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Abstract: We extend Wilson (1979) share auction framework to model the uniform-price US 

Treasury auction as a two-stage multiple leader-follower game. We then explicitly represent 
the primary dealer’s (follower) strategic choice of bids as a function of its customer’s 
(leader) bids and show that an increase in a customer’s bid leads to two types of its dealer’s 
reaction at the dealer bid-points that are near, in terms of price, to the customer’s bid-point – the 
quantity effect by which the primary dealer increases its quantity, and the price effect by which 
the primary dealer decreases its bid shading. We explain how these two effects are translated into 
the primary dealer bidding behavior in handling the risk of being short-squeezed or face the 
winner curse in the post-auction market. We also find that comparing to the direct bidding 
system, where all bidders submit their bids directly to Treasury, the primary dealer bidding 
system increases the competition, which leads to an increase in both Treasury revenue and 
revenue’s volatility. Relatively to existing studies, this paper first extends the left continuous step 
demand schedule in Kastl (2011) to explain how primary dealers move their bid-points around 
customers’. Second, it complements Hortacsu and Kastl (2012) by explicitly representing the 
primary dealer’s strategic choice of bids as a function of its customer’s bids, and explaining how 
the primary dealer’s informational advantage impact its bidding behavior in handling the risk of 
being short-squeezed or face the winner curse in the post-auction market. Third, it provides 
valuable insights into the detailed bid-level data study of US Department of the Treasury (2012) 
and explains why one of its findings differs from a result in Hortacsu et al. (2015). 
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1. Introduction 

 
To finance its public debt, the US Government currently auctions several Treasury securities 
including bills, notes, bonds, Treasury Inflation Protected Securities, and Floating Rate Notes. 
The Treasury auction market is considered one of the biggest and most active financial markets 
in the world. In 2012 alone, Treasury issued $7,658 billion through 264 public auctions. The US 
Treasury auctions these securities on a regular and predictable basis. The primary dealers are the 
largest group of buyers at these auctions. However, there are several accounts of primary dealers 
using the information extract from their customers’ bids to formulate their own bids. The 
following are two such accounts. 
 

(i) First, Harper and Kruger (2013) report the following from Steve Rodosky, who runs the 

Treasury and derivatives trading at PIMCO:1 “PIMCO likes to bid directly instead of 

bidding indirectly, because of the anonymity the direct bidding offers and because it 
has reduced the price swings that used to occur before auctions when it bids indirectly 

as primary dealers react to the bids they received.” 
 
(ii) Second, Flitter (2012) reports that China2 can now bypass primary dealers when buying 

US Treasury securities and go straight to the auction. Then he draws the following 

conclusion: “Since primary dealers are not allowed to charge customers money to bid 

on their behalf at Treasury auctions, China is not saving money by cutting out 
commission fees; instead, China is preserving the value of specific information about 
its bidding habits. By bidding directly, China prevents primary dealers from trying to 

exploit its huge presence in a given auction by driving up the price.” 
 
Primary dealer bidding behavior after observing their customers’ bids in US Treasury auctions is 
an important subject for both academics and policy makers. For academics, it would be 
important to understand how primary dealers formulate their in-house bids after observing their 
customers’ bids, by identifying how each type of information extracted from customers’ bids 
affect the price or the quantity in the primary dealers’ bids. For policy makers, it would be 
important to analyze the impact of dealers’ informational advantage on the auction revenue and 
revenue volatility under the primary dealer bidding system in comparison to other bidding 
systems such as the direct bidding system in which all bidders submit their bids directly to 
Treasury without intermediaries.  
 
Several studies have tried to address the above subject. The first one is the empirical study 
conducted by US Department of the Treasury (2012) that analyzes detailed bidding data from 
auctions of Treasury notes and bonds conducted between June 2009 and September 2012. For 
each auction, it partitions the bid levels into three zones: (i) the aggressive zone, i.e. bids that 
reflect the bidders’ real demand of Treasury securities, and that bidders expect to be fully 

                                                 
1 PIMCO is the world’s largest active bond Fund. 
 

2 China is the second US Treasury holder after the Fed. 
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awarded; (ii) the value zone, i.e. bids that are placed by price-sensitive bidders and are not 
expected to be awarded completely unless the auction clearing yield tails above this zone; and 
(iii) the throw-away zone, i.e. bids that are not expected to be awarded unless the auction 
clearing yield tails dramatically above the value zone. For each primary dealer, it calls each bid 
in the throw-away zone as bid-to-miss, i.e. bids placed only to fulfill the pro-rate bidding 
requirement. It draws the two following conclusions. First, the primary dealers construct their 
value bids based on their clients’ value bids. Second, after taking out throw-away bids, primary 
dealers submit more aggressive bids than both indirect bidders and direct bidders.  
 
Hortacsu et al. (2015) also analyze detailed bidding data from auctions of US Treasury bills and 
notes conducted between July 2009 and October 2013, and find that primary dealers consistently 
bid higher yields (i.e. lower prices) in auctions compared to direct and indirect bidders. Their 
result contradicts the one of US Department of the Treasury (2012). This contradiction is due to 
the fact that Hortacsu et al. (2015) do not take into account the fact that some primary dealers are 
not very active in all maturity segments of the Treasury security market. Therefore, when 
participating in an auction for a Treasury security on which it is not very active, the primary 
dealer would want to receive a very small award. Thus, it submits a large part of it quantity-bids 
with the purpose of missing the award. It submits these bids at relatively higher yields (or lower 
prices) just to fulfill its pro-rata quantity bidding requirement.   
 
The following two works study the information interaction between primary dealers and indirect 
bidders in more advanced modeling frameworks. They also compare the outcomes of the primary 
dealer bidding system to the one of other alternative bidding systems. Boyarchenko et al. (2016) 
develop a theory of intermediaries where the primary dealers aggregate the information across 
customers for advising them, and show that the primary dealer system increases both the 
expected auction revenue and variance, and hence, contradict the prevailing thinking that the 
primary dealer system lowers auction revenue, but also revenue risk. These studies explain how 
primary dealers the information obtained from their customers’ bids to formulate their own bids. 
Kazumori and Tchuindjo (2016) develop a model in which the primary dealer system impacts the 
bidding behavior through two channels: The information pooling channel where each primary 
dealer pools its information with that of its indirect bidders; and the competition channel where 
the auction system maintains its competitiveness by keeping bids by indirect bidders rather than 
primary dealers initializing them. They find that the primary dealer system provides the lowest 
price volatilities while maintaining the equal level of auction prices in comparison with the 
alternative direct bidding system.  
 
Hortacsu and Kastl (2012) study, which is the closest to our, uses detailed data for the Canadian 
Treasury auction to propose a structural model in which dealers observe their customer’s bids 
while preparing their own bids. In their setting, dealers can use information on customer bids to 
learn about competition, i.e. the distribution of competing bids in the auction, and fundamentals, 
i.e. the ex-post value of the security being auctioned. They find that the information about 
competition contained in customer bids accounts for 13-27% of dealers' expected profits, and do 
not find any evidence that dealers are learning about fundamentals. This finding about 
competition was possible due to the fact that Canada Treasury auction data allows these authors 
to observe the following three types of bids: (i) dealers’ initial-in-house bids, i.e. bids that dealers 
initially submit to Treasury before they receive their customers’ bids; (ii) customers’ bids, i.e. 
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bids that dealers receive from their customers and submit to Treasury;3 and (iii) dealers’ final-in-
house bids, i.e. bids that dealers submit (to update their previous bid submissions) to Treasury 
after they have routed their customers’ bids. 
 
To quantify the excess award that dealers receive due to their informational advantage Hortacsu 
and Kastl (2012) compute the difference between the following two ex-post equilibria: on the 
one hand from dealers’ final-in-house bids and customers’ bids; and on the other hand from 
dealers’ initial-in-house bids and customers’ bids. Their finding is the first documented evidence 
that primary dealers use their information advantage to front-run their customers. In this study 
we extend their work by modeling how primary dealers formulate their bids after observing their 
customers’ bids. 
 
In the context of US Treasury auctions, we attempt to analyze how primary dealers formulate 
their in-house bids after observing their customers’ bids, and to compare the outcomes of the 
primary dealer system versus the ones of the direct bidding system. Our novel modeling 
approach is to explicitly derive closed-form representations of primary dealers’ demand 
schedules as functions of customers’ demand schedules.4 The two main research questions of this 
study are the following. (i) Given the perfect knowledge of their customers’ demand schedules, 
how do US Treasury dealers formulate their in-house demand schedules? (ii) Comparing to the 
alternative direct bidding system, how does the primary dealer informational advantage in the 
primary dealer system impacts US Treasury revenue? According to the best of our knowledge 
the first question has never been investigated in the literature. The answer to this question will 
complement Hortacsu and Kastl (2012) study. Boyarchenko et al. (2016), and Kazumori and 
Tchuindjo (2016) and have recently investigated the second question but under different 
modeling frameworks. The answer to this question will strengthen their results. 
 
To answer above mention two questions, we start with Wilson (1979) model of share auction in 
which both price and quantity are continuous variables, and bidders have independent private 
values. These assumptions are similar to the ones in the closest related study of Hortacsu and 
Kastl (2012). Then we extend Wilson (1979) model in the following three aspects. First, from a 
symmetric game to an asymmetric game with two different types of bidders: the customers (or 
indirect bidders) and the primary dealers. Second, we extend this model from a static game to a 
two-stage multiple-leaders-followers game, similar to a Stackelberg (1934) game. As the third 
extension, we explicitly model the front-running behavior in our auction game.  
 

In order to achieve our goal, we model the Treasury auction as a two-stage game having N +∈N  

leaders (that are indirect bidders) and N  followers (that are primary dealers). We pair each 
primary dealer to an indirect bidder, in a way that we have exactly N  customer-dealer pairs. 
Then we construct the game such that in the first stage each indirect bidder submits its demand 

                                                 
3 Dealers transfer customers’ bid to Treasury as soon as they receive these bids. 
 

4 It is worth noticed that one cannot directly apply Hortacsu and Kastl (2012) research methodology for 
Canadian Treasury auctions to US Treasury auctions. This is because the in the US Treasury auction dealers 
update their in-house bids internally as they are receiving (and routing) their customers’ bids, and submit their 
in-house bids once to Treasury just before the auction deadline. For this reason, US treasury auction data allows 
for the observation of only two types of bids – the bids customers submitted to dealers for routing; and dealers’ 
final bids. 
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schedule to be routed to its primary dealer, who in the second stage of the game, first observes its 
indirect bidder’s demand schedule, then formulates its own demand schedule, and finally submits 
both demand schedules to Treasury with a dual objective of maximizing its profit and front-run 
its indirect bidder (consistent with Flitter (2012), and Harper and Kruger (2013) accounts). Even 
thought there is a perfect Bayesian equilibrium for our auction game, it is worth noticed that we 
are not looking to a full equilibrium. We assume the customer’s demand schedule to be 
exogenous to the model, then we use the backward induction technique – an approach developed 
by Selten (1965) to solve dynamic games of incomplete information of this kind – to derive the 
primary dealer’s demand schedule as the best response functional to the indirect bidder’s demand 
schedule. Thereafter, under the assumptions of constant marginal values and additive separable 
demand schedules, we obtain closed-form solutions for the demand schedule of the risk-neutral 
primary dealer. 
 
The main contribution of this work is about the primary dealers bidding behavior with respect to 
its informational advantage. First, this study explicitly represents the dealer’s strategic choice of 
bids as a function of its customer’s bids, and explain how the primary dealer’s informational 
advantage impact its bidding behavior in handling the risk of being short-squeezed or face the 
winner curse in the post-auction market. This complements Hortacsu and Kastl (2012) who focus 
on the empirical estimation of the benefits the dealer obtains from using its knowledge of its 
customers’ bids to formulate its own bids. Second, this study compares the expected revenue and 
revenue volatility of the primary dealer bidding system to the ones of the alternative direct 
bidding system. 
 
The second contribution of this study is the fact that it is the first to model the bidder’s set of bids 
as mollified step functions.5 A mollified step demand schedule has the double advantage to look 
closely like its corresponding discrete step demand schedule and to be analytically tractable like 
a strictly decreasing continuous demand schedule. For analytic tractability reasons many authors 
model the bidders’ demand schedules in the Treasury auctions as strictly downward sloping 
continuous functions. But because each Treasury auction bidder submits a limited number of bid-
points, Kastl (2011) explains it is unrealistic to represent the bidder demand schedule by a 
strictly downward sloping continuous function, and introduces the more realistic left continuous 
step demand schedule. But because of their lack of analytic tractability left continuous step 
demand schedules, when used in our model, does not allow to correctly explaining the primary 
dealer’s reaction with respect to changes at bid-points of its customer’s demand schedule. To 
overcome this limitation, we mollify the customer discrete step demand schedule to transform it 
to a continuously differentiable function. We also illustrate how one can use the normal 
distribution function to perform such transformation or mollification. 
 
The two main results of this study are the following. First, the primary dealer’s response to its 
customer’s increase in quantity at a bid-point is to increase the quantity at its own bid-points that 
the prices are in the neighborhood of the customer customer’s bid-point price. More clearly, the 
primary dealer increases the quantity in its bid-point that is near (in terms of price) to the 

                                                 
5 The purpose of function mollification, introduced in differential calculus by Friedrichs (1944), is to 
approximate a non-smooth function by a smooth function that is graphically very close to the original non-
smooth function. This is done through the convolution of the non-smooth function with a smooth function, 
called mollifier, which satisfies certain conditions. 
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customer’s bid-point. Meanwhile, the primary dealer decreases the quantity in its bid-points that 
are not near (in terms of price) to that customer’s bid-point. We call this the quantity effect. As 
we explain later, comparing to the alternative direct bidding system,6 this effect leads to an 
increase in the auction clearing price, and hence, increases the Treasury revenue.  
 
Second, the primary dealer’s response to its customer’s increase in quantity at a bid-point, which 
price is less than the primary dealer’s value, is to decrease its bid shadings at its bid-points that 
the prices are in the neighborhood of its customer’s bid-point price and to increase its bid 
shadings elsewhere. Alternatively, the primary dealer’s response to its customer’s increase in 
quantity at a bid-point, which price is higher than the primary dealer’s value, is to increase its bid 
shadings at its bid-points that the prices are in the neighborhood of its customer’s bid-point. We 
call this the price effect. As we explain later, comparing to the alternative direct bidding system, 
this effect increases Treasury revenue volatility.  
 
The price effect result brings more clarification to the empirical study of Hortacsu et al. (2015) 
who find that primary dealers shade their bids more than direct and indirect bidders. These 
authors do not clearly explain how the primary dealer shades its bids along its entire demand 
schedule. In particular, they do not account for the fact that primary dealers submit certain bids 
simply to fulfill their pro-rata quantity bidding requirement, as US Department of the Treasury 
(2012) explains in its empirical study. Our results show more clearly that the primary dealer 
pushes its bid-points, which prices are in the neighborhood of its customers’ price-bids, to the 
right (i.e. increase their prices). Meanwhile it pushes other bid-points to the left (i.e. decreases 
their prices). Therefore, the results of this paper why Hortacsu et al. (2015) conclusion differs 
from the one in US Department of the Treasury (2012). 
 
Our results confirm the ones in two recent studies. First, the combination of two effects 
described above shows that primary dealers submit very aggressive bids at the neighborhoods of 
their customers’ bids. Meanwhile, they also submit less aggressive bids, certainly to fulfill their 
pro-rata bidding requirement. These results are then consistent with the empirical study of US 
Department of the Treasury (2012) who finds that after taking out bids7 placed to fulfill their pro-
rate bidding requirement, primary dealers submit more aggressive bids than both indirect bidders 
and direct bidders. Furthermore, although indirect bidders submit less quantity-bid than primary 
dealers, the indirect bidder bids are very valuable. US Department of the Treasury (2012) shows 
in the illustration of the 10-year note auction in June 2012 that in relative size the indirect 
bidders submit the highest proportion of their bids in aggressive zone. From the combination of 
both the quantity effect and the pricing effect explained above we can infer the following, which 
provides an intuitive explanation to US Department of the Treasury (2012) results. As a primary 
dealer observes an increase in its indirect bidders’ quantity bids it reduces its quantity demand in 
its throw-away zone and increases its quantity demand in its aggressive zone, i.e. the primary 
dealer flattens its demand schedule.   
 

                                                 
 
6 Direct bidding system refers to an auction system in which every competitive bidder submits its bids directly 
to the seller without the service of an intermediary. 
 

7 That it calls bid-to-miss or throw-away bids. 
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Second, our results show that comparing to the direct bidding system, the primary dealer bidding 
system increase both Treasury revenue and the revenue volatility. These results are then 
consistent with the ones of Boyarchenko et al. (2016) who develop a theory of intermediaries 
where the primary dealers aggregate the information across customers for advising them, and 
show that the primary dealer system increases both the expected auction revenue and variance. 
Our results are not inconsistent with the ones of Kazumori and Tchuindjo (2016) that the primary 
dealer system provides the lowest price volatilities while maintaining the equal level of auction 
prices in comparison with the alternative direct bidding system. In fact, these authors show that, 
in a full equilibrium where the customers’ demands are endogenously determined, the customers 
will reduce their bids further in the primary dealer system in comparison with the direct bidding 
system since customers in the primary dealer system need to anticipate that their primary dealer 
will observe their bids. This effect will lead to the reduction of the volatility of auction prices in 
the primary dealer system in their model.  
 
This paper contributes to the literature of informational advantage that has always been an 
important topic in auction. The following are some earlier works on this topic. Wilson (1967) 
analyzed the problem of competitive bidding, via sealed tenders, under uncertainty when one of 
the parties knows the value of the prize with certainty. He derived and characterized equilibrium 
strategies for computational purposes in terms of the solution to a related differential equation. 
Hughart (1975) developed a game-theory model of bidding behavior in offshore oil-lease sales 
for the case in which one bidder has superior information concerning the value of the tracts being 
leased. He found the system of sale to the highest bidder in sealed bidding at a price equal to the 
amount bid to be non-optimal. Milgrom and Weber (1982) explored bidders’ incentive to gather 
information in auction, when there is one bidder with only public information and another with 
some private information. They found that the bidder with only public information makes no 
profit at equilibrium, while the bidder with private information generally makes positive profits. 
Engelbrech-Wiggangs (1983) considered the sale of an object by sealed-bid auction, when only 
one bidder has private information as in Milgrom and Weber (1982) but there are many others 
bidders who have access only to public information. They found that at equilibrium the informed 
bidder’s distribution of bids is the same as the distribution of the maximum of the other bidders’ 
bids, and the expected profit of the informed bidder is generally positive, while the other bidders 
have zero expected profits. 
 
The rest of this study is structured as follows. Section 2 firstly describes the US Treasury auction 
process, then presents the participants, and finally explains why a leader-follower framework is 
suitable to model the US Treasury auction. In Section 3, we first present the indirect bidder 
demand schedule as a left continuous step function. Then, we show how it can be smoothed to a 
differentiable function through the mollification technique. Finally, we provide a numerical 
example. Section 4 proposes a strategic bidding model for the primary dealer. Section 5 solves 
the model for the dealer’s demand schedule and proposes closed-form solutions. Section 6 shows 
how the primary dealer’s informational advantage impacts its bidding behavior for the auctioned 
security. Section 7 analyses the impacts of primary dealer’s informational on Treasury’s revenue 
and revenue volatility. The last section provides comments on bidders’ behavior, and proposes 
policy recommendations to US Treasury.  
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2. The US Treasury Auction 

 
In this section, we first briefly describe the US Treasury auction process. Second, we present the 
different types of bidders who participate to the auction. Then, we explain why this auction can 
be modeled as a leader-follower game. Finally, for each type of bidder we provide a brief 
description of its demand schedule. 
 
2.1. The auction mechanism 
 
Two different classes of bidders participate to US Treasury auctions – noncompetitive bidders 
and competitive bidders. A noncompetitive bidder is allowed to submit a single bid, up to thirty 
minutes before the auction closes. This single bid specifies the quantity of securities the 
noncompetitive bidder is willing to be awarded at whatever equilibrium yield results from the 
competitive bidding. After the auction closes, the Treasury subtracts all noncompetitive bid 
amounts from the total offering amount. The remaining amount is the competitive amount to be 
awarded in a uniform-price format to competitive bidders who submit their bids in single or 
multiple yield-quantity pairs. Treasury accepts competitive bids, in ascending order of the yield 
(or discount rate for bills), until it has exhausted the competitive amount.8 The highest accepted 
yield is called the stop-out yield. All bids with yields less than the stop-out yield are filled in full, 
all bids with yield equal to the stop-out yield are filled on a pro rata basis, and all bids with 
yields higher than the stop-out yield are rejected. All noncompetitive bidders are awarded the 
quantity of security they requested at the stop-out yield. It is worth noticing that so far, the total 
amount of noncompetitive bids has always been relatively small compared to the total offering 
amount – in 2013 noncompetitive awards represented only around 2.05%, 0.21%, and 0.29% of 
the total offering amounts for bills, TIPS, and nominal coupon securities (notes and bonds) 
respectively.9  
 
2.2. The auction participants 
 
Competitive bidders can be grouped into the following classes. 
 
The Dealers: They can be classified in two subgroups: (i) Primary Dealers, which are 
institutional investors,10 mostly large investment banks that have the obligation to participate in 
every Treasury auction. They are allowed to bid on behalf of their customers and for their own 
accounts. The total quantity bid by each primary dealer must be at least equal to a minimum 
proportion of the total offering amount set by Treasury.11 According to New York Fed rules, 
primary dealers’ bids must be “reasonable” compared with the range of prices of the to-be-
auctioned security in the when-issued market. Primary dealers also provide market commentary 
and analysis that are helpful in conducting monetary policy and act as counterparties when the 

                                                 
8 Garbade and Ingber (2005) provide more details on the US Treasury auction process. 
 

9 Source: Aggregates from TreasuryDirect – Announcement, Data & Results,  
   http://www.treasurydirect.gov/instit/annceresult/annceresult_query.htm 
 

10 The current system of primary dealers was set up in 1960 with 18 dealers. The number of primary dealers 
grew to 46 in 1988, declined to 21 by 2007 and stands at 23 in April 2016. 
 

11 Which is currently the total offering amount divided by the number of primary dealers. 



9 
 

Federal Reserve buys or sells Treasury securities; (ii) Other Dealers and Brokers, which are 
mostly financial institutions such as brokerage houses, and commercial banks. Like primary 
dealers, they are allowed to bid on behalf of their customers and for their own accounts. 
However, they do not have the obligation to participate in every auction, or to bid for a minimum 
quantity of the total offering amount. It is worth noticed that both primary dealers and other 
dealers and brokers are not allowed to charge customers money for bidding on their behalf at 
Treasury auctions. 
 
Indirect Bidders: This group represents the customers who submit their bids through primary 
dealers or through other dealers and brokers. Among them are sovereign central banks, 
institutional investors, corporations, and individuals.  
 
Direct Bidders: This group represents bidders who submit their bids directly to the auction, 
without intermediation. Among them are sovereign central banks and institutional investors that 
submit large bids when they appear in auctions. Direct bidders do not route customers’ bids and 
do not have the obligation to participate in every auction, or to bid for a minimum quantity of the 
total offering amount. 
 
Primary dealers and indirect bidders are the major players in the Treasury auction market. 
According to Fleming (2007), in all 576 Treasury auctions conducted between May 5, 2003 and 
December 28, 2005 primary dealers, direct bidders, and indirect bidders purchased 70.9%, 2.4%, 
and 21.6% respectively. The remaining 5.1% went to noncompetitive bidders. Thus during this 
period primary dealers and indirect bidders together received 97.5% of the competitive amount, 
and therefore, without loss of generality, in what follows we model the US Treasury auction with 
only these two groups of bidders. 
 
2.3. Treasury auctions as Stackelberg games  
 
Considering only primary dealers and indirect bidders, the US Treasury auction can be view as a 
game with multiple leaders and multiple followers, which are indirect bidders (or customers) and 
primary dealers respectively. First, for simplification, we make the following assumptions. First, 
the number of customers in the auction is exactly the same as the number of primary dealers. 
Second, and each customer is paired with one and only one primary dealer (conversely, each 
primary dealer is paired with one and only one customer). 

 
We represent the Treasury auction process as a two-stage game, such that in the first stage of the 
game, each customer submits its demand schedule to be routed to its primary dealer, who in the 
second stage of the game, first observes its customer’s demand schedule, then formulates its own 
demand schedule, and finally submits both demand schedules to Treasury. An interesting 
question is whether the US treasury auction can be represented as a Stackelberg (1934) game. It 
is worth noting that a two-player Stackelberg game is a two-stage game of perfect information in 
which the following three conditions are satisfied:12  

                                                 
12 We consider the Treasury auction to be a repeated game, and we implicitly assume that the dealer has no 

means of committing to a future non-Stackelberg second-mover action and the customer knows this. Indeed, if 
the dealer could commit to a Stackelberg first-mover action and the customer knew this, the customer's best 
response would be to want to play a Stackelberg second-mover action, i.e. to route the dealer’s bid. 
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Condition 1: The two players must move (choose their quantities or prices) sequentially, 
and they both must know that they are moving sequentially. 
 
Condition 2: The second mover must observe the action resulting from the first mover’s 
move, and must act based on this observation. 
  
Condition 3: The first mover must know that the second mover will observe the action 
resulting from its (first) move, and that the second mover’s action will be based on its 
observation. 
 

The following three points strengthen our motivation to model the Treasury auction as a 
Stackelberg game: 
 

(i) By design of the US Treasury auction, Condition 1 is satisfied as the customer (the first 
mover) submits its bids, to be routed, through the primary dealer (the second mover).  

 
(ii) Although there are not enough evidences to prove the existence of Condition 2 in US 

Treasury auctions, the empirical study of US Department of the Treasury (2012) reports 
that primary dealers construct their value bids based on their clients’ value bids. 
Furthermore, in Canadian Treasury auctions Hortacsu and Kastl (2012) empirically show 
the existence of this condition, i.e. they show that primary dealers use their knowledge of 
their customers’ bids to form their own bids.  

 
(iii)Harper and Kruger (2013) report from PIMCO, presented above, is an illustration of 

Condition 3 in US Treasury auctions. We can also note that Hortacsu and Sareen (2005) 
have proved the existence of this condition in Canadian Treasury auctions by documenting 
patterns of customers’ bidding behavior consistent with a strategic response to dealers’ use 
of the information contained in customers’ bids. 

 
2.4. The bidders’ demand schedules 
 
Both type of bidders (primary dealers and their customers) submit their bids in form of bid-
points, which are yield-quantity pairs. Without loss of generality, in what follows we will 
represent bid-points as price-quantity pairs.13 Furthermore, we should note that each type of 
bidder has different need for the auctioned security.  
 
The primary dealers are the most active players in the Treasury security market. Their demands 
for the auctioned security are the results of various purposes, such as portfolio allocation, 
collateral requirements, risk management, regulatory requirements, repurchase agreements, 
resale on the secondary market, and coverage of the short positions created on the when-issued 
market prior to the auction. Moreover, each primary dealer must participate to the auction and 
must submit bids for at least a pre-defined quantity. This is why generally each primary dealer 
spread its bids on a large range of prices, i.e. it submits multiple bid-points. As US Department 

                                                 
13 Treasury changed it rule in September 1974 from receiving bids in price-quantity pairs to yield-quantity pairs 
(see e.g. Garbade, 2004). 
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of the Treasury (2012) explains, some of these bid-points are throw-away bids, i.e. bids that the 
primary dealer submits just to fulfill its pro-rate bidding requirement. Because of this large 
number of bid-points the primary dealer demand schedule can be expected to look like a 
downward sloping continuous function. But, now, we do not assume any functional form for the 
primary dealer’s demand schedule. Later we will derive its demand schedule as its best response 
to its customer’s bids. 
 
Comparing to primary dealers, each customer (or indirect bidder) has a specific purpose when 
participating to the Treasury auction. Furthermore, it is not required to participate to the auction. 
This reason can explain why each indirect bidder generally submits a single or just a few bid-
points. Therefore, it would be unrealistic to represent its demand schedule as a strictly downward 
sloping continuous function. But the more realistic left continuous step function with a down-
jump at the right of each bid-point as in Kastl (2011) is not analytically tractable at all, as we will 
see later in our model, this representation cannot correctly explain the primary dealer’s reaction 
with respect to the change at the bid-points of its customer’s demand schedule. As the customer’s 
demand schedule is exogenous to our model, we mollify this demand schedule before including 
it to the model. The resulting mollified step demand schedule looks like its original discrete step 
demand schedule and it is differentiable everywhere, in the sense that it has a high (but bounded) 
first derivative at the neighborhood of each bid-point. 
 

 

3. Demand Schedule Mollification 

 
In this section, first, we describe the function mollification methodology. Second, from the bid-
points of an indirect bidder we show how to construct its left continuous discrete step demand 
schedule. Then, we use a normal mollifier to smooth this left continuous discrete step demand 
schedule. Finally, we provide a numerical example. 
 
3.1. Mollification of non-smooth functions 
 
The purpose of function mollification, introduced in differential calculus by Friedrichs (1944), is 
to approximate a non-smooth function by a smooth function that is very close to the original non-
smooth function. This is done through the convolution of the non-smooth function with a smooth 
function, called mollifier, which satisfies certain conditions. The following theorem explains the 
function mollification process. 
 

Theorem 1: Let f  be a non-smooth function. If ϕ is a real-valued smooth function that satisfies 

the following three conditions 

 

(i)   ϕ  is compactly supported 

(ii)  ( ) 1t dtϕ =∫R  

(iii) 1 ( )tεε ϕ  converges to ( )tδ   as ε  goes to 0,  

 where ( )( ) ttε εϕ ϕ≡  and ( )tδ  is the Dirac’s delta function 
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then the function fε  such that ( )( ) ( ) ( ) ( )f x f x x t f t dtε ε εϕ ϕ= ∗ = −∫R  is a smooth function that 

converges (at least point-wise) to f  as ε  goes to 0. 

 

In Theorem 1, the resulting function fε  is a smooth function, as the convolution is a smoothing 

operation. This is due to the fact that if the function εϕ  is compactly supported and n  times 

continuously differentiable, and f  is locally integrable, then fεϕ ∗  is also n  times 

continuously differentiable with ( )
n n

n n

d d
f f

dp dp
ε εϕ ϕ

 
∗ = ∗ 

 
.  

 
3.2. Indirect bidder demand schedule and mollification 
 
Let us assume an indirect bidder submits a nonempty, finite and countable set of price-quantity 

pairs, ( ){ }
{1,2, , }

,k k k K
p q

∈ …
, where 0

k
p >  and  0

k
q >  represent the price and the quantity in the 

k th−  bid-point respectively. Also, assume that the price-quantity pairs are ordered such that 

i j
p p<  for i j< . We can now define this indirect bidder’s demand schedule on the real line as 

follows. 
 

( ]

[ ]

1 0

1

: , 0

( ) : 0

0 : 0,

k k k

K

Q if p p p where p

Q p Q if p

if p p

− ∈ =


= =
 ∉

 (1) 

where   
K

k jj k
Q q

=
=∑  for each { }1, 2, ,k K∈ … .  

 
This demand schedule is a step function, which is flat between bid-points, left continuous at each 
bid-point, and right continuous at zero. It can be mollified by any mollifier that satisfies the three 
conditions in Theorem 1. In what follows we show how the normal density function can be used 
to mollify this demand schedule. 
 

Let { }( )σ σ
φ

+∈
⋅

R
be a family of normal probability density functions with zero-mean and standard 

deviation 0σ > . For each t ∈R  we can express ( )tσφ  as ( )1 t
σ σφ , where φ  is the standard 

normal density function. Note that the integral of φ  over the entire real line equals 1, and the 

sequence of function σφ  converges to the Dirac delta function as σ  approaches 0. But φ  is not 

compactly supported, and hence it is not a suitable mollifier. We propose to truncate φ  and re-

scale it such that the resulting function satisfies conditions (i) – (iii) of Theorem 1. 
 

Now let us consider a finite real constant 
K

L p� , and a new function ( )Lθ ⋅  defined as follows  
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  ( )
( )( ) ( ) ,

0

t L if t L L
t L

otherwise

φ
θ

 Ψ ∈ −
= 


 (2) 

 

where ( )
1

( ) 2 ( ) 1L L
−

Ψ = Φ − , and Φ  represents the standard normal distribution function, i.e.  

( ) ( )
x

x t dtφ
−∞

Φ = ∫  for x ∈R . Note that ( )Lθ ⋅  is compactly supported, and its integral over the 

entire real line equals 1. Furthermore, if we define the function sequence ( ){ }Lσ
σ

θ
+∈

⋅
R

 such that 

for each t ∈R  we have ( ) ( )1 tt L Lσ σ σθ θ= , then ( ){ }Lσ
σ

θ
+∈

⋅
R

 will converges to the Dirac delta 

function as σ  approaches 0. Hence, ( )Lθ ⋅  can be used to mollify the indirect bidder’s discrete 

demand schedule of Equation (1) as a direct application of Theorem 1. Therefore, the indirect 

bidder’s mollified demand schedule will be given as follows  

  

   ( ) 1

1 1

2

( ) ( ) ( ) ( ) ( )kK

K
p pp pp

K k k

k

Q p L L Q Q Q Qσ σ σ σ
−−−

−
=

 
= Ψ Φ − Φ − − Φ 

 
∑� . (3) 

 
The detail derivation of the above formula is given in Appendix A. The following four important 
points are to be noted about the resulting indirect bidder’s mollified demand schedule. 
 

(i) It is differentiable, as being a linear combination of differentiable functions. 
 
(ii) At the neighborhood of each price-bid its first derivative with respect to the price is 

negative and has an extremely high, but finite, absolute value. This absolute value 

converges to infinity as σ  goes to 0. 
 
(iii) Outside the neighborhood of the price-bids its first derivative with respect to the price 

equals 0. 
 
(iv)  Its graph resembles to the one of its corresponding discrete step function.  

 

3.3. A numerical example 

 

Let us assume that an indirect bidder submits the following three bid-points: (96; $5,000,000), 

(98; $10,000,000), and (99.5; $5,000,000). As 1p , 2p , and 3p  are 96, 98, and 99.5 respectively, 

and  1q , 2q , and 3q  are $5,000,000, $10,000,000, and $5,000,000 respectively, the bidder discrete 

demand schedule is given by the following function 
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[ ]

( ]

( ]

[ ]

1

2

3

$20,000,000 : 0, 96

$15,000,000 : 96, 98
( )

$5,000,000 : 98, 99.5

0 : 0, 99.5

Q if p

Q if p
Q p

Q if p

if p

 = ∈


= ∈
= 

= ∈
 ∉

 (4) 

 

Let us choose 1,000L = , which is higher than 3 99.5p = . Then, using the closed form formula of 

Equation (3), and the fact that (1,000) 1Ψ ≈  we can obtain the following results. For each 

positive price p , the bidder mollified demand schedule is given by (in million $) 

 

  ( ) ( )99.5 96 981,000 (1,000) 20 ( ) 5 ( ) 5 ( ) 10 ( )p p p p
Q pσ σ σ σ σ

− − −= Ψ Φ − Φ − Φ − Φ�  

 99.5 96 9820 ( ) 5 ( ) 5 ( ) 10 ( )p p p p

σ σ σ σ

− − −≈ Φ − Φ − Φ − Φ . (5) 

 
 

4. A Model for the Treasury Auction 
 
In this section, first, we present the auction participants, i.e. the seller and the bidders. Second, 
we describe the timing au the auction game. Finally, we propose a primary dealer’s multi-
attribute utility function, which is used to formulate an optimization problem that the solution is 
its demand schedule.    
 
4.1. The seller  
 

There is only one seller, the US Treasury, who has a known M +∈R  infinitely divisible quantity 

of securities to be auctioned. This amount is the auction amount or the competitive amount. It is 
the amount of securities that Treasury awards to competitive bidders at the end of the auction. 
This amount equals the total offering amount minus the total noncompetitive bids. Treasury 
receives noncompetitive bids until thirty minutes before the auction deadline. Then announces 
the amount of noncompetitive bids received. In practice, primary dealers usually submit their 
bids just before the auction deadline. We assume here that these primary dealers know the 
competitive amount with certainty when they submit their bids.14 
 
4.2. The bidders 
 

We suppose that there are N ∈N  customers or indirect bidders indentified by elements of the 

index set { }: 1,2, ,CI ci i N≡ = … . Each customer submits only one set of bid-points. The 

customer does not interact directly with Treasury. It submits its bids indirectly through only one 

                                                 
14 One can still assume that competitive bidders who submit their bids more than thirty minutes prior to the time 
the auction deadline know the auction amount with certainty. This is because the total amount of 
noncompetitive bids is usually very small relative to the total offering amount. For example, in 2012 only 
1.85% of the total offering was awarded to noncompetitive bidders. Therefore, without loss of generality, the 
auction amount can be approximated by the total offering amount. 
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primary dealer. We also assume that there are N  primary dealers15 indentified by elements of 

the index set { }: 1,2, ,DI di i N≡ = … . Each primary dealer submits two set of bids to Treasury – 

one set representing its own demand schedule and the other one representing the demand 
schedule of only one customer. We are clearly assuming that each customer routes its bids 
through only one primary dealer, and each primary dealer routes bids from only one customer. 

We thus form a set of N  customer-dealer pairs, { }( , ) : 1,2, ,ci di i N= … , understood as dealer di  

routes bids from customer ci . We can represent all bidders in a large set C D
I I I≡ ∪ .   

 
4.3. The timing of the Treasury auction game  
 
The timing of the auction game is understood as follows. 
 

(i) Firstly, each bidder i I∈  receives a positive signal 
i

S , drawn from the interval [0,1]  and 

distributed according a commonly known probability distribution function S
F . We assume 

the signals '
i

S s are independently distributed across bidders. 

 

(ii) Secondly, each bidder i I∈  assigns a value to any unit of the to-be-auctioned securities 

using a commonly known marginal valuation function, : [0,1]v + +× →R R , which is 

continuous and weakly decreasing in its first argument (the unit of the auction securities), 
and bounded and strictly increasing in its second argument (the realization of the signal).  

 

(iii)Thirdly, each customer 
C

ci I∈  formulates its set of bid-points and submits it to its 

corresponding dealer 
D

di I∈   for the routing service. 

 

(iv) Fourthly, each primary dealer di  extracts information from its customer ci ’s bid-points, 
and then formulates its own set of bid-points. 

 

(v) Finally, each dealer di  submits both its demand schedule and the one received from its 

customer ci  to Treasury. 
   

Let D  to be the set of all functions defined on the positive real line that are positive, weakly 
decreasing, bounded, and differentiable. This set contains mollified step demand schedules that 

we described in the previous section. In what follows, we assume that each customer 
C

ci I∈  

submit a set of bid-points that can be represented as a discrete demand schedule, i.e. a function 
that specifies the amount of securities the customer would need given the price. It is clear that the 

mollified version of this discrete demand schedule belong to the set D . 
 
 
 
 

                                                 
15 Hereafter, the terms “primary dealers” or “dealers” refer to all Primary Dealers and those of Other Dealers 

and Brokers who simultaneously bid for their own needs and route their customers’ bids. 
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4.4. The primary dealer’s utility function 
 
When formulating its demand schedule, we assume the primary dealer wants to maximize 

utilities from two objective functions. The first utility function :U +→R R  is a strictly 

increasing and differentiable function of the primary dealer’s profit from the auction. The 
existence of the profit as objective can be explained by the fact that the primary dealer is a for-
profit institution that the main goal is revenue generation. Profit maximization is a standard 
assumption in Treasury auction research.16  
 
As we explained above, in order to make sure it will be awarded enough Treasury securities as 
the outcome of the auction, the primary dealer uses the knowledge of its customers’ bids to 

adjust its own bids.17 Therefore, the second utility function, :V + +→R R , which is new in the 

financial literature is a strictly increasing and differentiable function of a proxy of the primary 

dealer use of its informational advantage to front-run its customers. We assume the function V  
satisfies the von Neumann and Morgenstern (1947) axioms of utility theory. We thus suggest to 
proxy the primary dealer ex-post informational advantage benefit by the ratio of the primary 
dealer’s award over its customer’s award from the auction. An increase of this ratio provides 
more utility to the primary dealer, as its risk of being short squeezed on the post auction market 
is reduced. We choose to model the ex-post informational advantage benefit by this ratio because 
it is simple and easy to understand. However, it is not the only possible measure of the ex-post 
informational advantage benefit.  
 
Note that there is a trade-off between the two primary dealer’s objectives. By front-running its 
customer, the dealer increases its demand for the security to be auctioned at higher price levels. 
This increases its potential award, but raises the expected auction clearing price, and hence 
decreases its expected profit. We assume the primary dealer’s multi-attribute utility function to 
be a multiplicative separable function of its two single utility functions, i.e. this multi-attribute 

utility function is defined as :W + +× →R R R , such that ( , ) ( ) ( )W x y U x V y= . We choose this 

simple form to avoid dealing with arbitrary scaling constants. 
 
4.5. The primary dealer’s demand schedule 
 
According to the timing of the auction game described above the Treasury auction can be 
modeled as a two-stage game. In the first stage of the auction each customer submits its demand 
schedule to its corresponding primary dealer, knowing that this primary dealer will use this 
demand schedule in the second stage of the game as private information to formulate its own 
demand schedule before submitting both demand schedules to Treasury. Our proposed Treasury 
game can be characterized as a dynamic game of incomplete and perfect information. This game 
is finite as it has only two stages. The perfect information aspect of the game is due to the fact 
that in the second stage, each primary dealer knows the exact history of the game, i.e. the 
demand schedule its corresponding customer submitted in the first stage. Kuhn’s theorem 
guarantees that for each primary dealer there exists a pure-strategy demand schedule, i.e. a 

                                                 
16 See e.g. Kremer and Nyborg (2004). 
 

17 Hortacsu and Kastl (2012) have also evidenced that Canadian Treasury dealers use their knowledge of 
customers’ bids to formulate their own bids. 
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demand schedule that belong to the set D , given its customer’s demand schedule. We assume 
the customer’ demand schedule to be exogenous to the model, and we look for the primary 
dealer’s demand schedule. In what follows we use the backward induction technique to find a 

solution for primary dealer di ’s demand schedule, given customer ci ’s demand schedule.  
 

In the first stage of our Treasury auction game customer ci  looks forward to the sub-game that 
will result in the second stage as the consequence of the choice of its first stage demand 

schedule. In this sub-game perfect equilibrium, customer ci  anticipates that primary dealer di  

will use customer’s ci  demand schedule to formulate a demand schedule that maximizes the 

primary dealer expected multi-attribute utility function. By making this anticipation, customer ci  

assumes dealer di  is rational, and hence, eliminates all non-credible threat18 from dealer di . 

Thus, customer ci  anticipates that primary dealer di  optimization problem can be formulated as 
follows 
 

 ( )

( )
( ) ( ), ( )

0, ( )

, ( )

( )
max ( , )d , ( ) di di ci

ci

di di ci

di di ci

D p s D p

di di di ci
D p s D p

D p s D p

D p
U v u s u pD p s D p V
   −   

    
∫E . (6) 

 

We are explicitly saying the following. Given the realization dis  of primary dealer di ’s private 

information, and customer ci ’s demand schedule, :
ci

D + +→R R , primary dealer di ’s resulting 

response is a demand schedule :
di

D + +→R R  that is the best response to all other bidders’ 

demand schedules, i.e. the primary dealer’s pure bidding strategy is a mapping 

: [0, 1]dB + × × →R D D , 

 
 
5. A Solution for the Model 

 

From the first order condition for the optimization problem (6) we obtain dealer di ’s best 

response functional to customer ci ’s demand schedule and other bidders’ demand schedules, 

given dealer di ’s marginal valuation function. Then we propose restricted assumptions that 

allow to obtain closed-form solutions for dealer di ’s demand schedule.19  
 

5.1. The dealer’s optimal demand schedule 

 

Following Wilson (1979) framework, from primary dealer di ’s perspective, we can define, over 

the realization of the stop-out price, a probability distribution function : [0,1]H + × →R D  that is 

twice continuously differentiable with respect to each argument, as follows 

                                                 
18 A non-credible threat would be that after observing customer ci ’s demand schedule, dealer di submits its 

own bids with very high prices such that it is sure to be award all quantity its requires. But this will not be in the 

best interest of dealer di , as it will lead for sure to a negative profit for dealer di . 
 

19 Let us note that the indirect bidders might have a different utility maximization problem than the primary 
dealers. The question of how each indirect bidder uses it paired primary dealer’s best response functional to 
formulate its own demand schedule is important, but it is not relevant in the context of this analysis, as we are 
concerned only about the strategic responses of the primary dealers to their customers’ demand schedules. 



18 
 

 
 

   
( )( ) ( )( ), ( ) Pr , ( )

di di ci di di ci
H p D p s D p p p D p s D p≡ ≤� .  (7) 

 

In the preceding expression ( )( ), ( )
di di ci

H p D p s D p  represents the distribution of the auction 

clearing price, p� , as seen by the dealer di , given that it submits the demand schedule 

( ), ( )
di di ci

D p s D p . From now on, for simplicity of notations let us remove 
di

s  from the 

arguments of dealer di ’s marginal valuation function, and both  
di

s  and ( )
ci

D p  from the 

arguments of its demand schedule. Thus, ( ), ( )
di di ci

D p s D p  and ( , )
di

v u s  will be rewritten as 

( )
di

D p  and ( )
di

v u  respectively. Using (7), expression (6) can be rewritten as follows 

 

   
( ) ( )( ) ( )

1
( )

0( )
0

( )

( )
max ( )d ( ) d ( )

di

di

D p

di di di
D p

di

ci

D p

D p
U v u u pD p V H p D p−∫ ∫  

. (8) 

 

Assumption 1: Given the realization of its private signal, and based on its bidder type, each 

bidder assigns a constant marginal value
 
to each unit of the security to be auctioned.  

 

According to Assumption 1 there is a function :[0,1]
c

h +→ R  such that for each indirect 
C

ci I∈ , 

its signal is transformed into its marginal value as ( )( ) ,c ci ci cih s v x s v≡ = , for all .x +∈R  Also 

the there is a function :[0,1]
d

h +→ R  such that for each primary dealer 
D

di I∈ , its signal is 

transformed into its marginal value as ( )( ) ,d di di dih s v x s v≡ = , for all .x +∈R  

 

Assumption 2: Each primary dealer is risk-neutral with respect of its utility functions.  

 

Under Assumptions 1 and 2, Proposition 1 provides an equation that dealer di ’s demand 
schedule is a solution. 
 

Proposition 1: Primary dealer di ’s demand schedule is a solution of the following equation 
 

( )
( )' ( )1

( ) ( )

( )2
( )

( )
di ci

p di

di

D di
ciD p

v p D p

H p D p
D p

H p D p
−

= −
+

  

   
Proof: See Appendix B 
 

In Propositin 1 the term ( )( )
p di

H p D p  represents the density of the auction stop-out price when 

primary dealer di  submits the demand schedule ( )
di

D p . As Tchindjo (2015) explains, 

( )( )
D di

H p D p  represents the shift in the probability distribution of the auction clearing price 

due to the change in primary dealer di ’s demand schedule. This derivative captures primary 
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dealer di ’s market power and it is always negative because an increase in demand raises the 
auction clearing price, increasing the probability that the auction clearing price is higher than a 
given price. 
 

5.2. Closed-form solutions for dealer’s demand schedule 

 

For the sake of obtaining closed-form solutions for dealer di ’s demand schedule we consider the 
following assumption.  
 

Assumption 3: The customer’s demand schedule can be represented as two additively separable 

functions of the price and its private signal. The primary dealer’s demand schedule can be 

represented as two additively separable functions. The first is a function of its private signal, and 

the second is a function of both the price and its customer’s demand schedule. 

 

According to Assumption 3 customer ci ’s demand schedule and dealer di  ‘s demand schedule 
can be represented (respectively) as 
 

   ( , ) ( ) ( )
ci ci c c ci

D p s p sα β≡ + ,   (9) 

  ( ) ( ), , ( , ) , ( , ) ( )
di di ci ci d ci ci d di

D p s D p s p D p s sα β≡ + ,  (10) 

 

where :
c

α + →R R  is a decreasing and differentiable function, 2:
d

α + →R R  is a differentiable 

function that decreases and increases with its first and second arguments respectively, 

:[0,1]
c

β →R   and :[0,1]
d

β →R  are increasing functions of the signal. Here we assume that 

between customers, the demand schedules differ only by their private signals, and between 
primary dealers the demand schedules differ by their private signals as well as by their 
customers’ demand schedules they observe. Assumption 3 generalizes the one of Hortacsu 
(2002) who considers the bidder’s demand schedule to be linear in both the price and its private 
signal.  
 
Proposition 2: Given Assumption 3, the dealer’s demand schedule is a solution to the following 

ordinary differential equation  

 

    ( )' '
' ( )1 1

2 ( )
( ) ( ) ( )

di ci
di di ci

ciD p
v pN D p

D p D p D p−+ + = −  

     
Proof: See Appendix C. 
 

Proposition 2 shows that the primary dealer’s demand schedule is a solution of a first order non 
homogeneous linear ordinary differential equation (ODE) with variable coefficients. The 
following proposition presents the unique solution of this ODE.  
 

Proposition 3: Given (0)
di

D , primary dealer di ’s demand at price zero, a closed-form solution 

for its demand schedule can be uniquely determined as  
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  ( ) ( ) ( )
1 11

2 22 '

0( )

(0) ( )
( ) (0) ( ) d

N NN
di

di di
di

ci ci

ci

p

di ci

p

p

D D t
tD

v
v vD p D D t t−

−  
= − 

 
∫ .  

 

Proof: The proof is in two step, which are the existence and the uniqueness on the solution, and 
the computation of the solution. 
 

Step1: Existence and uniqueness of a solution: Let us rewrite the ODE in Proposition 2 as 

follows.  ( )' ( ) , ( )
di di

D p F p D p= . Clearly the functional F  has the following two features. (i) 

It is continuous in p  as [0, )
di

p v∈ , (ii) it is Lipschitz continuous in ( )
di

D p  as the function 

ci
D  belongs to D . Furthermore, ( )

di
D p  is bounded as the function 

di
D  belongs to D . Thus, 

by Picard-Lindelöf theorem there exists a unique solution to the above ODE associated to the 

initial value (0)
di

D .     

 

Step2: Computation of the solution: The result can be obtained by the integrating factor 

technique, via the following integrating factor ( )( ) ( )
1

' 2( )1 1
2 ( )

( )
( ) exp d

N
ci

di ci di

D t

N v t D t
ci

t

D t
vI t t

− −≡ + =∫ . 

 
 
6. Impacts of the Dealer Informational Advantage on his Bidding Behavior 

 
From the closed-form solutions obtained in Proposition 3 this section presents comparative static 
predictions with respect to the primary dealer’s informational advantage of observing its 
customer’s demand schedule. We also explain how this informational advantage impact the 
primary dealer’s bidding behavior. 
 
6.1. Informational advantage and primary dealer’s demand 
 

Given the price level p , the change in primary dealer di ’s demand with respect to the change in 

customer ci ’s demand can be computed using the result in Proposition 3 as follows 
 

 ( )
1

2 1
2

'

'

0
0

( ) ( )1

2 ( )

1
( ) ( ) d

( ) 2 ( ) ( )

N
N

di

ci

ci

ci
p

di
di ci

ci ci ci

D t
t

D p

N D p
v

v p
D p K D t t

D p ND p D t
−

 −∂  
= − − −   ∂   

∫ . (11) 

   

From Proposition 3 we can replace ( )
1

2'

0
0

( )
( ) d

N

di

ci
p

ci

D t
tvK D t t−− ∫  in Equation (11) by 

( )
1

2( )
( )

N

di

ci

di

D p
pvD p − , and hence Equation (11) becomes        

     

  
'

( ) ( )1

2 ( ) ( )
( ) 1

( )
di ci

ci di

di

ci

D p D p

N D p D p
D p

D p

 ∂
= − + 

∂  
. (12)  
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The sign of the change in the primary dealer di ’s demand with respect to the change in its 
customer’s demand is determined by the sign of the expression in parenthesis on the right hand 
side of the preceding equation. As the customer’s demand schedule is a mollified step function, 
we have the following two cases. 
 

(i) At the neighborhood of each customer’s bid-price the first derivative of this customer’s 
mollified step demand schedule with respect to the price is negative and has an extremely 

high, but finite, absolute value. Hence ' ( ) ( )
ci di

D p D p≥  and thus, 

( )'sgn 1 ( ) ( ) 0
ci di

D p D p+ < . Therefore, ( ) 0
( )

di

ci

D p
D p

∂
≥

∂
. 

 
(ii) Outside the neighborhoods of the customer’s bid-prices the first derivative of the 

customer’s mollified step demand schedule with respect to the price is zero. Hence, 

( ) 0
( )

di

ci

D p
D p

∂
≤

∂
. 

 
Therefore, the primary dealer’s response to its customer’s increase in quantity at a bid-point is to 
reallocate its own quantity around that customer’s bid-point. More clearly, the primary dealer 
increases the quantity in its bid-point that is near (in terms of price) to the customer’s bid-point. 
Meanwhile, the primary dealer decreases the quantity in its bid-points that are not near (in terms 
of price) to that customer’s bid-point. We call this the quantity effect. 
 
6.2. Informational advantage and primary dealer’s differential bid shading 
 

Let us rewrite the expression of primary dealer di ’s demand schedule in Proposition 3 as 
  

  ( )( )
di di ci

p v D pζ= − ,  (13)  

where  

 ( ) ( )
1

2

2

2 '

0
0

( )
( ) ( ) ( ) ( ) d
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N
p

N

di ci ci di ci

D t
tvD p D p D p K D t tζ

−

−
 

= − 
 

∫   (14) 

 

represents primary dealer di ’s differential bid shading. The partial derivative of primary dealer 

di ’s differential bid shading with respect to its customer’s demand is given by 
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Again, from Proposition 3 we can replace ( )
1

2'

0
0

( )
( ) d

N

di

ci
p

ci

D t
tvK D t t−− ∫  in Equation (15) by 

( )
1

2( )
( )

N

di

ci

di

D p
pvD p − , and hence the Equation (15) becomes      

 

  ( )
' ( )

( ) 1
( ) ( ) ( )

di ci
di ci

ci ci di

v p D p
D p

D p D p D p
ζ

 −∂
= + 

∂  
. (16) 

 

di
p v≤ . The sign of the change in primary dealer di ’s differential bid shading (at a primary 

dealer bid-point) with respect to its customer’s demand is determined by the sign of the 
expression in parenthesis on the right hand side of the preceding equation and as well as by 
whether the primary dealer’s bid-price (at that bid-point) is less than or higher than20 the primary 
dealer’s value for the auctioned security. Again, as the customer’s demand schedule is a 
mollified step function, we have the following two cases. 
 

(i) At the neighborhood of each customer’s bid-price the first derivative of the customer’s 
mollified step demand schedule with respect to the price is negative and has an extremely 

highly, but finite, absolute value. Hence ' ( ) ( )
ci di

D p D p≥  and thus, 

( )'sgn 1 ( ) ( ) 0
ci di

D p D p+ < .  Therefore,  

 

   ( )
0

( )
0( )

di

di ci

dici

if p v
D p

if p vD p
ζ

≤ ≤∂


≥ ≥∂ 
. 

 
(ii) Outside the neighborhoods of the customer’s bid-prices the first derivative of the 

customer’s mollified step demand schedule with respect to the price is zero. Hence, 
    

    ( )
0

( )
0( )

di

di ci

dici

if p v
D p

if p vD p
ζ

≥ ≤∂


≤ ≥∂ 
.  

 
Therefore, the primary dealer’s response to it customer’s increase in quantity at a bid-point, 
which price is less than the primary dealer’s value, is to decrease its bid shading at its bid-point 
that is in the neighborhood (in terms of price) of the customer’s bid-point and to increase its bid 
shading elsewhere (i.e. in other bid-points). More clearly, the dealer pushes its bid-point, which 
price is in the neighborhood of the customer price-bid, to the right. Meanwhile it pushes other 
bid-points to the left. Alternatively, the primary dealer’s response to it customer’s increase in 
quantity at a bid-point, which price is higher than the primary dealer’s value, is to increase its bid 
shading at its bid-point that is in the neighborhood of the customer’s bid-point and to decrease its 
bid shading elsewhere. More clearly, the dealer pushes its bid-point, which price is in the 
neighborhood of the customer price-bid, to the left. We call this the price effect. 

                                                 
20 In the uniform-price Treasury auction, in order to increase its expected award, a bidder can submit strategic 
bids, which are bid-points that their prices are higher than the bidder’s value for the auctioned security. 
However, the bidder expects the auction stop-out price to be less than these bid prices. 
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6.3. Informational advantage and primary dealer’s bidding behavior 
 
To make the analysis simple, let us assume that the customer submits a single bid-point to the 
primary dealer. After observing this bid-point, the primary dealer faces one of the following two 
alternative cases:  
 

(i) If the customer’s bid-price is less than the primary dealer’s value for the auctioned security, 
then the primary dealer will increase both the price and the quantity at its bid-point that the 
price is around the customer’s bid-point price. This means that the primary dealer will 
become more aggressive. One the reasons of this aggressive behavior is to limit the risk of 
being shot-squeezed in the post-auction market.  

 
(ii) If the customer’s bid-price is higher than the primary dealer’s value for the auctioned 

security, then the primary dealer will decrease the price and increase the quantity at its bid-
point that the price is around the customer’s bid-point price. The reasons for the primary 
dealer behavior can be explained as follows. It increases the quantity not make sure it 
would be awarded enough securities (not to be short-squeezed). Also it decreases the price 
because of the risk of increasing the auction clearing price as the results of increasing the 
quantity in the zone where the price is higher than its value for the auction security. This 
limit the risk of a probable winner curse. 

 
 
7. Impacts of the Dealer Informational on the Treasury Revenue 

 
In this section, we illustrate how both the quantity effect and the price effect impact Treasury’s 
revenue in the primary dealer bidding system, in comparison to the alternative direct bidding 
system in which all bidders submit their bids directly to Treasury without intermediary.  
 
7.1. Preliminary assumptions  
 
In what follows, without loss of generality, let us assume that each customer (indirect bidder) 
submits a single bid point while each primary dealer submits a complete demand schedule, 
which is a nonempty set of bid-points. 
 
First, let us consider the primary dealer bidding system as described above, and let us assume 

that there are N ∈N  primary dealers paired to N customers. Now let: 
 

• ( ),ci ci

PD PD
p q  be customer ci ’s price-quantity bi-point; 

 

• , :di I

PD
D + +→R R  and , :di F

PD
D + +→R R  be primary dealer di ’s initial and final demand 

schedules, formulated before and after observing customer ci ’s bid-point respectively; 
 

• 
PD

p�  be the ex-post auction clearing price. 
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Second, let us consider the alternative direct bidding system, in which all bidders (including 
primary dealer di  and customer ci ) submits their bids directly to Treasury. Now let: 
 

• ( ),ci ci

DB DB
p q  be customer ci ’s price-quantity bid-point; 

 

• :di

DB
D + +→R R  be primary dealer di ’s demand schedule;  

 

• 
DB

p�  be the ex-post auction clearing price. 

 
Third, let us consider the following two assumptions: 

 

H1: ( ) ( ), ,ci ci ci ci

PD PD DB DB
p q p q= , i.e. customer ci would submits the same bid point in both 

bidding systems. This assumption will be released later. 
 

H2: , ( ) ( )di I di

PD DB
D p D p=  for all p +∈R , i.e. primary dealer di ’s initial demand schedule (prior 

to observing its customer bid) in the primary dealer bidding system is identical to the demand 
schedule it would have submitted in the direct bidding system. 
 

7.2. Impact of quantity effect on Treasury revenue  
 
As the quantity effect shows that in the primary dealer bidding system primary dealer di  

increases its quantity around the price ci

PD
p , after observing customer di ’s bid-point, comparing 

to the direct bidding system one of the following two cases can happen. 
 

(i) ci

PD DB
p p≤ � , i.e. customer ci ’s bid-price in the primary dealer bidding system is less than 

the price that would have cleared the direct bidding system. As primary dealer di , after 

observing its customer’s bid, ( ),ci ci

PD PD
p q , will move some initial quantity bids, which prices 

are greater than ci

PD
p  to increase the quantities in its bid-points that are around ci

PD
p , the 

primary dealer system clearing price 
PD

p�  will be pushed to the left. As the result, this will 

lead to 
PD DB

p p≤� � , i.e. the primary dealer bidding system will provide less revenue to 

Treasury than the direct bidding system. 
 

(ii) ci

PD DB
p p≥ � , i.e. customer ci ’s bid-price in the primary dealer bidding system is higher than 

the price that would have cleared the direct bidding system. As primary dealer di , after 

observing its customer’s bid ( ),ci ci

PD PD
p q , will move some initial quantity bids, which prices 

are less than ci

PD
p  to increase the quantity in its bid-points that are around ci

PD
p , the primary 

dealer system clearing price will be pushed to the right. As the result, this will lead to 

PD DB
p p≥� � , i.e. the primary dealer bidding system will provide more revenue to Treasury 

than the direct bidding system. 
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Which one of the above cases is more likely to occur? To respond to this question let use recall 
that according to Condition 3 of the Stackelberg game, in the primary dealer bidding system 

customer ci  knows that primary dealer di  will observe its bid-point ( ),ci ci

PD PD
p q  and that primary 

dealer di  will formulates its final demand schedule, , :di F

PD
D + +→R R , based on this observation. 

Therefore, not to be front-run by primary dealer di , customer ci  will submit a more aggressive 
bid than the one it would have submitted in the alternative direct bidding system, i.e. it bid-point  

( ),ci ci

PD PD
p q will be such that ci ci

PD DB
q q=  and ci ci

PD BD
p p≥ . Hence, this increase the likelihood that 

PD DB
p p≥� � , which is case (ii) above. Thus, the primary bidding system provides higher expected 

revenue to Treasury than the alternative direct bidding system. 
 
7.3. Impact of price effect on Treasury revenue  
 
The following analysis is conducted assuming for primary dealer’ bid-points that the prices are 
less than the primary dealer’s value for the auctioned security.21 As the price effect shows that in 
the primary dealer bidding system primary dealer di  decreases its bid shading around the price 

ci

PD
p , after observing customer di ’s bid-point, comparing to the direct bidding system one of the 

following two cases can happen. 
 

(i) ci

PD DB
p p≤ � , i.e. customer ci ’s bid-price in the primary dealer bidding system is less than 

the price that would have cleared the direct bidding system. As primary dealer di , after 

observing its customer’s bid ( ),ci ci

PD PD
p q , will reduce the price in some bid-points, which 

prices are greater than ci

PD
p  to increase the prices in its bid-points that are around ci

PD
p , the 

primary dealer system clearing price 
PD

p�  will be pushed to the left. As the result, this will 

lead to 
PD DB

p p≤� � , i.e. the primary dealer bidding system will provide less revenue to 

Treasury than the direct bidding system.  
 

(ii) ci

PD DB
p p≥ � , i.e. customer ci ’s bid-price in the primary dealer bidding system is higher than 

the price that would have cleared the direct bidding system. As primary dealer di , after 

observing its customer’s bid ( ),ci ci

PD PD
p q , will reduce the price in some bid-points, which 

prices are less than ci

PD
p  to increase the prices in its bid-points that are around ci

PD
p .  In this 

case, the clearing price will be pushed either right or left, depending whether ci

PD
p  is close 

to or far from 
DB

p�  respectively. This can be explained as follows. 

 

(a) If ci

PD
p  is just greater than 

DB
p� , i.e. ci

PD DB
p p ε= +�  (where ε  is relatively small), 

primary dealer di  will reduce the prices in bid-points that prices are less than 
DB

p� . 

This will push the clearing price to the right. As the result, this will lead to 

                                                 
21 A similar analysis can easily be conducted for primary dealer’ strategic bid-points, i.e. bid-points that the 
prices are higher than the primary dealer’s value for the auctioned security. 
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PD DB
p p≥� � , i.e. the primary dealer bidding system will provide higher revenue to 

Treasury than the direct bidding system. 
 

(b) If ci

PD
p  is far greater than 

DB
p� , i.e. ci

PD DB
p p δ= +�  (where δ  is not too small), primary 

dealer primary dealer di  will reduce the price in some bid-points that the prices are 

less than 
DB

p� . This will push the clearing price to the right. But primary dealer di  

might also decrease the price in some bid-points that prices are between 
DB

p�  and 
ci

PD
p . This will push the clearing price to the left. As the result, we might have either 

PD DB
p p≥� �  or 

PD DB
p p≤� � , i.e. it is not clear either the primary dealer bidding system 

will provide higher or less revenue to Treasury than the direct bidding system. 
Intuitively, this sub-case can be explained by the fact that if customer ci  bids 
extremely aggressively, the primary dealer will be discouraged to compete, and hence 
the primary dealer will submit very low bid-prices. Therefore, auction will clear at a 
lower price. 
 

Which one of the above cases is more likely to occur? As we explained in the preceding sub-
section case (i) is less likely to occur. Case (ii) is more likely to occur, but comparing to the 
alternative direct bidding system it can lead to either higher or less revenue to treasury. Thus, the 
primary bidding system provides more volatile revenue to Treasury than the alternative direct 
bidding system. 
 
 
8. Comments and policy recommendations  

 
A reason that explains why in US Treasury auctions primary dealers use information contained 
in their customers’ bids to formulate their own bids is the following. US Treasury dealers are the 
major players in the when-issued market, and generally they short-sell large amounts of the 
security to be auctioned prior to the auction. Therefore, in submitting its own set of bids to 
Treasury, each primary dealer wants to be awarded enough auctioned securities to cover the 
short positions it created in its book. Otherwise, it bears the risk of being short squeezed in the 
post-auction market. So in order to make sure it will be awarded enough Treasury securities as 
the outcome of the auction, the primary dealer might move its bids a little bit above its 
customers’, but not too far above because its action can push the auction clearing price higher, 
and thus can make it have a loss when closing its pre-auction short positions or can reduce its 
benefit in the post-auction market.   
 
Clearly, indirect bidders in US Treasury auction are ware about the use of information extracted 
from their bids by primary dealers to formulate their own bids. But why do these indirect bidders 
still submit their bids through primary dealers? It is important to note that indirect bidders might 
receive some benefits from submitting their bids through primary dealers. For example, Harper 
and Kruger (2013) report the following from Richard Prager, the global head of trading at 
BlackRock:22 “Even though BlackRock is aware of primary dealers using information containing 

                                                 
22 BlackRock is the world’s largest asset manager firm. 
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in costumers’ bids in their advantage, it prefers to bid indirectly because it wants to reward 
primary dealers for their research and other trading helps.”23  
 
Our results show that the primary dealers bid more aggressively as they observe quantity 
increases in their customers’ bids. In return these customers, as they are aware of their primary 
dealers’ behavior, bid more aggressively to avoid being front-run. This increases the 
competition, and hence leads to higher clearing prices. Thus in order to increase its auction 
revenue, Treasury should encourage direct bidders to bid indirectly, i.e. through primary dealers. 
As Mackenzie (2014) mention direct bidding makes it harder for primary dealers to gauge 
demand for Treasury debt sales, and reduces the allure of being a primary dealer. This reduces 
the competition and Treasury’s revenue. A possible extension of this study would be to add 
direct bidders as the third player type in the Treasury auction game model. 
 
 
Appendix A: Derivation of the Indirect Bidder’s Mollified Demand Schedule: Eq. (3) 

 

From Theorem1, we have the follows. 

 

 ( ) ( )( ) ( ) ( )Q p L Q p L p t L Q t dtσ σ σθ θ
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By replacing ( )Q t  with its expression found in Eq. (1), A1 becomes   
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Appendix B: Proof of Proposition 1 

 

                                                 
23 In futures markets, Fishman and Longstaff (1992) also find that customers of dual-trading brokers do better 
than customers of non-dual-trading brokers. A dual-trading broker is a broker that acts as an agent (buying and 
selling for its customer accounts) and simultaneously acting as a dealer (buying and selling for its in-house 
account). 
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This proof is in two parts. In the first part, we derive the equation that the primary dealer’s 
demand schedule is a solution for the general case. In the second part, we apply the constant 
marginal value assumption (Assumption 1) and the risk-neutrality assumption (Assumption 2). 
 
Part 1 of the proof: 
 
Let us rewrite the optimization problem defined in expression (8) as  
 

   
( )'

0( )
max ( ), ( ), d

di

di di
D p

D p D p p p
∞

Ψ∫ ,  B1 

    
where  

 ( ) ( ) ( )( )( )
'

0

( )

( )
( ), ( ), ( )d ( )

diD p

di di di di
di

ci

D p

D p
D p D p p U v u u pD p VΨ ≡ −∫  

     ( ) ( )( )'( ) ( ) ( )p di di D diH p D p D p H p D p× + ,  B2 

 
and 

 
( ) ( )( ) ( )

p di di
H p D p H p D p

p

∂
≡

∂
, 

 
( ) ( )( ) ( )

( )
D di di

di

H p D p H p D p
D p

∂
≡

∂
 ,  

 
' d

( ) ( )
d

di diD p D p
p

≡ . 

 
The first order condition of the optimization problem of expression B1 can be obtained through 
the Euler-Lagrange equation as follows. 
 

       ( ) ( )' '

'

d
( ), ( ), ( ), ( ), 0

( ) d ( )
di di di di

di di

D p D p p D p D p p
D p p D p

 ∂ ∂
Ψ − Ψ = 

∂ ∂ 
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From B3, on the one hand we have 
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where

 
 ( )( )

0
( ) ( )d ( )

diD p

di di
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0
( ) ( )d ( )

diD p
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U U v u u pD p⋅ ≡ −∫  
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 ( )( )

( )
( ) di

ci

D p

D p
V V⋅ ≡  

 ( )' ' ( )
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( ) di

ci

D p

D p
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 ( ) ( )( ) ( )
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From B3, on the other hand we have 
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Substituting B4 and B5 into B3 leads to the following result. 
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Part 2 of the proof: 
 

According to Assumption 1 we have ( )( )di di div D p v= , and according to Assumption 2, for all 

2( , )x y +∈R  we have ( )U x x=  and ( )V y y= . Therefore, ' ( ) 1U x =  and ' ( ) 1.V y =  Thus, Equation 

B6 becomes 
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Appendix C: Proof of Proposition 2 

 

When the auction clears, any price p
 
above the auction clearing price p�  represents an excess 

supply, i.e. in the point of view of primary dealer di  the event { }( )
di

p p D p≤�  can be 

represented as 
1, 1

( ) ( ) ( )
N N

di dj ck

j j i k

D p D p D p M
= ≠ =

 
+ + ≤ 

 
∑ ∑ .  

 
Let us consider the constant marginal value in Assumption. Now in Assumption 3, the demand 

schedules of indirect bidder ci  and primary dealer  di  can be rewritten (respectively) as  
 

  ( )1( , ) ( ) ( )
ci ci c c c ci

D p s p h vα β −= + ,   C1 

and   

  ( ) ( ) ( )1, , ( , ) , ( , ) ( )
di di ci ci d ci ci d d di

D p s D p s p D p s h vα β −= + .  C2 

 
Hence 
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where ( ) ( )1 1

1 1,
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= = ≠

= +∑ ∑  is a random variable specific to primary dealer 

di , and that is assumed to be independent to the price.  
 

From the point of view of primary dealer di , the following expression, 
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N
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− − − ∑ , is a deterministic function of the price. Let ( )
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di

fθ ⋅  be the cumulative distribution function and probability distribution function of 
di

θ  

respectively. Therefore, we have  
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We also have 
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From Assumption 3, we have  
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Substituting C4, C5, C6 and C7 into the equation in Proposition 2. 
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