point then determines
the initial signal pair (si,s3). If s* is an unstable saddle point, then there
exists a unique solution path approaching s* from above (i.e., the separatrix

that runs from the boundary of the space of signal profiles along the crest to
the saddle point).

Boundary limits. A boundary limit is a fix point (s1,s9) with s; = 0
for one agent 7. It represents a long run equilibrium outcome in which one
agent stops with certainty in finite time, and by doing so perfectly reveals
his private information. At a boundary limit, the reverse hazard for agent
i goes to infinity, while for the other it must remain positive.® This implies
that at boundary limit, the stopping value is zero for agent i, and positive
for agent —i.

The following result shows that a boundary limit exists when an agent is
strongly optimistic, and that for any boundary limit, there is a continuum

of equilibria converging to it.

Proposition 7. If agent i is strongly optimistic, then there exists a threshold

2When limg, 1 Flp(s)=0
3The latter follows from the fact that, by aggregate uncertainty (Assumption 2), the
boundary limit cannot lie at the origin.
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8;, such that for any sf < 8;, there is an equilibrium that converges to a

boundary limit.

The proposition tells us that when an agent is strongly optimistic, then
there exists a continuum of equilibria converging to a boundary limit. The
strongly optimistic agent must potentially preempt the game with positive

probability, if that agent possesses “too much” information at the outset.

We construct such an equilibrium as follows. Suppose agent 1 is strongly
optimistic. Let sy be the signal for agent 2 that solves ¢5(s2) = 0. The signal
so has the property that the stopping value of agent 2 is zero if he observes
s9 and learns that agent 1 has received his worst signal. It is easy to check

that s* = (0, s9) is a boundary limit of the dynamical system (5).
The basic idea of the proof is to establish asymptotic stability of the

boundary limit s* and use this fact to show that there exists a continuum of
strictly decreasing solution paths that converge to it. To this end, consider a
sequence (Si)ren that converges to s*, where a(s)hi(sx) = 1/H for all k € N
(a sequence moving to the boundary limit along the zero-payoff curve). For
each k, solve the pair of coupled differential equations backwards in time
with s; as initial condition. Lipschitz continuity ensures a unique, strictly
increasing solution path for each k that extends to the boundary of the space
of signal profiles [0,1]%>. Then taking the limit of these solution paths as
k — oo yields, in the limit, a strictly decreasing, continuous solution path
that ends at s*. If we now take a new point s along this path, and consider
another point ss = (s1 — 9, s9) with d € (0, s1), then the solution path going
through the newly selected point s; must also be strictly decreasing. For
each §, the point s; lies on a different solution path, and all of them (i) are

strictly decreasing and (ii) converge to s*.*

Figure 2 illustrates different types of equilibria for the case of two agents

with symmetric signal distributions that have a monotone RHR. In each case,

4Note that when & goes to s1, the slope of the corresponding solution goes to infinity.
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Figure 2: Phase diagrams for symmetric signal distributions with monotonically increasing
RHR (left panel) and decreasing RHR (right panel).

there exists a unique interior limit. The left panel shows the phase diagram
for the case in which the RHR is increasing and agents are strongly opti-
mistic. In this case, there exist two equilibria with uninformed preemption,
but neither agent has a dominant signal, and thus there is no equilibrium
with informed preemption. Moreover, there exists a unique equilibrium with
delay converging to an interior limit, and there is a continuum of equilibria

converging to a boundary limit, one for each agent.

The right panel shows the phase diagram for the case in which the RHR
is decreasing. When the RHR is decreasing, each agent has a dominant
signal. Thus, there exist two equilibria with informed preemption, and mul-
tiple equilibria with delay converging to the unique interior limit. Decreasing
RHR implies that neither agent is strongly optimistic, and thus there is no
equilibrium with uninformed preemption, and no equilibrium converging to

a boundary limit.
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4.3 Many Agents

We now move on to consider games with more than two agents. The main
insights from the case of two agents generalize to larger games. The essential
properties of equilibria with preemption remain the same. Propositions 3
and 4 hold verbatim for any number of agents and the limitations for equi-
libria with uninformed preemption still apply. One difference is that there
are stronger demands on a dominant signal, because the signal must infor-

mationally dominate all other agents’ signal.

A substantial difference in larger games arises in the waiting phase, where
agents can become now passive bystanders. With two agents, it is clear that
delay is possible only if each agent stops with positive probability at every
instant by Proposition 2. With more than two agents, any subset of at least
two agents can engage in this sort of attrition game, allowing the others to
wait and observe. This additional degree of freedom introduces an element

of coordination into the game that substantially increases complexity.

To shed some light on source of this complexity, note at any instant,
we can divide the set of all agents into those who are “active” in the sense
that they stop with positive probability, and those who are “passive” in the
sense that they stop with probability zero. Now, the inverse strategies for
active agents at that instant are solutions to a system of differential equa-
tions obtained from the first-order conditions of active agents. The inverse
strategies of passive agents are simply constants. The crucial observation
is that the partition into active and passive agents is arbitrary and can in
principle change at an arbitrary frequency as long as the probability that
some active agent stops is such that it is indeed optimal for passive agents to
wait. Because of the additional complexity, we do not attempt a full char-
acterization of equilibria as in the two agent case. Instead, we focus on the

characterization of equilibrium limit points.

Formally, periods of inactivity in the waiting phase correspond to jumps in
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an agent’s stopping strategy. Because of these jumps, equilibrium strategies

are generally not invertible. Instead, we work with the generalized inverse

¢i(t) = sup{si|oi(s;) >t}

which, for each i, gives the highest signal for which agent i stops after t.
The function ¢; is the inverse of o; on its image, and its constant continu-
ation elsewhere. Because o; is weakly decreasing and differentiable almost
everywhere by Proposition 2, it follows that ¢; is weakly decreasing, con-
tinuous and almost everywhere differentiable. For convenience, we call the
function ¢; an inverse strategy, and we say that a given profile (¢1, ..., ¢y)
of inverse strategies constitutes an equilibrium if there exists an equilibrium

(01,...,0,) such that ¢; is the generalized inverse of o; for each i € N.

By monotonicity of the equilibrium strategies, the distribution over agent
i’s stopping time in state 6 can be written as F; g(¢;(t)). The probability that
the earliest stopping time among all agents except ¢ is after time t is equal
to the joint probability that the signal of each agent j # i is below ¢,(¢), so

that by conditional independence
(7) =1- H 3,0 ¢J

Since ¢; continuous and almost everywhere differentiable, and each F;j is
differentiable and has full support, G, ¢ is continuous and almost everywhere
differentiable.

(8) Pr(H|s;) ( /0 t e dG () + (1 — Gi,H(t))e—”) H

+ Pr(H|s;)Gig(0)H — Pr(L|s;)(1 — G, 1(t)) e ™.

The interpretation is analogous to the two-agent case. The first and second

term represent the expected payoff from taking action at ¢ conditional on
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the state being high. Agent i with signal s; assigns probability Pr(H]|s;) to
this event. He receives payoff e™""—i H if another agent stops at 7_; < t,
and otherwise he stops himself at time ¢ and obtains the payoff e " H. The
second term represents the expected payoff if the state is low. In this case,
agent ¢ receives a payoff of zero if some agent stops before ¢, and otherwise

he incurs a loss —e™"*. The expectations are with respect to 6 and 7_;.

We follow essentially the same steps as in the two-agent case. A sufficient
condition for agent ¢ to be willing to delay stopping is that his marginal value

of waiting is greater than zero:

(9) = Pr(H[g:(t)) (1= Giu(t))rH +Pr(Llgi(t)) (G L(t)+r(1 = Gi(t))) = 0.

Now, substituting he stopping distribution G,y from equation (7) as well as

(10 o(t) = — [T Frolos0) (Z MW)) .

i#i i Fio (95(4)

Then, divide both sides of equation (9) by the total probability of reaching
time ¢ and substitute agent i’s posterior belief p; to obtain the following

condition.

(1) ra(di(t), 0-s(1) < —(1 = palilt), 0-s(1)) D \jun(85(1))(2).

J#
Consistent with intuition, the inequality tells us that an agent is willing to
delay effort for an instant, only if the probability that some other agent will

stop is higher than his the value he would receive if he were to stop.

The following result provides a sufficient condition for a profile of strate-

gies to constitute a Nash equilibrium with delay.

Proposition 8. A profile (¢1,...,¢,) of inverse strategies constitutes an

equilibrium if the following hold.
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(1) Every ¢; is continuous, differentiable a.e. and weakly decreasing.
(i7) For every i € N, condition (11) holds at all t > 0.
(1i1) |A(t)] > 2 for all t > 0.
(tv) For every i € A(t) and any t > 0, condition (11) holds with equality.
(v) If $:(0) < 1, then ¢;(0) =1 for all j # i.

The first property follows directly from the necessary conditions of Propo-
sition 2. The second property says that there at least two agents active at
any point in time in the waiting phase. The third property implies that at
each time all agents at least weakly prefer to wait. The fourth property says
that for any active agent, the strategy is pinned down by first-order condi-
tions. The last property ensures that no more than one agent preempts the
game. Note that there is no clear restriction on the choice of active agents,

which introduces some degree of freedom.

For a given set of active agents, the inverse strategies are pinned down
by property (iv). Using elementary operations and rearranging the equa-
tion system obtained by setting (11) equal for each i € A(t), we isolate the
derivatives of inverse strategies of active agents. Doing so yields the dynam-

ical system

—¢1(t) = Lpeawy - Yi(o1(t), ..., on(t))

12) —d5(t) = Lpseawy - Ya(o1(t), ..., dn(t))

— ¢ (1) = Lineawy - Yo(o1(2), ..., on(t))

where 1gicay)y is an indicator function that takes the value 1 if agent ¢ is

active and

T 1 Uj(Sj,5-4) Wi(Si, S—i)
13) Yi(s1,...,8,) = LA R KA ’
(18) ¥ilesto00) = 05 | O 22 T oy os) T miorod
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In contrast to the two-agent case, not all agents may be active in the limit.
Information asymmetry can result skewed posterior beliefs and agents with
less accurate information, who tend to be more pessimistic than better in-

formed ones, may eventually become too pessimistic to stop.

As a result, the specification of equilibrium limit points is more delicate
than in the two-agent case. We must account for those agents who remain
active in the limit. We thus define a equilibrium limit to be a profile s* =
(sf,...,s%) such that there is a set A € N, so that

ren

Yi(si,...,s:)=0 Vie A

wi(s;, s*;) <max u;(s3,s*;) Vi¢ A
jeA

(14)

Jr°—J

In other words, an equilibrium limit is a fix-point of the dynamical system
(12), restricted to aset A C N of active agents, together with the requirement
that the stopping value for every agent not in A is no higher than that of any
active agent. The latter requirement makes sure than inactivity is in fact the
result of inferior information. It is easy to see that, for given signal profile s
and set A, condition (11) cannot hold along any solution path approaching

s when the inequality is violated.

Analogously to the two-agent case, we call a limit point an interior limit
if s7 > 0 for all ¢, and boundary limit otherwise. In the following, we provide
a characterization of the stopping values at interior and boundary limits that

provide some basic insights into the nature of long-run equilibrium outcomes.

Proposition 9. Suppose s* = (s},...,s}) is a limit point satisfying (14) for

some A C N. Then the following holds.
(2) If s* is an interior limit, then u;(sf,s*,) =0 for all i € A.
(i7) If s* is a boundary limit, then there exists a unique i € A such that
st = 0. Moreover, we have u;(s},s*;) = 0 and there is u* > 0 such that
u;(s5, 8% ) =u* forall j € A\ {i}.

77 J
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Interior limits generate a form of symmetry among agents in the sense that
their stopping value at the limit is zero for each active agent. In particular,
this implies that their posterior beliefs must be the same, that is, p;(s;, s_;) =
p;(sj,s_;) for all 4,j € A. At a boundary limit, only the agent i with s} =0
has a stopping value of zero. The stopping value of all other agents equalizes
as in the interior limit case, but may remain positive. This result is easy to
see for the case of two agents, but the proposition generalizes to any higher

number of agents.

To see that the stopping value of all agents must be zero at any interior
limit s*, notice that for (13) to be equal to zero, the expression in paranthesis
must vanish. It is easy to see that this is possible for all 7 € A only if their
stopping values are the same. We can thus simplify the expression and obtain
that Y;(s*) = 0 only if @;(s},s*,) =0 for all i € A.

That a boundary limit can lie on the boundary for at most one agent
follows immediately from the assumptioon of aggregate uncertainty. Recall
that this assumption says that pooling the worst information of any two
agents results in a negative stopping value for both of them.® The stopping
value for the agent with sf = 0 is zero because, in the limit, the stopping
value and posterior beliefs of all active agents except ¢ must equalize. Thus,
for j € A\ {i}, it follows again from Yj(s*) = 0 that @;(s},s*;) = 0. The
remaining active agents retain a positive amount of private information and

thus a positive stopping value.

We can use these facts to establish existence results that extend the state-

ments of the two-agent case as follows.

Proposition 10. The following holds.

(1) An interior limit exists if no agent has a dominant signal.

We made this assumption to ensure that agents are sufficiently interested in each
others’ information. Without this restriction, there would be equilibria that converge to
the boundary in which the agents whose boundary is reached receice a positive stopping
value.
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(17) A boundary limit s* with sf = 0 exists if agent i is strongly optimistic.

The existence results are analogous to the two-agent case. If no interior
limit exist, then it must be the case that one agent is more optimistic than
all other agents. Thus, this agent must have a dominant signal. Equilibria
with preemption and delay are generally complementary, in the sense that
if one type of equilibrium does not exist, then there must be an equilibrium
of the other type. For the existence of a boundary limit strong optimism of
some agent is enough. The remaining active agents either converge to a point
that yields them with the same payoff, or, if such a point does not exist, all

but one become eventually passive.

So far, we have only considered equilibrium limit points, but we have
not actually contructed the associated equilibria. PRoviding a full charac-
terization is difficult. The following example illustrates the various different

equilibria that can arise.

4.4 Discussion

In this section we compare equilibrium outcomes to the efficient benchmark
and detail how strategic incentives to delay investments affect long-run run
equilibrium beliefs and outcomes. Inefficiencies arise because of a free-ride
incentive. Agents choose to wait if they expect someone else to move first in
an attempt to avoid the loss in a low state. We find that free-riding coupled
with passive learning through delay can lead to a surprising reversal of the
standard result saying that free-riding leads to insufficient investments: when
information is distributed unevenly, the less informed may invest too much
relative the first best.

Efficiency. In the efficient benchmark, the game always ends with pre-
emption. Preemption occurs in equilibrium either through informed or un-

informed preemption. Informed preemption is possible if some agent has

32



access to a piece of critical information. In this case, the equilibrium struc-
ture coincides with the efficient benchmark in the sense that there is only
one agent who stops with positive probability. However, this agent disregards
the social value of the information he generates through his investment, and
thus invests too little. In contrast to informed preemption, uninformed can
generate excess investment. However, as we argued before, the equilibrium

is problematic because it is not robust to slight perturbations of payoffs.

The plausible alternative to equilibria with informed preemption when
no agent observes a dominant signal is an equilibrium involving strategic de-
lay. When information agents have access to similarly accurate information,
the natural equilibrium benchmark is one that converges to an interior limit.
The aggregate stopping region of equilibria with delay that converge to an
interior limit resemble the efficient stopping region. Both are determined by
a sequence of threshold which is the intersection of zero-payoff lines, except
that in equilibrium, agents disregard the social value of their actions. Con-
sequently, there is insufficient investment in equilibrium.Moreover, note that
the set of agents that are active in equilibrium might differ from those that
would take part in the efficient benchmark which might drive an additional

wedge between the social optimum and the long-run equilibrium outcome.

When the distribution of information is more skewed, and poorly informed
agents actively participate along equilibrium path, their inferior information
crowds out the activity of those agents who are better informed. Intuitively,
the behavior of well-informed agents is more strongly correlated with the
state of the world, than that of agents whose signal is noisy. This means
in particular that when the state is low, then poorly informed agents are
less cautious and due to their relatively higher rate of stopping the better
informed become more passive. As a result, the poorly informed learn little
from the better informed agents’ delay and do themselves reveal more of their
own information. In the limit, agents with more accurate information become

entirely passive. while retaining a positive stopping value. In contrast, a less
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informed agent who remains active in the limit has a stopping value of zero
in the limit (see Proposition 9).

There is a deeper insight that can be gained from our analysis: in the
presence of indirect learning through delay, better information reduces the
strategic incentive to stop. That this is the case can be seen immediately
by closer inspection of (12). An active agent who has very accurate private
information, as measured by the divergence of his private from the public
belief, stop more slowly than an agent with who is endowed with less in-
formative signals. More specifically, better information is associated with a
larger value of his reverse hazard rate ratio h;, and the larger this value the

lower the stopping rate of the agent.

Fundamentally, what follows is that free-riding does not necessarily result
in insufficient investment, as is the standard result in the literature (Foster
and Rosenzweig, 2010), but can also lead to excess when information is dis-
tributed very unevenly. The majority of the literature that deals with issues
of free-riding focuses on symmetric equilibria. Our analysis shows that allow-

ing for asymmetric environments significantly expands the set of possibilities.

Additionally, notice that when there is excess investment in equilibrium,
then the cost of this excess is borne mainly by the poorly informed. In fact,
the likelihood that poorly informed stop is larger in a low state, because well
informed agents are overall more likely to stop late or never. Thus, as far as
production of information is concerned, there is no “exploitation of the great
by the small” (Olsen, 1965) but rather an exploitation of the small by the

great.

Replicator Dynamics. There is a strong connection between the equilib-
rium learning dynamics and replicator dynamics frequently used in ecology
and evolutionary game theory. The classic “war of attrition” framework, on
which our model is based, has a natural connection to replicator dynamics,

because both have their roots in theoretical biology as dynamic models of
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competition. Here, however, replicator dynamics arise naturally as the re-
sult of strategic behavior. Recall that replicator dynamics are captured by a
number of coupled first-order differential equations, the replicator equations,
that characterize the changes in composition of a population over time as a
function of its payoff or “fitness” in relation to the population average. Here,
we consider evolution of the composition of private information distributed
across the society of agents, but the dynamics are characterized by equations
with similar properties. To see the similarity, note that (13) is also a function

of agent i’s stopping value in relation to an average.

The connection becomes most clear in the case of two agents. There,
the first-order condition yield differential equations that generates dynam-
ics identical to models of two competing species (a special case of replicator
dynamics model) which becomes apparent in the phase diagram shown in
Figure 2 (see Hofbauer and Sigmund, 1998). A crucial feature of the com-
peting species models is that, under sufficiently strong competition between
species, coexistence of both species is possible only at an instable fix point.
Any small imbalance that favors one species leads to its complete dominance
and the eventual extinction of the other. Here, we observe the same basic
effect but applied to the revelation of information through strategic delay:
in equilibrium, and agent who has relatively less private information must

reveal more of it by stopping at a higher rate.

Herding. There is also a connection to the literature on social learning
and herding. There are a number of papers that show how observational
learning can lead to herding behavior. There, agents who observe others’
behavior, and may ignore their own information in favor of the inferences
based on their actions. In this way, observational learning leads to what
Bikhchandani et al. (1992) call an informational cascade, wherein an agent’s

action is independent of his private information.

Here, we consider an environment with observational in which agents do
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not only observe others behavior but also the consequences to taking action.
The game ends once an agent makes the investment and reveals the state of
the world, so that herding in our model is, by construction, possible only on
inaction. An informational cascade occurs in equilibrium only with informed
preemption. After the preempting agent chooses to wait, every other agent
then revises their belief about the state downwards, and chooses not to invest,

independent of their private signal.

Informed preemption is the only type of equilibrium that exhibits a form
of herding that is consistent with the notion that agents . For equilibria
with delay, each active agents behavior is clearly dependent on their own

information. What

5 Conclusion

The objective of this paper was to reveal some of the mechanisms that un-
derly environments in which information is dispersed and privately informed
agents learn from others through their strategic delay. I characterize long-run
equilibrium outcomes for information structures that do not allow for infor-
mational cascades, and I show that these equilibria are typically inefficient.
Investments are insufficient when agents are evenly well informed, but may

also be excessive when information is distributed unevenly.

The basic setup of the model has been kept purposefully simple to re-
tain tractability. It is however natural to consider extensions. For example,
first-mover advantage or second-mover advantage appear plausible in many
applications, such as R&D competition. Such a change would create a bias
among agents for action or inaction, depending on whether we consider first
or second-mover advantages, but qualitatively the basic insights in this paper

remain the same.

Another possibility would be to study how private information affects
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free-riding in richer model in which experimentation occurs over time con-
temporaneously with learning from others’ action. We may view the current
model as a reduced form game in which the stopping payoffs represent the
continuation value in an extended game in which a second round is played

after agent stops.
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A  Proofs

Proof of Proposition 1. Because of the monotone likelihood ratio prop-
erty, expected payoffs are non-decreasing in signals. Therefore, if it is optimal
to stop for a given signal s; of some agent 4, then it must also be optimal and
thus the stopping region is indeed characterized by a profile of thresholds s.
The optimal threshold profile solves

S0 po (1—EE,H($>> nH — (1 - po) (1—HEL§ )

The associated Lagrangian is

L(51,... (1—HEH (8:) > — (1 =po) (1_HEL(‘§’L>>

The efficient threshold profile § solves the necessary conditions

po [ [ Fiun(35) Fipi(3nH — (1= po) [ | Frn(85)F 1(3:) = pi — .
J#i J#i

together with the Kuhn-Tucker conditions p;(s; —0) = 0 and u;(1 —s;) =0
and p;, u; > 0 forall © € N.
If s, € (0,1), then p; = p; = 0, so that the right-hand side is equal to

zero, and §; satisfies
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If there exists ¢ € N with 5; = 1, then p; = 0 and p; > 0. Thus,

n

Po HF]H(
1—po oy Fj(

i) Fiu(85) 1 Hi 1

S
y _ - _ — _ — S N
i) Fip(s)  nH (1 —po) [T Fjo(8)F] (5:) — nH

@ | »>

Finally, if there exists an i € N with s; = 0, then p; > 0 and p; = 0. That is

the case only if

n

Do Fiu(
1 —po pir Fj1(

1) F 1(0) _ 1 Pi >

+ 7 - - :
i) Fp0) nH (1= po) [ Fin(3,)F; L (5:) — nH

@ | »>

for each 3. O]

Lemma 1. The distribution over stopping times of each agent v induced by
an equilibrium strategy o; has no atom except for at most one agent at time
t=0.

Proof. (1) There is at most one agent whose distribution over stopping times
has an atom at t = 0. Suppose there are two agents i, j who stop at time
zero with positive probability. Then for each signal s; with o;(s;) = 0, agent

1 would do stricty better by stopping at time € > 0, for ¢ small.

(2) There are no atoms at t > 0. Suppose to the contrary that there is
an atom at ¢ > 0. Then by standard arguments, it cannot be optimal for
any other to stop at a time t — ¢, for € > 0 small. But then o;(s;) =t cannot
be a best response for any signal s; of agent 7, contradicting the hypothesis

that there is an atom at ¢. O

Lemma 2. Fquilibrium strategies are non-increasing.
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Proof. We show that equilibrium payoffs are submodular. Let ¢(s;) = Pr(H|s;).
The payoff of stopping at time ¢ for agent ¢ with signal s; is

Uz (t,5:) = q(s) /0 G (=) H 4+ et )
where
u; (t,5:) = q(s:)(1 = Gou(8))H — (1 = q(s3))(1 = Gi,(1)).
Let AU (t,t',s;) = Ui (t,s;) —U;(t',s;). Then, for ' >t and s, > s;, we have
AU (Lt s)) — AU (t, 1, s;)

t/
= q(s}) (/ e_”dGi,H(z)> H + e_rt/uf(t', sh) — e "l (t, s5)
¢

t/
) (qw (/ e‘rszz-,H<z>> H e il s) — e T, >>
t

= (q(si) — q(s:)) (/t e_Tszi,H(Z)> H

4t (u;k(t', st) —up(t, s,)) —e (uf (t,s;) — ui(t, sl))
We can now use that
% v v /
/ e "dG g (z) < / e_TZdG,-,H(z)—F/ re "G (2)dz = e "G g (t)—e Gy (t)
¢ ¢ ¢
and substitute

ui (t,s7) —wi(t,si) = (a(si) = a(s))[(1 = Gou(O)H + (1 = Gy (1))]

40



to obtain the inequality

AU} (t, 1, s,) — AU (¢, 1, s;)
< (gls) = a(s0)) (77 Gom(t) = e "G (t)) H
e a(s}) — (o)) [(1 = Gan(#)H + (1= G (t))]
= e (a(s) = a(s:) [(1 = Gi(O)H + (1= Gy (1))]
= (als}) = () (1 = Gan(#)) + H) = e7"(1 = G (9)) + H))
< (q(s7) = q(s0))e ™ (Gip(t) = Gin(t)H
0.

q(
(

A

Thus U; is submodular, so that by Topkis’ Monotonicity Theorem we have
that

oi(s;) = argmax U/ (¢, s;)
t

is non-increasing in s;. O

Lemma 3. Let 0 = (01,...,0,) be an equilibrium, and let ¢ = (¢1,. .., dn)
be its generalized inverse. Suppose ¢; is strictly decreasing for alli € A C N
on an interval I = (t,t') with t' >t > 0. Then ¢; is differentiable on I for
each i € A.

Proof. We show that F; 1(¢:(t)) is Lipschitz-continuous for each i. Because
F; i has full support by hypothesis, it follows then that o; is differentiable

almost everywhere.
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By definition of U* it follows that

t

AU} (Lt s;) = q(si)/ e "dG p(2) H + e "ul(t, )
0

tl
— q(s) / TG (2) H — e u (t, 5:)
0
t/
— e "L, s;) — e TN ul () s) — q(si)/ e "dG,; g(z) H.
t

Agent i prefers t = o0y(s;) over t' € (t,04(s)), and therefore it must be the
case that AU/ (t,t',s;) > 0. Thus, it follows

t/
(15) e "l (t, s;) — e_”,uf(t', si) > q(si)/ e "dG; u(z) H.
¢

We further have

’

t t
(16) / A () > e / 4G (2) = ™ (Can(t) — Gin(®)).
t t
Using a zero-addition, we find that

e (1 si) — e si)
— e_rtu;((ty S’L) - e_rtlu;k <t7 SZ) + e—Tt/u;k (t7 87/) - e_rt,u’? (t,7 Sz)

= (e — el (t,s;) + e q(s)(Gin(t) — Giu(t)H
— e (1= q(s)(GiL(t') — Gi(t)).

where we used the definition of u} in the last equation. Rearranging the last

equality yields

(17) (7" — e’”/)u;‘(zﬁ, S;)

= etk (t, s) — eVl (t) s) — e q(s) (Gin(t) — Gin(t)H
+e (1= q()(Gin(t) — Gin(t)).
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Now, use (15) and (16) successively to obtain

(e — e ui(ts0) = e (L= q(s:)) (G (t') = Gir(t)).

" is Lipschitz-continuous on the positive real-line

The exponential function e~
with Lipschitz bound r, and therefore r(t' —t) > e~ — e, Althogher, it
follows

Lt t)(t' = 1) 2 (Gin(t') — Gir(1))
where
r ui(t oi(t)
e 1 —q(¢i(t))
The function L(t,t') is positive because ¢; is strictly decreasing on (¢,t)
and thus u*(¢,¢;(t)) > 0. Second, L(t,t') is finite because q(¢;(t')) < 1
(if q(¢i(t')) = 1 agent ¢ with signal ¢;(¢') would not want to wait until

L(t,t") =

t' > 0). Therefore, L(t,t') is continuous and bounded on I x I which implies

L* = max pyerxr L(t,t') exists. Hence,
Gip(t) = Gin(t)] < L[t — ¢

for all ¢ > t' in I, which means that G, is locally Lipschitz-continuous.

Moreover, for any j € A\ {i} we have

Gin(t) — Gip(t)| = H Fi1(9;(t) — H Fi1(9;(t)

I#i I#i
> T Fin(65()) 1F50(5(8) = Fio(65())] -
l#1,j

In equilibrium, we have [],_, ; Fi,r.(¢;(t')) > 0, and thus we can combine the

last two inequalities to obtain

L*

o By

|F5.(05(t) = Fj.0(;(1))] <
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which implies that each Fj(¢;(-)) is locally Lipschitz-continuous, as well.
Now, each Fj is strictly increasing and continuously differentiable by as-
sumption, and hence it is invertible, and the derivative of the inverse Fle
is again differentiable with bounded derivative (since F}; has full support).

Thus, FJ_L1 is Lipschitz-continuous with some Lipschitz-bound M, and

[65(8) = 65 ()] = |F} L (Fjn(65(t) — Fy L (Fj.n(65(t))]
< MIF;1(¢(1) — Fjn(e5(t))]

< ML it —¢|.
B Hl#,j H,L(¢j (t))

The last inequality shows that ¢; is locally Lipschitz-continuous. Since this

holds for all 7, it follows from Rademacher’s Theorem that every ¢; is differ-

entiable almost everywhere on R, . O

Proof of Proposition 2. (i) By Lemma 2, equilibrium strategies are non-
decreasing which implies 0 < s, < s;r < 1. By Lemma 1, the distribution
over stopping times of every agent has no atoms except at time zero. There-

fore, s; =1 for all agents except at most one.
(ii) Follows from Lemma 3.

(iii) Suppose A(t) = {i} on some open interval (to,t;) C R,. But agent
1 receives a strictly higher payoff from stopping at ¢y, than at ¢; which implies

that stopping at t; cannot be a best response. O

Lemma 4. Let n = 2. There exists a fix-point in the interior if no agent has

a dominant signal.

Proof. 1t is sufficient to show that there are points (s1, s2) and (s], s}) such

that u1(s1, s2) < ug(sa, s1) and uq(s], s5) > ua(sh, 7).

44



(i) Suppose neither agent is strongly optimistic. Let §; be defined such
that 4;(s;,1) = 0. Since neither agent has a dominant signal, we have
U1(51,1) =0 < 0(1, 1) and Uz(82,1) =0 < uy(1, S9).

(ii) Suppose agent i but not agent —i is strongly optimistic. Define s;r
such that ;(0,s!) = 0. Then,

0=1;(0,s") =E[f]s; = 0,5_; < sl] <E[f|s; = 0,s_; = sI] = a_(s],0).

(iii) If both agents are strongly optimistic, then we can apply (ii) for each
of them. ]

Proof of Proposition 3. We prove the result for n > 2. Suppose agent i

has a dominant signal. Let s solve E[0|s;] = 0. Set

—i it s; > 87
0'7;<S7;) = ) i}
oo ifs; <s]

and let o;(s;) = oo for all j # i. The payoff for agent 7 i

E[0]s;] ifs; > sf
Uz(SZ) =
0 if 5; < 8;(

If s; < s} agent 7 cannot gain by stopping at a finite time. If s; > s and
agent 7 deviates by stopping at ¢ > 0, then his payoff is e "E[0|s;] < U;(s;).
No agent j # ¢ can gain by preempting before agent 7. If agent j # i chooses
a stopping time ¢t > 0, his payoff is

e’”(Pr(H|sj)Fi7H(s;‘)H — Pr(L|s;)F;n(s])) < e’”E[9|sj,si < s7] <.

Hence, this deviation is not profitable. O
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Proof of Proposition 4. We prove the result for n > 2. Suppose agent ¢
is strongly optimistic. Set o;(s;) = —i and o;(s;) = oo for all j # i. The
payoff for agent i is U;(s;) = E[f]s;]. By strong optimism, U;(s;) > 0 for all
s;. If agent i deviates by stopping to ¢ > 0, his payoff is e " E[f]s;] < U;(s;).
For any agent j # 4, the payoff is U;(s;) = E[max{6,0}|s;] which is the

maximum attainable payoff, so no deviation can be profitable. O

Proof of Proposition 6. Define

ei(z,y) = alz,y)hi(y)H — 1

Let s* = (z,y) be an interior limit. The Jacobian for the dynamical system

1S
Ay g (@)ez(,y)—AL,1 (%) 0ze2(z,y) _ Oyea(zy)
J — )\L,I(I)Q /\L,l(x)
_ Ozer(z,y) A o(We1(@y)—AL,2(y)dyer(z,y)
Az,2(y) Ar,2(y)?

Note that if s* is an interior limit, then es(s*) = ei(s*) = 0. Thus, the

Jacobian becomes
_ Ozea(my)  Oyea(z,y)
J = Ar,1(x) Ar,i(z) )

_ Ozei(my)  Oyei(zyy)
AL,2(y) Ar,2(y)

The associated characteristic polynomial is given by

_Owes(zy) COen(my) O\ Oser(m,y) Oyea(w,y)
ALi() ) < Ar2() ) Ara(z)  Apa(z)

det(J —pI) = (

46



The roots of the characteristic polynomial are
Ara(x)0yer(w,y) + Ara(y)deea(, y)

P2 = — 2>\L71($))\L,2(y>

n (AL2(y)0zea(z,y) + Apa(z)0ye (x, y))2
A1 (2)? AL 2(y)?

D) Beeal, )0y (2,9) — Dyeal, e (s, y>>) "

A1 (2)* A 2(y)?

By the implicit function theorem, the nullclines ¢, @s defined implicitly
through e;(s1,p1(s1)) = 0 and es(pa(s2), s2) = 0, have the slopes

/ _ _aﬂcel(aj>y> / _ _ay(a?(x?y)
(l') - ayel(x’ y) ) @Q(y) aw62($’ y)

If i (s1)@h(s2) <1, then
3x€2($,y)3y61($»y) - 3y€2($a y)axel(xa y) < 0.

Thus, the Eigenvalues r; and r, have opposite signs, which implies that the
interior steady is a saddle point, and hence unstable. Thus, there exists a
unique trajectory (the separatrix) that converges to s*, and this trajectory

constitutes an equilibrium path. O]

Proof of Proposition 7. Let s* = (0,y) be a boundary limit. The Jaco-

bian for the dynamical system is again

AL.1(0)e2(0,y)—Ar,1(0)00e2(0,y) _ 9ye2(0,y)
J = Ar,1(0)? Ar,1(0)
_aoel(o,y) >‘/L,2(y)61 (07y)_)‘L,2(y)ayel(07y)
AL,2(y) A2 (y)?
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We have e;(s*) = 0 and lim,, o A\ (s;) = co. Thus, the Jacobian becomes

J= ( >\L 1( )2 )
3061 (0,y) _ Oye1(0,y) )
(v)

A2y AL,2(y)

From condition (1), it follows that there is an a > 0 such that A7 ;(0)/AL,1(0)* =

a. We now substitute e; for each 1 = 1,2,

(el 1) o
- lea(s )H _83204(5*)]—_[ :
2)

Ar2(s Ar,2(s2)

It is easy to see that the associated Eigenvalues are p; = —a(a(s*)ha(s2)H —
1) and py = —0s, Ha(s*)/Ap2(s2). Now, e1(s*) = 0 implies a(s*)H — 1 = 0.
Thus, (0, s2)ha(s2)H > 1 which implies p; < 0 . Moreover, ps < 0, because
« is increasing in each argument and Az s(s2) > 0. Thus s is asymptotically
stable. O

Proof of Proposition 8. The necessity of part (i), (iii) and (v) follow from
Proposition 2. We show that if 0 = (01,...,0,) is a strategy profile which
has ¢ = (¢1,...,¢n) as its generalized inverse, where ¢ , satisfies part (ii)
and (iv), then o;(s;) € arg max; u;(t, s;) for all s; € [0,1] and i € N.

Fix s; and set t = 0;(s;). We consider the possible deviations ¢’ > ¢ and

t' < t separately.

(1.)  Suppose agent ¢ with signal s; = ¢;(t) chooses a stopping time
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t' > t. Then

Wil %) pr(H|s)(1 — Gon(#))rH + Pr(L]s) (GLo) +r(1 = Gir(t)))
dt
= — Pr(Ll|s; Pr(H| - 1H(t,) _ l—g’l’(t/)
= ~Przhar( - Guult) (B TG~ 1+ 17 )
Pr(H|s;) Pr(H 6:i(t)\ 1= Gin(t)
< —Pr(L|s;)r( (PY(L\SJ Pr(L|os(t)) ) 1 —Gir(t) H
<0

where the third inequality follows by substituting (9) evaluated at ¢’, noting
that ¢; is decreasing by hypothesis, and

Pr(H|s;) _ _ Do Fi,,H(Si)
Pr(Lls;) 1 —po F(si)

is increasing by MLRP. Thus, ¢’ > ¢ cannot be optimal.

(2.)  Suppose agent ¢ with signal s; = ¢;(t) chooses a stopping time
t' < t. First, consider ¢ in the image of ;. Using (9) we obtain

dUiS;’—Si) = —Pr(H|s;)(1 = Gou(t'))rH + Pr(Ls;) (Gi (1)) +r(1 = Gi (1))
= —Pr(L|s;)r(1 — G, (1)) ( 1;((2]”;)) - :ZIEII))H -l %1 —Zgz-t()t'))

- r(Hls;) Pr(H|¢:i(t)\ 1= Giu(t)

= —Pr(Lls:)r(l = Gir(t)) ( Pr(Lls)  Pr(L|gi(t ))) = Gout) |

where in contrast to (1.), the third line is now an equality. Since ¢;(t') > s;, it
follows that du,;(t', s;)/dt > 0, so that ¢’ cannot be optimal. Second, consider
t' < t outside the image of o;. Because t' is outside the image of o;, by
(9),there exists an agent i with signal s, > s; who prefers to stop at a time
t” > t'. Therefore, by monotonicity of agent i’s best response (see Lemma 2),
agent i with signal s;, also prefers to stop at t”. Since this argument applies

to all ¢ outside the image of o;, such a deviation is never optimal. O
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Proof of Proposition 9. Part (i): At an interior limit, we have Y;(s*) =0
for all ¢ € A. This is possible only if there exists an u* > 1 such that
w;(s7) =: u* for all i € A. Thus Y;(s*) = 0 is equivalent to u* = 0.

Part (ii): By Aggregate Uncertainty, if there are two agents ¢ # j such
that sj = s7 = 0, then @;(s*) = uj(s*) < 0. But then there exists a finite
time ¢ such that i prefers not to stop after ¢ which contradicts the hypothesis
that s* is a limit point with s7 = 0. Now, let s; = 0. Then s7 > 0 and thus
Ajr(s3) >0 forall j € A\ {i}. Therefore, Y;(s*) = 0 for all j € A\ {i} is
possible only if there exists u* such that u;(s*) = u*. Subsituting this back

into Y;(s*) for ¢ # j, we obtain have

1 ’LNLj s* 1]2 s* 1 ﬂz s*
3 (s") (s") (s")

Yi(s) =0 & = = =
() A —122T-p(s)  T-pls) A= 11— pi(s")

jeEA

Where the last equation implies @;(s*) = 0. Equation (2) then implies that
u;(sj) = 0. Finally, again by aggregate uncertainty, we have h;(s5) > 1 for
all j € A\ {i}. Thus,

a(s)hij(s1)H —1> a(s")H —1=0.

J

It then follows from Equation (2) that u* > 0. O

Proof of Proposition 10. Part (i): We show that if an interior limit does

not exist, then some agent has a dominant signal. Define
So = {(s1,--.,8n)| wi((si,s—;) <0 for all i with equality for some i}.
An interior limit exists if there is an (s1,...,s,) € Sy and ¢ # j € N

such that @;(s;,s—;) = @;(sj,s_;) = 0. Because the signal distributions are

differentiable and have full support, any curve in Sy is continuous. Therefore,
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if there is no interior limit, there must be an agent i such that @;(s;, s_;) >
w;(sj,s5-5) = 0.

Suppose agent 7 is the agent, for whom the last statement is true. It
then follows that ;(0, (1,...,1)) < 0. Otherwise, there would exists s with
s; = 0and s_; < (1,...,1) such that 0 = @;(0,s_;) < u;(s;,s—;) for every
j # 1, contradicting the hypothesis. Thus, there is an § with §; > 0 and
5_; = (1,...,1) such that 0 = @;(8;,5_;) > 4;(5;,5-;). The last inequality

implies that agent ¢ has a dominant signal.

Part (ii): The proof is easy. The details are omitted. ]
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