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Abstract

In general situations of decision making under risk there do not
exist indices of risk and risk aversion that are relevant for all deci-
sion makers and for all risky assets. However, we show that for many
decision-making problems that involve what we call local risk, such
indices do exist. To formalize this idea we represent decision-making
problems by decision functions. The relevance of indices to a decision
function is formalized as a decision function’s property, called mono-
tonicity with respect tor risk and risk aversion. In this paper, local
risks arise in situations that involve investments with infinitesimally
small investment time horizons.
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1 Introduction

A typical situation of decision making under risk involves a risky asset and
a decision maker (“agent”). Analysis of such situations depends mainly on
two distinct considerations (Diamond and Stieglitz 1974):

1. The riskiness of the asset.

2. The attitude of the agent towards risk (risk aversion).

The central role of these concepts in the analysis of decision making has led
to many different methods of measuring risk and risk aversion, and hence to
many different orderings of risky assets and decision makers. However, for
most interesting decision-making problems there do not exist orders of risk-
iness and risk aversion that are relevant for all decision makers and all risky
assets. Consider for instance the “risk premium” problem first presented by
Pratt (1964).1 If we consider a standard set of decision makers and a stan-
dard set of lotteries (risky assets), then, for any order of risk aversion defined
on the set of agents, the fact that agent i is more averse to risk than agent
j does not imply that the risk premium of a lottery l for i is greater than
the risk premium of the same lottery l for j, for any lottery l. Similarly, for
any order of riskiness defined on the set of lotteries, the fact that lottery l1
is riskier than lottery l2 does not imply that the risk premium of l1 is greater
than that of l2, for all decision makers. Since such indices do not exist we
say that the risk premium (as well as many other decision-making problems)
is not monotonic with respect to risk and risk aversion.

This observation is true also with regard to the well-known Arrow–Pratt
coefficients of absolute and relative risk aversion: in most situations of de-
cision making under risk, the coefficients of risk aversion do not represent
the attitude of all (risk-averse) decision makers towards risk. However, Pratt
(1964) notes that these indices measure what he calls local risk aversion
that relates to risks “in the small.” In other words, in the limit, when the
variation of returns goes to zero, the indices do represent the attitude of all
(risk-averse) decision makers towards risk and are useful for analyzing a large
variety of decision-making situations. Since risk and risk aversion are very
close concepts, it is only natural to study also the properties of risk in such
situations that involve infinitesimal uncertainty, or, as we call it, “local risk.”

1We consider here the risk premium as a decision making problem. For a formal defi-
nition of risk premium and of decision-making problem, see Sections 3 and 2, respectively.
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In this paper we propose a formal and general framework for analyzing
decision-making problems involving either “regular” or local risk. In our
framework, a decision-making problem is represented by a decision function,
which is a real-valued function defined on a cross-set of decision makers and
risky assets. Decision makers are represented by a pair consisting of a von
Neumann–Morgenstern utility function and a wealth level, and risky assets
are characterized by a random variable or a random process. To keep the
discussion general, we define an index of risk aversion simply as a real-valued
function of decision makers, and we define an index of riskiness as a real-
valued function of risky assets.2 We say that indices of riskiness and risk
aversion are relevant or suitable for a decision-making problem if the decision
function representing the decision problem is monotonic with respect to the
values of the indices. As noted above, for most decision functions, unless we
limit the domain sets in a very restrictive way, there do not exist suitable
indices of risk and risk aversion.3 However, if we focus on decision functions
that involve only local risks, suitable indices do exist.

Given a decision-making problem represented by a decision function, the
property of monotonicity can be used as an axiomatic characterization of the
most appropriate indices of risk and risk aversion. We apply this idea to sev-
eral common decision-making problems when only local risk is involved and
derive the suitable indices of risk and risk aversion. These problems include
the asset allocation problem, the risk premium, and the certainty equiva-
lent. Not surprisingly, the only suitable indices of risk aversion that this
method produces are the Arrow–Pratt coefficients of risk aversion, both the
absolute and the relative ones. However, our analysis derives several indices
of risk, including the (instantaneous) variation, the (instantaneous) Sharpe
ratio, the (instantaneous) variance-mean ratio, and several combinations of
these indices with the initial price of the security.

Focusing on local risk is not new in the literature of decision making. In
fact, several papers use different methods to generate local risk, although
they do not call it by this name.4 For example, Pratt (1964) showed that if
the distribution of the returns is sufficiently concentrated, i.e., the third abso-
lute central moment is sufficiently small compared with the variance, then for

2The word riskiness emphasizes the idea that risk is a property of an asset or an
investment. We will use the terms “risk” and “riskiness” interchangeably.

3Appendix A analyzes several decision-making problems with restricted domains.
4Although Pratt (1964) defines his index as an index of local risk aversion, it seems

that the word “local” refers to the aversion rather than to the risk.
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any decision maker, the magnitude of the so-called risk premium is correlated
with the level of the decision maker’s risk aversion. Another similar inter-
pretation of risk-aversion measures was developed independently by Arrow
(1965). Pratt (1964) calls this type of risk “risk in the small”. In addition,
Samuelson (1970) showed that the classic mean-variance analysis, initiated
by Markowitz (1959), applies approximately to all utility functions, in sit-
uations that involve what he calls “compact” distribution. Finally, Shorrer
(2011) shows that the Arrow-Pratt risk aversion of an agent is correlated
with her willingness to accept or reject small gambles. In his setup, small
gambles are characterized by random variables that take only small values.
All these papers refer to the risk in the limit, where decision makers’ wealth
can be changed only infinitesimally.

In the present paper we use the framework of stochastic calculus for gen-
erating local risks. More specifically, the returns of risky assets in our setting
follow continuous-time random processes. Decision-making problems with
regard to such securities may depend on the investment time horizon. Local
risk arises when the investment time horizon is infinitesimally small.

The paper is organized as follows. In Section 2 we present our framework
and define formally the concepts of decision functions, indices of risk and risk
aversion, and monotonicity with respect to risk and risk aversion. In Section
3 we use monotonicity to derive suitable indices for several decision-making
problems under local risk. In all the examples in this section, risky assets are
characterized by continuous-time stochastic processes. Section 4 concludes.
In addition, Appendix A derives indices of risk and risk aversion for several
decision-making problems involving “regular” risks with restricted domains.
Proofs are relegated to Appendix B.

2 Framework

In this section we propose a general and simple framework for analyzing
decision-making situations that involve risk. The framework contains for-
mal definitions of the concepts decision function, index of riskiness (or index
of risk), index of risk aversion, and a property of decision functions called
monotonicity that connects the first three concepts to each other. The defi-
nitions are general and do not refer specifically to local risks.
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2.1 Decision Functions

We represent decision-making problems by decision functions whose domain
is a cross-set of risky assets and decision makers. A risky asset, such as
a gamble or a security, is characterized by a random variable or a random
process whose values can be interpreted in several ways such as absolute
returns, relative returns, prices, or values. A decision maker is characterized
by two elements: a utility function and an initial level of wealth. Utilities
are assumed to be von Neumann–Morgenstern utilities.

Let XA be a set of risky assets and let XDM be a set of decision makers.
A decision function d is a real-valued function

d : XA ×XDM → R, (1)

where R is the set of real numbers. Of course, not every such decision function
has an interesting economical interpretation, but, as we show later, many
well-known problems of decision making under risk can be presented in this
way. This includes the asset allocation problem, acceptance or rejection of a
gamble, certainty equivalence, risk premium, and many more.

2.2 Indices of Riskiness and Risk Aversion

An index of riskiness is a real-valued function defined on a set of risky assets.
Given an index of riskiness Q, we say that asset a1 is Q-riskier than asset a2 if
Q(a1) > Q(a2). Similarly, an index of risk aversion is a real-valued function
defined on a set of decision makers. Given an index of risk aversion K, we
say that decision maker dm1 is K-more averse to risk than decision maker
dm2 if K(dm1) > K(dm2). Obviously, these definitions are very general and
it is not necessary that a measure of risk or risk aversion is good for anything
at all.

2.3 Monotonicity

The existence of indices of risk and risk aversion that are relevant for a
situation of decision making depends on the specific situation. In our setup,
it is a property of decision functions called monotonicity with respect to risk
and risk aversion.

Let XA be a set of risky assets, XDM a set of decision makers, and let d
be a decision function whose domain is the cross-set XA ×XDM .

5



Definition 2.1.

1. d is monotonically increasing with respect to an index of risk Q if for
all ai, aj ∈ XA and for all dm ∈ XDM :

Q(ai) > Q(aj)⇔ d(aj, dm) > d(ai, dm).

2. d is monotonically increasing with respect to an index of risk aversion
K if for all dmi, dmj ∈ XDM and for all a ∈ XA:

K(dmi) > K(dmj)⇔ d(a, dmj) > d(a, dmj).

If a decision function is monotonically increasing with an index, its op-
posite function—also, by definition, a decision function—is monotonically
decreasing with the index. Obviously, there is no general rule that says
whether a decision function should increase or decrease with an index (of
riskiness or risk aversion). This depends on the economical interpretation of
the function and the index. Hence, we will use the following definition of
monotonicity that refers to both increasing and decreasing functions.

Definition 2.2.

1. Decision problem d is monotonic with respect to an index of risk Q,
and Q is a suitable index for d, if d is either monotonically increasing
or monotonically decreasing with Q.

2. Decision problem d is monotonic with respect to an index of risk aver-
sion K, and K is a suitable index for d, if d is either monotonically
increasing or monotonically decreasing with K.

We say that a decision function d is monotonic with respect to risk if there
exists an index of riskiness that is suitable for d. Similarly, d is monotonic
with respect to risk aversion if there exists an index of risk aversion that is
suitable for d. By definition, if an index of riskiness is suitable for a decision
function, its opposite index, i.e., the index that takes exactly the opposite
values, is also suitable for the same decision function. Since one of the two
indices ranks the set of risky assets based on their riskiness, then the other
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index, which ranks them in the opposite direction, ranks it based on their
“safeness.” Equivalently, any index of risk aversion that is suitable for a
decision function may rank decision makers based on their aversion to risk or
the opposite—attraction to risk. There is no technical rule that says which of
any two opposite indices of riskiness (risk aversion) relates to riskiness (risk
aversion) and which to safeness (attraction to risk). This of course depends
on the economical interpretation of the decision function and the index.

Note that being suitable to some decision function is not a special or a
unique property of indices of riskiness and indices of risk aversion. In fact,
any pair of indices of risk and risk aversion are suitable for many decision
functions, such as the function defined as the multiplication of the indices by
each other. Therefore, the starting point of our analysis is a decision-making
problem. Indices of riskiness and risk aversion are interesting only if they are
suitable for the specific decision functions that we are analyzing.

The question whether a decision function is monotonic with respect to
risk and risk aversion obviously depends on the function’s domain. It is
always possible to limit a function’s domain in a way that makes it monotonic
with respect to risk and risk aversion. For instance, any decision function is
monotonic (with respect to risk and risk aversion) if either the set of decision
makers or the set of risky assets contains only one element. Moreover, one
decision function might have different suitable indices for different domains.
Hence, given a decision function, the challenge is to find the largest domain
set for which the function is still monotonic with respect to risk and risk
aversion.

3 Monotonic Decision Functions

In this section we examine several decision functions with quite general do-
mains and show that when only local risk is involved, the functions become
monotonic with respect to risk and risk aversion. We start by defining the
domain sets of those functions, i.e., the set of decision makers and the set of
risky assets.

Decision Makers.
A decision maker is characterized by a pair consisting of a von Neumann-
Morgenstern utility function and an initial wealth level. Utility functions
are assumed to be twice differentiable, with a positive first derivative and a
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negative second derivative (implying risk aversion). We denote by DM the
set of decision makers whose utilities are defined on the set of real numbers,
like exponential utilities, and we denote by DM+ the set of all decision mak-
ers with utilities defined only on positive real numbers, like power utilities.
Accordingly, the initial wealth of decision makers in DM can take any real
number, while the initial wealth of decision makers in DM+ take only posi-
tive numbers.

Risky Assets.
Risky assets are securities whose values follow continuous-time random pro-
cesses. Let s be such a security and let st denote the value of s at time t.
We assume that st is the unique strong solution of a stochastic differential
equation (SDE) of the form

dst = µtdt+ σTt dWt, (2)

where W is a vector of K independent standard Wiener processes, and the
superscript T means transpose. The drift µt = µ(st, t) and the vector of
diffusion σt = σ(st, t) are both continuous functions of st and t. In addition,
we assume also that µt > 0 and σTt σt 6= 0 for all t.5 We denote by S
the collection of all such securities, and we denote by S+ the set of all such
securities that take only positive values (with probability 1). A more rigorous
description of the continuous-time framework is relegated to Appendix B.

All our examples here involve investments in a security, i.e., buying a
number of shares of a security at one instant and selling it after a while. The
interval of time between buying and selling is called the investment time-
horizon. We assume that all securities purchases are done at time zero in
which s0 is already known, and all sales are done before time T , where T is
a positive number. For simplicity we assume that the (net) risk-free interest
rate is zero.

To clarify our notations further, if a decision maker with utility u and
initial wealth w buys one unit of security s with investment time horizon t,
his utility becomes random and is equal to u(w − s0 + st). Alternatively, if
she invests all her initial wealth in that security, her utility will be u(wst/s0).
We call st − s0 the absolute return of s and st/s0 the relative return of s.
Naturally, when situations involve absolute risk we will refer to the sets DM

5The reason for these assumptions is that if µt ≤ 0, then we consider the riskiness of s
at t as infinite, and if σT

t σt = 0 then s should not be considered as risky at t.
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and S. By contrast, if relative returns are involved, we will refer to the sets
DM+ and S+.

3.1 Time Horizon-dependent Decision Problems

We consider here several decision functions whose domain is the cross-set
DM × S or DM+ × S+. The functions are parametrized by time horizon t.
For any t > 0 the functions are not monotonic with respect to risk and risk
aversion. However, if t is infinitesimally small, i.e., if situations involve only
“local risk,” all these functions become monotonic with respect to risk and
risk aversion.

1. Interest Risk Premium.
Let i ∈ DM be a decision maker with utility function u and initial wealth
level w, and let s ∈ S be a security. The compound interest rate rt = rt(i, s)
is defined implicitly by the equation

E

[
u

(
w − s0 + st

)]
= u

(
w − s0 + E(st)− (ertt − 1))

)
. (3)

The expression on the left hand-side of (3) is interpreted as the expected
utility of buying one unit of s at time zero and selling it at t. The right-hand
side is the utility of having the expected value of this investment minus (ertt−
1), called the risk premium. Thus, rt can be interpreted as the compound
interest rate that makes i indifferent between the following two options: (1)
buying one unit of s and (2) having the expectation of this investment but
paying the (net) compound interest rate of rt on a $1 loan. Since decision
makers are risk averse, the risk premium (ertt − 1) should be positive, which
implies that rt is positive as well.

A similar problem can be defined in relative terms, where now i ∈ DM+

and s ∈ S+. We define r̂t = r̂t(i, s) implicitly by the equation,

E

[
u

(
w
st
s0

)]
= u

(
w
(E(st)

s0
− (er̂tt − 1)

))
. (4)

The left-hand side of (4) is the expected utility of investing w in s with in-
vestment time horizon t (where w is the initial wealth), and the right-hand
side is the utility of investing w in a risk-free asset whose return is equal to
the expected return of s minus the relative risk premium (er̂tt− 1). Thus, r̂t
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can be interpreted as the compound interest rate that makes one indifferent
between the following two options: (1) investing w in s and (2) having the
expectation of this investment but paying the (net) compound interest rate
of rt on the sum of investment (w). Here again, for any risk averse decision
maker the risk premium (ertt− 1) will be positive, which implies that rt > 0.

2. Portfolio Allocation.
We denote by αt(i, s) the optimal number of shares of s ∈ S that investor
i ∈ DM buys in order to maximize her utility, where the rest of her wealth
has zero return (cash), and the investment time horizon is t. Formally,

αt(i, s) = arg max
α

E

[
u

(
w − αs0 + αst

)]
. (5)

Since the expected absolute (rather than relative) return of s is positive, αt
is positive as well.

The problem can be phrased in relative terms as follows. Let α̂t be the
optimal fraction of wealth to be invested in a security s ∈ S+ by a decision
maker i ∈ DM+, where the investment time horizon is t. Formally,

α̂t(i, s) = arg max
α

E

[
u

(
(1− α)w + αwst/s0

)]
. (6)

As before, α̂t is positive.

3. The Certainty Equivalent of an Optimal Allocation.
We denote by zt = zt(i, s) the compound risk-free interest rate for decision
maker i ∈ DM and security s ∈ S that makes i indifferent between accepting
this return of zt on $1 and investing optimally in s. Formally, zt is defined
implicitly by

E

[
u

(
w − αts0 + αts1

)]
= u(w + eztt − 1), (7)

where αt ≡ αt(dm, s). The expression eztt − 1 is the certainty equivalent of
investing optimally in s. Since αt is positive eztt−1 is also positive, implying
that zt is positive as well.

Similarly, the relative certainty equivalent of an optimal allocation ẑt =
ẑt(i, s), where i ∈ DM+ and s ∈ S+, is defined as the compounded risk-free
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interest rate ẑt that makes the decision maker indifferent between investing
all his wealth w with a return of ẑt and investing optimally in s. Formally,
ẑt is defined implicitly by the equation

E

[
u

(
(1− α̂t)w + α̂twst/s0

)]
= u(w(eẑtt)). (8)

To sum up this section, we presented six decision functions: three refer to
absolute returns and the other three refer to relative returns. The functions
are parametrized by the investment time horizon t.

3.2 Local Risks

When the investment time horizon t is a positive number, i.e., 0 < t < T ,
then all the previous decision functions involve what we call regular risks.
However, “local risks” are involved if we relate to an infinitesimally small
investment time horizon. Formally, based on the previous functions, we
define six new decision functions that involve only local risk, as follows:

(1) r(i, s) = limt→0 rt(i, s).

(2) α(i, s) = limt→0 αt(i, s).

(3) z(i, s) = limt→0 zt(i, s).

(4) r̂(i, s) = limt→0 r̂t(i, s).

(5) α̂(i, s) = limt→0 α̂t(i, s).

(6) ẑ(i, s) = limt→0 ẑt(i, s).

The following theorem claims that these functions are not only well de-
fined but also monotonic with respect to risk and risk aversion.

Theorem 3.1. Decision functions (1) − (6) are monotonic with respect to
risk and risk aversion. Moreover, the suitable measures are those that appear
in Table 1.

11



Table 1 summarizes the six decision functions and their suitable indices of
risk and risk aversion. It is shown that the property of monotonicity derives
two different indices of risk aversion that are the well-known coefficients
of risk aversion of Pratt and Arrow, and five different indices of riskiness.
Interestingly, one can notice the equivalence between indices of relative risk
and the index of relative risk aversion. Like the index of relative risk aversion
that depends on w, the indices of relative riskiness depend on the value of
the security s0. It seems that w and s0 play a similar role in both cases as a
reference point to amounts of money. Although decision function (6) relates
also to relative returns, its suitable index of riskiness does not depend on s0.
A slight modification of this decision function can derive and index of risk
that does depend on s0, such as σTσ/(s20µ

2).6

The indices of riskiness that appear in Table 1 are instantaneous ; i.e.,
they depend on the parameters of securities at only one point in time. If we
limit the parameter K to be 1 (only one Wiener process in the environment),
the dimension of σ will be 1 as well. In this case the indices will be the
instantaneous variation σ2, the instantaneous var-mean ratio σ2/µ, and the
square of the inverse instantaneous Sharpe ratio (σ/µ)2. The other two in-
dices of riskiness are simply combinations of these indices with the security’s
price.

3.3 Other Decision Functions

We have discussed here several examples of decision-making problems and
used the property of monotonicity to derive the suitable indices of risk and
risk aversion. Obviously, one can think of other decision problems that might
be monotonic with respect to risk and risk aversion.

Note that not all decision functions involving only local risks are mono-
tonic with respect to risk and risk aversion. For instance, Schreiber (2013)
studies the decision problem of accepting or rejecting investments in the
continuous-time framework. The decision function representing this problem
can take only two values: 1 for an acceptance and 0 for a rejection, and
therefore by definition it is not strictly monotonic with respect to risk and
risk aversion. However, as Schreiber (2013) shows, the value of the function
depends exclusively on a pair of indices, one of risk and the other of risk
aversion, and it can be considered as weakly monotonic with respect to risk

6This would be the case if we exchanged α̂t by αt in (8).
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Case Decision Problem
Domain Set Indices

Individuals Assets Risk R Aversion
1 Risk Premium (A)

DM S
σTσ

−u′′(w)
u′(w)

2 Asset Allocation (A) σTσ/µ
3 CE of Optimal (A) σTσ/µ2

4 Risk Premium (R)
DM+ S+

σTσ/s20
−w u′′(w)

u′(w)
5 Asset Allocation (R) σTσ/(µs0)
6 CE of Optimal (R) σTσ/µ2

Table 1: The table presents suitable indices of risk and risk aversion for six decision
functions that involve only local risk. Recall that a decision maker is characterized by a
pair consisting of a utility function u and an initial wealth level w and that a risky asset s
is characterized by an SDE of the form dst = µtdt+ σT

t dWt. The table uses the notations
σ ≡ σ0 and µ ≡ µ0. The first and second columns of the table are used to identify the
specific decision function, as defined above. The third and fourth columns are the domain
sets of these functions. The last two columns are the indices of risk and risk aversion. It
can be seen that indices of riskiness are functions of the parameters of the risky assets at
time zero and that indices of risk aversion are functions of the parameters characterizing
decision makers with initial wealth w.

and risk aversion.
While this example of accepting or rejecting an investment is not mono-

tonic with respect to risk and risk aversion for technical reasons only, it
seems that the following decision function is not monotonic for a deeper rea-
son. Let iet(i, s) denote the interest-rate equivalent decision function, defined
implicitly by the equation

E

[
u

(
w − s0 + st

)]
= u

(
w + (eiett − 1))

)
. (9)

The expression (eiett − 1) is known as the cash equivalent (of the absolute
return st − s0). For any security s, the cash equivalent iet is well defined for
at least small values of t. Now, although the decision function ie = limt→0 iet
involves only local risk, it can be shown that it is not monotonic with respect
to risk (but it is monotonic with respect to risk aversion).

4 Conclusion

The main argument of this paper is that many decision functions that involve
only local risk are monotonic with respect to risk and risk aversion. This can
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be explained intuitively as follows: in the limit, when the investment time
horizon goes to zero, only the first two elements of the Taylor series of the
utility matter, which implies that the only relevant parameters are the initial
wealth level, the first and second derivatives of utilities, and the first two
moments of distribution. This of course simplifies the analysis of decision
functions and brings them closer to each other. However, as we have shown
in the paper, not every decision function that involves only local risk is
monotonic with respect to risk and risk aversion. A rule that characterizes
monotonic decision functions (involving only local risk) is a challenge that
needs to be addressed in future research.

Our formal analysis supports and reflects several ideas with regard to the
nature of risk and risk aversion. First, in general decision-making situations,
i.e., those that involve regular risks, risk and risk aversion should be consid-
ered as subjective concepts in the sense that there do not exist indices of risk
and risk aversion that are relevant for all decision makers and all risky assets.
In this sense, risk, as an attribute of a risky asset, is analogous to beauty as
a an attribute of a work of art as both cannot be measured objectively (this
stands in contrast with the perception that risk is analogous to, say, body
temperature which can be measured objectively; see Aumann and Serrano
2008). Second, the concepts of risk and risk aversion should be studied in
the context of a specific situation of decision making under risk, in which
the challenge is to find indices of risk and risk aversion that are the most
appropriate to this situation. Such indices might be relevant only for some
of the decision makers and definitely might be irrelevant in other decision-
making situations. Third, risk is what risk averters dislike in the sense that
if suitable indices for a decision problem exist, they should affect decisions
in the same way. As we have shown, in many situations of decision making
under local risk, all risk averters in the sense of Arrow and Pratt dislike the
same types of local risks. In such situations, risk aversion and risk affect the
decision function in a similar way. Finally, by our approach, the concepts of
risk and risk aversion are situation-dependent and therefore risk is definitely
not the opposite of attractiveness. By contrast, risk is a property of random
distribution that is interpreted differently in every situation.

A final noteworthy remark about our indices of local risk is that since
the analysis of infinitesimal risks concerns the first and the second elements
of a Taylor series of utilities, the indices that we derive can be viewed as an
approximation of indices in situations that involve regular risk. Schreiber
(2014) shows that the indices of riskiness of Aumann and Serrano (2008) and
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of Foster and Hart (2009) coincide with one of the indices that are derived
here when only local risk is involved. Similarly, we would expect any index
of riskiness that is seemingly connected to utilities to coincide with one of
our indices in situations that involve only local risk.

Appendix

A Standard Decision Functions

In this section we use our framework to analyze several examples of what we
call “regular” decision-making problems. What makes them regular is the
fact that they refer to risky assets characterized by random variables rather
than random processes. Our goal is to use the property of monotonicity
to find the most appropriate indices of risk and risk aversion. To make
these functions monotonic with respect to risk and risk aversion we should
restrict the domain sets in different ways. All the example in this section
are summarized in Table 2. The rest of this section is an explanation of that
table.

A.1 Decision Makers

The third column of Table 2, labeled DM, contains different sets of decision
makers, characterized by their utilities and the range of values that w can
take. The sets of decision makers are as follows:

1. Quadratic—the set of decision makers whose utilities have the form
u(w) = w− bw2, where b is a positive-valued parameter and w < 1/2b.

2. CARA—the set of decision makers whose utilities have a constant ab-
solute risk aversion. There is essentially a unique CARA utility with
parameter α, given by u(w) = −e−αw. α is assumed to be positive and
w can take any real number.

3. CRRA—the set of decision makers whose utilities have a constant rel-
ative risk aversion. There is essentially a unique CRRA utility with
parameter γ, given by

uγ(x) =

{
(x1−γ−1)

1−γ if γ 6= 1

log(x) if γ = 1
. ,
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Case Decision Problem
Domain Sets Suitable Measures
DM Assets Risk R Aversion

1

Accept or Reject

Quadratic
G µ2/µ ARA

2 R µ2/µ RRA
3

CARA
G RAS ARA

4 R SAS RRA
5 CRRA R S RRA
6

Risk Premium CARA
GN σ ARA

7 RN σ RRA
8

A Asset Allocation
Quadratic R∗ µ2/µ ARA

9 CARA RN σ2/µ ARA
10

R Asset Allocation
Quadratic R∗ µ2/µ RRA

11 CARA RN σ2/µ RRA
12 CE A of Optimal CARA RN σ/µ ARA
13 CE R of Optimal CARA RN σ/µ RRA

Table 2: Monotonic Decision Problems
This table presents the suitable measures of risk and risk aversion for six different decision-
making problems. The third and fourth columns are the domain sets of the problems. The
third column, DM, is the column of decision makers, who can belong to one of three groups:
quadratic utilities, constant absolute risk-aversion utilities (CARA), and constant relative
risk-aversion utilities (CRRA). Assets (fourth column) belong to one of six sets: G for
additive lotteries with a finite set of values, R for multiplicative lotteries with a finite
set of values, GN for normally distributed additive lotteries, RN for normally distributed
multiplicative lotteries, RLN for log-normally distributed multiplicative lotteries, and R∗

for general multiplicative lotteries. The fifth and sixth columns are the suitable measures
of risk and risk aversion. The sixth column is the measures of riskiness defined as follows:
if g is a gamble (additive lottery), µ = E(g), µ2 = E(g2), and σ = E(g − E(g)). For a
multiplicative lottery r, µ = E(r − 1), µ2 = E((r − 1)2), and σ = E(r − E(r)). Three
other measures of riskiness are: RAS : the Aumann–Serrano index of riskiness of additive
lotteries, SAS : the Aumann–Serrano index of riskiness of multiplicative lotteries, and S:
the Schreiber index of riskiness of multiplicative lotteries. The last column is the measure
of risk aversion which can be either the absolute risk aversion (ARA) or the relative risk
aversion (RRA).
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where γ and w are assumed to be positive.

Recall that by our approach, a decision maker is characterized by a pair
consisting of a utility function and an initial wealth level. The values that
the wealth can take depend on the specific utility function and are indicated
above.

A.2 Risky Assets

All risky assets in the fourth column of Table 2 (labeled “assets”) are char-
acterized by random variables. The values that they take are interpreted
either as absolute returns (additive lotteries) or relative returns (multiplica-
tive lotteries). To clarify the distinction between additive and multiplicative
lotteries note that if the initial wealth is w, accepting additive lottery g causes
the wealth to distribute as w + g. On the other hand, investing the whole
wealth in a multiplicative lottery r causes the wealth to distribute as wr.
Following Aumann and Serrano (2008) we assume that the expectation of
an additive lottery is positive and that an additive lottery takes at least one
negative value with positive probability. Similarly, the geometric mean of a
multiplicative lottery is assumed to be greater than one and a multiplicative
lottery takes values lower than one with positive probability.

The different sets of risky assets are:

• G is the set of additive lotteries with a finite set of values.

• R is the set of multiplicative lotteries with a finite set of values.

• R∗ is the set of multiplicative lotteries.

• GN is the set of additive lotteries whose returns are distributed nor-
mally.

• RN is the set of multiplicative lotteries whose returns are distributed
normally.

A.3 Indices of Risk and Indices of Risk Aversion

Given a decision maker dm = (u,w), the Arrow–Pratt indices of absolute
and relative risk aversion are defined as follows:

ARA = −u
′′(w)

u′(w)
, (10)
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RRA = −wu
′′(w)

u′(w)
, (11)

where ARA stands for absolute risk aversion and RRA stands for relative
risk aversion.

The principle of monotonicity derives seven different indices of riskiness
for the decision functions discussed above. Four of these indices are basically
functions of the first and second moments of the distributions of the assets.
Given a random variable x, we denote its first moment (expectation) by
µ(x), its second moment by µ2(x) ≡ µ(x2), and its variance by σ2(x).7 These
notations explain most of the indices that appear in Table 2. Three additional
indices of riskiness are as follows:

1. RAS is the Aumann and Serrano (2008) index of riskiness of additive
gambles. If g ∈ G is a lottery, RAS is defined implicitly by

E e−g/R
AS(g) = 1. (12)

2. SAS is the Aumann and Serrano (2008) index of riskiness of multiplica-
tive gambles (securities). If r is a lottery, SAS is defined by

SAS(r) ≡ RAS(r − 1). (13)

3. S is the Schreiber (2014) index of relative riskiness of multiplicative
lotteries. If r is a multiplicative lottery, S is defined by

S(r) ≡ RAS(log r). (14)

A.4 Decision Problems

A.4.1 Acceptance or Rejection: Cases 1–5

The first decision function in Table 2 is whether to accept or reject a risky
asset. The function takes only one of two values: 1 for an acceptance and 0
for a rejection. We say that a decision maker dm = (u,w) accepts an additive
lottery g if she benefits from having it, i.e., if u(w + g) ≥ u(w). Otherwise
she rejects it. Similarly, a decision maker accepts a multiplicative lottery

7For a multiplicative lottery r we take x to be x = r − 1.
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(security) r if she benefits from investing all her wealth in multiplicative
lottery r, i.e., if u(wr) ≥ u(w). Otherwise she rejects it.

Since the solution of this problem is only one of two possible values, i.e.,
{0, 1}, the definition of suitable measures is based on weak monotonicity
rather than monotonicity.8

Cases 1 and 2. Recall that a quadratic utility function has the form:
u(w) = w − bw2. By definition, accepting a lottery g implies that

E
[
w + g − b(w + g)2

]
≥ w − bw2

1 ≥ b

1− 2bw

E g2

E g
. (15)

Since the right-hand side of the equation is monotonic with b/(1 − 2bw),
which is ARA of a quadratic utility, ARA is a suitable index of risk aversion.
Similarly, since the right-hand side is monotonic with E g2/E g, µ2/µ is a
suitable index of riskiness. The proof of Case 2 is quite similar.

Cases 3-5. Cases 3 and 4 are proved in Aumann and Serrano (2008). Case
5 is proved at Schreiber (2014).

A.4.2 Risk Premium: Cases 6–7

The risk premium can be measured in terms of either money or in terms of
relative return, depending on the type of the risky assets. To define both
types of risk premium, let dm = (u,w) be a decision maker and let g be a
lottery. The risk premium x of g for dm is defined implicitly by

Eu(w + g) = u(w + E g − x). (16)

Here, x can be interpreted as the sum of money that makes a decision maker
indifferent between accepting an additive lottery and accepting the expected

8We say that a decision function d is weakly monotonically increasing with respect to
an index of riskiness R if for any decision maker dm and any pair of risky assets a1 and
a2, R(a1) > R(a2)⇒ d(dm, a1) ≥ d(dm, a2). We say that the decision function is weakly
monotonic with respect to R if it is weakly monotonically increasing with R or with −R.
Weak monotonicity of a decision function with respect to risk aversion is defined in a
similar way.
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value of the lottery but paying x. If r is a multiplicative lottery, the risk
premium x of r for dm is defined implicitly by

Eu(wr) = u(w(E r − x)). (17)

Here, x can be interpreted as the interest rate that makes a decision maker
indifferent between investing all her wealth in a multiplicative lottery and
investing all her wealth in a risk-free interest rate equal to the expected re-
turn of the multiplicative lottery minus x.

Case 6. In this case decision makers are CARA and assets are additive
lotteries whose absolute returns are distributed normally. The risk premium
x is defined implicitly by

E e−α(w+g) = e−α(w+E g−x)

e−α(w+E g)+0.5α2σ2
g = e−α(w+E g−x)

−α(w + E g) + 0.5α2σ2
g = −α(w + E g − x)

x = 0.5ασ2
g . (18)

The transition between the first and second lines is based on the following
lemma: if y is a random variable distributed normally, then

E ey = eE y+0.5σ2
y . (19)

Since x is monotonically increasing with α (ARA) and with σ2
g (variance),

they are the suitable measures in this problem.

Case 7. In this case decision makers are CARA and assets are multiplicative
lotteries whose relative returns are distributed normally. We get

E e−α(wr) = e−α(w(E r−x)

e−α(wE r)+0.5α2w2σ2
r = e−α(w(E r−x)

−αwE r + 0.5α2w2σ2
r = −αw(E r − x)

x = 0.5αwσ2
r . (20)

Here again, the transition between the second and third lines follows from
(19). Since x is monotonically increasing with αw (RRA) and with σ2

r (vari-
ance), they are the suitable measures in this problem.
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A similar result cannot be established if we assume that decision makers
are CRRA and assets are log-normally distributed multiplicative lotteries.
To see this, let r be such a multiplicative lottery and let dm be a CRRA de-
cision maker with parameter γ. Let y = log(r). By definition, y is distributed
normally. The risk premium x is defined implicitly by

E(wr)1−γ = (w(E r − x))1−γ

w1−γ E e(1−γ)y = w1−γ(E ey − x)1−γ

E e(1−γ)y = (E ey − x)1−γ

e(1−γ) E y+0.5(1−γ)2σ2
y = (E ey − x)1−γ

eE y+0.5σ2
y − eE y+0.5(1−γ)σ2

y = x. (21)

It is easy to see that x is monotonic with γ. Hence, in this case, RRA
is a suitable index of risk aversion. However, unless we restrict the set of
multiplicative lotteries there will be no suitable index of riskiness to this
decision function. If we assume that E r = eE y+0.5σ2

y = c, where c is some
constant, then we get

x = c(1− e−γσ2
y), (22)

and x is monotonic with RRA and σ2
y. To sum up this example, the risk pre-

mium problem for CRRA decision makers has no suitable index of riskiness
unless the set of log-normal multiplicative lotteries has the same expectation.

A.4.3 Asset Allocation: Cases 8–11

The asset allocation problem can be described in either absolute or relative
terms. Formally, given a decision maker dm = (u,w) and a multiplicative
lottery r, the absolute asset allocation is the solution of the problem

arg max
x

Eu
(
w + x(r − 1)

)
, (23)

where x is the optimal amount of money to invest in r. The relative asset
allocation problem is the solution of the problem

arg max
x

Eu
(
w + xw(r − 1)

)
, (24)

where x is interpreted as the optimal fraction of wealth to be invested in r.
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Cases 8–10.
For a quadratic decision maker, the solution of the absolute asset allocation
problem is

arg max
x

E

[
w + x(r − 1)− b

(
w + x(r − 1)

)2]
. (25)

The first order condition of (25) is

E

[
(r − 1)− 2b(w + x(r − 1))(r − 1)

]
= 0, (26)

or,

x =
E(r − 1)

E(r − 1)2
1− 2bw

2b
. (27)

In this case x is monotonic with ARA (2b/(1 − 2bw)) and monotonic with
µ2/µ, and hence ARA and µ2/µ are the suitable measures. The proof of the
relative case is quite similar.

Cases 9–11.
If decision makers are CARA and returns of multiplicative lotteries are nor-
mal, the absolute asset allocation problem becomes

arg max
x

E

[
e−ρ
(
w+x(r−1)

)]
. (28)

It follows from (19) that (28) is equivalent to

arg max
x

e−ρw−ρxE(r−1)+0.5ρ2x2σr , (29)

which is equivalent to

arg max
x
−ρxE(r − 1) + 0.5ρ2x2σr. (30)

The first-order condition is

−E(r − 1) + ρxσr = 0, (31)
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and we get

x =
1

ρ

E(r − 1)

σ2
r

. (32)

Since x is monotonic with ARA (ρ) and monotonic with σ2
r/µr, ARA and

σ2
r/µr are the suitable measures in this case. The proof of the relative case

(Case 11) is quite similar.

A.4.4 The Certainty Equivalent of Optimal Allocation: Cases 12–
13

Assume that x∗ is the solution of the absolute asset-allocation problem for
decision maker dm = (u,w) and multiplicative lottery r. The absolute cer-
tainty equivalent of the optimal allocation, denoted by y, is defined implicitly
by

Eu(w + x∗(r − 1)) = u(w + y). (33)

In this case, y can be interpreted as the amount of money that makes the
decision maker indifferent between investing optimally in r and accepting y.
Similarly, the relative certainty equivalent of the optimal allocation, denoted
by y, is defined implicitly by

Eu(w + x∗(r − 1)) = u(w(1 + y)). (34)

Here, y can be interpreted as the net risk-free interest rate that makes the
decision maker indifferent between investing optimally in r and accepting net
return y on w.

In Case 13, y is defined implicitly by the equation

E e−ρ
(
w+x(r−1)

)
= e−ρ

(
w+y
)
. (35)

According to (32) we substitute x = 1
ρ
E(r−1)
σ2
r

and get

E e
−ρ
(
w+ 1

ρ
E(r−1)

σ2r
(r−1)

)
= e−ρ

(
w+y
)

e
−ρw−µ

2
r
σ2r

+0.5
µ2r
σ2r = e−ρ

(
w+y
)

−ρw − µ2
r

σ2
r

+ 0.5
µ2
r

σ2
r

= −ρ
(
w + y

)
y =

1

2ρ

µ2
r

σ2
r

. (36)
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Similarly, the certainty equivalent of the relative optimal allocation, denoted
by y and defined implicitly by

E e−ρ
(
w+wα(r−1)

)
= e−ρ

(
w(y+1)

)
, (37)

is

y =
1

2wρ

µ2
r

σ2
r

. (38)

In both cases, the solution of the decision function is a multiplication of an
index of risk aversion (ARA or RRA) by an index of risk, namely, the Sharpe
ratio.

A.5 Other Decision-making Problems

Although a decision function is a function of decision makers and risky as-
sets, a decision function does not necessarily depend on the decision maker’s
utility function. For instance, the decision problem described in Foster and
Hart (2009), which deals with avoiding bankruptcy, has nothing to do with
utilities. The suitable index of riskiness of their problem is the index of risk-
iness that is defined there. Interestingly, they say nothing about the suitable
index of risk aversion that turns out to be the level of wealth of the decision
maker. Another example of a decision-making problem that does not depend
on utilities appears in Meilijson (2009). It is shown there that the Aumann-
Serrano index of riskiness can be used as a relevant index in a decision making
problem that also has to do with avoiding bankruptcy. Utility functions are
irrelevant there too. Note that our definition of a decision function is even
more general and includes probabilistic questions whose solutions do not de-
pend on any parameter of decision makers. Decision-making problems of this
kind are beyond the scope of the present paper.

A.6 Stochastic Dominance

As Aumann and Serrano (2008) write, the most uncontroversial, widely ac-
cepted notions of riskiness are provided by the concepts of stochastic domi-
nance (Hadar and Russell (1969), Hanoch and Levy (1969) and Rothschild
and Stiglitz (1970)). We say that a random variable x first-order dominates
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(FOD) y if x ≥ y for sure and x > y with positive probability; and x second-
order dominates (SOD) y if x may be obtained from y by “mean-preserving
spreads,” i.e., by replacing some of x’s values with random variables whose
mean is that value. We say that x stochastically dominates y if there is a
random distributed variable like x that dominates y.

It is interesting to note that most of the indices of riskiness in Table 2
(except for the RAS, SAS, and S) are not compatible with stochastic dom-
inance in the sense that they may consider a certain asset as riskier than
others even though it may stochastically dominate the others. The explana-
tion is simple: if one risky asset stochastically dominates another risky asset,
it means that all decision makers will prefer to have the first risky asset. It
is not necessarily relevant to other decision-making problems.

B Proofs

B.1 The Securities Model

The uncertainty in this model is generated by K standard Wiener pro-
cesses W 1, ... ,WK defined on a filtered probability space (Ω, FT , F, P ) that
satisfies the so-called usual conditions. The filtration F = (Ft)t∈[0,T ] is
the augmentation of the natural filtration FW , generated by the vector
W = {W (t) = W 1(t)...WK(t), t ∈ [0, T ]} of standard independent Wiener
processes; see Karatzas and Shreve (1998).

B.2 Proof of Theorem A

Throughout this section we use Ito’s lemma several times. It is worthwhile
to recall a simple version of this lemma. If s is a random process described
by

ds = µdt+ σdW, (39)

and f(s, t) is a twice-differentiable function, then

df = [µtfs + 0.5σσfss + ft]dt+ fsσdW, (40)

where fs and fss are the first and second derivatives of f in relation to s,
and ft is the first derivative of f in relation to t.

The following two lemmas will be useful for our proofs.
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Lemma B.1. Let Ft(y) be a set of real-valued, continuous, and monotonic
functions, with 0 < t ≤ T and y ∈ R. Assume that there exists a continuous
and monotonic function F (y) such that

1. ∀y, F (y) = limt→0 Ft(y).

2. ∃y∗, s.t. F (y∗) = 0.

Then, there exists ε s.t.

∀t < ε ∃yt s.t. Ft(yt) = 0,

and
lim
t→0

yt = y∗.

Proof. Given δ > 0 we have to show that there exists ε s.t. ∀t < ε |yt−y∗| < δ
and that yt satisfies Ft(yt) = 0. Since F (y) is monotonic (either increasing
or decreasing), there exists a positive number C such that |F (y∗ − δ)| > C
and |F (y∗ + δ)| > C. Condition 1 implies that there exists ε s.t. ∀t < ε,

|Ft(y∗ + δ)− F (y∗ + δ)| < C,

and
|Ft(y∗ − δ)− F (y∗ − δ)| < C.

Hence, either Ft(y
∗ − δ) < 0 and Ft(y

∗ + δ) > 0 or Ft(y
∗ − δ) > 0 and

Ft(y
∗+δ) < 0. Since Ft is continuous, ∃yt ∈ (y∗−δ, y∗+δ) s.t. F (yt) = 0.

Lemma B.2. Let Ft(α) be a set of twice-differentiable concave functions
where 0 < t ≤ T and α ∈ R, and let F be a twice-differentiable concave
function such that

1. ∀α, F (α) = limt→0 Ft(α).

2. α∗ = arg maxα F (α).

Then, there exist ε > 0 such that

∀t < ε, ∃αt s.t. αt = arg max
α

Ft(α),

and
lim
t→0

αt = α∗.

26



Proof. We have to show that given δ > 0, there exists ε > 0 such that ∀t < ε,
∃αt, which maximizes Ft(α), and that |αt − α∗| < δ.

Let δ1 = min{F (α∗)− F (α∗ − δ), F (α∗)− F (α∗ + δ)}. There exists ε s.t.
∀t < ε,

|Ft(α∗)− F (α∗)| < δ1/3

|Ft(α∗ + δ)− F (α∗ + δ)| < δ1/3

|Ft(α∗ − δ)− F (α∗ − δ)| < δ1/3.

Hence, ∀t < ε

Ft(α
∗) > Ft(α

∗ − δ) and Ft(α
∗) > Ft(α

∗ + δ).

Since for all t, Ft is concave, there exists αt ∈ (α∗ − δ, α∗ − δ), which is the
argmax of Ft.

Proofs of the Results of Table 2

Proof. (Cases 1 and 5)
The absolute risk premium rt is defined implicitly by

E

[
u

(
w − s0 + st

)]
= u

(
w + E(st)− s0 − (ertt − 1)

)
. (41)

We define a set of functions, Ft, for all t > 0, as follows.

Ft(r) =

(
u
(
w − s0 + E(st)− (ert − 1)

)
− E

[
u
(
w − s0 + st

)])/
t. (42)

Obviously, for every t > 0, if Ft(r) = 0, then r = rt.

Lemma B.3. For all r ∈ R,

lim
t→0

Ft(r) = −u′(w)r − 1

2
σ2
0u
′′(w). (43)

Proof.
It will be easier to calculate the limit of Ft(r) as the difference between two
functions:

gt(r) ≡
(
u
(
w − s0 + E(st)− (ert − 1)

))/
t− u(w)/t,
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and

ht ≡ E
[
u
(
w − s0 + st

)]/
t− u(w)/t.

Clearly,
Ft(r) = gt(r)− ht.

Since the three functions u, E[st], and ert are differentiable with respect
to t, the limit of gt(r) as t goes to zero can be calculated using the L’Hopital
rule:

lim
t→0

gt(r) = u′(w)(µ0 − r). (44)

From Ito’s lemma it follows that

ht = E

[ ∫ t

0

(
u′qµq +

1

2
u′′qσ

2
q

)
dq

]/
t. (45)

As t goes to zero, the limit of ht is equal to the integrand at t = 0, i.e.,

lim
t→0

ht = u′(w)µ0 +
1

2
u′′(w)σ2

0. (46)

From (44) and (46) we get the desired result:

lim
t→0

Ft(r) = lim
t→0

gt(r)− lim
t→0

ht(r)

= −u′(w)r − 1

2
σ2
0u
′′(w). (47)

Now, let F(r) be defined as the limit of Ft’s, i.e.,

F (r) ≡ lim
t→0

Ft(r) = −ru′(w)− 1

2
σ2
0u
′′(w). (48)

In addition, let r∗ be the real number s.t. F (r∗) = 0, i.e.,

r∗ = −1

2

u′′(w)

u′(w)
σ2
0. (49)

Since the two conditions of lemma B.1 are satisfied we conclude that

lim
t→0

rt = r∗ (50)
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Hence, r∗ is the solution for the local absolute risk premium problem. It
is easy to see that r∗ is monotonic with respect to −u′′(w)/u′(w) and with
respect to σ2

0, which are an index of risk aversion and an index of riskiness,
respectively. The proof of the relative case (Case 5) is quite similar.

Proof. (Cases 2 and 6)
The (absolute) optimal allocation αt(dm, s) is defined by

αt(dm, s) = arg max
α

E

[
u

(
w − αs0 + αs1

)]
. (51)

We start by defining a set of functions as follows:

Ft(α) =

(
E

[
u

(
αw − αs0 + αs1

)]
− u(w)

)/
t. (52)

Using Ito’s lemma,

Ft(α) = E0

[ ∫ t

0

αµqu
′
q +

1

2
α2σ2

qu
′′
q dq

]/
t, (53)

where u′q ≡ du(xq)/d(xq), u
′′
q ≡ du2(xq)/d

2(xq), and where xq = w−αs0+αsq.
We define F (α) to be the limit of Ft(α) as t goes to zero:

F (α) ≡ lim
t→0

Ft(α)

= αµ0u
′(w) +

1

2
α2σ2

0u
′′(w). (54)

We denote by α∗ the value of α that maximizes F :

α∗ = arg max
α

F (α)

= − u
′(w)

u′′(w)

µ0

σ2
0

. (55)

To show our result we use Lemma B.2. To see that for all t, Ft is a twice-
differentiable and concave function, we rewrite Ft as the sum of two expres-
sions:

Ft(α) = αE0

[ ∫ t

0

µqu
′
q

]/
t+ α2 E0

[
1

2
σ2
qu
′′
q dq

]/
t. (56)
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The assumption that the second derivative of the utility function is negative
implies that the first derivative of Ft(α) decreases, which means that Ft is a
concave function.

Since the two conditions of Lemma B.2 are satisfied, there exists ε > 0
s.t. for all t < ε, αt does exist and:

lim
t→0

αt = α∗. (57)

It is easy to see that α∗ is monotonic with −u′′(w)/u′(w) and with σ2
0/(µ0).

That completes the proof of the absolute case. The proof of the relative case
is quite similar.

Proof. (Cases 3 and 6)
The certainty equivalent of the optimal allocation zt(dm, s) is defined implic-
itly by

u(w + eztt − 1) = E

[
u

(
w − αts0 + αtst

)]
. (58)

where αt ≡ αt(dm, s), defined in (55). Let Ft be a set of functions, defined
as follows:

Ft(z) =

(
u(w + ezt − 1)− E

[
u

(
w − αts0 + αts1

)])/
t (59)

It is easy to see that if Ft(z) = 0 then z = zt. To calculate the limit of zt, it
will be easier to look at Ft as the difference between two functions gt and ht,
defined by

gt(z) =

(
u(w + ezt − 1)− u(w)

)/
t (60)

and

ht =

(
E

[
u

(
w − αts0 + αts1

)]
− u(w)

)/
t. (61)

(62)

Clearly,
Ft(z) = gt(z)− ht
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for every value of z.
The limit of gt(z) as t goes to zero can be calculated by using the L’Hopital

rule:

lim
t→0

gt(z) = u′(w) · z. (63)

Recall that according to 55,

α∗ = − u
′(w)

u′′(w)

µ0

σ2
0

;

substituting α∗ in ht and taking the limit we get

lim
t→0

ht = −u
′2µ2

0

u′′σ2
+

1

2

u′2µ2
0

u′′σ2
. (64)

Now, we define F (z) to be the limit of Ft(z), where t goes to zero:

F (z) ≡ lim
t→0

Ft(z)

= lim
t→0

gt(z)− lim
t→0

ht(z)

= u′0z +
1

2

(u′0)
2

u′′0

(µ0

σ0

)2
(65)

We define z∗ to be the value that results in F (z∗) = 0:

z∗ = −1

2

u′0
u′′0

(µ0

σ0

)2
(66)

Since the conditions of Lemma B.1 are satisfied, we get:

lim
t→0

zt = z∗. (67)

It is easy to see that z∗ is monotonic with the measures of risk and risk
aversion, as appears in Table 2. The proof of the relative case is quite similar.
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